blob: 8ac96f3a4bfa9e100553179b4f6d94feeec41c2e [file] [log] [blame]
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001//===- HexagonConstPropagation.cpp ----------------------------------------===//
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hcp"
11
12#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonSubtarget.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000015#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000017#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/ADT/SetVector.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000019#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000022#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000024#include "llvm/CodeGen/MachineInstr.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000026#include "llvm/CodeGen/MachineOperand.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000028#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000030#include "llvm/IR/Constants.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000031#include "llvm/IR/Type.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000032#include "llvm/Pass.h"
33#include "llvm/Support/Casting.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000034#include "llvm/Support/Compiler.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000035#include "llvm/Support/Debug.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000036#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000038#include "llvm/Support/raw_ostream.h"
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000039#include <cassert>
40#include <cstdint>
41#include <cstring>
42#include <iterator>
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000043#include <map>
44#include <queue>
45#include <set>
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000046#include <utility>
47#include <vector>
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000048
49using namespace llvm;
50
51namespace {
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000052
53 // Properties of a value that are tracked by the propagation.
54 // A property that is marked as present (i.e. bit is set) dentes that the
55 // value is known (proven) to have this property. Not all combinations
56 // of bits make sense, for example Zero and NonZero are mutually exclusive,
57 // but on the other hand, Zero implies Finite. In this case, whenever
58 // the Zero property is present, Finite should also be present.
59 class ConstantProperties {
60 public:
61 enum {
62 Unknown = 0x0000,
63 Zero = 0x0001,
64 NonZero = 0x0002,
65 Finite = 0x0004,
66 Infinity = 0x0008,
67 NaN = 0x0010,
68 SignedZero = 0x0020,
69 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
70 PosOrZero = 0x0100,
71 NegOrZero = 0x0200,
72 SignProperties = (PosOrZero|NegOrZero),
73 Everything = (NumericProperties|SignProperties)
74 };
75
76 // For a given constant, deduce the set of trackable properties that this
77 // constant has.
78 static uint32_t deduce(const Constant *C);
79 };
80
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000081 // A representation of a register as it can appear in a MachineOperand,
82 // i.e. a pair register:subregister.
83 struct Register {
84 unsigned Reg, SubReg;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000085
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000086 explicit Register(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
87 explicit Register(const MachineOperand &MO)
88 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000089
90 void print(const TargetRegisterInfo *TRI = nullptr) const {
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +000091 dbgs() << printReg(Reg, TRI, SubReg);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000092 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +000093
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000094 bool operator== (const Register &R) const {
95 return (Reg == R.Reg) && (SubReg == R.SubReg);
96 }
97 };
98
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +000099 // Lattice cell, based on that was described in the W-Z paper on constant
100 // propagation.
101 // Latice cell will be allowed to hold multiple constant values. While
102 // multiple values would normally indicate "bottom", we can still derive
103 // some useful information from them. For example, comparison X > 0
104 // could be folded if all the values in the cell associated with X are
105 // positive.
106 class LatticeCell {
107 private:
108 enum { Normal, Top, Bottom };
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000109
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000110 static const unsigned MaxCellSize = 4;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000111
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000112 unsigned Kind:2;
113 unsigned Size:3;
114 unsigned IsSpecial:1;
115 unsigned :0;
116
117 public:
118 union {
119 uint32_t Properties;
120 const Constant *Value;
121 const Constant *Values[MaxCellSize];
122 };
123
124 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
125 for (unsigned i = 0; i < MaxCellSize; ++i)
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000126 Values[i] = nullptr;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000127 }
128
129 bool meet(const LatticeCell &L);
130 bool add(const Constant *C);
131 bool add(uint32_t Property);
132 uint32_t properties() const;
133 unsigned size() const { return Size; }
134
135 LatticeCell &operator= (const LatticeCell &L) {
136 if (this != &L) {
137 // This memcpy also copies Properties (when L.Size == 0).
138 uint32_t N = L.IsSpecial ? sizeof L.Properties
139 : L.Size*sizeof(const Constant*);
140 memcpy(Values, L.Values, N);
141 Kind = L.Kind;
142 Size = L.Size;
143 IsSpecial = L.IsSpecial;
144 }
145 return *this;
146 }
147
148 bool isSingle() const { return size() == 1; }
149 bool isProperty() const { return IsSpecial; }
150 bool isTop() const { return Kind == Top; }
151 bool isBottom() const { return Kind == Bottom; }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000152
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000153 bool setBottom() {
154 bool Changed = (Kind != Bottom);
155 Kind = Bottom;
156 Size = 0;
157 IsSpecial = false;
158 return Changed;
159 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000160
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000161 void print(raw_ostream &os) const;
162
163 private:
164 void setProperty() {
165 IsSpecial = true;
166 Size = 0;
167 Kind = Normal;
168 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000169
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000170 bool convertToProperty();
171 };
172
Florian Hahna3ad61d2017-07-31 16:44:28 +0000173#ifndef NDEBUG
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000174 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
175 L.print(os);
176 return os;
177 }
Florian Hahna3ad61d2017-07-31 16:44:28 +0000178#endif
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000179
180 class MachineConstEvaluator;
181
182 class MachineConstPropagator {
183 public:
184 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
185 Bottom.setBottom();
186 }
187
188 // Mapping: vreg -> cell
189 // The keys are registers _without_ subregisters. This won't allow
Francis Visoiu Mistriha8a83d12017-12-07 10:40:31 +0000190 // definitions in the form of "vreg:subreg = ...". Such definitions
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000191 // would be questionable from the point of view of SSA, since the "vreg"
192 // could not be initialized in its entirety (specifically, an instruction
193 // defining the "other part" of "vreg" would also count as a definition
194 // of "vreg", which would violate the SSA).
195 // If a value of a pair vreg:subreg needs to be obtained, the cell for
196 // "vreg" needs to be looked up, and then the value of subregister "subreg"
197 // needs to be evaluated.
198 class CellMap {
199 public:
200 CellMap() {
201 assert(Top.isTop());
202 Bottom.setBottom();
203 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000204
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000205 void clear() { Map.clear(); }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000206
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000207 bool has(unsigned R) const {
208 // All non-virtual registers are considered "bottom".
209 if (!TargetRegisterInfo::isVirtualRegister(R))
210 return true;
211 MapType::const_iterator F = Map.find(R);
212 return F != Map.end();
213 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000214
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000215 const LatticeCell &get(unsigned R) const {
216 if (!TargetRegisterInfo::isVirtualRegister(R))
217 return Bottom;
218 MapType::const_iterator F = Map.find(R);
219 if (F != Map.end())
220 return F->second;
221 return Top;
222 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000223
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000224 // Invalidates any const references.
225 void update(unsigned R, const LatticeCell &L) {
226 Map[R] = L;
227 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000228
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000229 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000230
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000231 private:
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +0000232 using MapType = std::map<unsigned, LatticeCell>;
233
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000234 MapType Map;
235 // To avoid creating "top" entries, return a const reference to
236 // this cell in "get". Also, have a "Bottom" cell to return from
237 // get when a value of a physical register is requested.
238 LatticeCell Top, Bottom;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000239
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000240 public:
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +0000241 using const_iterator = MapType::const_iterator;
242
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000243 const_iterator begin() const { return Map.begin(); }
244 const_iterator end() const { return Map.end(); }
245 };
246
247 bool run(MachineFunction &MF);
248
249 private:
250 void visitPHI(const MachineInstr &PN);
251 void visitNonBranch(const MachineInstr &MI);
252 void visitBranchesFrom(const MachineInstr &BrI);
253 void visitUsesOf(unsigned R);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000254 bool computeBlockSuccessors(const MachineBasicBlock *MB,
255 SetVector<const MachineBasicBlock*> &Targets);
256 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);
257
258 void propagate(MachineFunction &MF);
259 bool rewrite(MachineFunction &MF);
260
261 MachineRegisterInfo *MRI;
262 MachineConstEvaluator &MCE;
263
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +0000264 using CFGEdge = std::pair<unsigned, unsigned>;
265 using SetOfCFGEdge = std::set<CFGEdge>;
266 using SetOfInstr = std::set<const MachineInstr *>;
267 using QueueOfCFGEdge = std::queue<CFGEdge>;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000268
269 LatticeCell Bottom;
270 CellMap Cells;
271 SetOfCFGEdge EdgeExec;
272 SetOfInstr InstrExec;
273 QueueOfCFGEdge FlowQ;
274 };
275
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000276 // The "evaluator/rewriter" of machine instructions. This is an abstract
277 // base class that provides the interface that the propagator will use,
278 // as well as some helper functions that are target-independent.
279 class MachineConstEvaluator {
280 public:
281 MachineConstEvaluator(MachineFunction &Fn)
282 : TRI(*Fn.getSubtarget().getRegisterInfo()),
Matthias Braunf1caa282017-12-15 22:22:58 +0000283 MF(Fn), CX(Fn.getFunction().getContext()) {}
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000284 virtual ~MachineConstEvaluator() = default;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000285
286 // The required interface:
287 // - A set of three "evaluate" functions. Each returns "true" if the
288 // computation succeeded, "false" otherwise.
289 // (1) Given an instruction MI, and the map with input values "Inputs",
290 // compute the set of output values "Outputs". An example of when
291 // the computation can "fail" is if MI is not an instruction that
292 // is recognized by the evaluator.
293 // (2) Given a register R (as reg:subreg), compute the cell that
294 // corresponds to the "subreg" part of the given register.
295 // (3) Given a branch instruction BrI, compute the set of target blocks.
296 // If the branch can fall-through, add null (0) to the list of
297 // possible targets.
298 // - A function "rewrite", that given the cell map after propagation,
299 // could rewrite instruction MI in a more beneficial form. Return
300 // "true" if a change has been made, "false" otherwise.
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +0000301 using CellMap = MachineConstPropagator::CellMap;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000302 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
303 CellMap &Outputs) = 0;
304 virtual bool evaluate(const Register &R, const LatticeCell &SrcC,
305 LatticeCell &Result) = 0;
306 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
307 SetVector<const MachineBasicBlock*> &Targets,
308 bool &CanFallThru) = 0;
309 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;
310
311 const TargetRegisterInfo &TRI;
312
313 protected:
314 MachineFunction &MF;
315 LLVMContext &CX;
316
317 struct Comparison {
318 enum {
319 Unk = 0x00,
320 EQ = 0x01,
321 NE = 0x02,
322 L = 0x04, // Less-than property.
323 G = 0x08, // Greater-than property.
324 U = 0x40, // Unsigned property.
325 LTs = L,
326 LEs = L | EQ,
327 GTs = G,
328 GEs = G | EQ,
329 LTu = L | U,
330 LEu = L | EQ | U,
331 GTu = G | U,
332 GEu = G | EQ | U
333 };
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000334
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000335 static uint32_t negate(uint32_t Cmp) {
336 if (Cmp == EQ)
337 return NE;
338 if (Cmp == NE)
339 return EQ;
340 assert((Cmp & (L|G)) != (L|G));
341 return Cmp ^ (L|G);
342 }
343 };
344
345 // Helper functions.
346
347 bool getCell(const Register &R, const CellMap &Inputs, LatticeCell &RC);
348 bool constToInt(const Constant *C, APInt &Val) const;
349 bool constToFloat(const Constant *C, APFloat &Val) const;
350 const ConstantInt *intToConst(const APInt &Val) const;
351
352 // Compares.
353 bool evaluateCMPrr(uint32_t Cmp, const Register &R1, const Register &R2,
354 const CellMap &Inputs, bool &Result);
355 bool evaluateCMPri(uint32_t Cmp, const Register &R1, const APInt &A2,
356 const CellMap &Inputs, bool &Result);
357 bool evaluateCMPrp(uint32_t Cmp, const Register &R1, uint64_t Props2,
358 const CellMap &Inputs, bool &Result);
359 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
360 bool &Result);
361 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
362 bool &Result);
363 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
364 bool &Result);
365
366 bool evaluateCOPY(const Register &R1, const CellMap &Inputs,
367 LatticeCell &Result);
368
369 // Logical operations.
370 bool evaluateANDrr(const Register &R1, const Register &R2,
371 const CellMap &Inputs, LatticeCell &Result);
372 bool evaluateANDri(const Register &R1, const APInt &A2,
373 const CellMap &Inputs, LatticeCell &Result);
374 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
375 bool evaluateORrr(const Register &R1, const Register &R2,
376 const CellMap &Inputs, LatticeCell &Result);
377 bool evaluateORri(const Register &R1, const APInt &A2,
378 const CellMap &Inputs, LatticeCell &Result);
379 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
380 bool evaluateXORrr(const Register &R1, const Register &R2,
381 const CellMap &Inputs, LatticeCell &Result);
382 bool evaluateXORri(const Register &R1, const APInt &A2,
383 const CellMap &Inputs, LatticeCell &Result);
384 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);
385
386 // Extensions.
387 bool evaluateZEXTr(const Register &R1, unsigned Width, unsigned Bits,
388 const CellMap &Inputs, LatticeCell &Result);
389 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
390 APInt &Result);
391 bool evaluateSEXTr(const Register &R1, unsigned Width, unsigned Bits,
392 const CellMap &Inputs, LatticeCell &Result);
393 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
394 APInt &Result);
395
396 // Leading/trailing bits.
397 bool evaluateCLBr(const Register &R1, bool Zeros, bool Ones,
398 const CellMap &Inputs, LatticeCell &Result);
399 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
400 bool evaluateCTBr(const Register &R1, bool Zeros, bool Ones,
401 const CellMap &Inputs, LatticeCell &Result);
402 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
403
404 // Bitfield extract.
405 bool evaluateEXTRACTr(const Register &R1, unsigned Width, unsigned Bits,
406 unsigned Offset, bool Signed, const CellMap &Inputs,
407 LatticeCell &Result);
408 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
409 bool Signed, APInt &Result);
410 // Vector operations.
411 bool evaluateSplatr(const Register &R1, unsigned Bits, unsigned Count,
412 const CellMap &Inputs, LatticeCell &Result);
413 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
414 APInt &Result);
415 };
416
Eugene Zelenkof9f8c682016-12-14 22:50:46 +0000417} // end anonymous namespace
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000418
419uint32_t ConstantProperties::deduce(const Constant *C) {
420 if (isa<ConstantInt>(C)) {
421 const ConstantInt *CI = cast<ConstantInt>(C);
422 if (CI->isZero())
423 return Zero | PosOrZero | NegOrZero | Finite;
424 uint32_t Props = (NonZero | Finite);
425 if (CI->isNegative())
426 return Props | NegOrZero;
427 return Props | PosOrZero;
428 }
429
430 if (isa<ConstantFP>(C)) {
431 const ConstantFP *CF = cast<ConstantFP>(C);
432 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
433 : PosOrZero;
434 if (CF->isZero())
435 return (Props & ~NumericProperties) | (Zero|Finite);
436 Props = (Props & ~NumericProperties) | NonZero;
437 if (CF->isNaN())
438 return (Props & ~NumericProperties) | NaN;
439 const APFloat &Val = CF->getValueAPF();
440 if (Val.isInfinity())
441 return (Props & ~NumericProperties) | Infinity;
442 Props |= Finite;
443 return Props;
444 }
445
446 return Unknown;
447}
448
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000449// Convert a cell from a set of specific values to a cell that tracks
450// properties.
451bool LatticeCell::convertToProperty() {
452 if (isProperty())
453 return false;
454 // Corner case: converting a fresh (top) cell to "special".
455 // This can happen, when adding a property to a top cell.
456 uint32_t Everything = ConstantProperties::Everything;
457 uint32_t Ps = !isTop() ? properties()
458 : Everything;
459 if (Ps != ConstantProperties::Unknown) {
460 Properties = Ps;
461 setProperty();
462 } else {
463 setBottom();
464 }
465 return true;
466}
467
Florian Hahna3ad61d2017-07-31 16:44:28 +0000468#ifndef NDEBUG
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000469void LatticeCell::print(raw_ostream &os) const {
470 if (isProperty()) {
471 os << "{ ";
472 uint32_t Ps = properties();
473 if (Ps & ConstantProperties::Zero)
474 os << "zero ";
475 if (Ps & ConstantProperties::NonZero)
476 os << "nonzero ";
477 if (Ps & ConstantProperties::Finite)
478 os << "finite ";
479 if (Ps & ConstantProperties::Infinity)
480 os << "infinity ";
481 if (Ps & ConstantProperties::NaN)
482 os << "nan ";
483 if (Ps & ConstantProperties::PosOrZero)
484 os << "poz ";
485 if (Ps & ConstantProperties::NegOrZero)
486 os << "nez ";
487 os << '}';
488 return;
489 }
490
491 os << "{ ";
492 if (isBottom()) {
493 os << "bottom";
494 } else if (isTop()) {
495 os << "top";
496 } else {
497 for (unsigned i = 0; i < size(); ++i) {
498 const Constant *C = Values[i];
499 if (i != 0)
500 os << ", ";
501 C->print(os);
502 }
503 }
504 os << " }";
505}
Florian Hahna3ad61d2017-07-31 16:44:28 +0000506#endif
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000507
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000508// "Meet" operation on two cells. This is the key of the propagation
509// algorithm.
510bool LatticeCell::meet(const LatticeCell &L) {
511 bool Changed = false;
512 if (L.isBottom())
513 Changed = setBottom();
514 if (isBottom() || L.isTop())
515 return Changed;
516 if (isTop()) {
517 *this = L;
518 // L can be neither Top nor Bottom, so *this must have changed.
519 return true;
520 }
521
522 // Top/bottom cases covered. Need to integrate L's set into ours.
523 if (L.isProperty())
524 return add(L.properties());
525 for (unsigned i = 0; i < L.size(); ++i) {
526 const Constant *LC = L.Values[i];
527 Changed |= add(LC);
528 }
529 return Changed;
530}
531
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000532// Add a new constant to the cell. This is actually where the cell update
533// happens. If a cell has room for more constants, the new constant is added.
534// Otherwise, the cell is converted to a "property" cell (i.e. a cell that
535// will track properties of the associated values, and not the values
536// themselves. Care is taken to handle special cases, like "bottom", etc.
537bool LatticeCell::add(const Constant *LC) {
538 assert(LC);
539 if (isBottom())
540 return false;
541
542 if (!isProperty()) {
543 // Cell is not special. Try to add the constant here first,
544 // if there is room.
545 unsigned Index = 0;
546 while (Index < Size) {
547 const Constant *C = Values[Index];
548 // If the constant is already here, no change is needed.
549 if (C == LC)
550 return false;
551 Index++;
552 }
553 if (Index < MaxCellSize) {
554 Values[Index] = LC;
555 Kind = Normal;
556 Size++;
557 return true;
558 }
559 }
560
561 bool Changed = false;
562
563 // This cell is special, or is not special, but is full. After this
564 // it will be special.
565 Changed = convertToProperty();
566 uint32_t Ps = properties();
567 uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
568 if (NewPs == ConstantProperties::Unknown) {
569 setBottom();
570 return true;
571 }
572 if (Ps != NewPs) {
573 Properties = NewPs;
574 Changed = true;
575 }
576 return Changed;
577}
578
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000579// Add a property to the cell. This will force the cell to become a property-
580// tracking cell.
581bool LatticeCell::add(uint32_t Property) {
582 bool Changed = convertToProperty();
583 uint32_t Ps = properties();
584 if (Ps == (Ps & Property))
585 return Changed;
586 Properties = Property & Ps;
587 return true;
588}
589
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000590// Return the properties of the values in the cell. This is valid for any
591// cell, and does not alter the cell itself.
592uint32_t LatticeCell::properties() const {
593 if (isProperty())
594 return Properties;
595 assert(!isTop() && "Should not call this for a top cell");
596 if (isBottom())
597 return ConstantProperties::Unknown;
598
599 assert(size() > 0 && "Empty cell");
600 uint32_t Ps = ConstantProperties::deduce(Values[0]);
601 for (unsigned i = 1; i < size(); ++i) {
602 if (Ps == ConstantProperties::Unknown)
603 break;
604 Ps &= ConstantProperties::deduce(Values[i]);
605 }
606 return Ps;
607}
608
Florian Hahn6b3216a2017-07-31 10:07:49 +0000609#ifndef NDEBUG
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000610void MachineConstPropagator::CellMap::print(raw_ostream &os,
611 const TargetRegisterInfo &TRI) const {
612 for (auto &I : Map)
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +0000613 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000614}
Florian Hahn6b3216a2017-07-31 10:07:49 +0000615#endif
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000616
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000617void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
618 const MachineBasicBlock *MB = PN.getParent();
619 unsigned MBN = MB->getNumber();
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000620 DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000621
622 const MachineOperand &MD = PN.getOperand(0);
623 Register DefR(MD);
624 assert(TargetRegisterInfo::isVirtualRegister(DefR.Reg));
625
626 bool Changed = false;
627
628 // If the def has a sub-register, set the corresponding cell to "bottom".
629 if (DefR.SubReg) {
630Bottomize:
631 const LatticeCell &T = Cells.get(DefR.Reg);
632 Changed = !T.isBottom();
633 Cells.update(DefR.Reg, Bottom);
634 if (Changed)
635 visitUsesOf(DefR.Reg);
636 return;
637 }
638
639 LatticeCell DefC = Cells.get(DefR.Reg);
640
641 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
642 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
643 unsigned PBN = PB->getNumber();
644 if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000645 DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->"
646 << printMBBReference(*MB) << " not executable\n");
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000647 continue;
648 }
649 const MachineOperand &SO = PN.getOperand(i);
650 Register UseR(SO);
651 // If the input is not a virtual register, we don't really know what
652 // value it holds.
653 if (!TargetRegisterInfo::isVirtualRegister(UseR.Reg))
654 goto Bottomize;
655 // If there is no cell for an input register, it means top.
656 if (!Cells.has(UseR.Reg))
657 continue;
658
659 LatticeCell SrcC;
660 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000661 DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": "
662 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC << '\n');
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000663 Changed |= Eval ? DefC.meet(SrcC)
664 : DefC.setBottom();
665 Cells.update(DefR.Reg, DefC);
666 if (DefC.isBottom())
667 break;
668 }
669 if (Changed)
670 visitUsesOf(DefR.Reg);
671}
672
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000673void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000674 DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000675 << "): " << MI);
676 CellMap Outputs;
677 bool Eval = MCE.evaluate(MI, Cells, Outputs);
678 DEBUG({
679 if (Eval) {
680 dbgs() << " outputs:";
681 for (auto &I : Outputs)
682 dbgs() << ' ' << I.second;
683 dbgs() << '\n';
684 }
685 });
686
687 // Update outputs. If the value was not computed, set all the
688 // def cells to bottom.
689 for (const MachineOperand &MO : MI.operands()) {
690 if (!MO.isReg() || !MO.isDef())
691 continue;
692 Register DefR(MO);
693 // Only track virtual registers.
694 if (!TargetRegisterInfo::isVirtualRegister(DefR.Reg))
695 continue;
696 bool Changed = false;
697 // If the evaluation failed, set cells for all output registers to bottom.
698 if (!Eval) {
699 const LatticeCell &T = Cells.get(DefR.Reg);
700 Changed = !T.isBottom();
701 Cells.update(DefR.Reg, Bottom);
702 } else {
703 // Find the corresponding cell in the computed outputs.
704 // If it's not there, go on to the next def.
705 if (!Outputs.has(DefR.Reg))
706 continue;
707 LatticeCell RC = Cells.get(DefR.Reg);
708 Changed = RC.meet(Outputs.get(DefR.Reg));
709 Cells.update(DefR.Reg, RC);
710 }
711 if (Changed)
712 visitUsesOf(DefR.Reg);
713 }
714}
715
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000716// \brief Starting at a given branch, visit remaining branches in the block.
717// Traverse over the subsequent branches for as long as the preceding one
718// can fall through. Add all the possible targets to the flow work queue,
719// including the potential fall-through to the layout-successor block.
720void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
721 const MachineBasicBlock &B = *BrI.getParent();
722 unsigned MBN = B.getNumber();
723 MachineBasicBlock::const_iterator It = BrI.getIterator();
724 MachineBasicBlock::const_iterator End = B.end();
725
726 SetVector<const MachineBasicBlock*> Targets;
727 bool EvalOk = true, FallsThru = true;
728 while (It != End) {
729 const MachineInstr &MI = *It;
730 InstrExec.insert(&MI);
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000731 DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
732 << printMBBReference(B) << "): " << MI);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000733 // Do not evaluate subsequent branches if the evaluation of any of the
734 // previous branches failed. Keep iterating over the branches only
735 // to mark them as executable.
736 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
737 if (!EvalOk)
738 FallsThru = true;
739 if (!FallsThru)
740 break;
741 ++It;
742 }
743
744 if (EvalOk) {
745 // Need to add all CFG successors that lead to EH landing pads.
746 // There won't be explicit branches to these blocks, but they must
747 // be processed.
748 for (const MachineBasicBlock *SB : B.successors()) {
749 if (SB->isEHPad())
750 Targets.insert(SB);
751 }
752 if (FallsThru) {
753 const MachineFunction &MF = *B.getParent();
754 MachineFunction::const_iterator BI = B.getIterator();
755 MachineFunction::const_iterator Next = std::next(BI);
756 if (Next != MF.end())
757 Targets.insert(&*Next);
758 }
759 } else {
760 // If the evaluation of the branches failed, make "Targets" to be the
761 // set of all successors of the block from the CFG.
762 // If the evaluation succeeded for all visited branches, then if the
763 // last one set "FallsThru", then add an edge to the layout successor
764 // to the targets.
765 Targets.clear();
766 DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG "
767 "successors\n");
768 for (const MachineBasicBlock *SB : B.successors())
769 Targets.insert(SB);
770 }
771
772 for (const MachineBasicBlock *TB : Targets) {
773 unsigned TBN = TB->getNumber();
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000774 DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> "
775 << printMBBReference(*TB) << "\n");
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000776 FlowQ.push(CFGEdge(MBN, TBN));
777 }
778}
779
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000780void MachineConstPropagator::visitUsesOf(unsigned Reg) {
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +0000781 DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000782 << Cells.get(Reg) << '\n');
783 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
784 // Do not process non-executable instructions. They can become exceutable
785 // later (via a flow-edge in the work queue). In such case, the instruc-
786 // tion will be visited at that time.
787 if (!InstrExec.count(&MI))
788 continue;
789 if (MI.isPHI())
790 visitPHI(MI);
791 else if (!MI.isBranch())
792 visitNonBranch(MI);
793 else
794 visitBranchesFrom(MI);
795 }
796}
797
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000798bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
799 SetVector<const MachineBasicBlock*> &Targets) {
800 MachineBasicBlock::const_iterator FirstBr = MB->end();
801 for (const MachineInstr &MI : *MB) {
802 if (MI.isDebugValue())
803 continue;
804 if (MI.isBranch()) {
805 FirstBr = MI.getIterator();
806 break;
807 }
808 }
809
810 Targets.clear();
811 MachineBasicBlock::const_iterator End = MB->end();
812
813 bool DoNext = true;
814 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
815 const MachineInstr &MI = *I;
816 // Can there be debug instructions between branches?
817 if (MI.isDebugValue())
818 continue;
819 if (!InstrExec.count(&MI))
820 continue;
821 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
822 if (!Eval)
823 return false;
824 if (!DoNext)
825 break;
826 }
827 // If the last branch could fall-through, add block's layout successor.
828 if (DoNext) {
829 MachineFunction::const_iterator BI = MB->getIterator();
830 MachineFunction::const_iterator NextI = std::next(BI);
831 if (NextI != MB->getParent()->end())
832 Targets.insert(&*NextI);
833 }
834
835 // Add all the EH landing pads.
836 for (const MachineBasicBlock *SB : MB->successors())
837 if (SB->isEHPad())
838 Targets.insert(SB);
839
840 return true;
841}
842
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000843void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
844 MachineBasicBlock *To) {
845 // First, remove the CFG successor/predecessor information.
846 From->removeSuccessor(To);
847 // Remove all corresponding PHI operands in the To block.
848 for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
849 MachineInstr *PN = &*I;
850 // reg0 = PHI reg1, bb2, reg3, bb4, ...
851 int N = PN->getNumOperands()-2;
852 while (N > 0) {
853 if (PN->getOperand(N+1).getMBB() == From) {
854 PN->RemoveOperand(N+1);
855 PN->RemoveOperand(N);
856 }
857 N -= 2;
858 }
859 }
860}
861
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000862void MachineConstPropagator::propagate(MachineFunction &MF) {
863 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
864 unsigned EntryNum = Entry->getNumber();
865
866 // Start with a fake edge, just to process the entry node.
867 FlowQ.push(CFGEdge(EntryNum, EntryNum));
868
869 while (!FlowQ.empty()) {
870 CFGEdge Edge = FlowQ.front();
871 FlowQ.pop();
872
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000873 DEBUG(dbgs() << "Picked edge "
874 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
875 << printMBBReference(*MF.getBlockNumbered(Edge.second))
876 << '\n');
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000877 if (Edge.first != EntryNum)
878 if (EdgeExec.count(Edge))
879 continue;
880 EdgeExec.insert(Edge);
881 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);
882
883 // Process the block in three stages:
884 // - visit all PHI nodes,
885 // - visit all non-branch instructions,
886 // - visit block branches.
887 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();
888
889 // Visit PHI nodes in the successor block.
890 while (It != End && It->isPHI()) {
891 InstrExec.insert(&*It);
892 visitPHI(*It);
893 ++It;
894 }
895
896 // If the successor block just became executable, visit all instructions.
897 // To see if this is the first time we're visiting it, check the first
898 // non-debug instruction to see if it is executable.
899 while (It != End && It->isDebugValue())
900 ++It;
901 assert(It == End || !It->isPHI());
902 // If this block has been visited, go on to the next one.
903 if (It != End && InstrExec.count(&*It))
904 continue;
905 // For now, scan all non-branch instructions. Branches require different
906 // processing.
907 while (It != End && !It->isBranch()) {
908 if (!It->isDebugValue()) {
909 InstrExec.insert(&*It);
910 visitNonBranch(*It);
911 }
912 ++It;
913 }
914
915 // Time to process the end of the block. This is different from
916 // processing regular (non-branch) instructions, because there can
917 // be multiple branches in a block, and they can cause the block to
918 // terminate early.
919 if (It != End) {
920 visitBranchesFrom(*It);
921 } else {
922 // If the block didn't have a branch, add all successor edges to the
923 // work queue. (There should really be only one successor in such case.)
924 unsigned SBN = SB->getNumber();
925 for (const MachineBasicBlock *SSB : SB->successors())
926 FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
927 }
928 } // while (FlowQ)
929
930 DEBUG({
931 dbgs() << "Cells after propagation:\n";
932 Cells.print(dbgs(), MCE.TRI);
933 dbgs() << "Dead CFG edges:\n";
934 for (const MachineBasicBlock &B : MF) {
935 unsigned BN = B.getNumber();
936 for (const MachineBasicBlock *SB : B.successors()) {
937 unsigned SN = SB->getNumber();
938 if (!EdgeExec.count(CFGEdge(BN, SN)))
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +0000939 dbgs() << " " << printMBBReference(B) << " -> "
940 << printMBBReference(*SB) << '\n';
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000941 }
942 }
943 });
944}
945
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +0000946bool MachineConstPropagator::rewrite(MachineFunction &MF) {
947 bool Changed = false;
948 // Rewrite all instructions based on the collected cell information.
949 //
950 // Traverse the instructions in a post-order, so that rewriting an
951 // instruction can make changes "downstream" in terms of control-flow
952 // without affecting the rewriting process. (We should not change
953 // instructions that have not yet been visited by the rewriter.)
954 // The reason for this is that the rewriter can introduce new vregs,
955 // and replace uses of old vregs (which had corresponding cells
956 // computed during propagation) with these new vregs (which at this
957 // point would not have any cells, and would appear to be "top").
958 // If an attempt was made to evaluate an instruction with a fresh
959 // "top" vreg, it would cause an error (abend) in the evaluator.
960
961 // Collect the post-order-traversal block ordering. The subsequent
962 // traversal/rewrite will update block successors, so it's safer
963 // if the visiting order it computed ahead of time.
964 std::vector<MachineBasicBlock*> POT;
965 for (MachineBasicBlock *B : post_order(&MF))
966 if (!B->empty())
967 POT.push_back(B);
968
969 for (MachineBasicBlock *B : POT) {
970 // Walk the block backwards (which usually begin with the branches).
971 // If any branch is rewritten, we may need to update the successor
972 // information for this block. Unless the block's successors can be
973 // precisely determined (which may not be the case for indirect
974 // branches), we cannot modify any branch.
975
976 // Compute the successor information.
977 SetVector<const MachineBasicBlock*> Targets;
978 bool HaveTargets = computeBlockSuccessors(B, Targets);
979 // Rewrite the executable instructions. Skip branches if we don't
980 // have block successor information.
981 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
982 MachineInstr &MI = *I;
983 if (InstrExec.count(&MI)) {
984 if (MI.isBranch() && !HaveTargets)
985 continue;
986 Changed |= MCE.rewrite(MI, Cells);
987 }
988 }
989 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
990 // regular instructions to appear in between PHI nodes. Bring all
991 // the PHI nodes to the beginning of the block.
992 for (auto I = B->begin(), E = B->end(); I != E; ++I) {
993 if (I->isPHI())
994 continue;
995 // I is not PHI. Find the next PHI node P.
996 auto P = I;
997 while (++P != E)
998 if (P->isPHI())
999 break;
1000 // Not found.
1001 if (P == E)
1002 break;
1003 // Splice P right before I.
1004 B->splice(I, B, P);
1005 // Reset I to point at the just spliced PHI node.
1006 --I;
1007 }
1008 // Update the block successor information: remove unnecessary successors.
1009 if (HaveTargets) {
1010 SmallVector<MachineBasicBlock*,2> ToRemove;
1011 for (MachineBasicBlock *SB : B->successors()) {
1012 if (!Targets.count(SB))
1013 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
1014 Targets.remove(SB);
1015 }
1016 for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
1017 removeCFGEdge(B, ToRemove[i]);
1018 // If there are any blocks left in the computed targets, it means that
1019 // we think that the block could go somewhere, but the CFG does not.
1020 // This could legitimately happen in blocks that have non-returning
1021 // calls---we would think that the execution can continue, but the
1022 // CFG will not have a successor edge.
1023 }
1024 }
1025 // Need to do some final post-processing.
1026 // If a branch was not executable, it will not get rewritten, but should
1027 // be removed (or replaced with something equivalent to a A2_nop). We can't
1028 // erase instructions during rewriting, so this needs to be delayed until
1029 // now.
1030 for (MachineBasicBlock &B : MF) {
1031 MachineBasicBlock::iterator I = B.begin(), E = B.end();
1032 while (I != E) {
1033 auto Next = std::next(I);
1034 if (I->isBranch() && !InstrExec.count(&*I))
1035 B.erase(I);
1036 I = Next;
1037 }
1038 }
1039 return Changed;
1040}
1041
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001042// This is the constant propagation algorithm as described by Wegman-Zadeck.
1043// Most of the terminology comes from there.
1044bool MachineConstPropagator::run(MachineFunction &MF) {
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001045 DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001046
1047 MRI = &MF.getRegInfo();
1048
1049 Cells.clear();
1050 EdgeExec.clear();
1051 InstrExec.clear();
1052 assert(FlowQ.empty());
1053
1054 propagate(MF);
1055 bool Changed = rewrite(MF);
1056
1057 DEBUG({
1058 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
1059 if (Changed)
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001060 MF.print(dbgs(), nullptr);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001061 });
1062 return Changed;
1063}
1064
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001065// --------------------------------------------------------------------
1066// Machine const evaluator.
1067
1068bool MachineConstEvaluator::getCell(const Register &R, const CellMap &Inputs,
1069 LatticeCell &RC) {
1070 if (!TargetRegisterInfo::isVirtualRegister(R.Reg))
1071 return false;
1072 const LatticeCell &L = Inputs.get(R.Reg);
1073 if (!R.SubReg) {
1074 RC = L;
1075 return !RC.isBottom();
1076 }
1077 bool Eval = evaluate(R, L, RC);
1078 return Eval && !RC.isBottom();
1079}
1080
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001081bool MachineConstEvaluator::constToInt(const Constant *C,
1082 APInt &Val) const {
1083 const ConstantInt *CI = dyn_cast<ConstantInt>(C);
1084 if (!CI)
1085 return false;
1086 Val = CI->getValue();
1087 return true;
1088}
1089
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001090const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
1091 return ConstantInt::get(CX, Val);
1092}
1093
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001094bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const Register &R1,
1095 const Register &R2, const CellMap &Inputs, bool &Result) {
1096 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1097 LatticeCell LS1, LS2;
1098 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1099 return false;
1100
1101 bool IsProp1 = LS1.isProperty();
1102 bool IsProp2 = LS2.isProperty();
1103 if (IsProp1) {
1104 uint32_t Prop1 = LS1.properties();
1105 if (IsProp2)
1106 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
1107 uint32_t NegCmp = Comparison::negate(Cmp);
1108 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
1109 }
1110 if (IsProp2) {
1111 uint32_t Prop2 = LS2.properties();
1112 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
1113 }
1114
1115 APInt A;
1116 bool IsTrue = true, IsFalse = true;
1117 for (unsigned i = 0; i < LS2.size(); ++i) {
1118 bool Res;
1119 bool Computed = constToInt(LS2.Values[i], A) &&
1120 evaluateCMPri(Cmp, R1, A, Inputs, Res);
1121 if (!Computed)
1122 return false;
1123 IsTrue &= Res;
1124 IsFalse &= !Res;
1125 }
1126 assert(!IsTrue || !IsFalse);
1127 // The actual logical value of the comparison is same as IsTrue.
1128 Result = IsTrue;
1129 // Return true if the result was proven to be true or proven to be false.
1130 return IsTrue || IsFalse;
1131}
1132
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001133bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const Register &R1,
1134 const APInt &A2, const CellMap &Inputs, bool &Result) {
1135 assert(Inputs.has(R1.Reg));
1136 LatticeCell LS;
1137 if (!getCell(R1, Inputs, LS))
1138 return false;
1139 if (LS.isProperty())
1140 return evaluateCMPpi(Cmp, LS.properties(), A2, Result);
1141
1142 APInt A;
1143 bool IsTrue = true, IsFalse = true;
1144 for (unsigned i = 0; i < LS.size(); ++i) {
1145 bool Res;
1146 bool Computed = constToInt(LS.Values[i], A) &&
1147 evaluateCMPii(Cmp, A, A2, Res);
1148 if (!Computed)
1149 return false;
1150 IsTrue &= Res;
1151 IsFalse &= !Res;
1152 }
1153 assert(!IsTrue || !IsFalse);
1154 // The actual logical value of the comparison is same as IsTrue.
1155 Result = IsTrue;
1156 // Return true if the result was proven to be true or proven to be false.
1157 return IsTrue || IsFalse;
1158}
1159
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001160bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const Register &R1,
1161 uint64_t Props2, const CellMap &Inputs, bool &Result) {
1162 assert(Inputs.has(R1.Reg));
1163 LatticeCell LS;
1164 if (!getCell(R1, Inputs, LS))
1165 return false;
1166 if (LS.isProperty())
1167 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);
1168
1169 APInt A;
1170 uint32_t NegCmp = Comparison::negate(Cmp);
1171 bool IsTrue = true, IsFalse = true;
1172 for (unsigned i = 0; i < LS.size(); ++i) {
1173 bool Res;
1174 bool Computed = constToInt(LS.Values[i], A) &&
1175 evaluateCMPpi(NegCmp, Props2, A, Res);
1176 if (!Computed)
1177 return false;
1178 IsTrue &= Res;
1179 IsFalse &= !Res;
1180 }
1181 assert(!IsTrue || !IsFalse);
1182 Result = IsTrue;
1183 return IsTrue || IsFalse;
1184}
1185
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001186bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
1187 const APInt &A2, bool &Result) {
1188 // NE is a special kind of comparison (not composed of smaller properties).
1189 if (Cmp == Comparison::NE) {
1190 Result = !APInt::isSameValue(A1, A2);
1191 return true;
1192 }
1193 if (Cmp == Comparison::EQ) {
1194 Result = APInt::isSameValue(A1, A2);
1195 return true;
1196 }
1197 if (Cmp & Comparison::EQ) {
1198 if (APInt::isSameValue(A1, A2))
1199 return (Result = true);
1200 }
1201 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
1202 Result = false;
1203
1204 unsigned W1 = A1.getBitWidth();
1205 unsigned W2 = A2.getBitWidth();
1206 unsigned MaxW = (W1 >= W2) ? W1 : W2;
1207 if (Cmp & Comparison::U) {
1208 const APInt Zx1 = A1.zextOrSelf(MaxW);
1209 const APInt Zx2 = A2.zextOrSelf(MaxW);
1210 if (Cmp & Comparison::L)
1211 Result = Zx1.ult(Zx2);
1212 else if (Cmp & Comparison::G)
1213 Result = Zx2.ult(Zx1);
1214 return true;
1215 }
1216
1217 // Signed comparison.
1218 const APInt Sx1 = A1.sextOrSelf(MaxW);
1219 const APInt Sx2 = A2.sextOrSelf(MaxW);
1220 if (Cmp & Comparison::L)
1221 Result = Sx1.slt(Sx2);
1222 else if (Cmp & Comparison::G)
1223 Result = Sx2.slt(Sx1);
1224 return true;
1225}
1226
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001227bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
1228 const APInt &A2, bool &Result) {
1229 if (Props == ConstantProperties::Unknown)
1230 return false;
1231
1232 // Should never see NaN here, but check for it for completeness.
1233 if (Props & ConstantProperties::NaN)
1234 return false;
1235 // Infinity could theoretically be compared to a number, but the
1236 // presence of infinity here would be very suspicious. If we don't
1237 // know for sure that the number is finite, bail out.
1238 if (!(Props & ConstantProperties::Finite))
1239 return false;
1240
1241 // Let X be a number that has properties Props.
1242
1243 if (Cmp & Comparison::U) {
1244 // In case of unsigned comparisons, we can only compare against 0.
1245 if (A2 == 0) {
1246 // Any x!=0 will be considered >0 in an unsigned comparison.
1247 if (Props & ConstantProperties::Zero)
1248 Result = (Cmp & Comparison::EQ);
1249 else if (Props & ConstantProperties::NonZero)
1250 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1251 else
1252 return false;
1253 return true;
1254 }
1255 // A2 is not zero. The only handled case is if X = 0.
1256 if (Props & ConstantProperties::Zero) {
1257 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1258 return true;
1259 }
1260 return false;
1261 }
1262
1263 // Signed comparisons are different.
1264 if (Props & ConstantProperties::Zero) {
1265 if (A2 == 0)
1266 Result = (Cmp & Comparison::EQ);
1267 else
1268 Result = (Cmp == Comparison::NE) ||
1269 ((Cmp & Comparison::L) && !A2.isNegative()) ||
1270 ((Cmp & Comparison::G) && A2.isNegative());
1271 return true;
1272 }
1273 if (Props & ConstantProperties::PosOrZero) {
1274 // X >= 0 and !(A2 < 0) => cannot compare
1275 if (!A2.isNegative())
1276 return false;
1277 // X >= 0 and A2 < 0
1278 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1279 return true;
1280 }
1281 if (Props & ConstantProperties::NegOrZero) {
1282 // X <= 0 and Src1 < 0 => cannot compare
1283 if (A2 == 0 || A2.isNegative())
1284 return false;
1285 // X <= 0 and A2 > 0
1286 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1287 return true;
1288 }
1289
1290 return false;
1291}
1292
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001293bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
1294 uint32_t Props2, bool &Result) {
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001295 using P = ConstantProperties;
1296
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001297 if ((Props1 & P::NaN) && (Props2 & P::NaN))
1298 return false;
1299 if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
1300 return false;
1301
1302 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
1303 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
1304 if (Zero1 && Zero2) {
1305 Result = (Cmp & Comparison::EQ);
1306 return true;
1307 }
1308 if (Cmp == Comparison::NE) {
1309 if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
1310 return (Result = true);
1311 return false;
1312 }
1313
1314 if (Cmp & Comparison::U) {
1315 // In unsigned comparisons, we can only compare against a known zero,
1316 // or a known non-zero.
1317 if (Zero1 && NonZero2) {
1318 Result = (Cmp & Comparison::L);
1319 return true;
1320 }
1321 if (NonZero1 && Zero2) {
1322 Result = (Cmp & Comparison::G);
1323 return true;
1324 }
1325 return false;
1326 }
1327
1328 // Signed comparison. The comparison is not NE.
1329 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
1330 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
1331 if (Nez1 && Poz2) {
1332 if (NonZero1 || NonZero2) {
1333 Result = (Cmp & Comparison::L);
1334 return true;
1335 }
1336 // Either (or both) could be zero. Can only say that X <= Y.
1337 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
1338 return (Result = true);
1339 }
1340 if (Poz1 && Nez2) {
1341 if (NonZero1 || NonZero2) {
1342 Result = (Cmp & Comparison::G);
1343 return true;
1344 }
1345 // Either (or both) could be zero. Can only say that X >= Y.
1346 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
1347 return (Result = true);
1348 }
1349
1350 return false;
1351}
1352
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001353bool MachineConstEvaluator::evaluateCOPY(const Register &R1,
1354 const CellMap &Inputs, LatticeCell &Result) {
1355 return getCell(R1, Inputs, Result);
1356}
1357
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001358bool MachineConstEvaluator::evaluateANDrr(const Register &R1,
1359 const Register &R2, const CellMap &Inputs, LatticeCell &Result) {
1360 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1361 const LatticeCell &L1 = Inputs.get(R2.Reg);
1362 const LatticeCell &L2 = Inputs.get(R2.Reg);
1363 // If both sources are bottom, exit. Otherwise try to evaluate ANDri
1364 // with the non-bottom argument passed as the immediate. This is to
1365 // catch cases of ANDing with 0.
1366 if (L2.isBottom()) {
1367 if (L1.isBottom())
1368 return false;
1369 return evaluateANDrr(R2, R1, Inputs, Result);
1370 }
1371 LatticeCell LS2;
1372 if (!evaluate(R2, L2, LS2))
1373 return false;
1374 if (LS2.isBottom() || LS2.isProperty())
1375 return false;
1376
1377 APInt A;
1378 for (unsigned i = 0; i < LS2.size(); ++i) {
1379 LatticeCell RC;
1380 bool Eval = constToInt(LS2.Values[i], A) &&
1381 evaluateANDri(R1, A, Inputs, RC);
1382 if (!Eval)
1383 return false;
1384 Result.meet(RC);
1385 }
1386 return !Result.isBottom();
1387}
1388
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001389bool MachineConstEvaluator::evaluateANDri(const Register &R1,
1390 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1391 assert(Inputs.has(R1.Reg));
1392 if (A2 == -1)
1393 return getCell(R1, Inputs, Result);
1394 if (A2 == 0) {
1395 LatticeCell RC;
1396 RC.add(intToConst(A2));
1397 // Overwrite Result.
1398 Result = RC;
1399 return true;
1400 }
1401 LatticeCell LS1;
1402 if (!getCell(R1, Inputs, LS1))
1403 return false;
1404 if (LS1.isBottom() || LS1.isProperty())
1405 return false;
1406
1407 APInt A, ResA;
1408 for (unsigned i = 0; i < LS1.size(); ++i) {
1409 bool Eval = constToInt(LS1.Values[i], A) &&
1410 evaluateANDii(A, A2, ResA);
1411 if (!Eval)
1412 return false;
1413 const Constant *C = intToConst(ResA);
1414 Result.add(C);
1415 }
1416 return !Result.isBottom();
1417}
1418
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001419bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
1420 const APInt &A2, APInt &Result) {
1421 Result = A1 & A2;
1422 return true;
1423}
1424
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001425bool MachineConstEvaluator::evaluateORrr(const Register &R1,
1426 const Register &R2, const CellMap &Inputs, LatticeCell &Result) {
1427 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1428 const LatticeCell &L1 = Inputs.get(R2.Reg);
1429 const LatticeCell &L2 = Inputs.get(R2.Reg);
1430 // If both sources are bottom, exit. Otherwise try to evaluate ORri
1431 // with the non-bottom argument passed as the immediate. This is to
1432 // catch cases of ORing with -1.
1433 if (L2.isBottom()) {
1434 if (L1.isBottom())
1435 return false;
1436 return evaluateORrr(R2, R1, Inputs, Result);
1437 }
1438 LatticeCell LS2;
1439 if (!evaluate(R2, L2, LS2))
1440 return false;
1441 if (LS2.isBottom() || LS2.isProperty())
1442 return false;
1443
1444 APInt A;
1445 for (unsigned i = 0; i < LS2.size(); ++i) {
1446 LatticeCell RC;
1447 bool Eval = constToInt(LS2.Values[i], A) &&
1448 evaluateORri(R1, A, Inputs, RC);
1449 if (!Eval)
1450 return false;
1451 Result.meet(RC);
1452 }
1453 return !Result.isBottom();
1454}
1455
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001456bool MachineConstEvaluator::evaluateORri(const Register &R1,
1457 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1458 assert(Inputs.has(R1.Reg));
1459 if (A2 == 0)
1460 return getCell(R1, Inputs, Result);
1461 if (A2 == -1) {
1462 LatticeCell RC;
1463 RC.add(intToConst(A2));
1464 // Overwrite Result.
1465 Result = RC;
1466 return true;
1467 }
1468 LatticeCell LS1;
1469 if (!getCell(R1, Inputs, LS1))
1470 return false;
1471 if (LS1.isBottom() || LS1.isProperty())
1472 return false;
1473
1474 APInt A, ResA;
1475 for (unsigned i = 0; i < LS1.size(); ++i) {
1476 bool Eval = constToInt(LS1.Values[i], A) &&
1477 evaluateORii(A, A2, ResA);
1478 if (!Eval)
1479 return false;
1480 const Constant *C = intToConst(ResA);
1481 Result.add(C);
1482 }
1483 return !Result.isBottom();
1484}
1485
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001486bool MachineConstEvaluator::evaluateORii(const APInt &A1,
1487 const APInt &A2, APInt &Result) {
1488 Result = A1 | A2;
1489 return true;
1490}
1491
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001492bool MachineConstEvaluator::evaluateXORrr(const Register &R1,
1493 const Register &R2, const CellMap &Inputs, LatticeCell &Result) {
1494 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1495 LatticeCell LS1, LS2;
1496 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1497 return false;
1498 if (LS1.isProperty()) {
1499 if (LS1.properties() & ConstantProperties::Zero)
1500 return !(Result = LS2).isBottom();
1501 return false;
1502 }
1503 if (LS2.isProperty()) {
1504 if (LS2.properties() & ConstantProperties::Zero)
1505 return !(Result = LS1).isBottom();
1506 return false;
1507 }
1508
1509 APInt A;
1510 for (unsigned i = 0; i < LS2.size(); ++i) {
1511 LatticeCell RC;
1512 bool Eval = constToInt(LS2.Values[i], A) &&
1513 evaluateXORri(R1, A, Inputs, RC);
1514 if (!Eval)
1515 return false;
1516 Result.meet(RC);
1517 }
1518 return !Result.isBottom();
1519}
1520
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001521bool MachineConstEvaluator::evaluateXORri(const Register &R1,
1522 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1523 assert(Inputs.has(R1.Reg));
1524 LatticeCell LS1;
1525 if (!getCell(R1, Inputs, LS1))
1526 return false;
1527 if (LS1.isProperty()) {
1528 if (LS1.properties() & ConstantProperties::Zero) {
1529 const Constant *C = intToConst(A2);
1530 Result.add(C);
1531 return !Result.isBottom();
1532 }
1533 return false;
1534 }
1535
1536 APInt A, XA;
1537 for (unsigned i = 0; i < LS1.size(); ++i) {
1538 bool Eval = constToInt(LS1.Values[i], A) &&
1539 evaluateXORii(A, A2, XA);
1540 if (!Eval)
1541 return false;
1542 const Constant *C = intToConst(XA);
1543 Result.add(C);
1544 }
1545 return !Result.isBottom();
1546}
1547
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001548bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
1549 const APInt &A2, APInt &Result) {
1550 Result = A1 ^ A2;
1551 return true;
1552}
1553
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001554bool MachineConstEvaluator::evaluateZEXTr(const Register &R1, unsigned Width,
1555 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1556 assert(Inputs.has(R1.Reg));
1557 LatticeCell LS1;
1558 if (!getCell(R1, Inputs, LS1))
1559 return false;
1560 if (LS1.isProperty())
1561 return false;
1562
1563 APInt A, XA;
1564 for (unsigned i = 0; i < LS1.size(); ++i) {
1565 bool Eval = constToInt(LS1.Values[i], A) &&
1566 evaluateZEXTi(A, Width, Bits, XA);
1567 if (!Eval)
1568 return false;
1569 const Constant *C = intToConst(XA);
1570 Result.add(C);
1571 }
1572 return true;
1573}
1574
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001575bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
1576 unsigned Bits, APInt &Result) {
1577 unsigned BW = A1.getBitWidth();
Krzysztof Parzyszek6400dec2016-07-28 20:25:21 +00001578 (void)BW;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001579 assert(Width >= Bits && BW >= Bits);
1580 APInt Mask = APInt::getLowBitsSet(Width, Bits);
1581 Result = A1.zextOrTrunc(Width) & Mask;
1582 return true;
1583}
1584
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001585bool MachineConstEvaluator::evaluateSEXTr(const Register &R1, unsigned Width,
1586 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1587 assert(Inputs.has(R1.Reg));
1588 LatticeCell LS1;
1589 if (!getCell(R1, Inputs, LS1))
1590 return false;
1591 if (LS1.isBottom() || LS1.isProperty())
1592 return false;
1593
1594 APInt A, XA;
1595 for (unsigned i = 0; i < LS1.size(); ++i) {
1596 bool Eval = constToInt(LS1.Values[i], A) &&
1597 evaluateSEXTi(A, Width, Bits, XA);
1598 if (!Eval)
1599 return false;
1600 const Constant *C = intToConst(XA);
1601 Result.add(C);
1602 }
1603 return true;
1604}
1605
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001606bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
1607 unsigned Bits, APInt &Result) {
1608 unsigned BW = A1.getBitWidth();
1609 assert(Width >= Bits && BW >= Bits);
1610 // Special case to make things faster for smaller source widths.
1611 // Sign extension of 0 bits generates 0 as a result. This is consistent
1612 // with what the HW does.
1613 if (Bits == 0) {
1614 Result = APInt(Width, 0);
1615 return true;
1616 }
1617 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
1618 if (BW <= 64 && Bits != 0) {
1619 int64_t V = A1.getSExtValue();
1620 switch (Bits) {
1621 case 8:
1622 V = static_cast<int8_t>(V);
1623 break;
1624 case 16:
1625 V = static_cast<int16_t>(V);
1626 break;
1627 case 32:
1628 V = static_cast<int32_t>(V);
1629 break;
1630 default:
1631 // Shift left to lose all bits except lower "Bits" bits, then shift
1632 // the value back, replicating what was a sign bit after the first
1633 // shift.
1634 V = (V << (64-Bits)) >> (64-Bits);
1635 break;
1636 }
1637 // V is a 64-bit sign-extended value. Convert it to APInt of desired
1638 // width.
1639 Result = APInt(Width, V, true);
1640 return true;
1641 }
1642 // Slow case: the value doesn't fit in int64_t.
1643 if (Bits < BW)
1644 Result = A1.trunc(Bits).sext(Width);
1645 else // Bits == BW
1646 Result = A1.sext(Width);
1647 return true;
1648}
1649
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001650bool MachineConstEvaluator::evaluateCLBr(const Register &R1, bool Zeros,
1651 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1652 assert(Inputs.has(R1.Reg));
1653 LatticeCell LS1;
1654 if (!getCell(R1, Inputs, LS1))
1655 return false;
1656 if (LS1.isBottom() || LS1.isProperty())
1657 return false;
1658
1659 APInt A, CA;
1660 for (unsigned i = 0; i < LS1.size(); ++i) {
1661 bool Eval = constToInt(LS1.Values[i], A) &&
1662 evaluateCLBi(A, Zeros, Ones, CA);
1663 if (!Eval)
1664 return false;
1665 const Constant *C = intToConst(CA);
1666 Result.add(C);
1667 }
1668 return true;
1669}
1670
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001671bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
1672 bool Ones, APInt &Result) {
1673 unsigned BW = A1.getBitWidth();
1674 if (!Zeros && !Ones)
1675 return false;
1676 unsigned Count = 0;
1677 if (Zeros && (Count == 0))
1678 Count = A1.countLeadingZeros();
1679 if (Ones && (Count == 0))
1680 Count = A1.countLeadingOnes();
1681 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1682 return true;
1683}
1684
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001685bool MachineConstEvaluator::evaluateCTBr(const Register &R1, bool Zeros,
1686 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1687 assert(Inputs.has(R1.Reg));
1688 LatticeCell LS1;
1689 if (!getCell(R1, Inputs, LS1))
1690 return false;
1691 if (LS1.isBottom() || LS1.isProperty())
1692 return false;
1693
1694 APInt A, CA;
1695 for (unsigned i = 0; i < LS1.size(); ++i) {
1696 bool Eval = constToInt(LS1.Values[i], A) &&
1697 evaluateCTBi(A, Zeros, Ones, CA);
1698 if (!Eval)
1699 return false;
1700 const Constant *C = intToConst(CA);
1701 Result.add(C);
1702 }
1703 return true;
1704}
1705
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001706bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
1707 bool Ones, APInt &Result) {
1708 unsigned BW = A1.getBitWidth();
1709 if (!Zeros && !Ones)
1710 return false;
1711 unsigned Count = 0;
1712 if (Zeros && (Count == 0))
1713 Count = A1.countTrailingZeros();
1714 if (Ones && (Count == 0))
1715 Count = A1.countTrailingOnes();
1716 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1717 return true;
1718}
1719
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001720bool MachineConstEvaluator::evaluateEXTRACTr(const Register &R1,
1721 unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
1722 const CellMap &Inputs, LatticeCell &Result) {
1723 assert(Inputs.has(R1.Reg));
1724 assert(Bits+Offset <= Width);
1725 LatticeCell LS1;
1726 if (!getCell(R1, Inputs, LS1))
1727 return false;
1728 if (LS1.isBottom())
1729 return false;
1730 if (LS1.isProperty()) {
1731 uint32_t Ps = LS1.properties();
1732 if (Ps & ConstantProperties::Zero) {
1733 const Constant *C = intToConst(APInt(Width, 0, false));
1734 Result.add(C);
1735 return true;
1736 }
1737 return false;
1738 }
1739
1740 APInt A, CA;
1741 for (unsigned i = 0; i < LS1.size(); ++i) {
1742 bool Eval = constToInt(LS1.Values[i], A) &&
1743 evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
1744 if (!Eval)
1745 return false;
1746 const Constant *C = intToConst(CA);
1747 Result.add(C);
1748 }
1749 return true;
1750}
1751
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001752bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
1753 unsigned Offset, bool Signed, APInt &Result) {
1754 unsigned BW = A1.getBitWidth();
1755 assert(Bits+Offset <= BW);
1756 // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
1757 if (Bits == 0) {
1758 Result = APInt(BW, 0);
1759 return true;
1760 }
1761 if (BW <= 64) {
1762 int64_t V = A1.getZExtValue();
1763 V <<= (64-Bits-Offset);
1764 if (Signed)
1765 V >>= (64-Bits);
1766 else
1767 V = static_cast<uint64_t>(V) >> (64-Bits);
1768 Result = APInt(BW, V, Signed);
1769 return true;
1770 }
1771 if (Signed)
1772 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
1773 else
1774 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
1775 return true;
1776}
1777
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001778bool MachineConstEvaluator::evaluateSplatr(const Register &R1,
1779 unsigned Bits, unsigned Count, const CellMap &Inputs,
1780 LatticeCell &Result) {
1781 assert(Inputs.has(R1.Reg));
1782 LatticeCell LS1;
1783 if (!getCell(R1, Inputs, LS1))
1784 return false;
1785 if (LS1.isBottom() || LS1.isProperty())
1786 return false;
1787
1788 APInt A, SA;
1789 for (unsigned i = 0; i < LS1.size(); ++i) {
1790 bool Eval = constToInt(LS1.Values[i], A) &&
1791 evaluateSplati(A, Bits, Count, SA);
1792 if (!Eval)
1793 return false;
1794 const Constant *C = intToConst(SA);
1795 Result.add(C);
1796 }
1797 return true;
1798}
1799
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001800bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
1801 unsigned Count, APInt &Result) {
1802 assert(Count > 0);
1803 unsigned BW = A1.getBitWidth(), SW = Count*Bits;
1804 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
1805 if (Count > 1)
1806 LoBits = LoBits.zext(SW);
1807
1808 APInt Res(SW, 0, false);
1809 for (unsigned i = 0; i < Count; ++i) {
1810 Res <<= Bits;
1811 Res |= LoBits;
1812 }
1813 Result = Res;
1814 return true;
1815}
1816
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001817// ----------------------------------------------------------------------
1818// Hexagon-specific code.
1819
1820namespace llvm {
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001821
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001822 FunctionPass *createHexagonConstPropagationPass();
1823 void initializeHexagonConstPropagationPass(PassRegistry &Registry);
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001824
1825} // end namespace llvm
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001826
1827namespace {
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001828
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001829 class HexagonConstEvaluator : public MachineConstEvaluator {
1830 public:
1831 HexagonConstEvaluator(MachineFunction &Fn);
1832
1833 bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
1834 CellMap &Outputs) override;
1835 bool evaluate(const Register &R, const LatticeCell &SrcC,
1836 LatticeCell &Result) override;
1837 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
1838 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
1839 override;
1840 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;
1841
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001842 private:
1843 unsigned getRegBitWidth(unsigned Reg) const;
1844
1845 static uint32_t getCmp(unsigned Opc);
1846 static APInt getCmpImm(unsigned Opc, unsigned OpX,
1847 const MachineOperand &MO);
1848 void replaceWithNop(MachineInstr &MI);
1849
1850 bool evaluateHexRSEQ32(Register RL, Register RH, const CellMap &Inputs,
1851 LatticeCell &Result);
1852 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
1853 CellMap &Outputs);
1854 // This is suitable to be called for compare-and-jump instructions.
1855 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
1856 const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
1857 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
1858 CellMap &Outputs);
1859 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
1860 CellMap &Outputs);
1861 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
1862 CellMap &Outputs);
1863 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
1864 CellMap &Outputs);
1865 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
1866 CellMap &Outputs);
1867
1868 void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
1869 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
1870 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
1871 bool &AllDefs);
1872 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);
1873
1874 MachineRegisterInfo *MRI;
1875 const HexagonInstrInfo &HII;
1876 const HexagonRegisterInfo &HRI;
1877 };
1878
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001879 class HexagonConstPropagation : public MachineFunctionPass {
1880 public:
1881 static char ID;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001882
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001883 HexagonConstPropagation() : MachineFunctionPass(ID) {
1884 PassRegistry &Registry = *PassRegistry::getPassRegistry();
1885 initializeHexagonConstPropagationPass(Registry);
1886 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001887
Mehdi Amini117296c2016-10-01 02:56:57 +00001888 StringRef getPassName() const override {
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001889 return "Hexagon Constant Propagation";
1890 }
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001891
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001892 bool runOnMachineFunction(MachineFunction &MF) override {
Matthias Braunf1caa282017-12-15 22:22:58 +00001893 const Function &F = MF.getFunction();
1894 if (skipFunction(F))
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001895 return false;
1896
1897 HexagonConstEvaluator HCE(MF);
1898 return MachineConstPropagator(HCE).run(MF);
1899 }
1900 };
1901
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00001902} // end anonymous namespace
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001903
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001904char HexagonConstPropagation::ID = 0;
1905
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001906INITIALIZE_PASS(HexagonConstPropagation, "hcp", "Hexagon Constant Propagation",
1907 false, false)
1908
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001909HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
1910 : MachineConstEvaluator(Fn),
1911 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
1912 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
1913 MRI = &Fn.getRegInfo();
1914}
1915
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001916bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
1917 const CellMap &Inputs, CellMap &Outputs) {
1918 if (MI.isCall())
1919 return false;
1920 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
1921 return false;
1922 const MachineOperand &MD = MI.getOperand(0);
1923 if (!MD.isDef())
1924 return false;
1925
1926 unsigned Opc = MI.getOpcode();
1927 Register DefR(MD);
1928 assert(!DefR.SubReg);
1929 if (!TargetRegisterInfo::isVirtualRegister(DefR.Reg))
1930 return false;
1931
1932 if (MI.isCopy()) {
1933 LatticeCell RC;
1934 Register SrcR(MI.getOperand(1));
1935 bool Eval = evaluateCOPY(SrcR, Inputs, RC);
1936 if (!Eval)
1937 return false;
1938 Outputs.update(DefR.Reg, RC);
1939 return true;
1940 }
1941 if (MI.isRegSequence()) {
1942 unsigned Sub1 = MI.getOperand(2).getImm();
1943 unsigned Sub2 = MI.getOperand(4).getImm();
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +00001944 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00001945 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
1946 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
1947 if (Sub1 != SubLo && Sub1 != SubHi)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001948 return false;
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00001949 if (Sub2 != SubLo && Sub2 != SubHi)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001950 return false;
1951 assert(Sub1 != Sub2);
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00001952 bool LoIs1 = (Sub1 == SubLo);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001953 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
1954 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
1955 LatticeCell RC;
1956 Register SrcRL(OpLo), SrcRH(OpHi);
1957 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
1958 if (!Eval)
1959 return false;
1960 Outputs.update(DefR.Reg, RC);
1961 return true;
1962 }
1963 if (MI.isCompare()) {
1964 bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
1965 return Eval;
1966 }
1967
1968 switch (Opc) {
1969 default:
1970 return false;
1971 case Hexagon::A2_tfrsi:
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001972 case Hexagon::A2_tfrpi:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +00001973 case Hexagon::CONST32:
1974 case Hexagon::CONST64:
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001975 {
1976 const MachineOperand &VO = MI.getOperand(1);
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +00001977 // The operand of CONST32 can be a blockaddress, e.g.
Francis Visoiu Mistriha8a83d12017-12-07 10:40:31 +00001978 // %0 = CONST32 <blockaddress(@eat, %l)>
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001979 // Do this check for all instructions for safety.
1980 if (!VO.isImm())
1981 return false;
1982 int64_t V = MI.getOperand(1).getImm();
1983 unsigned W = getRegBitWidth(DefR.Reg);
1984 if (W != 32 && W != 64)
1985 return false;
1986 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
1987 : Type::getInt64Ty(CX);
1988 const ConstantInt *CI = ConstantInt::get(Ty, V, true);
1989 LatticeCell RC = Outputs.get(DefR.Reg);
1990 RC.add(CI);
1991 Outputs.update(DefR.Reg, RC);
1992 break;
1993 }
1994
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +00001995 case Hexagon::PS_true:
1996 case Hexagon::PS_false:
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00001997 {
1998 LatticeCell RC = Outputs.get(DefR.Reg);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +00001999 bool NonZero = (Opc == Hexagon::PS_true);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002000 uint32_t P = NonZero ? ConstantProperties::NonZero
2001 : ConstantProperties::Zero;
2002 RC.add(P);
2003 Outputs.update(DefR.Reg, RC);
2004 break;
2005 }
2006
2007 case Hexagon::A2_and:
2008 case Hexagon::A2_andir:
2009 case Hexagon::A2_andp:
2010 case Hexagon::A2_or:
2011 case Hexagon::A2_orir:
2012 case Hexagon::A2_orp:
2013 case Hexagon::A2_xor:
2014 case Hexagon::A2_xorp:
2015 {
2016 bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
2017 if (!Eval)
2018 return false;
2019 break;
2020 }
2021
2022 case Hexagon::A2_combineii: // combine(#s8Ext, #s8)
2023 case Hexagon::A4_combineii: // combine(#s8, #u6Ext)
2024 {
Benjamin Kramerafff73c2016-07-30 13:25:37 +00002025 uint64_t Hi = MI.getOperand(1).getImm();
2026 uint64_t Lo = MI.getOperand(2).getImm();
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002027 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
2028 IntegerType *Ty = Type::getInt64Ty(CX);
2029 const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
2030 LatticeCell RC = Outputs.get(DefR.Reg);
2031 RC.add(CI);
2032 Outputs.update(DefR.Reg, RC);
2033 break;
2034 }
2035
2036 case Hexagon::S2_setbit_i:
2037 {
2038 int64_t B = MI.getOperand(2).getImm();
2039 assert(B >=0 && B < 32);
Simon Pilgrim0aaf6ba2016-07-29 10:03:39 +00002040 APInt A(32, (1ull << B), false);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002041 Register R(MI.getOperand(1));
2042 LatticeCell RC = Outputs.get(DefR.Reg);
2043 bool Eval = evaluateORri(R, A, Inputs, RC);
2044 if (!Eval)
2045 return false;
2046 Outputs.update(DefR.Reg, RC);
2047 break;
2048 }
2049
2050 case Hexagon::C2_mux:
2051 case Hexagon::C2_muxir:
2052 case Hexagon::C2_muxri:
2053 case Hexagon::C2_muxii:
2054 {
2055 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
2056 if (!Eval)
2057 return false;
2058 break;
2059 }
2060
2061 case Hexagon::A2_sxtb:
2062 case Hexagon::A2_sxth:
2063 case Hexagon::A2_sxtw:
2064 case Hexagon::A2_zxtb:
2065 case Hexagon::A2_zxth:
2066 {
2067 bool Eval = evaluateHexExt(MI, Inputs, Outputs);
2068 if (!Eval)
2069 return false;
2070 break;
2071 }
2072
2073 case Hexagon::S2_ct0:
2074 case Hexagon::S2_ct0p:
2075 case Hexagon::S2_ct1:
2076 case Hexagon::S2_ct1p:
2077 {
2078 using namespace Hexagon;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00002079
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002080 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
2081 Register R1(MI.getOperand(1));
2082 assert(Inputs.has(R1.Reg));
2083 LatticeCell T;
2084 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
2085 if (!Eval)
2086 return false;
2087 // All of these instructions return a 32-bit value. The evaluate
2088 // will generate the same type as the operand, so truncate the
2089 // result if necessary.
2090 APInt C;
2091 LatticeCell RC = Outputs.get(DefR.Reg);
2092 for (unsigned i = 0; i < T.size(); ++i) {
2093 const Constant *CI = T.Values[i];
2094 if (constToInt(CI, C) && C.getBitWidth() > 32)
2095 CI = intToConst(C.trunc(32));
2096 RC.add(CI);
2097 }
2098 Outputs.update(DefR.Reg, RC);
2099 break;
2100 }
2101
2102 case Hexagon::S2_cl0:
2103 case Hexagon::S2_cl0p:
2104 case Hexagon::S2_cl1:
2105 case Hexagon::S2_cl1p:
2106 case Hexagon::S2_clb:
2107 case Hexagon::S2_clbp:
2108 {
2109 using namespace Hexagon;
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00002110
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002111 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
2112 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p);
2113 Register R1(MI.getOperand(1));
2114 assert(Inputs.has(R1.Reg));
2115 LatticeCell T;
2116 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
2117 if (!Eval)
2118 return false;
2119 // All of these instructions return a 32-bit value. The evaluate
2120 // will generate the same type as the operand, so truncate the
2121 // result if necessary.
2122 APInt C;
2123 LatticeCell RC = Outputs.get(DefR.Reg);
2124 for (unsigned i = 0; i < T.size(); ++i) {
2125 const Constant *CI = T.Values[i];
2126 if (constToInt(CI, C) && C.getBitWidth() > 32)
2127 CI = intToConst(C.trunc(32));
2128 RC.add(CI);
2129 }
2130 Outputs.update(DefR.Reg, RC);
2131 break;
2132 }
2133
2134 case Hexagon::S4_extract:
2135 case Hexagon::S4_extractp:
2136 case Hexagon::S2_extractu:
2137 case Hexagon::S2_extractup:
2138 {
2139 bool Signed = (Opc == Hexagon::S4_extract) ||
2140 (Opc == Hexagon::S4_extractp);
2141 Register R1(MI.getOperand(1));
2142 unsigned BW = getRegBitWidth(R1.Reg);
2143 unsigned Bits = MI.getOperand(2).getImm();
2144 unsigned Offset = MI.getOperand(3).getImm();
2145 LatticeCell RC = Outputs.get(DefR.Reg);
2146 if (Offset >= BW) {
2147 APInt Zero(BW, 0, false);
2148 RC.add(intToConst(Zero));
2149 break;
2150 }
2151 if (Offset+Bits > BW) {
2152 // If the requested bitfield extends beyond the most significant bit,
2153 // the extra bits are treated as 0s. To emulate this behavior, reduce
2154 // the number of requested bits, and make the extract unsigned.
2155 Bits = BW-Offset;
2156 Signed = false;
2157 }
2158 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
2159 if (!Eval)
2160 return false;
2161 Outputs.update(DefR.Reg, RC);
2162 break;
2163 }
2164
2165 case Hexagon::S2_vsplatrb:
2166 case Hexagon::S2_vsplatrh:
2167 // vabsh, vabsh:sat
2168 // vabsw, vabsw:sat
2169 // vconj:sat
2170 // vrndwh, vrndwh:sat
2171 // vsathb, vsathub, vsatwuh
2172 // vsxtbh, vsxthw
2173 // vtrunehb, vtrunohb
2174 // vzxtbh, vzxthw
2175 {
2176 bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
2177 if (!Eval)
2178 return false;
2179 break;
2180 }
2181
2182 // TODO:
2183 // A2_vaddh
2184 // A2_vaddhs
2185 // A2_vaddw
2186 // A2_vaddws
2187 }
2188
2189 return true;
2190}
2191
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002192bool HexagonConstEvaluator::evaluate(const Register &R,
2193 const LatticeCell &Input, LatticeCell &Result) {
2194 if (!R.SubReg) {
2195 Result = Input;
2196 return true;
2197 }
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002198 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00002199 if (RC != &Hexagon::DoubleRegsRegClass)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002200 return false;
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00002201 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002202 return false;
2203
2204 assert(!Input.isTop());
2205 if (Input.isBottom())
2206 return false;
2207
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00002208 using P = ConstantProperties;
2209
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002210 if (Input.isProperty()) {
2211 uint32_t Ps = Input.properties();
2212 if (Ps & (P::Zero|P::NaN)) {
2213 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
2214 Result.add(Ns);
2215 return true;
2216 }
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00002217 if (R.SubReg == Hexagon::isub_hi) {
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002218 uint32_t Ns = (Ps & P::SignProperties);
2219 Result.add(Ns);
2220 return true;
2221 }
2222 return false;
2223 }
2224
2225 // The Input cell contains some known values. Pick the word corresponding
2226 // to the subregister.
2227 APInt A;
2228 for (unsigned i = 0; i < Input.size(); ++i) {
2229 const Constant *C = Input.Values[i];
2230 if (!constToInt(C, A))
2231 return false;
2232 if (!A.isIntN(64))
2233 return false;
2234 uint64_t U = A.getZExtValue();
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +00002235 if (R.SubReg == Hexagon::isub_hi)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002236 U >>= 32;
2237 U &= 0xFFFFFFFFULL;
2238 uint32_t U32 = Lo_32(U);
2239 int32_t V32;
2240 memcpy(&V32, &U32, sizeof V32);
2241 IntegerType *Ty = Type::getInt32Ty(CX);
2242 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
2243 Result.add(C32);
2244 }
2245 return true;
2246}
2247
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002248bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
2249 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
2250 bool &FallsThru) {
2251 // We need to evaluate one branch at a time. TII::analyzeBranch checks
2252 // all the branches in a basic block at once, so we cannot use it.
2253 unsigned Opc = BrI.getOpcode();
2254 bool SimpleBranch = false;
2255 bool Negated = false;
2256 switch (Opc) {
2257 case Hexagon::J2_jumpf:
2258 case Hexagon::J2_jumpfnew:
2259 case Hexagon::J2_jumpfnewpt:
2260 Negated = true;
Simon Pilgrimadb80fb2017-07-07 10:04:12 +00002261 LLVM_FALLTHROUGH;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002262 case Hexagon::J2_jumpt:
2263 case Hexagon::J2_jumptnew:
2264 case Hexagon::J2_jumptnewpt:
2265 // Simple branch: if([!]Pn) jump ...
2266 // i.e. Op0 = predicate, Op1 = branch target.
2267 SimpleBranch = true;
2268 break;
2269 case Hexagon::J2_jump:
2270 Targets.insert(BrI.getOperand(0).getMBB());
2271 FallsThru = false;
2272 return true;
2273 default:
2274Undetermined:
2275 // If the branch is of unknown type, assume that all successors are
2276 // executable.
2277 FallsThru = !BrI.isUnconditionalBranch();
2278 return false;
2279 }
2280
2281 if (SimpleBranch) {
2282 const MachineOperand &MD = BrI.getOperand(0);
2283 Register PR(MD);
2284 // If the condition operand has a subregister, this is not something
2285 // we currently recognize.
2286 if (PR.SubReg)
2287 goto Undetermined;
2288 assert(Inputs.has(PR.Reg));
2289 const LatticeCell &PredC = Inputs.get(PR.Reg);
2290 if (PredC.isBottom())
2291 goto Undetermined;
2292
2293 uint32_t Props = PredC.properties();
Mandeep Singh Grang5e1697e2017-06-06 05:08:36 +00002294 bool CTrue = false, CFalse = false;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002295 if (Props & ConstantProperties::Zero)
2296 CFalse = true;
2297 else if (Props & ConstantProperties::NonZero)
2298 CTrue = true;
2299 // If the condition is not known to be either, bail out.
2300 if (!CTrue && !CFalse)
2301 goto Undetermined;
2302
2303 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();
2304
2305 FallsThru = false;
2306 if ((!Negated && CTrue) || (Negated && CFalse))
2307 Targets.insert(BranchTarget);
2308 else if ((!Negated && CFalse) || (Negated && CTrue))
2309 FallsThru = true;
2310 else
2311 goto Undetermined;
2312 }
2313
2314 return true;
2315}
2316
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002317bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
2318 if (MI.isBranch())
2319 return rewriteHexBranch(MI, Inputs);
2320
2321 unsigned Opc = MI.getOpcode();
2322 switch (Opc) {
2323 default:
2324 break;
2325 case Hexagon::A2_tfrsi:
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002326 case Hexagon::A2_tfrpi:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +00002327 case Hexagon::CONST32:
2328 case Hexagon::CONST64:
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +00002329 case Hexagon::PS_true:
2330 case Hexagon::PS_false:
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002331 return false;
2332 }
2333
2334 unsigned NumOp = MI.getNumOperands();
2335 if (NumOp == 0)
2336 return false;
2337
2338 bool AllDefs, Changed;
2339 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
2340 // If not all defs have been rewritten (i.e. the instruction defines
2341 // a register that is not compile-time constant), then try to rewrite
2342 // register operands that are known to be constant with immediates.
2343 if (!AllDefs)
2344 Changed |= rewriteHexConstUses(MI, Inputs);
2345
2346 return Changed;
2347}
2348
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002349unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
2350 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2351 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
2352 return 32;
2353 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
2354 return 64;
2355 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
2356 return 8;
2357 llvm_unreachable("Invalid register");
2358 return 0;
2359}
2360
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002361uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
2362 switch (Opc) {
2363 case Hexagon::C2_cmpeq:
2364 case Hexagon::C2_cmpeqp:
2365 case Hexagon::A4_cmpbeq:
2366 case Hexagon::A4_cmpheq:
2367 case Hexagon::A4_cmpbeqi:
2368 case Hexagon::A4_cmpheqi:
2369 case Hexagon::C2_cmpeqi:
2370 case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
2371 case Hexagon::J4_cmpeqn1_t_jumpnv_t:
2372 case Hexagon::J4_cmpeqi_t_jumpnv_nt:
2373 case Hexagon::J4_cmpeqi_t_jumpnv_t:
2374 case Hexagon::J4_cmpeq_t_jumpnv_nt:
2375 case Hexagon::J4_cmpeq_t_jumpnv_t:
2376 return Comparison::EQ;
2377
2378 case Hexagon::C4_cmpneq:
2379 case Hexagon::C4_cmpneqi:
2380 case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
2381 case Hexagon::J4_cmpeqn1_f_jumpnv_t:
2382 case Hexagon::J4_cmpeqi_f_jumpnv_nt:
2383 case Hexagon::J4_cmpeqi_f_jumpnv_t:
2384 case Hexagon::J4_cmpeq_f_jumpnv_nt:
2385 case Hexagon::J4_cmpeq_f_jumpnv_t:
2386 return Comparison::NE;
2387
2388 case Hexagon::C2_cmpgt:
2389 case Hexagon::C2_cmpgtp:
2390 case Hexagon::A4_cmpbgt:
2391 case Hexagon::A4_cmphgt:
2392 case Hexagon::A4_cmpbgti:
2393 case Hexagon::A4_cmphgti:
2394 case Hexagon::C2_cmpgti:
2395 case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
2396 case Hexagon::J4_cmpgtn1_t_jumpnv_t:
2397 case Hexagon::J4_cmpgti_t_jumpnv_nt:
2398 case Hexagon::J4_cmpgti_t_jumpnv_t:
2399 case Hexagon::J4_cmpgt_t_jumpnv_nt:
2400 case Hexagon::J4_cmpgt_t_jumpnv_t:
2401 return Comparison::GTs;
2402
2403 case Hexagon::C4_cmplte:
2404 case Hexagon::C4_cmpltei:
2405 case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
2406 case Hexagon::J4_cmpgtn1_f_jumpnv_t:
2407 case Hexagon::J4_cmpgti_f_jumpnv_nt:
2408 case Hexagon::J4_cmpgti_f_jumpnv_t:
2409 case Hexagon::J4_cmpgt_f_jumpnv_nt:
2410 case Hexagon::J4_cmpgt_f_jumpnv_t:
2411 return Comparison::LEs;
2412
2413 case Hexagon::C2_cmpgtu:
2414 case Hexagon::C2_cmpgtup:
2415 case Hexagon::A4_cmpbgtu:
2416 case Hexagon::A4_cmpbgtui:
2417 case Hexagon::A4_cmphgtu:
2418 case Hexagon::A4_cmphgtui:
2419 case Hexagon::C2_cmpgtui:
2420 case Hexagon::J4_cmpgtui_t_jumpnv_nt:
2421 case Hexagon::J4_cmpgtui_t_jumpnv_t:
2422 case Hexagon::J4_cmpgtu_t_jumpnv_nt:
2423 case Hexagon::J4_cmpgtu_t_jumpnv_t:
2424 return Comparison::GTu;
2425
2426 case Hexagon::J4_cmpltu_f_jumpnv_nt:
2427 case Hexagon::J4_cmpltu_f_jumpnv_t:
2428 return Comparison::GEu;
2429
2430 case Hexagon::J4_cmpltu_t_jumpnv_nt:
2431 case Hexagon::J4_cmpltu_t_jumpnv_t:
2432 return Comparison::LTu;
2433
2434 case Hexagon::J4_cmplt_f_jumpnv_nt:
2435 case Hexagon::J4_cmplt_f_jumpnv_t:
2436 return Comparison::GEs;
2437
2438 case Hexagon::C4_cmplteu:
2439 case Hexagon::C4_cmplteui:
2440 case Hexagon::J4_cmpgtui_f_jumpnv_nt:
2441 case Hexagon::J4_cmpgtui_f_jumpnv_t:
2442 case Hexagon::J4_cmpgtu_f_jumpnv_nt:
2443 case Hexagon::J4_cmpgtu_f_jumpnv_t:
2444 return Comparison::LEu;
2445
2446 case Hexagon::J4_cmplt_t_jumpnv_nt:
2447 case Hexagon::J4_cmplt_t_jumpnv_t:
2448 return Comparison::LTs;
2449
2450 default:
2451 break;
2452 }
2453 return Comparison::Unk;
2454}
2455
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002456APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
2457 const MachineOperand &MO) {
2458 bool Signed = false;
2459 switch (Opc) {
2460 case Hexagon::A4_cmpbgtui: // u7
2461 case Hexagon::A4_cmphgtui: // u7
2462 break;
2463 case Hexagon::A4_cmpheqi: // s8
2464 case Hexagon::C4_cmpneqi: // s8
2465 Signed = true;
2466 case Hexagon::A4_cmpbeqi: // u8
2467 break;
2468 case Hexagon::C2_cmpgtui: // u9
2469 case Hexagon::C4_cmplteui: // u9
2470 break;
2471 case Hexagon::C2_cmpeqi: // s10
2472 case Hexagon::C2_cmpgti: // s10
2473 case Hexagon::C4_cmpltei: // s10
2474 Signed = true;
2475 break;
2476 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5
2477 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5
2478 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5
2479 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5
2480 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5
2481 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5
2482 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5
2483 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5
2484 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5
2485 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5
2486 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5
2487 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5
2488 break;
2489 default:
2490 llvm_unreachable("Unhandled instruction");
2491 break;
2492 }
2493
2494 uint64_t Val = MO.getImm();
2495 return APInt(32, Val, Signed);
2496}
2497
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002498void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
2499 MI.setDesc(HII.get(Hexagon::A2_nop));
2500 while (MI.getNumOperands() > 0)
2501 MI.RemoveOperand(0);
2502}
2503
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002504bool HexagonConstEvaluator::evaluateHexRSEQ32(Register RL, Register RH,
2505 const CellMap &Inputs, LatticeCell &Result) {
2506 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
2507 LatticeCell LSL, LSH;
2508 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
2509 return false;
2510 if (LSL.isProperty() || LSH.isProperty())
2511 return false;
2512
2513 unsigned LN = LSL.size(), HN = LSH.size();
2514 SmallVector<APInt,4> LoVs(LN), HiVs(HN);
2515 for (unsigned i = 0; i < LN; ++i) {
2516 bool Eval = constToInt(LSL.Values[i], LoVs[i]);
2517 if (!Eval)
2518 return false;
2519 assert(LoVs[i].getBitWidth() == 32);
2520 }
2521 for (unsigned i = 0; i < HN; ++i) {
2522 bool Eval = constToInt(LSH.Values[i], HiVs[i]);
2523 if (!Eval)
2524 return false;
2525 assert(HiVs[i].getBitWidth() == 32);
2526 }
2527
2528 for (unsigned i = 0; i < HiVs.size(); ++i) {
2529 APInt HV = HiVs[i].zextOrSelf(64) << 32;
2530 for (unsigned j = 0; j < LoVs.size(); ++j) {
2531 APInt LV = LoVs[j].zextOrSelf(64);
2532 const Constant *C = intToConst(HV | LV);
2533 Result.add(C);
2534 if (Result.isBottom())
2535 return false;
2536 }
2537 }
2538 return !Result.isBottom();
2539}
2540
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002541bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
2542 const CellMap &Inputs, CellMap &Outputs) {
2543 unsigned Opc = MI.getOpcode();
2544 bool Classic = false;
2545 switch (Opc) {
2546 case Hexagon::C2_cmpeq:
2547 case Hexagon::C2_cmpeqp:
2548 case Hexagon::C2_cmpgt:
2549 case Hexagon::C2_cmpgtp:
2550 case Hexagon::C2_cmpgtu:
2551 case Hexagon::C2_cmpgtup:
2552 case Hexagon::C2_cmpeqi:
2553 case Hexagon::C2_cmpgti:
2554 case Hexagon::C2_cmpgtui:
2555 // Classic compare: Dst0 = CMP Src1, Src2
2556 Classic = true;
2557 break;
2558 default:
2559 // Not handling other compare instructions now.
2560 return false;
2561 }
2562
2563 if (Classic) {
2564 const MachineOperand &Src1 = MI.getOperand(1);
2565 const MachineOperand &Src2 = MI.getOperand(2);
2566
2567 bool Result;
2568 unsigned Opc = MI.getOpcode();
2569 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
2570 if (Computed) {
2571 // Only create a zero/non-zero cell. At this time there isn't really
2572 // much need for specific values.
2573 Register DefR(MI.getOperand(0));
2574 LatticeCell L = Outputs.get(DefR.Reg);
2575 uint32_t P = Result ? ConstantProperties::NonZero
2576 : ConstantProperties::Zero;
2577 L.add(P);
2578 Outputs.update(DefR.Reg, L);
2579 return true;
2580 }
2581 }
2582
2583 return false;
2584}
2585
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002586bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
2587 const MachineOperand &Src1, const MachineOperand &Src2,
2588 const CellMap &Inputs, bool &Result) {
2589 uint32_t Cmp = getCmp(Opc);
2590 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
2591 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
2592 if (Reg1) {
2593 Register R1(Src1);
2594 if (Reg2) {
2595 Register R2(Src2);
2596 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
2597 } else if (Imm2) {
2598 APInt A2 = getCmpImm(Opc, 2, Src2);
2599 return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
2600 }
2601 } else if (Imm1) {
2602 APInt A1 = getCmpImm(Opc, 1, Src1);
2603 if (Reg2) {
2604 Register R2(Src2);
2605 uint32_t NegCmp = Comparison::negate(Cmp);
2606 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
2607 } else if (Imm2) {
2608 APInt A2 = getCmpImm(Opc, 2, Src2);
2609 return evaluateCMPii(Cmp, A1, A2, Result);
2610 }
2611 }
2612 // Unknown kind of comparison.
2613 return false;
2614}
2615
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002616bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
2617 const CellMap &Inputs, CellMap &Outputs) {
2618 unsigned Opc = MI.getOpcode();
2619 if (MI.getNumOperands() != 3)
2620 return false;
2621 const MachineOperand &Src1 = MI.getOperand(1);
2622 const MachineOperand &Src2 = MI.getOperand(2);
2623 Register R1(Src1);
2624 bool Eval = false;
2625 LatticeCell RC;
2626 switch (Opc) {
2627 default:
2628 return false;
2629 case Hexagon::A2_and:
2630 case Hexagon::A2_andp:
2631 Eval = evaluateANDrr(R1, Register(Src2), Inputs, RC);
2632 break;
2633 case Hexagon::A2_andir: {
2634 APInt A(32, Src2.getImm(), true);
2635 Eval = evaluateANDri(R1, A, Inputs, RC);
2636 break;
2637 }
2638 case Hexagon::A2_or:
2639 case Hexagon::A2_orp:
2640 Eval = evaluateORrr(R1, Register(Src2), Inputs, RC);
2641 break;
2642 case Hexagon::A2_orir: {
2643 APInt A(32, Src2.getImm(), true);
2644 Eval = evaluateORri(R1, A, Inputs, RC);
2645 break;
2646 }
2647 case Hexagon::A2_xor:
2648 case Hexagon::A2_xorp:
2649 Eval = evaluateXORrr(R1, Register(Src2), Inputs, RC);
2650 break;
2651 }
2652 if (Eval) {
2653 Register DefR(MI.getOperand(0));
2654 Outputs.update(DefR.Reg, RC);
2655 }
2656 return Eval;
2657}
2658
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002659bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
2660 const CellMap &Inputs, CellMap &Outputs) {
2661 // Dst0 = Cond1 ? Src2 : Src3
2662 Register CR(MI.getOperand(1));
2663 assert(Inputs.has(CR.Reg));
2664 LatticeCell LS;
2665 if (!getCell(CR, Inputs, LS))
2666 return false;
2667 uint32_t Ps = LS.properties();
2668 unsigned TakeOp;
2669 if (Ps & ConstantProperties::Zero)
2670 TakeOp = 3;
2671 else if (Ps & ConstantProperties::NonZero)
2672 TakeOp = 2;
2673 else
2674 return false;
2675
2676 const MachineOperand &ValOp = MI.getOperand(TakeOp);
2677 Register DefR(MI.getOperand(0));
2678 LatticeCell RC = Outputs.get(DefR.Reg);
2679
2680 if (ValOp.isImm()) {
2681 int64_t V = ValOp.getImm();
2682 unsigned W = getRegBitWidth(DefR.Reg);
2683 APInt A(W, V, true);
2684 const Constant *C = intToConst(A);
2685 RC.add(C);
2686 Outputs.update(DefR.Reg, RC);
2687 return true;
2688 }
2689 if (ValOp.isReg()) {
2690 Register R(ValOp);
2691 const LatticeCell &LR = Inputs.get(R.Reg);
2692 LatticeCell LSR;
2693 if (!evaluate(R, LR, LSR))
2694 return false;
2695 RC.meet(LSR);
2696 Outputs.update(DefR.Reg, RC);
2697 return true;
2698 }
2699 return false;
2700}
2701
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002702bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
2703 const CellMap &Inputs, CellMap &Outputs) {
2704 // Dst0 = ext R1
2705 Register R1(MI.getOperand(1));
2706 assert(Inputs.has(R1.Reg));
2707
2708 unsigned Opc = MI.getOpcode();
2709 unsigned Bits;
2710 switch (Opc) {
2711 case Hexagon::A2_sxtb:
2712 case Hexagon::A2_zxtb:
2713 Bits = 8;
2714 break;
2715 case Hexagon::A2_sxth:
2716 case Hexagon::A2_zxth:
2717 Bits = 16;
2718 break;
2719 case Hexagon::A2_sxtw:
2720 Bits = 32;
2721 break;
2722 }
2723
2724 bool Signed = false;
2725 switch (Opc) {
2726 case Hexagon::A2_sxtb:
2727 case Hexagon::A2_sxth:
2728 case Hexagon::A2_sxtw:
2729 Signed = true;
2730 break;
2731 }
2732
2733 Register DefR(MI.getOperand(0));
2734 unsigned BW = getRegBitWidth(DefR.Reg);
2735 LatticeCell RC = Outputs.get(DefR.Reg);
2736 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
2737 : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
2738 if (!Eval)
2739 return false;
2740 Outputs.update(DefR.Reg, RC);
2741 return true;
2742}
2743
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002744bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
2745 const CellMap &Inputs, CellMap &Outputs) {
2746 // DefR = op R1
2747 Register DefR(MI.getOperand(0));
2748 Register R1(MI.getOperand(1));
2749 assert(Inputs.has(R1.Reg));
2750 LatticeCell RC = Outputs.get(DefR.Reg);
2751 bool Eval;
2752
2753 unsigned Opc = MI.getOpcode();
2754 switch (Opc) {
2755 case Hexagon::S2_vsplatrb:
2756 // Rd = 4 times Rs:0..7
2757 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
2758 break;
2759 case Hexagon::S2_vsplatrh:
2760 // Rdd = 4 times Rs:0..15
2761 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
2762 break;
2763 default:
2764 return false;
2765 }
2766
2767 if (!Eval)
2768 return false;
2769 Outputs.update(DefR.Reg, RC);
2770 return true;
2771}
2772
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002773bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
2774 const CellMap &Inputs, bool &AllDefs) {
2775 AllDefs = false;
2776
2777 // Some diagnostics.
2778 // DEBUG({...}) gets confused with all this code as an argument.
2779#ifndef NDEBUG
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00002780 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002781 if (Debugging) {
2782 bool Const = true, HasUse = false;
2783 for (const MachineOperand &MO : MI.operands()) {
2784 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2785 continue;
2786 Register R(MO);
2787 if (!TargetRegisterInfo::isVirtualRegister(R.Reg))
2788 continue;
2789 HasUse = true;
2790 // PHIs can legitimately have "top" cells after propagation.
2791 if (!MI.isPHI() && !Inputs.has(R.Reg)) {
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +00002792 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002793 << " in MI: " << MI;
2794 continue;
2795 }
2796 const LatticeCell &L = Inputs.get(R.Reg);
2797 Const &= L.isSingle();
2798 if (!Const)
2799 break;
2800 }
2801 if (HasUse && Const) {
2802 if (!MI.isCopy()) {
2803 dbgs() << "CONST: " << MI;
2804 for (const MachineOperand &MO : MI.operands()) {
2805 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2806 continue;
2807 unsigned R = MO.getReg();
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +00002808 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002809 }
2810 }
2811 }
2812 }
2813#endif
2814
2815 // Avoid generating TFRIs for register transfers---this will keep the
2816 // coalescing opportunities.
2817 if (MI.isCopy())
2818 return false;
2819
2820 // Collect all virtual register-def operands.
2821 SmallVector<unsigned,2> DefRegs;
2822 for (const MachineOperand &MO : MI.operands()) {
2823 if (!MO.isReg() || !MO.isDef())
2824 continue;
2825 unsigned R = MO.getReg();
2826 if (!TargetRegisterInfo::isVirtualRegister(R))
2827 continue;
2828 assert(!MO.getSubReg());
2829 assert(Inputs.has(R));
2830 DefRegs.push_back(R);
2831 }
2832
2833 MachineBasicBlock &B = *MI.getParent();
2834 const DebugLoc &DL = MI.getDebugLoc();
2835 unsigned ChangedNum = 0;
2836#ifndef NDEBUG
2837 SmallVector<const MachineInstr*,4> NewInstrs;
2838#endif
2839
2840 // For each defined register, if it is a constant, create an instruction
2841 // NewR = const
2842 // and replace all uses of the defined register with NewR.
2843 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
2844 unsigned R = DefRegs[i];
2845 const LatticeCell &L = Inputs.get(R);
2846 if (L.isBottom())
2847 continue;
2848 const TargetRegisterClass *RC = MRI->getRegClass(R);
2849 MachineBasicBlock::iterator At = MI.getIterator();
2850
2851 if (!L.isSingle()) {
2852 // If this a zero/non-zero cell, we can fold a definition
2853 // of a predicate register.
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00002854 using P = ConstantProperties;
2855
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002856 uint64_t Ps = L.properties();
2857 if (!(Ps & (P::Zero|P::NonZero)))
2858 continue;
2859 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
2860 if (RC != PredRC)
2861 continue;
2862 const MCInstrDesc *NewD = (Ps & P::Zero) ?
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +00002863 &HII.get(Hexagon::PS_false) :
2864 &HII.get(Hexagon::PS_true);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002865 unsigned NewR = MRI->createVirtualRegister(PredRC);
2866 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
2867 (void)MIB;
2868#ifndef NDEBUG
2869 NewInstrs.push_back(&*MIB);
2870#endif
2871 replaceAllRegUsesWith(R, NewR);
2872 } else {
2873 // This cell has a single value.
2874 APInt A;
2875 if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
2876 continue;
2877 const TargetRegisterClass *NewRC;
2878 const MCInstrDesc *NewD;
2879
2880 unsigned W = getRegBitWidth(R);
2881 int64_t V = A.getSExtValue();
2882 assert(W == 32 || W == 64);
2883 if (W == 32)
2884 NewRC = &Hexagon::IntRegsRegClass;
2885 else
2886 NewRC = &Hexagon::DoubleRegsRegClass;
2887 unsigned NewR = MRI->createVirtualRegister(NewRC);
2888 const MachineInstr *NewMI;
2889
2890 if (W == 32) {
2891 NewD = &HII.get(Hexagon::A2_tfrsi);
2892 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2893 .addImm(V);
2894 } else {
2895 if (A.isSignedIntN(8)) {
2896 NewD = &HII.get(Hexagon::A2_tfrpi);
2897 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2898 .addImm(V);
2899 } else {
2900 int32_t Hi = V >> 32;
2901 int32_t Lo = V & 0xFFFFFFFFLL;
2902 if (isInt<8>(Hi) && isInt<8>(Lo)) {
2903 NewD = &HII.get(Hexagon::A2_combineii);
2904 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2905 .addImm(Hi)
2906 .addImm(Lo);
2907 } else {
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +00002908 NewD = &HII.get(Hexagon::CONST64);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002909 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2910 .addImm(V);
2911 }
2912 }
2913 }
2914 (void)NewMI;
2915#ifndef NDEBUG
2916 NewInstrs.push_back(NewMI);
2917#endif
2918 replaceAllRegUsesWith(R, NewR);
2919 }
2920 ChangedNum++;
2921 }
2922
2923 DEBUG({
2924 if (!NewInstrs.empty()) {
2925 MachineFunction &MF = *MI.getParent()->getParent();
Matthias Braunf1caa282017-12-15 22:22:58 +00002926 dbgs() << "In function: " << MF.getName() << "\n";
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002927 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0];
2928 for (unsigned i = 1; i < NewInstrs.size(); ++i)
2929 dbgs() << " " << *NewInstrs[i];
2930 }
2931 });
2932
2933 AllDefs = (ChangedNum == DefRegs.size());
2934 return ChangedNum > 0;
2935}
2936
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002937bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
2938 const CellMap &Inputs) {
2939 bool Changed = false;
2940 unsigned Opc = MI.getOpcode();
2941 MachineBasicBlock &B = *MI.getParent();
2942 const DebugLoc &DL = MI.getDebugLoc();
2943 MachineBasicBlock::iterator At = MI.getIterator();
Eugene Zelenkof9f8c682016-12-14 22:50:46 +00002944 MachineInstr *NewMI = nullptr;
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00002945
2946 switch (Opc) {
2947 case Hexagon::M2_maci:
2948 // Convert DefR += mpyi(R2, R3)
2949 // to DefR += mpyi(R, #imm),
2950 // or DefR -= mpyi(R, #imm).
2951 {
2952 Register DefR(MI.getOperand(0));
2953 assert(!DefR.SubReg);
2954 Register R2(MI.getOperand(2));
2955 Register R3(MI.getOperand(3));
2956 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
2957 LatticeCell LS2, LS3;
2958 // It is enough to get one of the input cells, since we will only try
2959 // to replace one argument---whichever happens to be a single constant.
2960 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
2961 if (!HasC2 && !HasC3)
2962 return false;
2963 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
2964 (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
2965 // If one of the operands is zero, eliminate the multiplication.
2966 if (Zero) {
2967 // DefR == R1 (tied operands).
2968 MachineOperand &Acc = MI.getOperand(1);
2969 Register R1(Acc);
2970 unsigned NewR = R1.Reg;
2971 if (R1.SubReg) {
2972 // Generate COPY. FIXME: Replace with the register:subregister.
2973 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
2974 NewR = MRI->createVirtualRegister(RC);
2975 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
2976 .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
2977 }
2978 replaceAllRegUsesWith(DefR.Reg, NewR);
2979 MRI->clearKillFlags(NewR);
2980 Changed = true;
2981 break;
2982 }
2983
2984 bool Swap = false;
2985 if (!LS3.isSingle()) {
2986 if (!LS2.isSingle())
2987 return false;
2988 Swap = true;
2989 }
2990 const LatticeCell &LI = Swap ? LS2 : LS3;
2991 const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
2992 : MI.getOperand(2);
2993 // LI is single here.
2994 APInt A;
2995 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
2996 return false;
2997 int64_t V = A.getSExtValue();
2998 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
2999 : HII.get(Hexagon::M2_macsin);
3000 if (V < 0)
3001 V = -V;
3002 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3003 unsigned NewR = MRI->createVirtualRegister(RC);
3004 const MachineOperand &Src1 = MI.getOperand(1);
3005 NewMI = BuildMI(B, At, DL, D, NewR)
3006 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
3007 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
3008 .addImm(V);
3009 replaceAllRegUsesWith(DefR.Reg, NewR);
3010 Changed = true;
3011 break;
3012 }
3013
3014 case Hexagon::A2_and:
3015 {
3016 Register R1(MI.getOperand(1));
3017 Register R2(MI.getOperand(2));
3018 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3019 LatticeCell LS1, LS2;
3020 unsigned CopyOf = 0;
3021 // Check if any of the operands is -1 (i.e. all bits set).
3022 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
3023 APInt M1;
3024 if (constToInt(LS1.Value, M1) && !~M1)
3025 CopyOf = 2;
3026 }
3027 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
3028 APInt M1;
3029 if (constToInt(LS2.Value, M1) && !~M1)
3030 CopyOf = 1;
3031 }
3032 if (!CopyOf)
3033 return false;
3034 MachineOperand &SO = MI.getOperand(CopyOf);
3035 Register SR(SO);
3036 Register DefR(MI.getOperand(0));
3037 unsigned NewR = SR.Reg;
3038 if (SR.SubReg) {
3039 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3040 NewR = MRI->createVirtualRegister(RC);
3041 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3042 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3043 }
3044 replaceAllRegUsesWith(DefR.Reg, NewR);
3045 MRI->clearKillFlags(NewR);
3046 Changed = true;
3047 }
3048 break;
3049
3050 case Hexagon::A2_or:
3051 {
3052 Register R1(MI.getOperand(1));
3053 Register R2(MI.getOperand(2));
3054 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3055 LatticeCell LS1, LS2;
3056 unsigned CopyOf = 0;
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00003057
3058 using P = ConstantProperties;
3059
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003060 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
3061 CopyOf = 2;
3062 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
3063 CopyOf = 1;
3064 if (!CopyOf)
3065 return false;
3066 MachineOperand &SO = MI.getOperand(CopyOf);
3067 Register SR(SO);
3068 Register DefR(MI.getOperand(0));
3069 unsigned NewR = SR.Reg;
3070 if (SR.SubReg) {
3071 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3072 NewR = MRI->createVirtualRegister(RC);
3073 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3074 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3075 }
3076 replaceAllRegUsesWith(DefR.Reg, NewR);
3077 MRI->clearKillFlags(NewR);
3078 Changed = true;
3079 }
3080 break;
3081 }
3082
3083 if (NewMI) {
3084 // clear all the kill flags of this new instruction.
3085 for (MachineOperand &MO : NewMI->operands())
3086 if (MO.isReg() && MO.isUse())
3087 MO.setIsKill(false);
3088 }
3089
3090 DEBUG({
3091 if (NewMI) {
3092 dbgs() << "Rewrite: for " << MI;
3093 if (NewMI != &MI)
3094 dbgs() << " created " << *NewMI;
3095 else
3096 dbgs() << " modified the instruction itself and created:" << *NewMI;
3097 }
3098 });
3099
3100 return Changed;
3101}
3102
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003103void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
3104 unsigned ToReg) {
3105 assert(TargetRegisterInfo::isVirtualRegister(FromReg));
3106 assert(TargetRegisterInfo::isVirtualRegister(ToReg));
3107 for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
3108 MachineOperand &O = *I;
3109 ++I;
3110 O.setReg(ToReg);
3111 }
3112}
3113
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003114bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
3115 const CellMap &Inputs) {
3116 MachineBasicBlock &B = *BrI.getParent();
3117 unsigned NumOp = BrI.getNumOperands();
3118 if (!NumOp)
3119 return false;
3120
3121 bool FallsThru;
3122 SetVector<const MachineBasicBlock*> Targets;
3123 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
3124 unsigned NumTargets = Targets.size();
3125 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
3126 return false;
3127 if (BrI.getOpcode() == Hexagon::J2_jump)
3128 return false;
3129
Francis Visoiu Mistrih25528d62017-12-04 17:18:51 +00003130 DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003131 bool Rewritten = false;
3132 if (NumTargets > 0) {
3133 assert(!FallsThru && "This should have been checked before");
3134 // MIB.addMBB needs non-const pointer.
3135 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
3136 bool Moot = B.isLayoutSuccessor(TargetB);
3137 if (!Moot) {
3138 // If we build a branch here, we must make sure that it won't be
3139 // erased as "non-executable". We can't mark any new instructions
3140 // as executable here, so we need to overwrite the BrI, which we
3141 // know is executable.
3142 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
3143 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
3144 .addMBB(TargetB);
3145 BrI.setDesc(JD);
3146 while (BrI.getNumOperands() > 0)
3147 BrI.RemoveOperand(0);
Francis Visoiu Mistriha8a83d12017-12-07 10:40:31 +00003148 // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003149 // are present in the rewritten branch.
3150 for (auto &Op : NI->operands())
3151 BrI.addOperand(Op);
3152 NI->eraseFromParent();
3153 Rewritten = true;
3154 }
3155 }
3156
3157 // Do not erase instructions. A newly created instruction could get
3158 // the same address as an instruction marked as executable during the
3159 // propagation.
3160 if (!Rewritten)
3161 replaceWithNop(BrI);
3162 return true;
3163}
3164
Krzysztof Parzyszek167d9182016-07-28 20:01:59 +00003165FunctionPass *llvm::createHexagonConstPropagationPass() {
3166 return new HexagonConstPropagation();
3167}