James Molloy | 3feea9c | 2014-08-08 12:33:21 +0000 | [diff] [blame] | 1 | //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // For best-case performance on Cortex-A57, we should try to use a balanced |
| 10 | // mix of odd and even D-registers when performing a critical sequence of |
| 11 | // independent, non-quadword FP/ASIMD floating-point multiply or |
| 12 | // multiply-accumulate operations. |
| 13 | // |
| 14 | // This pass attempts to detect situations where the register allocation may |
| 15 | // adversely affect this load balancing and to change the registers used so as |
| 16 | // to better utilize the CPU. |
| 17 | // |
| 18 | // Ideally we'd just take each multiply or multiply-accumulate in turn and |
| 19 | // allocate it alternating even or odd registers. However, multiply-accumulates |
| 20 | // are most efficiently performed in the same functional unit as their |
| 21 | // accumulation operand. Therefore this pass tries to find maximal sequences |
| 22 | // ("Chains") of multiply-accumulates linked via their accumulation operand, |
| 23 | // and assign them all the same "color" (oddness/evenness). |
| 24 | // |
| 25 | // This optimization affects S-register and D-register floating point |
| 26 | // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and |
| 27 | // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are |
| 28 | // not affected. |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | |
| 31 | #include "AArch64.h" |
| 32 | #include "AArch64InstrInfo.h" |
| 33 | #include "AArch64Subtarget.h" |
| 34 | #include "llvm/ADT/BitVector.h" |
| 35 | #include "llvm/ADT/EquivalenceClasses.h" |
| 36 | #include "llvm/CodeGen/MachineFunction.h" |
| 37 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 38 | #include "llvm/CodeGen/MachineInstr.h" |
| 39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 40 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 41 | #include "llvm/CodeGen/RegisterScavenging.h" |
| 42 | #include "llvm/CodeGen/RegisterClassInfo.h" |
| 43 | #include "llvm/Support/CommandLine.h" |
| 44 | #include "llvm/Support/Debug.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include <list> |
| 47 | using namespace llvm; |
| 48 | |
| 49 | #define DEBUG_TYPE "aarch64-a57-fp-load-balancing" |
| 50 | |
| 51 | // Enforce the algorithm to use the scavenged register even when the original |
| 52 | // destination register is the correct color. Used for testing. |
| 53 | static cl::opt<bool> |
| 54 | TransformAll("aarch64-a57-fp-load-balancing-force-all", |
| 55 | cl::desc("Always modify dest registers regardless of color"), |
| 56 | cl::init(false), cl::Hidden); |
| 57 | |
| 58 | // Never use the balance information obtained from chains - return a specific |
| 59 | // color always. Used for testing. |
| 60 | static cl::opt<unsigned> |
| 61 | OverrideBalance("aarch64-a57-fp-load-balancing-override", |
| 62 | cl::desc("Ignore balance information, always return " |
| 63 | "(1: Even, 2: Odd)."), |
| 64 | cl::init(0), cl::Hidden); |
| 65 | |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | // Helper functions |
| 68 | |
| 69 | // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? |
| 70 | static bool isMul(MachineInstr *MI) { |
| 71 | switch (MI->getOpcode()) { |
| 72 | case AArch64::FMULSrr: |
| 73 | case AArch64::FNMULSrr: |
| 74 | case AArch64::FMULDrr: |
| 75 | case AArch64::FNMULDrr: |
| 76 | |
| 77 | case AArch64::FMULv2f32: |
| 78 | return true; |
| 79 | default: |
| 80 | return false; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? |
| 85 | static bool isMla(MachineInstr *MI) { |
| 86 | switch (MI->getOpcode()) { |
| 87 | case AArch64::FMSUBSrrr: |
| 88 | case AArch64::FMADDSrrr: |
| 89 | case AArch64::FNMSUBSrrr: |
| 90 | case AArch64::FNMADDSrrr: |
| 91 | case AArch64::FMSUBDrrr: |
| 92 | case AArch64::FMADDDrrr: |
| 93 | case AArch64::FNMSUBDrrr: |
| 94 | case AArch64::FNMADDDrrr: |
| 95 | |
| 96 | case AArch64::FMLAv2f32: |
| 97 | case AArch64::FMLSv2f32: |
| 98 | return true; |
| 99 | default: |
| 100 | return false; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | //===----------------------------------------------------------------------===// |
| 105 | |
| 106 | namespace { |
| 107 | /// A "color", which is either even or odd. Yes, these aren't really colors |
| 108 | /// but the algorithm is conceptually doing two-color graph coloring. |
| 109 | enum class Color { Even, Odd }; |
NAKAMURA Takumi | 08e30fd | 2014-08-08 17:00:59 +0000 | [diff] [blame] | 110 | #ifndef NDEBUG |
James Molloy | 3feea9c | 2014-08-08 12:33:21 +0000 | [diff] [blame] | 111 | static const char *ColorNames[2] = { "Even", "Odd" }; |
NAKAMURA Takumi | 08e30fd | 2014-08-08 17:00:59 +0000 | [diff] [blame] | 112 | #endif |
James Molloy | 3feea9c | 2014-08-08 12:33:21 +0000 | [diff] [blame] | 113 | |
| 114 | class Chain; |
| 115 | |
| 116 | class AArch64A57FPLoadBalancing : public MachineFunctionPass { |
| 117 | const AArch64InstrInfo *TII; |
| 118 | MachineRegisterInfo *MRI; |
| 119 | const TargetRegisterInfo *TRI; |
| 120 | RegisterClassInfo RCI; |
| 121 | |
| 122 | public: |
| 123 | static char ID; |
| 124 | explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {} |
| 125 | |
| 126 | bool runOnMachineFunction(MachineFunction &F) override; |
| 127 | |
| 128 | const char *getPassName() const override { |
| 129 | return "A57 FP Anti-dependency breaker"; |
| 130 | } |
| 131 | |
| 132 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 133 | AU.setPreservesCFG(); |
| 134 | MachineFunctionPass::getAnalysisUsage(AU); |
| 135 | } |
| 136 | |
| 137 | private: |
| 138 | bool runOnBasicBlock(MachineBasicBlock &MBB); |
| 139 | bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, |
| 140 | int &Balance); |
| 141 | bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); |
| 142 | int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); |
| 143 | void scanInstruction(MachineInstr *MI, unsigned Idx, |
| 144 | std::map<unsigned, Chain*> &Chains, |
| 145 | std::set<Chain*> &ChainSet); |
| 146 | void maybeKillChain(MachineOperand &MO, unsigned Idx, |
| 147 | std::map<unsigned, Chain*> &RegChains); |
| 148 | Color getColor(unsigned Register); |
| 149 | Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); |
| 150 | }; |
| 151 | char AArch64A57FPLoadBalancing::ID = 0; |
| 152 | |
| 153 | /// A Chain is a sequence of instructions that are linked together by |
| 154 | /// an accumulation operand. For example: |
| 155 | /// |
| 156 | /// fmul d0<def>, ? |
| 157 | /// fmla d1<def>, ?, ?, d0<kill> |
| 158 | /// fmla d2<def>, ?, ?, d1<kill> |
| 159 | /// |
| 160 | /// There may be other instructions interleaved in the sequence that |
| 161 | /// do not belong to the chain. These other instructions must not use |
| 162 | /// the "chain" register at any point. |
| 163 | /// |
| 164 | /// We currently only support chains where the "chain" operand is killed |
| 165 | /// at each link in the chain for simplicity. |
| 166 | /// A chain has three important instructions - Start, Last and Kill. |
| 167 | /// * The start instruction is the first instruction in the chain. |
| 168 | /// * Last is the final instruction in the chain. |
| 169 | /// * Kill may or may not be defined. If defined, Kill is the instruction |
| 170 | /// where the outgoing value of the Last instruction is killed. |
| 171 | /// This information is important as if we know the outgoing value is |
| 172 | /// killed with no intervening uses, we can safely change its register. |
| 173 | /// |
| 174 | /// Without a kill instruction, we must assume the outgoing value escapes |
| 175 | /// beyond our model and either must not change its register or must |
| 176 | /// create a fixup FMOV to keep the old register value consistent. |
| 177 | /// |
| 178 | class Chain { |
| 179 | public: |
| 180 | /// The important (marker) instructions. |
| 181 | MachineInstr *StartInst, *LastInst, *KillInst; |
| 182 | /// The index, from the start of the basic block, that each marker |
| 183 | /// appears. These are stored so we can do quick interval tests. |
| 184 | unsigned StartInstIdx, LastInstIdx, KillInstIdx; |
| 185 | /// All instructions in the chain. |
| 186 | std::set<MachineInstr*> Insts; |
| 187 | /// True if KillInst cannot be modified. If this is true, |
| 188 | /// we cannot change LastInst's outgoing register. |
| 189 | /// This will be true for tied values and regmasks. |
| 190 | bool KillIsImmutable; |
| 191 | /// The "color" of LastInst. This will be the preferred chain color, |
| 192 | /// as changing intermediate nodes is easy but changing the last |
| 193 | /// instruction can be more tricky. |
| 194 | Color LastColor; |
| 195 | |
| 196 | Chain(MachineInstr *MI, unsigned Idx, Color C) : |
| 197 | StartInst(MI), LastInst(MI), KillInst(NULL), |
| 198 | StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), |
| 199 | LastColor(C) { |
| 200 | Insts.insert(MI); |
| 201 | } |
| 202 | |
| 203 | /// Add a new instruction into the chain. The instruction's dest operand |
| 204 | /// has the given color. |
| 205 | void add(MachineInstr *MI, unsigned Idx, Color C) { |
| 206 | LastInst = MI; |
| 207 | LastInstIdx = Idx; |
| 208 | LastColor = C; |
| 209 | |
| 210 | Insts.insert(MI); |
| 211 | } |
| 212 | |
| 213 | /// Return true if MI is a member of the chain. |
| 214 | bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; } |
| 215 | |
| 216 | /// Return the number of instructions in the chain. |
| 217 | unsigned size() const { |
| 218 | return Insts.size(); |
| 219 | } |
| 220 | |
| 221 | /// Inform the chain that its last active register (the dest register of |
| 222 | /// LastInst) is killed by MI with no intervening uses or defs. |
| 223 | void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { |
| 224 | KillInst = MI; |
| 225 | KillInstIdx = Idx; |
| 226 | KillIsImmutable = Immutable; |
| 227 | } |
| 228 | |
| 229 | /// Return the first instruction in the chain. |
| 230 | MachineInstr *getStart() const { return StartInst; } |
| 231 | /// Return the last instruction in the chain. |
| 232 | MachineInstr *getLast() const { return LastInst; } |
| 233 | /// Return the "kill" instruction (as set with setKill()) or NULL. |
| 234 | MachineInstr *getKill() const { return KillInst; } |
| 235 | /// Return an instruction that can be used as an iterator for the end |
| 236 | /// of the chain. This is the maximum of KillInst (if set) and LastInst. |
| 237 | MachineInstr *getEnd() const { |
| 238 | return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); |
| 239 | } |
| 240 | |
| 241 | /// Can the Kill instruction (assuming one exists) be modified? |
| 242 | bool isKillImmutable() const { return KillIsImmutable; } |
| 243 | |
| 244 | /// Return the preferred color of this chain. |
| 245 | Color getPreferredColor() { |
| 246 | if (OverrideBalance != 0) |
| 247 | return OverrideBalance == 1 ? Color::Even : Color::Odd; |
| 248 | return LastColor; |
| 249 | } |
| 250 | |
| 251 | /// Return true if this chain (StartInst..KillInst) overlaps with Other. |
| 252 | bool rangeOverlapsWith(Chain *Other) { |
| 253 | unsigned End = KillInst ? KillInstIdx : LastInstIdx; |
| 254 | unsigned OtherEnd = Other->KillInst ? |
| 255 | Other->KillInstIdx : Other->LastInstIdx; |
| 256 | |
| 257 | return StartInstIdx <= OtherEnd && Other->StartInstIdx <= End; |
| 258 | } |
| 259 | |
| 260 | /// Return true if this chain starts before Other. |
| 261 | bool startsBefore(Chain *Other) { |
| 262 | return StartInstIdx < Other->StartInstIdx; |
| 263 | } |
| 264 | |
| 265 | /// Return true if the group will require a fixup MOV at the end. |
| 266 | bool requiresFixup() const { |
| 267 | return (getKill() && isKillImmutable()) || !getKill(); |
| 268 | } |
| 269 | |
| 270 | /// Return a simple string representation of the chain. |
| 271 | std::string str() const { |
| 272 | std::string S; |
| 273 | raw_string_ostream OS(S); |
| 274 | |
| 275 | OS << "{"; |
| 276 | StartInst->print(OS, NULL, true); |
| 277 | OS << " -> "; |
| 278 | LastInst->print(OS, NULL, true); |
| 279 | if (KillInst) { |
| 280 | OS << " (kill @ "; |
| 281 | KillInst->print(OS, NULL, true); |
| 282 | OS << ")"; |
| 283 | } |
| 284 | OS << "}"; |
| 285 | |
| 286 | return OS.str(); |
| 287 | } |
| 288 | |
| 289 | }; |
| 290 | |
| 291 | } // end anonymous namespace |
| 292 | |
| 293 | //===----------------------------------------------------------------------===// |
| 294 | |
| 295 | bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { |
| 296 | bool Changed = false; |
| 297 | DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); |
| 298 | |
| 299 | const TargetMachine &TM = F.getTarget(); |
| 300 | MRI = &F.getRegInfo(); |
| 301 | TRI = F.getRegInfo().getTargetRegisterInfo(); |
| 302 | TII = TM.getSubtarget<AArch64Subtarget>().getInstrInfo(); |
| 303 | RCI.runOnMachineFunction(F); |
| 304 | |
| 305 | for (auto &MBB : F) { |
| 306 | Changed |= runOnBasicBlock(MBB); |
| 307 | } |
| 308 | |
| 309 | return Changed; |
| 310 | } |
| 311 | |
| 312 | bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { |
| 313 | bool Changed = false; |
| 314 | DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); |
| 315 | |
| 316 | // First, scan the basic block producing a set of chains. |
| 317 | |
| 318 | // The currently "active" chains - chains that can be added to and haven't |
| 319 | // been killed yet. This is keyed by register - all chains can only have one |
| 320 | // "link" register between each inst in the chain. |
| 321 | std::map<unsigned, Chain*> ActiveChains; |
| 322 | std::set<Chain*> AllChains; |
| 323 | unsigned Idx = 0; |
| 324 | for (auto &MI : MBB) |
| 325 | scanInstruction(&MI, Idx++, ActiveChains, AllChains); |
| 326 | |
| 327 | DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n"); |
| 328 | |
| 329 | // Group the chains into disjoint sets based on their liveness range. This is |
| 330 | // a poor-man's version of graph coloring. Ideally we'd create an interference |
| 331 | // graph and perform full-on graph coloring on that, but; |
| 332 | // (a) That's rather heavyweight for only two colors. |
| 333 | // (b) We expect multiple disjoint interference regions - in practice the live |
| 334 | // range of chains is quite small and they are clustered between loads |
| 335 | // and stores. |
| 336 | EquivalenceClasses<Chain*> EC; |
| 337 | for (auto *I : AllChains) |
| 338 | EC.insert(I); |
| 339 | |
| 340 | for (auto *I : AllChains) { |
| 341 | for (auto *J : AllChains) { |
| 342 | if (I != J && I->rangeOverlapsWith(J)) |
| 343 | EC.unionSets(I, J); |
| 344 | } |
| 345 | } |
| 346 | DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); |
| 347 | |
| 348 | // Now we assume that every member of an equivalence class interferes |
| 349 | // with every other member of that class, and with no members of other classes. |
| 350 | |
| 351 | // Convert the EquivalenceClasses to a simpler set of sets. |
| 352 | std::vector<std::vector<Chain*> > V; |
| 353 | for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { |
| 354 | std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); |
| 355 | if (Cs.empty()) continue; |
| 356 | V.push_back(Cs); |
| 357 | } |
| 358 | |
| 359 | // Now we have a set of sets, order them by start address so |
| 360 | // we can iterate over them sequentially. |
| 361 | std::sort(V.begin(), V.end(), |
| 362 | [](const std::vector<Chain*> &A, |
| 363 | const std::vector<Chain*> &B) { |
| 364 | return A.front()->startsBefore(B.front()); |
| 365 | }); |
| 366 | |
| 367 | // As we only have two colors, we can track the global (BB-level) balance of |
| 368 | // odds versus evens. We aim to keep this near zero to keep both execution |
| 369 | // units fed. |
| 370 | // Positive means we're even-heavy, negative we're odd-heavy. |
| 371 | // |
| 372 | // FIXME: If chains have interdependencies, for example: |
| 373 | // mul r0, r1, r2 |
| 374 | // mul r3, r0, r1 |
| 375 | // We do not model this and may color each one differently, assuming we'll |
| 376 | // get ILP when we obviously can't. This hasn't been seen to be a problem |
| 377 | // in practice so far, so we simplify the algorithm by ignoring it. |
| 378 | int Parity = 0; |
| 379 | |
| 380 | for (auto &I : V) |
| 381 | Changed |= colorChainSet(I, MBB, Parity); |
| 382 | |
| 383 | for (auto *C : AllChains) |
| 384 | delete C; |
| 385 | |
| 386 | return Changed; |
| 387 | } |
| 388 | |
| 389 | Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, |
| 390 | std::vector<Chain*> &L) { |
| 391 | if (L.empty()) |
| 392 | return nullptr; |
| 393 | |
| 394 | // We try and get the best candidate from L to color next, given that our |
| 395 | // preferred color is "PreferredColor". L is ordered from larger to smaller |
| 396 | // chains. It is beneficial to color the large chains before the small chains, |
| 397 | // but if we can't find a chain of the maximum length with the preferred color, |
| 398 | // we fuzz the size and look for slightly smaller chains before giving up and |
| 399 | // returning a chain that must be recolored. |
| 400 | |
| 401 | // FIXME: Does this need to be configurable? |
| 402 | const unsigned SizeFuzz = 1; |
| 403 | unsigned MinSize = L.front()->size() - SizeFuzz; |
| 404 | for (auto I = L.begin(), E = L.end(); I != E; ++I) { |
| 405 | if ((*I)->size() <= MinSize) { |
| 406 | // We've gone past the size limit. Return the previous item. |
| 407 | Chain *Ch = *--I; |
| 408 | L.erase(I); |
| 409 | return Ch; |
| 410 | } |
| 411 | |
| 412 | if ((*I)->getPreferredColor() == PreferredColor) { |
| 413 | Chain *Ch = *I; |
| 414 | L.erase(I); |
| 415 | return Ch; |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | // Bailout case - just return the first item. |
| 420 | Chain *Ch = L.front(); |
| 421 | L.erase(L.begin()); |
| 422 | return Ch; |
| 423 | } |
| 424 | |
| 425 | bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, |
| 426 | MachineBasicBlock &MBB, |
| 427 | int &Parity) { |
| 428 | bool Changed = false; |
| 429 | DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); |
| 430 | |
| 431 | // Sort by descending size order so that we allocate the most important |
| 432 | // sets first. |
| 433 | // Tie-break equivalent sizes by sorting chains requiring fixups before |
| 434 | // those without fixups. The logic here is that we should look at the |
| 435 | // chains that we cannot change before we look at those we can, |
| 436 | // so the parity counter is updated and we know what color we should |
| 437 | // change them to! |
| 438 | std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) { |
| 439 | if (G1->size() != G2->size()) |
| 440 | return G1->size() > G2->size(); |
| 441 | return G1->requiresFixup() > G2->requiresFixup(); |
| 442 | }); |
| 443 | |
| 444 | Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; |
| 445 | while (Chain *G = getAndEraseNext(PreferredColor, GV)) { |
| 446 | // Start off by assuming we'll color to our own preferred color. |
| 447 | Color C = PreferredColor; |
| 448 | if (Parity == 0) |
| 449 | // But if we really don't care, use the chain's preferred color. |
| 450 | C = G->getPreferredColor(); |
| 451 | |
| 452 | DEBUG(dbgs() << " - Parity=" << Parity << ", Color=" |
| 453 | << ColorNames[(int)C] << "\n"); |
| 454 | |
| 455 | // If we'll need a fixup FMOV, don't bother. Testing has shown that this |
| 456 | // happens infrequently and when it does it has at least a 50% chance of |
| 457 | // slowing code down instead of speeding it up. |
| 458 | if (G->requiresFixup() && C != G->getPreferredColor()) { |
| 459 | C = G->getPreferredColor(); |
| 460 | DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; " |
| 461 | "color remains " << ColorNames[(int)C] << "\n"); |
| 462 | } |
| 463 | |
| 464 | Changed |= colorChain(G, C, MBB); |
| 465 | |
| 466 | Parity += (C == Color::Even) ? G->size() : -G->size(); |
| 467 | PreferredColor = Parity < 0 ? Color::Even : Color::Odd; |
| 468 | } |
| 469 | |
| 470 | return Changed; |
| 471 | } |
| 472 | |
| 473 | int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, |
| 474 | MachineBasicBlock &MBB) { |
| 475 | RegScavenger RS; |
| 476 | RS.enterBasicBlock(&MBB); |
| 477 | RS.forward(MachineBasicBlock::iterator(G->getStart())); |
| 478 | |
| 479 | // Can we find an appropriate register that is available throughout the life |
| 480 | // of the chain? |
| 481 | unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass; |
| 482 | BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID)); |
| 483 | for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); |
| 484 | I != E; ++I) { |
| 485 | RS.forward(I); |
| 486 | AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID)); |
| 487 | |
| 488 | // Remove any registers clobbered by a regmask. |
| 489 | for (auto J : I->operands()) { |
| 490 | if (J.isRegMask()) |
| 491 | AvailableRegs.clearBitsNotInMask(J.getRegMask()); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | // Make sure we allocate in-order, to get the cheapest registers first. |
| 496 | auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); |
| 497 | for (auto Reg : Ord) { |
| 498 | if (!AvailableRegs[Reg]) |
| 499 | continue; |
| 500 | if ((C == Color::Even && (Reg % 2) == 0) || |
| 501 | (C == Color::Odd && (Reg % 2) == 1)) |
| 502 | return Reg; |
| 503 | } |
| 504 | |
| 505 | return -1; |
| 506 | } |
| 507 | |
| 508 | bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, |
| 509 | MachineBasicBlock &MBB) { |
| 510 | bool Changed = false; |
| 511 | DEBUG(dbgs() << " - colorChain(" << G->str() << ", " |
| 512 | << ColorNames[(int)C] << ")\n"); |
| 513 | |
| 514 | // Try and obtain a free register of the right class. Without a register |
| 515 | // to play with we cannot continue. |
| 516 | int Reg = scavengeRegister(G, C, MBB); |
| 517 | if (Reg == -1) { |
| 518 | DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); |
| 519 | return false; |
| 520 | } |
| 521 | DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n"); |
| 522 | |
| 523 | std::map<unsigned, unsigned> Substs; |
| 524 | for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); |
| 525 | I != E; ++I) { |
| 526 | if (!G->contains(I) && |
| 527 | (&*I != G->getKill() || G->isKillImmutable())) |
| 528 | continue; |
| 529 | |
| 530 | // I is a member of G, or I is a mutable instruction that kills G. |
| 531 | |
| 532 | std::vector<unsigned> ToErase; |
| 533 | for (auto &U : I->operands()) { |
| 534 | if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { |
| 535 | unsigned OrigReg = U.getReg(); |
| 536 | U.setReg(Substs[OrigReg]); |
| 537 | if (U.isKill()) |
| 538 | // Don't erase straight away, because there may be other operands |
| 539 | // that also reference this substitution! |
| 540 | ToErase.push_back(OrigReg); |
| 541 | } else if (U.isRegMask()) { |
| 542 | for (auto J : Substs) { |
| 543 | if (U.clobbersPhysReg(J.first)) |
| 544 | ToErase.push_back(J.first); |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | // Now it's safe to remove the substs identified earlier. |
| 549 | for (auto J : ToErase) |
| 550 | Substs.erase(J); |
| 551 | |
| 552 | // Only change the def if this isn't the last instruction. |
| 553 | if (&*I != G->getKill()) { |
| 554 | MachineOperand &MO = I->getOperand(0); |
| 555 | |
| 556 | bool Change = TransformAll || getColor(MO.getReg()) != C; |
| 557 | if (G->requiresFixup() && &*I == G->getLast()) |
| 558 | Change = false; |
| 559 | |
| 560 | if (Change) { |
| 561 | Substs[MO.getReg()] = Reg; |
| 562 | MO.setReg(Reg); |
| 563 | MRI->setPhysRegUsed(Reg); |
| 564 | |
| 565 | Changed = true; |
| 566 | } |
| 567 | } |
| 568 | } |
| 569 | assert(Substs.size() == 0 && "No substitutions should be left active!"); |
| 570 | |
| 571 | if (G->getKill()) { |
| 572 | DEBUG(dbgs() << " - Kill instruction seen.\n"); |
| 573 | } else { |
| 574 | // We didn't have a kill instruction, but we didn't seem to need to change |
| 575 | // the destination register anyway. |
| 576 | DEBUG(dbgs() << " - Destination register not changed.\n"); |
| 577 | } |
| 578 | return Changed; |
| 579 | } |
| 580 | |
| 581 | void AArch64A57FPLoadBalancing:: |
| 582 | scanInstruction(MachineInstr *MI, unsigned Idx, |
| 583 | std::map<unsigned, Chain*> &ActiveChains, |
| 584 | std::set<Chain*> &AllChains) { |
| 585 | // Inspect "MI", updating ActiveChains and AllChains. |
| 586 | |
| 587 | if (isMul(MI)) { |
| 588 | |
| 589 | for (auto &I : MI->operands()) |
| 590 | maybeKillChain(I, Idx, ActiveChains); |
| 591 | |
| 592 | // Create a new chain. Multiplies don't require forwarding so can go on any |
| 593 | // unit. |
| 594 | unsigned DestReg = MI->getOperand(0).getReg(); |
| 595 | |
| 596 | DEBUG(dbgs() << "New chain started for register " |
| 597 | << TRI->getName(DestReg) << " at " << *MI); |
| 598 | |
| 599 | Chain *G = new Chain(MI, Idx, getColor(DestReg)); |
| 600 | ActiveChains[DestReg] = G; |
| 601 | AllChains.insert(G); |
| 602 | |
| 603 | } else if (isMla(MI)) { |
| 604 | |
| 605 | // It is beneficial to keep MLAs on the same functional unit as their |
| 606 | // accumulator operand. |
| 607 | unsigned DestReg = MI->getOperand(0).getReg(); |
| 608 | unsigned AccumReg = MI->getOperand(3).getReg(); |
| 609 | |
| 610 | maybeKillChain(MI->getOperand(1), Idx, ActiveChains); |
| 611 | maybeKillChain(MI->getOperand(2), Idx, ActiveChains); |
| 612 | if (DestReg != AccumReg) |
| 613 | maybeKillChain(MI->getOperand(0), Idx, ActiveChains); |
| 614 | |
| 615 | if (ActiveChains.find(AccumReg) != ActiveChains.end()) { |
| 616 | DEBUG(dbgs() << "Chain found for accumulator register " |
| 617 | << TRI->getName(AccumReg) << " in MI " << *MI); |
| 618 | |
| 619 | // For simplicity we only chain together sequences of MULs/MLAs where the |
| 620 | // accumulator register is killed on each instruction. This means we don't |
| 621 | // need to track other uses of the registers we want to rewrite. |
| 622 | // |
| 623 | // FIXME: We could extend to handle the non-kill cases for more coverage. |
| 624 | if (MI->getOperand(3).isKill()) { |
| 625 | // Add to chain. |
| 626 | DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); |
| 627 | ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); |
| 628 | // Handle cases where the destination is not the same as the accumulator. |
| 629 | ActiveChains[DestReg] = ActiveChains[AccumReg]; |
| 630 | return; |
| 631 | } |
| 632 | |
| 633 | DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't " |
| 634 | << "marked <kill>!\n"); |
| 635 | maybeKillChain(MI->getOperand(3), Idx, ActiveChains); |
| 636 | } |
| 637 | |
| 638 | DEBUG(dbgs() << "Creating new chain for dest register " |
| 639 | << TRI->getName(DestReg) << "\n"); |
| 640 | Chain *G = new Chain(MI, Idx, getColor(DestReg)); |
| 641 | ActiveChains[DestReg] = G; |
| 642 | AllChains.insert(G); |
| 643 | |
| 644 | } else { |
| 645 | |
| 646 | // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs |
| 647 | // lists. |
| 648 | for (auto &I : MI->operands()) |
| 649 | maybeKillChain(I, Idx, ActiveChains); |
| 650 | |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | void AArch64A57FPLoadBalancing:: |
| 655 | maybeKillChain(MachineOperand &MO, unsigned Idx, |
| 656 | std::map<unsigned, Chain*> &ActiveChains) { |
| 657 | // Given an operand and the set of active chains (keyed by register), |
| 658 | // determine if a chain should be ended and remove from ActiveChains. |
| 659 | MachineInstr *MI = MO.getParent(); |
| 660 | |
| 661 | if (MO.isReg()) { |
| 662 | |
| 663 | // If this is a KILL of a current chain, record it. |
| 664 | if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { |
| 665 | DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg()) |
| 666 | << "\n"); |
| 667 | ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); |
| 668 | } |
| 669 | ActiveChains.erase(MO.getReg()); |
| 670 | |
| 671 | } else if (MO.isRegMask()) { |
| 672 | |
| 673 | for (auto I = ActiveChains.begin(), E = ActiveChains.end(); |
Tim Northover | e42fac5 | 2014-08-08 17:31:52 +0000 | [diff] [blame^] | 674 | I != E;) { |
James Molloy | 3feea9c | 2014-08-08 12:33:21 +0000 | [diff] [blame] | 675 | if (MO.clobbersPhysReg(I->first)) { |
| 676 | DEBUG(dbgs() << "Kill (regmask) seen for chain " |
| 677 | << TRI->getName(I->first) << "\n"); |
| 678 | I->second->setKill(MI, Idx, /*Immutable=*/true); |
Tim Northover | e42fac5 | 2014-08-08 17:31:52 +0000 | [diff] [blame^] | 679 | ActiveChains.erase(I++); |
| 680 | } else |
| 681 | ++I; |
James Molloy | 3feea9c | 2014-08-08 12:33:21 +0000 | [diff] [blame] | 682 | } |
| 683 | |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { |
| 688 | if ((TRI->getEncodingValue(Reg) % 2) == 0) |
| 689 | return Color::Even; |
| 690 | else |
| 691 | return Color::Odd; |
| 692 | } |
| 693 | |
| 694 | // Factory function used by AArch64TargetMachine to add the pass to the passmanager. |
| 695 | FunctionPass *llvm::createAArch64A57FPLoadBalancing() { |
| 696 | return new AArch64A57FPLoadBalancing(); |
| 697 | } |