blob: f23d20448f6aa9adb2d337c2f5a261355d9303dd [file] [log] [blame]
Misha Brukmancf7d3af2004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukmanc88330a2005-04-21 23:38:14 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanc88330a2005-04-21 23:38:14 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnercf53bcf2003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner11290272004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner11290272004-01-30 22:25:18 +000020//
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnercf53bcf2003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
26#include "X86.h"
27#include "X86InstrInfo.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000028#include "llvm/ADT/BitVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000030#include "llvm/ADT/STLExtras.h"
Owen Anderson1b351d42008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000032#include "llvm/ADT/SmallSet.h"
Evan Chengbbbcac32006-11-15 20:56:39 +000033#include "llvm/ADT/SmallVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000034#include "llvm/ADT/Statistic.h"
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
Akira Hatanaka35166692014-08-01 22:19:41 +000039#include "llvm/CodeGen/LivePhysRegs.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000040#include "llvm/CodeGen/Passes.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/InlineAsm.h"
Bill Wendling6eecd562009-08-03 00:11:34 +000042#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetMachine.h"
Chris Lattnercf53bcf2003-01-13 01:01:59 +000047#include <algorithm>
Chris Lattnerd46cd682003-12-20 09:58:55 +000048using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000049
Chandler Carruth84e68b22014-04-22 02:41:26 +000050#define DEBUG_TYPE "x86-codegen"
51
Chris Lattner1ef9cd42006-12-19 22:59:26 +000052STATISTIC(NumFXCH, "Number of fxch instructions inserted");
53STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnercf53bcf2003-01-13 01:01:59 +000054
Chris Lattner1ef9cd42006-12-19 22:59:26 +000055namespace {
Akira Hatanaka35166692014-08-01 22:19:41 +000056 const unsigned ScratchFPReg = 7;
57
Nick Lewycky02d5f772009-10-25 06:33:48 +000058 struct FPS : public MachineFunctionPass {
Devang Patel8c78a0b2007-05-03 01:11:54 +000059 static char ID;
Owen Andersona7aed182010-08-06 18:33:48 +000060 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000061 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesen8d511492010-07-16 22:00:33 +000062 // This is really only to keep valgrind quiet.
63 // The logic in isLive() is too much for it.
64 memset(Stack, 0, sizeof(Stack));
65 memset(RegMap, 0, sizeof(RegMap));
66 }
Devang Patel09f162c2007-05-01 21:15:47 +000067
Craig Topper2d9361e2014-03-09 07:44:38 +000068 void getAnalysisUsage(AnalysisUsage &AU) const override {
Dan Gohman6735e102009-08-01 00:26:16 +000069 AU.setPreservesCFG();
Jakob Stoklund Olesenf96ae682011-01-04 21:10:05 +000070 AU.addRequired<EdgeBundles>();
Evan Cheng962c2cf2008-09-22 22:21:38 +000071 AU.addPreservedID(MachineLoopInfoID);
72 AU.addPreservedID(MachineDominatorsID);
Evan Cheng168f8f32008-09-22 20:58:04 +000073 MachineFunctionPass::getAnalysisUsage(AU);
74 }
75
Craig Topper2d9361e2014-03-09 07:44:38 +000076 bool runOnMachineFunction(MachineFunction &MF) override;
Chris Lattnercf53bcf2003-01-13 01:01:59 +000077
Craig Topper2d9361e2014-03-09 07:44:38 +000078 const char *getPassName() const override { return "X86 FP Stackifier"; }
Chris Lattnercf53bcf2003-01-13 01:01:59 +000079
Chris Lattnercf53bcf2003-01-13 01:01:59 +000080 private:
Evan Cheng845bd6e2006-12-01 10:11:51 +000081 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +000082
83 // Two CFG edges are related if they leave the same block, or enter the same
84 // block. The transitive closure of an edge under this relation is a
85 // LiveBundle. It represents a set of CFG edges where the live FP stack
86 // registers must be allocated identically in the x87 stack.
87 //
88 // A LiveBundle is usually all the edges leaving a block, or all the edges
89 // entering a block, but it can contain more edges if critical edges are
90 // present.
91 //
92 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
93 // but the exact mapping of FP registers to stack slots is fixed later.
94 struct LiveBundle {
95 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
96 unsigned Mask;
97
98 // Number of pre-assigned live registers in FixStack. This is 0 when the
99 // stack order has not yet been fixed.
100 unsigned FixCount;
101
102 // Assigned stack order for live-in registers.
103 // FixStack[i] == getStackEntry(i) for all i < FixCount.
104 unsigned char FixStack[8];
105
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000106 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000107
108 // Have the live registers been assigned a stack order yet?
109 bool isFixed() const { return !Mask || FixCount; }
110 };
111
112 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
113 // with no live FP registers.
114 SmallVector<LiveBundle, 8> LiveBundles;
115
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000116 // The edge bundle analysis provides indices into the LiveBundles vector.
117 EdgeBundles *Bundles;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000118
119 // Return a bitmask of FP registers in block's live-in list.
Jakub Staszak59deec02012-11-21 00:59:34 +0000120 static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000121 unsigned Mask = 0;
122 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
123 E = MBB->livein_end(); I != E; ++I) {
Chad Rosieree740c42013-06-28 18:57:01 +0000124 unsigned Reg = *I;
125 if (Reg < X86::FP0 || Reg > X86::FP6)
126 continue;
127 Mask |= 1 << (Reg - X86::FP0);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000128 }
129 return Mask;
130 }
131
132 // Partition all the CFG edges into LiveBundles.
133 void bundleCFG(MachineFunction &MF);
134
Evan Cheng845bd6e2006-12-01 10:11:51 +0000135 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000136
137 // The hardware keeps track of how many FP registers are live, so we have
138 // to model that exactly. Usually, each live register corresponds to an
139 // FP<n> register, but when dealing with calls, returns, and inline
Benjamin Kramerbde91762012-06-02 10:20:22 +0000140 // assembly, it is sometimes necessary to have live scratch registers.
Evan Cheng845bd6e2006-12-01 10:11:51 +0000141 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng845bd6e2006-12-01 10:11:51 +0000142 unsigned StackTop; // The current top of the FP stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000143
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000144 enum {
Akira Hatanaka35166692014-08-01 22:19:41 +0000145 NumFPRegs = 8 // Including scratch pseudo-registers.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000146 };
147
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000148 // For each live FP<n> register, point to its Stack[] entry.
149 // The first entries correspond to FP0-FP6, the rest are scratch registers
150 // used when we need slightly different live registers than what the
151 // register allocator thinks.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000152 unsigned RegMap[NumFPRegs];
153
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000154 // Set up our stack model to match the incoming registers to MBB.
155 void setupBlockStack();
156
157 // Shuffle live registers to match the expectations of successor blocks.
158 void finishBlockStack();
159
Manman Ren19f49ac2012-09-11 22:23:19 +0000160#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000161 void dumpStack() const {
David Greened85fd002010-01-05 01:29:34 +0000162 dbgs() << "Stack contents:";
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000163 for (unsigned i = 0; i != StackTop; ++i) {
David Greened85fd002010-01-05 01:29:34 +0000164 dbgs() << " FP" << Stack[i];
Misha Brukmanc88330a2005-04-21 23:38:14 +0000165 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000166 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000167 }
Manman Ren742534c2012-09-06 19:06:06 +0000168#endif
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000169
Chris Lattner8f440bb2010-07-17 17:40:51 +0000170 /// getSlot - Return the stack slot number a particular register number is
171 /// in.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000172 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000173 assert(RegNo < NumFPRegs && "Regno out of range!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000174 return RegMap[RegNo];
175 }
176
Chris Lattner8f440bb2010-07-17 17:40:51 +0000177 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000178 bool isLive(unsigned RegNo) const {
179 unsigned Slot = getSlot(RegNo);
180 return Slot < StackTop && Stack[Slot] == RegNo;
181 }
182
Chris Lattner8f440bb2010-07-17 17:40:51 +0000183 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000184 unsigned getStackEntry(unsigned STi) const {
Evan Chengd565b442010-10-12 23:19:28 +0000185 if (STi >= StackTop)
186 report_fatal_error("Access past stack top!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000187 return Stack[StackTop-1-STi];
188 }
189
Chris Lattner8f440bb2010-07-17 17:40:51 +0000190 /// getSTReg - Return the X86::ST(i) register which contains the specified
191 /// FP<RegNo> register.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000192 unsigned getSTReg(unsigned RegNo) const {
Craig Topperf6e7e122012-03-27 07:21:54 +0000193 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000194 }
195
Chris Lattner1bd44362008-03-11 03:23:40 +0000196 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000197 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000198 assert(Reg < NumFPRegs && "Register number out of range!");
Evan Chengd565b442010-10-12 23:19:28 +0000199 if (StackTop >= 8)
200 report_fatal_error("Stack overflow!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000201 Stack[StackTop] = Reg;
202 RegMap[Reg] = StackTop++;
203 }
204
205 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner1bd44362008-03-11 03:23:40 +0000206 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000207 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner1bd44362008-03-11 03:23:40 +0000208 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000209
Chris Lattner1bd44362008-03-11 03:23:40 +0000210 unsigned STReg = getSTReg(RegNo);
211 unsigned RegOnTop = getStackEntry(0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000212
Chris Lattner1bd44362008-03-11 03:23:40 +0000213 // Swap the slots the regs are in.
214 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000215
Chris Lattner1bd44362008-03-11 03:23:40 +0000216 // Swap stack slot contents.
Evan Chengd565b442010-10-12 23:19:28 +0000217 if (RegMap[RegOnTop] >= StackTop)
218 report_fatal_error("Access past stack top!");
Chris Lattner1bd44362008-03-11 03:23:40 +0000219 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000220
Chris Lattner1bd44362008-03-11 03:23:40 +0000221 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen9bba9022009-02-13 02:33:27 +0000222 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmand2d1ae12010-06-22 15:08:57 +0000223 ++NumFXCH;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000224 }
225
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000226 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000227 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000228 unsigned STReg = getSTReg(RegNo);
229 pushReg(AsReg); // New register on top of stack
230
Dale Johannesen9bba9022009-02-13 02:33:27 +0000231 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000232 }
233
Chris Lattner8f440bb2010-07-17 17:40:51 +0000234 /// popStackAfter - Pop the current value off of the top of the FP stack
235 /// after the specified instruction.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000236 void popStackAfter(MachineBasicBlock::iterator &I);
237
Chris Lattner8f440bb2010-07-17 17:40:51 +0000238 /// freeStackSlotAfter - Free the specified register from the register
239 /// stack, so that it is no longer in a register. If the register is
240 /// currently at the top of the stack, we just pop the current instruction,
241 /// otherwise we store the current top-of-stack into the specified slot,
242 /// then pop the top of stack.
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000243 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
244
Chris Lattner8f440bb2010-07-17 17:40:51 +0000245 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
246 /// instruction.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000247 MachineBasicBlock::iterator
248 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
249
Chris Lattner8f440bb2010-07-17 17:40:51 +0000250 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000251 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
252
Jakob Stoklund Olesenff653a22011-06-27 04:08:36 +0000253 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattner8f440bb2010-07-17 17:40:51 +0000254 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000255 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
256 MachineBasicBlock::iterator I);
257
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000258 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
259
Akira Hatanaka35166692014-08-01 22:19:41 +0000260 void handleCall(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000261 void handleZeroArgFP(MachineBasicBlock::iterator &I);
262 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner7af8ad62004-02-02 19:23:15 +0000263 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000264 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattner94ff2c32004-06-11 04:25:06 +0000265 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc07c9582004-03-31 22:02:36 +0000266 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000267 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000268
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000269 // Check if a COPY instruction is using FP registers.
Jakub Staszak6f58ce12012-11-21 00:50:57 +0000270 static bool isFPCopy(MachineInstr *MI) {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000271 unsigned DstReg = MI->getOperand(0).getReg();
272 unsigned SrcReg = MI->getOperand(1).getReg();
273
274 return X86::RFP80RegClass.contains(DstReg) ||
275 X86::RFP80RegClass.contains(SrcReg);
276 }
Akira Hatanaka35166692014-08-01 22:19:41 +0000277
278 void setKillFlags(MachineBasicBlock &MBB) const;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000279 };
Devang Patel8c78a0b2007-05-03 01:11:54 +0000280 char FPS::ID = 0;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000281}
282
Chris Lattnerd46cd682003-12-20 09:58:55 +0000283FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000284
Chris Lattner3c43efc2008-01-14 06:41:29 +0000285/// getFPReg - Return the X86::FPx register number for the specified operand.
286/// For example, this returns 3 for X86::FP3.
287static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohman0d1e9a82008-10-03 15:45:36 +0000288 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3c43efc2008-01-14 06:41:29 +0000289 unsigned Reg = MO.getReg();
290 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
291 return Reg - X86::FP0;
292}
293
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000294/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
295/// register references into FP stack references.
296///
297bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000298 // We only need to run this pass if there are any FP registers used in this
299 // function. If it is all integer, there is nothing for us to do!
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000300 bool FPIsUsed = false;
301
302 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
303 for (unsigned i = 0; i <= 6; ++i)
Chris Lattnera10fff52007-12-31 04:13:23 +0000304 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattnerdebae1e2005-01-23 23:13:59 +0000305 FPIsUsed = true;
306 break;
307 }
308
309 // Early exit.
310 if (!FPIsUsed) return false;
311
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000312 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng845bd6e2006-12-01 10:11:51 +0000313 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000314
315 // Prepare cross-MBB liveness.
316 bundleCFG(MF);
317
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000318 StackTop = 0;
319
Chris Lattner11290272004-01-30 22:25:18 +0000320 // Process the function in depth first order so that we process at least one
321 // of the predecessors for every reachable block in the function.
Owen Anderson1b351d42008-08-14 21:01:00 +0000322 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattneracbf0c82004-05-01 21:27:53 +0000323 MachineBasicBlock *Entry = MF.begin();
Chris Lattner11290272004-01-30 22:25:18 +0000324
325 bool Changed = false;
Owen Anderson1b351d42008-08-14 21:01:00 +0000326 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner11290272004-01-30 22:25:18 +0000327 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
328 I != E; ++I)
Chris Lattneracbf0c82004-05-01 21:27:53 +0000329 Changed |= processBasicBlock(MF, **I);
Chris Lattner11290272004-01-30 22:25:18 +0000330
Chris Lattnerb2fcd072009-09-08 04:55:44 +0000331 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000332 if (MF.size() != Processed.size())
333 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
334 if (Processed.insert(BB))
335 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerb2fcd072009-09-08 04:55:44 +0000336
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000337 LiveBundles.clear();
338
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000339 return Changed;
340}
341
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000342/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
343/// live-out sets for the FP registers. Consistent means that the set of
344/// registers live-out from a block is identical to the live-in set of all
345/// successors. This is not enforced by the normal live-in lists since
346/// registers may be implicitly defined, or not used by all successors.
347void FPS::bundleCFG(MachineFunction &MF) {
348 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000349 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000350
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000351 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000352 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
353 MachineBasicBlock *MBB = I;
354 const unsigned Mask = calcLiveInMask(MBB);
355 if (!Mask)
356 continue;
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000357 // Update MBB ingoing bundle mask.
358 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000359 }
360}
361
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000362/// processBasicBlock - Loop over all of the instructions in the basic block,
363/// transforming FP instructions into their stack form.
364///
365bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000366 bool Changed = false;
367 MBB = &BB;
Misha Brukmanc88330a2005-04-21 23:38:14 +0000368
Akira Hatanaka35166692014-08-01 22:19:41 +0000369 setKillFlags(BB);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000370 setupBlockStack();
371
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000372 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000373 MachineInstr *MI = I;
Bruno Cardoso Lopesc2f87b72010-06-08 22:51:23 +0000374 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000375
Chris Lattner8abed802008-03-11 19:50:13 +0000376 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattnerb06015a2010-02-09 19:54:29 +0000377 if (MI->isInlineAsm())
Chris Lattner8abed802008-03-11 19:50:13 +0000378 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000379
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000380 if (MI->isCopy() && isFPCopy(MI))
Jakob Stoklund Olesen63a622b2010-07-08 19:46:30 +0000381 FPInstClass = X86II::SpecialFP;
382
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +0000383 if (MI->isImplicitDef() &&
384 X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
385 FPInstClass = X86II::SpecialFP;
386
Akira Hatanaka35166692014-08-01 22:19:41 +0000387 if (MI->isCall())
388 FPInstClass = X86II::SpecialFP;
389
Chris Lattner8abed802008-03-11 19:50:13 +0000390 if (FPInstClass == X86II::NotFP)
Chris Lattner11290272004-01-30 22:25:18 +0000391 continue; // Efficiently ignore non-fp insts!
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000392
Craig Topper062a2ba2014-04-25 05:30:21 +0000393 MachineInstr *PrevMI = nullptr;
Alkis Evlogimenos5a922402004-02-14 01:18:34 +0000394 if (I != BB.begin())
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000395 PrevMI = std::prev(I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000396
397 ++NumFP; // Keep track of # of pseudo instrs
David Greened85fd002010-01-05 01:29:34 +0000398 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000399
400 // Get dead variables list now because the MI pointer may be deleted as part
401 // of processing!
Evan Chengbbbcac32006-11-15 20:56:39 +0000402 SmallVector<unsigned, 8> DeadRegs;
403 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
404 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +0000405 if (MO.isReg() && MO.isDead())
Evan Chengbbbcac32006-11-15 20:56:39 +0000406 DeadRegs.push_back(MO.getReg());
407 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000408
Chris Lattner8abed802008-03-11 19:50:13 +0000409 switch (FPInstClass) {
Chris Lattner7af8ad62004-02-02 19:23:15 +0000410 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc07c9582004-03-31 22:02:36 +0000411 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner7af8ad62004-02-02 19:23:15 +0000412 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Chengdb04c952006-11-11 10:21:44 +0000413 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattner0876edf2004-06-11 04:41:24 +0000414 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc07c9582004-03-31 22:02:36 +0000415 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner7af8ad62004-02-02 19:23:15 +0000416 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinfbcc6632009-07-14 16:55:14 +0000417 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000418 }
419
420 // Check to see if any of the values defined by this instruction are dead
421 // after definition. If so, pop them.
Evan Chengbbbcac32006-11-15 20:56:39 +0000422 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
423 unsigned Reg = DeadRegs[i];
Akira Hatanaka35166692014-08-01 22:19:41 +0000424 // Check if Reg is live on the stack. An inline-asm register operand that
425 // is in the clobber list and marked dead might not be live on the stack.
426 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
David Greened85fd002010-01-05 01:29:34 +0000427 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattner94ff2c32004-06-11 04:25:06 +0000428 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000429 }
430 }
Misha Brukmanc88330a2005-04-21 23:38:14 +0000431
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000432 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000433 DEBUG(
434 MachineBasicBlock::iterator PrevI(PrevMI);
435 if (I == PrevI) {
David Greened85fd002010-01-05 01:29:34 +0000436 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000437 } else {
438 MachineBasicBlock::iterator Start = I;
439 // Rewind to first instruction newly inserted.
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000440 while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
David Greened85fd002010-01-05 01:29:34 +0000441 dbgs() << "Inserted instructions:\n\t";
442 Start->print(dbgs(), &MF.getTarget());
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000443 while (++Start != std::next(I)) {}
Alkis Evlogimenos636e19d2004-02-15 00:46:41 +0000444 }
445 dumpStack();
446 );
Duncan Sandsa41634e2011-08-12 14:54:45 +0000447 (void)PrevMI;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000448
449 Changed = true;
450 }
451
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000452 finishBlockStack();
453
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000454 return Changed;
455}
456
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000457/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000458/// to match predecessors' live out stack.
459void FPS::setupBlockStack() {
460 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
461 << " derived from " << MBB->getName() << ".\n");
462 StackTop = 0;
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000463 // Get the live-in bundle for MBB.
464 const LiveBundle &Bundle =
465 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000466
467 if (!Bundle.Mask) {
468 DEBUG(dbgs() << "Block has no FP live-ins.\n");
469 return;
470 }
471
472 // Depth-first iteration should ensure that we always have an assigned stack.
473 assert(Bundle.isFixed() && "Reached block before any predecessors");
474
475 // Push the fixed live-in registers.
476 for (unsigned i = Bundle.FixCount; i > 0; --i) {
477 MBB->addLiveIn(X86::ST0+i-1);
478 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
479 << unsigned(Bundle.FixStack[i-1]) << '\n');
480 pushReg(Bundle.FixStack[i-1]);
481 }
482
483 // Kill off unwanted live-ins. This can happen with a critical edge.
484 // FIXME: We could keep these live registers around as zombies. They may need
485 // to be revived at the end of a short block. It might save a few instrs.
486 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
487 DEBUG(MBB->dump());
488}
489
490/// finishBlockStack - Revive live-outs that are implicitly defined out of
491/// MBB. Shuffle live registers to match the expected fixed stack of any
492/// predecessors, and ensure that all predecessors are expecting the same
493/// stack.
494void FPS::finishBlockStack() {
495 // The RET handling below takes care of return blocks for us.
496 if (MBB->succ_empty())
497 return;
498
499 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
500 << " derived from " << MBB->getName() << ".\n");
501
Jakob Stoklund Olesen01d4d862011-01-04 21:10:11 +0000502 // Get MBB's live-out bundle.
503 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000504 LiveBundle &Bundle = LiveBundles[BundleIdx];
505
506 // We may need to kill and define some registers to match successors.
507 // FIXME: This can probably be combined with the shuffle below.
508 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
509 adjustLiveRegs(Bundle.Mask, Term);
510
511 if (!Bundle.Mask) {
512 DEBUG(dbgs() << "No live-outs.\n");
513 return;
514 }
515
516 // Has the stack order been fixed yet?
517 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
518 if (Bundle.isFixed()) {
519 DEBUG(dbgs() << "Shuffling stack to match.\n");
520 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
521 } else {
522 // Not fixed yet, we get to choose.
523 DEBUG(dbgs() << "Fixing stack order now.\n");
524 Bundle.FixCount = StackTop;
525 for (unsigned i = 0; i < StackTop; ++i)
526 Bundle.FixStack[i] = getStackEntry(i);
527 }
528}
529
530
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000531//===----------------------------------------------------------------------===//
532// Efficient Lookup Table Support
533//===----------------------------------------------------------------------===//
534
Chris Lattnerd46cd682003-12-20 09:58:55 +0000535namespace {
536 struct TableEntry {
Craig Topper2dac9622012-03-09 07:45:21 +0000537 uint16_t from;
538 uint16_t to;
Chris Lattnerd46cd682003-12-20 09:58:55 +0000539 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen15a8c152006-01-26 20:41:32 +0000540 friend bool operator<(const TableEntry &TE, unsigned V) {
541 return TE.from < V;
542 }
Benjamin Kramer0d874f72012-09-17 16:46:22 +0000543 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
544 const TableEntry &TE) {
Jakob Stoklund Olesen2cd00732010-08-16 18:24:54 +0000545 return V < TE.from;
546 }
Chris Lattnerd46cd682003-12-20 09:58:55 +0000547 };
548}
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000549
Evan Chengfa374ca2008-07-21 20:02:45 +0000550#ifndef NDEBUG
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000551static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
552 for (unsigned i = 0; i != NumEntries-1; ++i)
553 if (!(Table[i] < Table[i+1])) return false;
554 return true;
555}
Evan Chengfa374ca2008-07-21 20:02:45 +0000556#endif
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000557
558static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
559 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
560 if (I != Table+N && I->from == Opcode)
561 return I->to;
562 return -1;
563}
564
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000565#ifdef NDEBUG
566#define ASSERT_SORTED(TABLE)
567#else
568#define ASSERT_SORTED(TABLE) \
569 { static bool TABLE##Checked = false; \
Jim Laskey181fb1c2006-07-19 19:33:08 +0000570 if (!TABLE##Checked) { \
Owen Andersone2f23a32007-09-07 04:06:50 +0000571 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000572 "All lookup tables must be sorted for efficient access!"); \
Jim Laskey181fb1c2006-07-19 19:33:08 +0000573 TABLE##Checked = true; \
574 } \
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000575 }
576#endif
577
Chris Lattnerf431ad42005-12-21 07:47:04 +0000578//===----------------------------------------------------------------------===//
579// Register File -> Register Stack Mapping Methods
580//===----------------------------------------------------------------------===//
581
582// OpcodeTable - Sorted map of register instructions to their stack version.
583// The first element is an register file pseudo instruction, the second is the
584// concrete X86 instruction which uses the register stack.
585//
586static const TableEntry OpcodeTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000587 { X86::ABS_Fp32 , X86::ABS_F },
588 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000589 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesen68471d22007-07-10 21:53:30 +0000590 { X86::ADD_Fp32m , X86::ADD_F32m },
591 { X86::ADD_Fp64m , X86::ADD_F64m },
592 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000593 { X86::ADD_Fp80m32 , X86::ADD_F32m },
594 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000595 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
596 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000597 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000598 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
599 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000600 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000601 { X86::CHS_Fp32 , X86::CHS_F },
602 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000603 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000604 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
605 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000606 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000607 { X86::CMOVB_Fp32 , X86::CMOVB_F },
608 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000609 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000610 { X86::CMOVE_Fp32 , X86::CMOVE_F },
611 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000612 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000613 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
614 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000615 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000616 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
617 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000618 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000619 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
620 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000621 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000622 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
623 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000624 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000625 { X86::CMOVP_Fp32 , X86::CMOVP_F },
626 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000627 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000628 { X86::COS_Fp32 , X86::COS_F },
629 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000630 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000631 { X86::DIVR_Fp32m , X86::DIVR_F32m },
632 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000633 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000634 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
635 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000636 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
637 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000638 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000639 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
640 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000641 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000642 { X86::DIV_Fp32m , X86::DIV_F32m },
643 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000644 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000645 { X86::DIV_Fp80m32 , X86::DIV_F32m },
646 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000647 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
648 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000649 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000650 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
651 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000652 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000653 { X86::ILD_Fp16m32 , X86::ILD_F16m },
654 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000655 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000656 { X86::ILD_Fp32m32 , X86::ILD_F32m },
657 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000658 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000659 { X86::ILD_Fp64m32 , X86::ILD_F64m },
660 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000661 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000662 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
663 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000664 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000665 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
666 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000667 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000668 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
669 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000670 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000671 { X86::IST_Fp16m32 , X86::IST_F16m },
672 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000673 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000674 { X86::IST_Fp32m32 , X86::IST_F32m },
675 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000676 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000677 { X86::IST_Fp64m32 , X86::IST_FP64m },
678 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000679 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000680 { X86::LD_Fp032 , X86::LD_F0 },
681 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000682 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000683 { X86::LD_Fp132 , X86::LD_F1 },
684 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000685 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000686 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesena47f7d72007-08-07 20:29:26 +0000687 { X86::LD_Fp32m64 , X86::LD_F32m },
688 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000689 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesena47f7d72007-08-07 20:29:26 +0000690 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000691 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000692 { X86::MUL_Fp32m , X86::MUL_F32m },
693 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000694 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000695 { X86::MUL_Fp80m32 , X86::MUL_F32m },
696 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000697 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
698 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000699 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000700 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
701 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000702 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000703 { X86::SIN_Fp32 , X86::SIN_F },
704 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000705 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000706 { X86::SQRT_Fp32 , X86::SQRT_F },
707 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000708 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000709 { X86::ST_Fp32m , X86::ST_F32m },
710 { X86::ST_Fp64m , X86::ST_F64m },
711 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000712 { X86::ST_Fp80m32 , X86::ST_F32m },
713 { X86::ST_Fp80m64 , X86::ST_F64m },
714 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000715 { X86::SUBR_Fp32m , X86::SUBR_F32m },
716 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000717 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000718 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
719 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000720 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
721 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000722 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000723 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
724 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesenb1888e72007-08-05 18:49:15 +0000725 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000726 { X86::SUB_Fp32m , X86::SUB_F32m },
727 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesen68471d22007-07-10 21:53:30 +0000728 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000729 { X86::SUB_Fp80m32 , X86::SUB_F32m },
730 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000731 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
732 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000733 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000734 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
735 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000736 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000737 { X86::TST_Fp32 , X86::TST_F },
738 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000739 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000740 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
741 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000742 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000743 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
744 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesenb1888e72007-08-05 18:49:15 +0000745 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattnerf431ad42005-12-21 07:47:04 +0000746};
747
748static unsigned getConcreteOpcode(unsigned Opcode) {
749 ASSERT_SORTED(OpcodeTable);
Owen Andersone2f23a32007-09-07 04:06:50 +0000750 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattnerf431ad42005-12-21 07:47:04 +0000751 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
752 return Opc;
753}
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000754
755//===----------------------------------------------------------------------===//
756// Helper Methods
757//===----------------------------------------------------------------------===//
758
759// PopTable - Sorted map of instructions to their popping version. The first
760// element is an instruction, the second is the version which pops.
761//
762static const TableEntry PopTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000763 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000764
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000765 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
766 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000767
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000768 { X86::IST_F16m , X86::IST_FP16m },
769 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000770
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000771 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000772
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000773 { X86::ST_F32m , X86::ST_FP32m },
774 { X86::ST_F64m , X86::ST_FP64m },
775 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner637eebb2003-08-03 21:56:36 +0000776
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000777 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
778 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner637eebb2003-08-03 21:56:36 +0000779
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000780 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerd1c75452004-04-12 01:39:15 +0000781
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000782 { X86::UCOM_FPr , X86::UCOM_FPPr },
783 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000784};
785
786/// popStackAfter - Pop the current value off of the top of the FP stack after
787/// the specified instruction. This attempts to be sneaky and combine the pop
788/// into the instruction itself if possible. The iterator is left pointing to
789/// the last instruction, be it a new pop instruction inserted, or the old
790/// instruction if it was modified in place.
791///
792void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen9bba9022009-02-13 02:33:27 +0000793 MachineInstr* MI = I;
794 DebugLoc dl = MI->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000795 ASSERT_SORTED(PopTable);
Evan Chengd565b442010-10-12 23:19:28 +0000796 if (StackTop == 0)
797 report_fatal_error("Cannot pop empty stack!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000798 RegMap[Stack[--StackTop]] = ~0; // Update state
799
800 // Check to see if there is a popping version of this instruction...
Owen Andersone2f23a32007-09-07 04:06:50 +0000801 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000802 if (Opcode != -1) {
Chris Lattner59687512008-01-11 18:10:50 +0000803 I->setDesc(TII->get(Opcode));
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000804 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000805 I->RemoveOperand(0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000806 } else { // Insert an explicit pop
Dale Johannesen9bba9022009-02-13 02:33:27 +0000807 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000808 }
809}
810
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000811/// freeStackSlotAfter - Free the specified register from the register stack, so
812/// that it is no longer in a register. If the register is currently at the top
813/// of the stack, we just pop the current instruction, otherwise we store the
814/// current top-of-stack into the specified slot, then pop the top of stack.
815void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
816 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
817 popStackAfter(I);
818 return;
819 }
820
821 // Otherwise, store the top of stack into the dead slot, killing the operand
822 // without having to add in an explicit xchg then pop.
823 //
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000824 I = freeStackSlotBefore(++I, FPRegNo);
825}
826
827/// freeStackSlotBefore - Free the specified register without trying any
828/// folding.
829MachineBasicBlock::iterator
830FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000831 unsigned STReg = getSTReg(FPRegNo);
832 unsigned OldSlot = getSlot(FPRegNo);
833 unsigned TopReg = Stack[StackTop-1];
834 Stack[OldSlot] = TopReg;
835 RegMap[TopReg] = OldSlot;
836 RegMap[FPRegNo] = ~0;
837 Stack[--StackTop] = ~0;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000838 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
839}
840
841/// adjustLiveRegs - Kill and revive registers such that exactly the FP
842/// registers with a bit in Mask are live.
843void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
844 unsigned Defs = Mask;
845 unsigned Kills = 0;
846 for (unsigned i = 0; i < StackTop; ++i) {
847 unsigned RegNo = Stack[i];
848 if (!(Defs & (1 << RegNo)))
849 // This register is live, but we don't want it.
850 Kills |= (1 << RegNo);
851 else
852 // We don't need to imp-def this live register.
853 Defs &= ~(1 << RegNo);
854 }
855 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
856
857 // Produce implicit-defs for free by using killed registers.
858 while (Kills && Defs) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000859 unsigned KReg = countTrailingZeros(Kills);
860 unsigned DReg = countTrailingZeros(Defs);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000861 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
862 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
863 std::swap(RegMap[KReg], RegMap[DReg]);
864 Kills &= ~(1 << KReg);
865 Defs &= ~(1 << DReg);
866 }
867
868 // Kill registers by popping.
869 if (Kills && I != MBB->begin()) {
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000870 MachineBasicBlock::iterator I2 = std::prev(I);
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +0000871 while (StackTop) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000872 unsigned KReg = getStackEntry(0);
873 if (!(Kills & (1 << KReg)))
874 break;
875 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
876 popStackAfter(I2);
877 Kills &= ~(1 << KReg);
878 }
879 }
880
881 // Manually kill the rest.
882 while (Kills) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000883 unsigned KReg = countTrailingZeros(Kills);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000884 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
885 freeStackSlotBefore(I, KReg);
886 Kills &= ~(1 << KReg);
887 }
888
889 // Load zeros for all the imp-defs.
890 while(Defs) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000891 unsigned DReg = countTrailingZeros(Defs);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000892 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
893 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
894 pushReg(DReg);
895 Defs &= ~(1 << DReg);
896 }
897
898 // Now we should have the correct registers live.
899 DEBUG(dumpStack());
900 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
901}
902
903/// shuffleStackTop - emit fxch instructions before I to shuffle the top
904/// FixCount entries into the order given by FixStack.
905/// FIXME: Is there a better algorithm than insertion sort?
906void FPS::shuffleStackTop(const unsigned char *FixStack,
907 unsigned FixCount,
908 MachineBasicBlock::iterator I) {
909 // Move items into place, starting from the desired stack bottom.
910 while (FixCount--) {
911 // Old register at position FixCount.
912 unsigned OldReg = getStackEntry(FixCount);
913 // Desired register at position FixCount.
914 unsigned Reg = FixStack[FixCount];
915 if (Reg == OldReg)
916 continue;
917 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
918 moveToTop(Reg, I);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +0000919 if (FixCount > 0)
920 moveToTop(OldReg, I);
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +0000921 }
922 DEBUG(dumpStack());
Chris Lattnerbc7e35b2004-04-01 04:06:09 +0000923}
924
925
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000926//===----------------------------------------------------------------------===//
927// Instruction transformation implementation
928//===----------------------------------------------------------------------===//
929
Akira Hatanaka35166692014-08-01 22:19:41 +0000930void FPS::handleCall(MachineBasicBlock::iterator &I) {
931 unsigned STReturns = 0;
932
933 for (const auto &MO : I->operands()) {
934 if (!MO.isReg())
935 continue;
936
937 unsigned R = MO.getReg() - X86::FP0;
938
939 if (R < 8) {
940 assert(MO.isDef() && MO.isImplicit());
941 STReturns |= 1 << R;
942 }
943 }
944
945 unsigned N = CountTrailingOnes_32(STReturns);
946
947 // FP registers used for function return must be consecutive starting at
948 // FP0.
Akira Hatanakae457f3e2014-08-04 17:23:38 +0000949 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
Akira Hatanaka35166692014-08-01 22:19:41 +0000950
951 for (unsigned I = 0; I < N; ++I)
952 pushReg(N - I - 1);
953}
954
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000955/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner7af8ad62004-02-02 19:23:15 +0000956///
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000957void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000958 MachineInstr *MI = I;
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000959 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000960
Chris Lattnerf431ad42005-12-21 07:47:04 +0000961 // Change from the pseudo instruction to the concrete instruction.
962 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner59687512008-01-11 18:10:50 +0000963 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosier24c19d22012-08-01 18:39:17 +0000964
Chris Lattnerf431ad42005-12-21 07:47:04 +0000965 // Result gets pushed on the stack.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000966 pushReg(DestReg);
967}
968
Chris Lattner7af8ad62004-02-02 19:23:15 +0000969/// handleOneArgFP - fst <mem>, ST(0)
970///
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000971void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +0000972 MachineInstr *MI = I;
Chris Lattner03ad8852008-01-07 07:27:27 +0000973 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerec536272010-07-08 22:41:28 +0000974 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattner81613062004-02-03 07:27:34 +0000975 "Can only handle fst* & ftst instructions!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000976
Chris Lattner7af8ad62004-02-02 19:23:15 +0000977 // Is this the last use of the source register?
Evan Cheng14140052006-11-10 01:28:43 +0000978 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng63254462008-03-05 00:59:57 +0000979 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000980
Evan Cheng70af6202006-02-18 02:36:28 +0000981 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000982 // If we have one _and_ we don't want to pop the operand, duplicate the value
983 // on the stack instead of moving it. This ensure that popping the value is
984 // always ok.
Dale Johannesenff7e4432007-09-17 20:15:38 +0000985 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnercf53bcf2003-01-13 01:01:59 +0000986 //
Evan Cheng70af6202006-02-18 02:36:28 +0000987 if (!KillsSrc &&
Dale Johannesen3d7008c2007-07-04 21:07:47 +0000988 (MI->getOpcode() == X86::IST_Fp64m32 ||
989 MI->getOpcode() == X86::ISTT_Fp16m32 ||
990 MI->getOpcode() == X86::ISTT_Fp32m32 ||
991 MI->getOpcode() == X86::ISTT_Fp64m32 ||
992 MI->getOpcode() == X86::IST_Fp64m64 ||
993 MI->getOpcode() == X86::ISTT_Fp16m64 ||
994 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesenb1888e72007-08-05 18:49:15 +0000995 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen95be0372007-09-20 01:27:54 +0000996 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen57c6ac5f2007-08-07 01:17:37 +0000997 MI->getOpcode() == X86::ISTT_Fp16m80 ||
998 MI->getOpcode() == X86::ISTT_Fp32m80 ||
999 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesenb1888e72007-08-05 18:49:15 +00001000 MI->getOpcode() == X86::ST_FpP80m)) {
Akira Hatanaka35166692014-08-01 22:19:41 +00001001 duplicateToTop(Reg, ScratchFPReg, I);
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001002 } else {
1003 moveToTop(Reg, I); // Move to the top of the stack...
1004 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001005
Chris Lattnerf431ad42005-12-21 07:47:04 +00001006 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng14140052006-11-10 01:28:43 +00001007 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner59687512008-01-11 18:10:50 +00001008 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukmanc88330a2005-04-21 23:38:14 +00001009
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001010 if (MI->getOpcode() == X86::IST_FP64m ||
1011 MI->getOpcode() == X86::ISTT_FP16m ||
1012 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesene279fd62007-08-06 19:50:32 +00001013 MI->getOpcode() == X86::ISTT_FP64m ||
1014 MI->getOpcode() == X86::ST_FP80m) {
Evan Chengd565b442010-10-12 23:19:28 +00001015 if (StackTop == 0)
1016 report_fatal_error("Stack empty??");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001017 --StackTop;
1018 } else if (KillsSrc) { // Last use of operand?
1019 popStackAfter(I);
1020 }
1021}
1022
Chris Lattner7af8ad62004-02-02 19:23:15 +00001023
Chris Lattner5b444722004-04-11 20:21:06 +00001024/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1025/// replace the value with a newly computed value. These instructions may have
1026/// non-fp operands after their FP operands.
1027///
1028/// Examples:
1029/// R1 = fchs R2
1030/// R1 = fadd R2, [mem]
Chris Lattner7af8ad62004-02-02 19:23:15 +00001031///
1032void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenos80da8652004-02-12 02:27:10 +00001033 MachineInstr *MI = I;
Evan Chengfa374ca2008-07-21 20:02:45 +00001034#ifndef NDEBUG
Chris Lattner03ad8852008-01-07 07:27:27 +00001035 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng14140052006-11-10 01:28:43 +00001036 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chengfa374ca2008-07-21 20:02:45 +00001037#endif
Chris Lattner7af8ad62004-02-02 19:23:15 +00001038
1039 // Is this the last use of the source register?
1040 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng63254462008-03-05 00:59:57 +00001041 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner7af8ad62004-02-02 19:23:15 +00001042
1043 if (KillsSrc) {
1044 // If this is the last use of the source register, just make sure it's on
1045 // the top of the stack.
1046 moveToTop(Reg, I);
Evan Chengd565b442010-10-12 23:19:28 +00001047 if (StackTop == 0)
1048 report_fatal_error("Stack cannot be empty!");
Chris Lattner7af8ad62004-02-02 19:23:15 +00001049 --StackTop;
1050 pushReg(getFPReg(MI->getOperand(0)));
1051 } else {
1052 // If this is not the last use of the source register, _copy_ it to the top
1053 // of the stack.
1054 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1055 }
1056
Chris Lattnerf431ad42005-12-21 07:47:04 +00001057 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner7af8ad62004-02-02 19:23:15 +00001058 MI->RemoveOperand(1); // Drop the source operand.
1059 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner59687512008-01-11 18:10:50 +00001060 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner7af8ad62004-02-02 19:23:15 +00001061}
1062
1063
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001064//===----------------------------------------------------------------------===//
1065// Define tables of various ways to map pseudo instructions
1066//
1067
1068// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1069static const TableEntry ForwardST0Table[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001070 { X86::ADD_Fp32 , X86::ADD_FST0r },
1071 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001072 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001073 { X86::DIV_Fp32 , X86::DIV_FST0r },
1074 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001075 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001076 { X86::MUL_Fp32 , X86::MUL_FST0r },
1077 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001078 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001079 { X86::SUB_Fp32 , X86::SUB_FST0r },
1080 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001081 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001082};
1083
1084// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1085static const TableEntry ReverseST0Table[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001086 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1087 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001088 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001089 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1090 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001091 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001092 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1093 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001094 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001095 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1096 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen75169a82007-08-06 21:31:06 +00001097 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001098};
1099
1100// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1101static const TableEntry ForwardSTiTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001102 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1103 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001104 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001105 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1106 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001107 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001108 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1109 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen75169a82007-08-06 21:31:06 +00001110 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001111 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1112 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001113 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001114};
1115
1116// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1117static const TableEntry ReverseSTiTable[] = {
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001118 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1119 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001120 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001121 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1122 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001123 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001124 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1125 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001126 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesen3d7008c2007-07-04 21:07:47 +00001127 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1128 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen75169a82007-08-06 21:31:06 +00001129 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001130};
1131
1132
1133/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1134/// instructions which need to be simplified and possibly transformed.
1135///
1136/// Result: ST(0) = fsub ST(0), ST(i)
1137/// ST(i) = fsub ST(0), ST(i)
1138/// ST(0) = fsubr ST(0), ST(i)
1139/// ST(i) = fsubr ST(0), ST(i)
Misha Brukmanc88330a2005-04-21 23:38:14 +00001140///
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001141void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1142 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1143 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenos80da8652004-02-12 02:27:10 +00001144 MachineInstr *MI = I;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001145
Chris Lattner03ad8852008-01-07 07:27:27 +00001146 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner94ff2c32004-06-11 04:25:06 +00001147 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001148 unsigned Dest = getFPReg(MI->getOperand(0));
1149 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1150 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng63254462008-03-05 00:59:57 +00001151 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1152 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen9bba9022009-02-13 02:33:27 +00001153 DebugLoc dl = MI->getDebugLoc();
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001154
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001155 unsigned TOS = getStackEntry(0);
1156
1157 // One of our operands must be on the top of the stack. If neither is yet, we
1158 // need to move one.
1159 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1160 // We can choose to move either operand to the top of the stack. If one of
1161 // the operands is killed by this instruction, we want that one so that we
1162 // can update right on top of the old version.
1163 if (KillsOp0) {
1164 moveToTop(Op0, I); // Move dead operand to TOS.
1165 TOS = Op0;
1166 } else if (KillsOp1) {
1167 moveToTop(Op1, I);
1168 TOS = Op1;
1169 } else {
1170 // All of the operands are live after this instruction executes, so we
1171 // cannot update on top of any operand. Because of this, we must
1172 // duplicate one of the stack elements to the top. It doesn't matter
1173 // which one we pick.
1174 //
1175 duplicateToTop(Op0, Dest, I);
1176 Op0 = TOS = Dest;
1177 KillsOp0 = true;
1178 }
Chris Lattner94ff2c32004-06-11 04:25:06 +00001179 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001180 // If we DO have one of our operands at the top of the stack, but we don't
1181 // have a dead operand, we must duplicate one of the operands to a new slot
1182 // on the stack.
1183 duplicateToTop(Op0, Dest, I);
1184 Op0 = TOS = Dest;
1185 KillsOp0 = true;
1186 }
1187
1188 // Now we know that one of our operands is on the top of the stack, and at
1189 // least one of our operands is killed by this instruction.
Misha Brukmanc88330a2005-04-21 23:38:14 +00001190 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1191 "Stack conditions not set up right!");
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001192
1193 // We decide which form to use based on what is on the top of the stack, and
1194 // which operand is killed by this instruction.
1195 const TableEntry *InstTable;
1196 bool isForward = TOS == Op0;
1197 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1198 if (updateST0) {
1199 if (isForward)
1200 InstTable = ForwardST0Table;
1201 else
1202 InstTable = ReverseST0Table;
1203 } else {
1204 if (isForward)
1205 InstTable = ForwardSTiTable;
1206 else
1207 InstTable = ReverseSTiTable;
1208 }
Misha Brukmanc88330a2005-04-21 23:38:14 +00001209
Owen Andersone2f23a32007-09-07 04:06:50 +00001210 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1211 MI->getOpcode());
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001212 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1213
1214 // NotTOS - The register which is not on the top of stack...
1215 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1216
1217 // Replace the old instruction with a new instruction
Chris Lattnerc07c9582004-03-31 22:02:36 +00001218 MBB->remove(I++);
Dale Johannesen9bba9022009-02-13 02:33:27 +00001219 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001220
1221 // If both operands are killed, pop one off of the stack in addition to
1222 // overwriting the other one.
1223 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1224 assert(!updateST0 && "Should have updated other operand!");
1225 popStackAfter(I); // Pop the top of stack
1226 }
1227
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001228 // Update stack information so that we know the destination register is now on
1229 // the stack.
Chris Lattner94ff2c32004-06-11 04:25:06 +00001230 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1231 assert(UpdatedSlot < StackTop && Dest < 7);
1232 Stack[UpdatedSlot] = Dest;
1233 RegMap[Dest] = UpdatedSlot;
Dan Gohman3b460302008-07-07 23:14:23 +00001234 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattner94ff2c32004-06-11 04:25:06 +00001235}
1236
Chris Lattnerb35f4762004-06-11 04:49:02 +00001237/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattner94ff2c32004-06-11 04:25:06 +00001238/// register arguments and no explicit destinations.
Misha Brukmanc88330a2005-04-21 23:38:14 +00001239///
Chris Lattner94ff2c32004-06-11 04:25:06 +00001240void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1241 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1242 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1243 MachineInstr *MI = I;
1244
Chris Lattner03ad8852008-01-07 07:27:27 +00001245 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerb35f4762004-06-11 04:49:02 +00001246 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattner94ff2c32004-06-11 04:25:06 +00001247 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1248 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng63254462008-03-05 00:59:57 +00001249 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1250 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattner94ff2c32004-06-11 04:25:06 +00001251
1252 // Make sure the first operand is on the top of stack, the other one can be
1253 // anywhere.
1254 moveToTop(Op0, I);
1255
Chris Lattnerf431ad42005-12-21 07:47:04 +00001256 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner71186e22004-06-11 05:22:44 +00001257 MI->getOperand(0).setReg(getSTReg(Op1));
1258 MI->RemoveOperand(1);
Chris Lattner59687512008-01-11 18:10:50 +00001259 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner71186e22004-06-11 05:22:44 +00001260
Chris Lattner94ff2c32004-06-11 04:25:06 +00001261 // If any of the operands are killed by this instruction, free them.
1262 if (KillsOp0) freeStackSlotAfter(I, Op0);
1263 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001264}
1265
Chris Lattnerc07c9582004-03-31 22:02:36 +00001266/// handleCondMovFP - Handle two address conditional move instructions. These
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001267/// instructions move a st(i) register to st(0) iff a condition is true. These
Chris Lattnerc07c9582004-03-31 22:02:36 +00001268/// instructions require that the first operand is at the top of the stack, but
1269/// otherwise don't modify the stack at all.
1270void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1271 MachineInstr *MI = I;
1272
1273 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner26569322006-09-05 20:27:32 +00001274 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng63254462008-03-05 00:59:57 +00001275 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc07c9582004-03-31 22:02:36 +00001276
1277 // The first operand *must* be on the top of the stack.
1278 moveToTop(Op0, I);
1279
1280 // Change the second operand to the stack register that the operand is in.
Chris Lattnerf431ad42005-12-21 07:47:04 +00001281 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc07c9582004-03-31 22:02:36 +00001282 MI->RemoveOperand(0);
Chris Lattner26569322006-09-05 20:27:32 +00001283 MI->RemoveOperand(1);
Chris Lattnerc07c9582004-03-31 22:02:36 +00001284 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner59687512008-01-11 18:10:50 +00001285 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chad Rosier24c19d22012-08-01 18:39:17 +00001286
Chris Lattnerc07c9582004-03-31 22:02:36 +00001287 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengbbbcac32006-11-15 20:56:39 +00001288 if (Op0 != Op1 && KillsOp1) {
Chris Lattner7c1c6e02005-08-23 22:49:55 +00001289 // Get this value off of the register stack.
1290 freeStackSlotAfter(I, Op1);
1291 }
Chris Lattnerc07c9582004-03-31 22:02:36 +00001292}
1293
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001294
1295/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukman8b2bd4e2003-10-10 17:57:28 +00001296/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001297/// instructions.
1298///
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001299void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1300 MachineInstr *MI = Inst;
Akira Hatanaka35166692014-08-01 22:19:41 +00001301
1302 if (MI->isCall()) {
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001303 handleCall(Inst);
Akira Hatanaka35166692014-08-01 22:19:41 +00001304 return;
1305 }
1306
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001307 switch (MI->getOpcode()) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00001308 default: llvm_unreachable("Unknown SpecialFP instruction!");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001309 case TargetOpcode::COPY: {
1310 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
Evan Cheng968c3b02009-03-23 08:01:15 +00001311 const MachineOperand &MO1 = MI->getOperand(1);
Evan Cheng968c3b02009-03-23 08:01:15 +00001312 const MachineOperand &MO0 = MI->getOperand(0);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001313 bool KillsSrc = MI->killsRegister(MO1.getReg());
1314
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001315 // FP <- FP copy.
1316 unsigned DstFP = getFPReg(MO0);
1317 unsigned SrcFP = getFPReg(MO1);
1318 assert(isLive(SrcFP) && "Cannot copy dead register");
1319 if (KillsSrc) {
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001320 // If the input operand is killed, we can just change the owner of the
1321 // incoming stack slot into the result.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001322 unsigned Slot = getSlot(SrcFP);
1323 Stack[Slot] = DstFP;
1324 RegMap[DstFP] = Slot;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001325 } else {
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001326 // For COPY we just duplicate the specified value to a new stack slot.
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001327 // This could be made better, but would require substantial changes.
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001328 duplicateToTop(SrcFP, DstFP, Inst);
Nick Lewyckya3860a22008-03-11 05:56:09 +00001329 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001330 break;
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001331 }
1332
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +00001333 case TargetOpcode::IMPLICIT_DEF: {
1334 // All FP registers must be explicitly defined, so load a 0 instead.
1335 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1336 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001337 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
Jakob Stoklund Olesenda618422011-08-03 16:33:19 +00001338 pushReg(Reg);
1339 break;
1340 }
1341
Chris Lattnerb06015a2010-02-09 19:54:29 +00001342 case TargetOpcode::INLINEASM: {
Chris Lattner8abed802008-03-11 19:50:13 +00001343 // The inline asm MachineInstr currently only *uses* FP registers for the
1344 // 'f' constraint. These should be turned into the current ST(x) register
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001345 // in the machine instr.
1346 //
1347 // There are special rules for x87 inline assembly. The compiler must know
1348 // exactly how many registers are popped and pushed implicitly by the asm.
1349 // Otherwise it is not possible to restore the stack state after the inline
1350 // asm.
1351 //
1352 // There are 3 kinds of input operands:
1353 //
1354 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1355 // popped input operand must be in a fixed stack slot, and it is either
1356 // tied to an output operand, or in the clobber list. The MI has ST use
1357 // and def operands for these inputs.
1358 //
1359 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1360 // preserved by the inline asm. The fixed stack slots must be STn-STm
1361 // following the popped inputs. A fixed input operand cannot be tied to
1362 // an output or appear in the clobber list. The MI has ST use operands
1363 // and no defs for these inputs.
1364 //
1365 // 3. Preserved inputs. These inputs use the "f" constraint which is
1366 // represented as an FP register. The inline asm won't change these
1367 // stack slots.
1368 //
1369 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1370 // registers do not count as output operands. The inline asm changes the
1371 // stack as if it popped all the popped inputs and then pushed all the
1372 // output operands.
1373
1374 // Scan the assembly for ST registers used, defined and clobbered. We can
1375 // only tell clobbers from defs by looking at the asm descriptor.
1376 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1377 unsigned NumOps = 0;
Akira Hatanaka35166692014-08-01 22:19:41 +00001378 SmallSet<unsigned, 1> FRegIdx;
1379 unsigned RCID;
1380
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001381 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1382 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1383 unsigned Flags = MI->getOperand(i).getImm();
Akira Hatanaka35166692014-08-01 22:19:41 +00001384
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001385 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1386 if (NumOps != 1)
1387 continue;
1388 const MachineOperand &MO = MI->getOperand(i + 1);
1389 if (!MO.isReg())
1390 continue;
Akira Hatanaka35166692014-08-01 22:19:41 +00001391 unsigned STReg = MO.getReg() - X86::FP0;
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001392 if (STReg >= 8)
1393 continue;
1394
Akira Hatanaka35166692014-08-01 22:19:41 +00001395 // If the flag has a register class constraint, this must be an operand
1396 // with constraint "f". Record its index and continue.
1397 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1398 FRegIdx.insert(i + 1);
1399 continue;
1400 }
1401
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001402 switch (InlineAsm::getKind(Flags)) {
1403 case InlineAsm::Kind_RegUse:
1404 STUses |= (1u << STReg);
1405 break;
1406 case InlineAsm::Kind_RegDef:
1407 case InlineAsm::Kind_RegDefEarlyClobber:
1408 STDefs |= (1u << STReg);
1409 if (MO.isDead())
1410 STDeadDefs |= (1u << STReg);
1411 break;
1412 case InlineAsm::Kind_Clobber:
1413 STClobbers |= (1u << STReg);
1414 break;
1415 default:
1416 break;
1417 }
1418 }
1419
1420 if (STUses && !isMask_32(STUses))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001421 MI->emitError("fixed input regs must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001422 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1423
1424 // Defs must be contiguous from the stack top. ST0-STn.
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +00001425 if (STDefs && !isMask_32(STDefs)) {
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001426 MI->emitError("output regs must be last on the x87 stack");
Jakob Stoklund Olesen25a404e2011-07-02 03:53:34 +00001427 STDefs = NextPowerOf2(STDefs) - 1;
1428 }
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001429 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1430
1431 // So must the clobbered stack slots. ST0-STm, m >= n.
1432 if (STClobbers && !isMask_32(STDefs | STClobbers))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001433 MI->emitError("clobbers must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001434
1435 // Popped inputs are the ones that are also clobbered or defined.
1436 unsigned STPopped = STUses & (STDefs | STClobbers);
1437 if (STPopped && !isMask_32(STPopped))
Jakob Stoklund Olesene925f222011-07-02 07:23:40 +00001438 MI->emitError("implicitly popped regs must be last on the x87 stack");
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001439 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1440
1441 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1442 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1443
Akira Hatanaka35166692014-08-01 22:19:41 +00001444#ifndef NDEBUG
1445 // If any input operand uses constraint "f", all output register
1446 // constraints must be early-clobber defs.
1447 for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1448 if (FRegIdx.count(I)) {
1449 assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1450 "Operands with constraint \"f\" cannot overlap with defs");
1451 }
1452#endif
1453
1454 // Collect all FP registers (register operands with constraints "t", "u",
1455 // and "f") to kill afer the instruction.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001456 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
Chris Lattner8abed802008-03-11 19:50:13 +00001457 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1458 MachineOperand &Op = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001459 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner8abed802008-03-11 19:50:13 +00001460 continue;
Chris Lattner8abed802008-03-11 19:50:13 +00001461 unsigned FPReg = getFPReg(Op);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001462
Chris Lattner8abed802008-03-11 19:50:13 +00001463 // If we kill this operand, make sure to pop it from the stack after the
1464 // asm. We just remember it for now, and pop them all off at the end in
1465 // a batch.
Akira Hatanaka35166692014-08-01 22:19:41 +00001466 if (Op.isUse() && Op.isKill())
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001467 FPKills |= 1U << FPReg;
Chris Lattner8abed802008-03-11 19:50:13 +00001468 }
1469
Akira Hatanaka35166692014-08-01 22:19:41 +00001470 // Do not include registers that are implicitly popped by defs/clobbers.
1471 FPKills &= ~(STDefs | STClobbers);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001472
1473 // Now we can rearrange the live registers to match what was requested.
Akira Hatanaka35166692014-08-01 22:19:41 +00001474 unsigned char STUsesArray[8];
1475
1476 for (unsigned I = 0; I < NumSTUses; ++I)
1477 STUsesArray[I] = I;
1478
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001479 shuffleStackTop(STUsesArray, NumSTUses, Inst);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001480 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1481
1482 // With the stack layout fixed, rewrite the FP registers.
1483 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1484 MachineOperand &Op = MI->getOperand(i);
1485 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1486 continue;
Akira Hatanaka35166692014-08-01 22:19:41 +00001487
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001488 unsigned FPReg = getFPReg(Op);
Akira Hatanaka35166692014-08-01 22:19:41 +00001489
1490 if (FRegIdx.count(i))
1491 // Operand with constraint "f".
1492 Op.setReg(getSTReg(FPReg));
1493 else
1494 // Operand with a single register class constraint ("t" or "u").
1495 Op.setReg(X86::ST0 + FPReg);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001496 }
1497
1498 // Simulate the inline asm popping its inputs and pushing its outputs.
1499 StackTop -= NumSTPopped;
1500
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001501 for (unsigned i = 0; i < NumSTDefs; ++i)
Akira Hatanaka35166692014-08-01 22:19:41 +00001502 pushReg(NumSTDefs - i - 1);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001503
Chris Lattner8abed802008-03-11 19:50:13 +00001504 // If this asm kills any FP registers (is the last use of them) we must
1505 // explicitly emit pop instructions for them. Do this now after the asm has
1506 // executed so that the ST(x) numbers are not off (which would happen if we
1507 // did this inline with operand rewriting).
1508 //
1509 // Note: this might be a non-optimal pop sequence. We might be able to do
1510 // better by trying to pop in stack order or something.
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001511 while (FPKills) {
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001512 unsigned FPReg = countTrailingZeros(FPKills);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001513 if (isLive(FPReg))
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001514 freeStackSlotAfter(Inst, FPReg);
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001515 FPKills &= ~(1U << FPReg);
Jakob Stoklund Olesen96fad312010-04-28 18:28:37 +00001516 }
Akira Hatanaka35166692014-08-01 22:19:41 +00001517
Chris Lattner8abed802008-03-11 19:50:13 +00001518 // Don't delete the inline asm!
1519 return;
1520 }
Jakob Stoklund Olesen7297e7e2011-06-28 18:32:28 +00001521
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001522 case X86::WIN_FTOL_32:
1523 case X86::WIN_FTOL_64: {
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001524 // Push the operand into ST0.
1525 MachineOperand &Op = MI->getOperand(0);
1526 assert(Op.isUse() && Op.isReg() &&
1527 Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1528 unsigned FPReg = getFPReg(Op);
1529 if (Op.isKill())
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001530 moveToTop(FPReg, Inst);
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001531 else
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001532 duplicateToTop(FPReg, FPReg, Inst);
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001533
1534 // Emit the call. This will pop the operand.
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001535 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001536 .addExternalSymbol("_ftol2")
1537 .addReg(X86::ST0, RegState::ImplicitKill)
Craig Topper8956fe02013-07-21 07:28:13 +00001538 .addReg(X86::ECX, RegState::ImplicitDefine)
Michael J. Spencer248d65e2012-02-24 19:01:22 +00001539 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1540 .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1541 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1542 --StackTop;
1543
1544 break;
1545 }
1546
David Woodhouse79dd5052014-01-08 12:58:07 +00001547 case X86::RETQ:
1548 case X86::RETL:
David Woodhouse4e033b02014-01-13 14:05:59 +00001549 case X86::RETIL:
1550 case X86::RETIQ:
Chris Lattner1bd44362008-03-11 03:23:40 +00001551 // If RET has an FP register use operand, pass the first one in ST(0) and
1552 // the second one in ST(1).
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001553
Chris Lattner1bd44362008-03-11 03:23:40 +00001554 // Find the register operands.
1555 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001556 unsigned LiveMask = 0;
1557
Chris Lattner1bd44362008-03-11 03:23:40 +00001558 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1559 MachineOperand &Op = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00001560 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner1bd44362008-03-11 03:23:40 +00001561 continue;
Chris Lattnerc55b4442008-03-21 20:41:27 +00001562 // FP Register uses must be kills unless there are two uses of the same
1563 // register, in which case only one will be a kill.
1564 assert(Op.isUse() &&
1565 (Op.isKill() || // Marked kill.
1566 getFPReg(Op) == FirstFPRegOp || // Second instance.
1567 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1568 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner1bd44362008-03-11 03:23:40 +00001569
1570 if (FirstFPRegOp == ~0U)
1571 FirstFPRegOp = getFPReg(Op);
1572 else {
1573 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1574 SecondFPRegOp = getFPReg(Op);
1575 }
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001576 LiveMask |= (1 << getFPReg(Op));
Chris Lattner1bd44362008-03-11 03:23:40 +00001577
1578 // Remove the operand so that later passes don't see it.
1579 MI->RemoveOperand(i);
1580 --i, --e;
1581 }
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001582
1583 // We may have been carrying spurious live-ins, so make sure only the returned
1584 // registers are left live.
1585 adjustLiveRegs(LiveMask, MI);
1586 if (!LiveMask) return; // Quick check to see if any are possible.
1587
Chris Lattner1bd44362008-03-11 03:23:40 +00001588 // There are only four possibilities here:
1589 // 1) we are returning a single FP value. In this case, it has to be in
1590 // ST(0) already, so just declare success by removing the value from the
1591 // FP Stack.
1592 if (SecondFPRegOp == ~0U) {
1593 // Assert that the top of stack contains the right FP register.
1594 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1595 "Top of stack not the right register for RET!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001596
Chris Lattner1bd44362008-03-11 03:23:40 +00001597 // Ok, everything is good, mark the value as not being on the stack
1598 // anymore so that our assertion about the stack being empty at end of
1599 // block doesn't fire.
1600 StackTop = 0;
1601 return;
1602 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001603
Chris Lattner1bd44362008-03-11 03:23:40 +00001604 // Otherwise, we are returning two values:
1605 // 2) If returning the same value for both, we only have one thing in the FP
1606 // stack. Consider: RET FP1, FP1
1607 if (StackTop == 1) {
1608 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1609 "Stack misconfiguration for RET!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001610
Chris Lattner1bd44362008-03-11 03:23:40 +00001611 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1612 // register to hold it.
Akira Hatanaka35166692014-08-01 22:19:41 +00001613 unsigned NewReg = ScratchFPReg;
Chris Lattner1bd44362008-03-11 03:23:40 +00001614 duplicateToTop(FirstFPRegOp, NewReg, MI);
1615 FirstFPRegOp = NewReg;
1616 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001617
Chris Lattner1bd44362008-03-11 03:23:40 +00001618 /// Okay we know we have two different FPx operands now:
1619 assert(StackTop == 2 && "Must have two values live!");
Chad Rosier24c19d22012-08-01 18:39:17 +00001620
Chris Lattner1bd44362008-03-11 03:23:40 +00001621 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1622 /// in ST(1). In this case, emit an fxch.
1623 if (getStackEntry(0) == SecondFPRegOp) {
1624 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1625 moveToTop(FirstFPRegOp, MI);
1626 }
Chad Rosier24c19d22012-08-01 18:39:17 +00001627
Chris Lattner1bd44362008-03-11 03:23:40 +00001628 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1629 /// ST(1). Just remove both from our understanding of the stack and return.
1630 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattnerb6f04a32008-03-21 05:57:20 +00001631 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner1bd44362008-03-11 03:23:40 +00001632 StackTop = 0;
1633 return;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001634 }
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001635
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001636 Inst = MBB->erase(Inst); // Remove the pseudo instruction
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001637
1638 // We want to leave I pointing to the previous instruction, but what if we
1639 // just erased the first instruction?
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001640 if (Inst == MBB->begin()) {
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001641 DEBUG(dbgs() << "Inserting dummy KILL\n");
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001642 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
Jakob Stoklund Olesen0e5fb022010-07-16 16:38:12 +00001643 } else
Aaron Ballmanc36c6ab2014-08-04 13:51:27 +00001644 --Inst;
Chris Lattnercf53bcf2003-01-13 01:01:59 +00001645}
Akira Hatanaka35166692014-08-01 22:19:41 +00001646
1647void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1648 const TargetRegisterInfo *TRI = MBB.getParent()->getTarget()
1649 .getRegisterInfo();
1650 LivePhysRegs LPR(TRI);
1651
1652 LPR.addLiveOuts(&MBB);
1653
1654 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1655 I != E; ++I) {
1656 BitVector Defs(8);
1657 SmallVector<MachineOperand *, 2> Uses;
1658 MachineInstr &MI = *I;
1659
1660 for (auto &MO : I->operands()) {
1661 if (!MO.isReg())
1662 continue;
1663
1664 unsigned Reg = MO.getReg() - X86::FP0;
1665
1666 if (Reg >= 8)
1667 continue;
1668
1669 if (MO.isDef()) {
1670 Defs.set(Reg);
1671 if (!LPR.contains(MO.getReg()))
1672 MO.setIsDead();
1673 } else
1674 Uses.push_back(&MO);
1675 }
1676
1677 for (auto *MO : Uses)
1678 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1679 MO->setIsKill();
1680
1681 LPR.stepBackward(MI);
1682 }
1683}