Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 1 | //===- X86InterleavedAccess.cpp -------------------------------------------===// |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 10 | /// \file |
| 11 | /// This file contains the X86 implementation of the interleaved accesses |
| 12 | /// optimization generating X86-specific instructions/intrinsics for |
| 13 | /// interleaved access groups. |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 16 | |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 17 | #include "X86ISelLowering.h" |
| 18 | #include "X86Subtarget.h" |
| 19 | #include "llvm/ADT/ArrayRef.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 21 | #include "llvm/Analysis/VectorUtils.h" |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 22 | #include "llvm/CodeGen/MachineValueType.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DataLayout.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/IRBuilder.h" |
| 27 | #include "llvm/IR/Instruction.h" |
| 28 | #include "llvm/IR/Instructions.h" |
| 29 | #include "llvm/IR/Module.h" |
| 30 | #include "llvm/IR/Type.h" |
| 31 | #include "llvm/IR/Value.h" |
| 32 | #include "llvm/Support/Casting.h" |
| 33 | #include <algorithm> |
| 34 | #include <cassert> |
| 35 | #include <cmath> |
| 36 | #include <cstdint> |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 37 | |
| 38 | using namespace llvm; |
| 39 | |
Benjamin Kramer | efcf06f | 2017-02-11 11:06:55 +0000 | [diff] [blame] | 40 | namespace { |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 41 | |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 42 | /// \brief This class holds necessary information to represent an interleaved |
| 43 | /// access group and supports utilities to lower the group into |
| 44 | /// X86-specific instructions/intrinsics. |
| 45 | /// E.g. A group of interleaving access loads (Factor = 2; accessing every |
| 46 | /// other element) |
| 47 | /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
| 48 | /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> |
| 49 | /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 50 | class X86InterleavedAccessGroup { |
| 51 | /// \brief Reference to the wide-load instruction of an interleaved access |
| 52 | /// group. |
| 53 | Instruction *const Inst; |
| 54 | |
| 55 | /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. |
| 56 | ArrayRef<ShuffleVectorInst *> Shuffles; |
| 57 | |
| 58 | /// \brief Reference to the starting index of each user-shuffle. |
| 59 | ArrayRef<unsigned> Indices; |
| 60 | |
| 61 | /// \brief Reference to the interleaving stride in terms of elements. |
| 62 | const unsigned Factor; |
| 63 | |
| 64 | /// \brief Reference to the underlying target. |
| 65 | const X86Subtarget &Subtarget; |
| 66 | |
| 67 | const DataLayout &DL; |
| 68 | |
| 69 | IRBuilder<> &Builder; |
| 70 | |
| 71 | /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 72 | /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. |
| 73 | void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T, |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 74 | SmallVectorImpl<Instruction *> &DecomposedVectors); |
| 75 | |
| 76 | /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and |
| 77 | /// returns the transposed-vectors in \p TransposedVectors. |
| 78 | /// E.g. |
| 79 | /// InputVectors: |
| 80 | /// In-V0 = p1, p2, p3, p4 |
| 81 | /// In-V1 = q1, q2, q3, q4 |
| 82 | /// In-V2 = r1, r2, r3, r4 |
| 83 | /// In-V3 = s1, s2, s3, s4 |
| 84 | /// OutputVectors: |
| 85 | /// Out-V0 = p1, q1, r1, s1 |
| 86 | /// Out-V1 = p2, q2, r2, s2 |
| 87 | /// Out-V2 = p3, q3, r3, s3 |
| 88 | /// Out-V3 = P4, q4, r4, s4 |
| 89 | void transpose_4x4(ArrayRef<Instruction *> InputVectors, |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 90 | SmallVectorImpl<Value *> &TransposedMatrix); |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 91 | void interleave8bitStride4(ArrayRef<Instruction *> InputVectors, |
| 92 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 93 | unsigned NumSubVecElems); |
Michael Zuckerman | 4a97df0 | 2017-09-25 14:50:38 +0000 | [diff] [blame] | 94 | void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors, |
| 95 | SmallVectorImpl<Value *> &TransposedMatrix); |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 96 | void interleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
| 97 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 98 | unsigned NumSubVecElems); |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 99 | void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors, |
| 100 | SmallVectorImpl<Value *> &TransposedMatrix, |
| 101 | unsigned NumSubVecElems); |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 102 | |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 103 | public: |
| 104 | /// In order to form an interleaved access group X86InterleavedAccessGroup |
| 105 | /// requires a wide-load instruction \p 'I', a group of interleaved-vectors |
| 106 | /// \p Shuffs, reference to the first indices of each interleaved-vector |
| 107 | /// \p 'Ind' and the interleaving stride factor \p F. In order to generate |
| 108 | /// X86-specific instructions/intrinsics it also requires the underlying |
| 109 | /// target information \p STarget. |
| 110 | explicit X86InterleavedAccessGroup(Instruction *I, |
| 111 | ArrayRef<ShuffleVectorInst *> Shuffs, |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 112 | ArrayRef<unsigned> Ind, const unsigned F, |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 113 | const X86Subtarget &STarget, |
| 114 | IRBuilder<> &B) |
| 115 | : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), |
| 116 | DL(Inst->getModule()->getDataLayout()), Builder(B) {} |
| 117 | |
| 118 | /// \brief Returns true if this interleaved access group can be lowered into |
| 119 | /// x86-specific instructions/intrinsics, false otherwise. |
| 120 | bool isSupported() const; |
| 121 | |
| 122 | /// \brief Lowers this interleaved access group into X86-specific |
| 123 | /// instructions/intrinsics. |
| 124 | bool lowerIntoOptimizedSequence(); |
| 125 | }; |
Eugene Zelenko | 60433b6 | 2017-10-05 00:33:50 +0000 | [diff] [blame] | 126 | |
Benjamin Kramer | efcf06f | 2017-02-11 11:06:55 +0000 | [diff] [blame] | 127 | } // end anonymous namespace |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 128 | |
| 129 | bool X86InterleavedAccessGroup::isSupported() const { |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 130 | VectorType *ShuffleVecTy = Shuffles[0]->getType(); |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 131 | Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType(); |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 132 | unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 133 | unsigned WideInstSize; |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 134 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 135 | // Currently, lowering is supported for the following vectors: |
| 136 | // Stride 4: |
| 137 | // 1. Store and load of 4-element vectors of 64 bits on AVX. |
| 138 | // 2. Store of 16/32-element vectors of 8 bits on AVX. |
| 139 | // Stride 3: |
Craig Topper | 2153114 | 2017-11-14 16:14:00 +0000 | [diff] [blame] | 140 | // 1. Load of 16/32-element vectors of 8 bits on AVX. |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 141 | if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 142 | return false; |
| 143 | |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 144 | if (isa<LoadInst>(Inst)) { |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 145 | WideInstSize = DL.getTypeSizeInBits(Inst->getType()); |
Michael Zuckerman | 72a6f89 | 2017-10-18 08:04:31 +0000 | [diff] [blame] | 146 | if (cast<LoadInst>(Inst)->getPointerAddressSpace()) |
| 147 | return false; |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 148 | } else |
| 149 | WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); |
| 150 | |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 151 | // We support shuffle represents stride 4 for byte type with size of |
| 152 | // WideInstSize. |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 153 | if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) |
| 154 | return true; |
| 155 | |
| 156 | if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 && |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 157 | (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || |
| 158 | WideInstSize == 2048)) |
| 159 | return true; |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 160 | |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 161 | if (ShuffleElemSize == 8 && Factor == 3 && |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 162 | (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 163 | return true; |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 164 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 165 | return false; |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 166 | } |
| 167 | |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 168 | void X86InterleavedAccessGroup::decompose( |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 169 | Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy, |
| 170 | SmallVectorImpl<Instruction *> &DecomposedVectors) { |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 171 | assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && |
| 172 | "Expected Load or Shuffle"); |
| 173 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 174 | Type *VecWidth = VecInst->getType(); |
| 175 | (void)VecWidth; |
| 176 | assert(VecWidth->isVectorTy() && |
| 177 | DL.getTypeSizeInBits(VecWidth) >= |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 178 | DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && |
| 179 | "Invalid Inst-size!!!"); |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 180 | |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 181 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) { |
| 182 | Value *Op0 = SVI->getOperand(0); |
| 183 | Value *Op1 = SVI->getOperand(1); |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 184 | |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 185 | // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. |
| 186 | for (unsigned i = 0; i < NumSubVectors; ++i) |
| 187 | DecomposedVectors.push_back( |
| 188 | cast<ShuffleVectorInst>(Builder.CreateShuffleVector( |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 189 | Op0, Op1, |
| 190 | createSequentialMask(Builder, Indices[i], |
| 191 | SubVecTy->getVectorNumElements(), 0)))); |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 192 | return; |
| 193 | } |
| 194 | |
| 195 | // Decompose the load instruction. |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 196 | LoadInst *LI = cast<LoadInst>(VecInst); |
| 197 | Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace()); |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 198 | Value *VecBasePtr; |
| 199 | unsigned int NumLoads = NumSubVectors; |
| 200 | // In the case of stride 3 with a vector of 32 elements load the information |
| 201 | // in the following way: |
| 202 | // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 203 | unsigned VecLength = DL.getTypeSizeInBits(VecWidth); |
| 204 | if (VecLength == 768 || VecLength == 1536) { |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 205 | Type *VecTran = |
| 206 | VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo(); |
| 207 | VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran); |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 208 | NumLoads = NumSubVectors * (VecLength / 384); |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 209 | } else |
| 210 | VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 211 | // Generate N loads of T type. |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 212 | for (unsigned i = 0; i < NumLoads; i++) { |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 213 | // TODO: Support inbounds GEP. |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 214 | Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i)); |
| 215 | Instruction *NewLoad = |
| 216 | Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment()); |
| 217 | DecomposedVectors.push_back(NewLoad); |
| 218 | } |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 219 | } |
| 220 | |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 221 | // Changing the scale of the vector type by reducing the number of elements and |
| 222 | // doubling the scalar size. |
| 223 | static MVT scaleVectorType(MVT VT) { |
| 224 | unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; |
| 225 | return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), |
| 226 | VT.getVectorNumElements() / 2); |
| 227 | } |
| 228 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 229 | static uint32_t Concat[] = { |
| 230 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 231 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 232 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 233 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }; |
| 234 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 235 | // genShuffleBland - Creates shuffle according to two vectors.This function is |
| 236 | // only works on instructions with lane inside 256 registers. According to |
| 237 | // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The |
| 238 | // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. |
| 239 | // Where the 'LowOffset' refers to the first vector and the highOffset refers to |
| 240 | // the second vector. |
| 241 | // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| |
| 242 | // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| |
| 243 | // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| |
| 244 | // For the sequence to work as a mirror to the load. |
| 245 | // We must consider the elements order as above. |
| 246 | // In this function we are combining two types of shuffles. |
| 247 | // The first one is vpshufed and the second is a type of "blend" shuffle. |
| 248 | // By computing the shuffle on a sequence of 16 elements(one lane) and add the |
| 249 | // correct offset. We are creating a vpsuffed + blend sequence between two |
| 250 | // shuffles. |
| 251 | static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask, |
| 252 | SmallVectorImpl<uint32_t> &Out, int LowOffset, |
| 253 | int HighOffset) { |
| 254 | assert(VT.getSizeInBits() >= 256 && |
| 255 | "This function doesn't accept width smaller then 256"); |
| 256 | unsigned NumOfElm = VT.getVectorNumElements(); |
| 257 | for (unsigned i = 0; i < Mask.size(); i++) |
| 258 | Out.push_back(Mask[i] + LowOffset); |
| 259 | for (unsigned i = 0; i < Mask.size(); i++) |
| 260 | Out.push_back(Mask[i] + HighOffset + NumOfElm); |
| 261 | } |
| 262 | |
Craig Topper | 2153114 | 2017-11-14 16:14:00 +0000 | [diff] [blame] | 263 | // reorderSubVector returns the data to is the original state. And de-facto is |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 264 | // the opposite of the function concatSubVector. |
| 265 | |
| 266 | // For VecElems = 16 |
| 267 | // Invec[0] - |0| TransposedMatrix[0] - |0| |
| 268 | // Invec[1] - |1| => TransposedMatrix[1] - |1| |
| 269 | // Invec[2] - |2| TransposedMatrix[2] - |2| |
| 270 | |
| 271 | // For VecElems = 32 |
| 272 | // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| |
| 273 | // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| |
| 274 | // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| |
| 275 | |
| 276 | // For VecElems = 64 |
| 277 | // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | |
| 278 | // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | |
| 279 | // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| |
| 280 | |
| 281 | static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, |
| 282 | ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf, |
| 283 | unsigned VecElems, unsigned Stride, |
| 284 | IRBuilder<> Builder) { |
| 285 | |
| 286 | if (VecElems == 16) { |
| 287 | for (unsigned i = 0; i < Stride; i++) |
| 288 | TransposedMatrix[i] = Builder.CreateShuffleVector( |
| 289 | Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf); |
| 290 | return; |
| 291 | } |
| 292 | |
| 293 | SmallVector<uint32_t, 32> OptimizeShuf; |
| 294 | Value *Temp[8]; |
| 295 | |
| 296 | for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { |
| 297 | genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, |
| 298 | (i + 1) / Stride * 16); |
| 299 | Temp[i / 2] = Builder.CreateShuffleVector( |
| 300 | Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); |
| 301 | OptimizeShuf.clear(); |
| 302 | } |
| 303 | |
| 304 | if (VecElems == 32) { |
| 305 | std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); |
| 306 | return; |
| 307 | } |
| 308 | else |
| 309 | for (unsigned i = 0; i < Stride; i++) |
| 310 | TransposedMatrix[i] = |
| 311 | Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 312 | } |
| 313 | |
Michael Zuckerman | 4a97df0 | 2017-09-25 14:50:38 +0000 | [diff] [blame] | 314 | void X86InterleavedAccessGroup::interleave8bitStride4VF8( |
| 315 | ArrayRef<Instruction *> Matrix, |
| 316 | SmallVectorImpl<Value *> &TransposedMatrix) { |
| 317 | // Assuming we start from the following vectors: |
| 318 | // Matrix[0]= c0 c1 c2 c3 c4 ... c7 |
| 319 | // Matrix[1]= m0 m1 m2 m3 m4 ... m7 |
| 320 | // Matrix[2]= y0 y1 y2 y3 y4 ... y7 |
| 321 | // Matrix[3]= k0 k1 k2 k3 k4 ... k7 |
| 322 | |
| 323 | MVT VT = MVT::v8i16; |
| 324 | TransposedMatrix.resize(2); |
| 325 | SmallVector<uint32_t, 16> MaskLow; |
| 326 | SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord; |
| 327 | SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord; |
| 328 | |
| 329 | for (unsigned i = 0; i < 8; ++i) { |
| 330 | MaskLow.push_back(i); |
| 331 | MaskLow.push_back(i + 8); |
| 332 | } |
| 333 | |
| 334 | createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false); |
| 335 | createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false); |
| 336 | scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord); |
| 337 | scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord); |
| 338 | // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 |
| 339 | // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 |
| 340 | Value *IntrVec1Low = |
| 341 | Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); |
| 342 | Value *IntrVec2Low = |
| 343 | Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); |
| 344 | |
| 345 | // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 |
| 346 | // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 |
| 347 | |
| 348 | TransposedMatrix[0] = |
| 349 | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); |
| 350 | TransposedMatrix[1] = |
| 351 | Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); |
| 352 | } |
| 353 | |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 354 | void X86InterleavedAccessGroup::interleave8bitStride4( |
| 355 | ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix, |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 356 | unsigned NumOfElm) { |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 357 | // Example: Assuming we start from the following vectors: |
| 358 | // Matrix[0]= c0 c1 c2 c3 c4 ... c31 |
| 359 | // Matrix[1]= m0 m1 m2 m3 m4 ... m31 |
| 360 | // Matrix[2]= y0 y1 y2 y3 y4 ... y31 |
| 361 | // Matrix[3]= k0 k1 k2 k3 k4 ... k31 |
| 362 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 363 | MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm); |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 364 | MVT HalfVT = scaleVectorType(VT); |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 365 | |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 366 | TransposedMatrix.resize(4); |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 367 | SmallVector<uint32_t, 32> MaskHigh; |
| 368 | SmallVector<uint32_t, 32> MaskLow; |
Michael Zuckerman | b92b6d4 | 2017-09-30 14:55:03 +0000 | [diff] [blame] | 369 | SmallVector<uint32_t, 32> LowHighMask[2]; |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 370 | SmallVector<uint32_t, 32> MaskHighTemp; |
| 371 | SmallVector<uint32_t, 32> MaskLowTemp; |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 372 | |
| 373 | // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 |
| 374 | // shuffle pattern. |
| 375 | |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 376 | createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false); |
Michael Zuckerman | b92b6d4 | 2017-09-30 14:55:03 +0000 | [diff] [blame] | 377 | createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 378 | |
| 379 | // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 |
| 380 | // shuffle pattern. |
| 381 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 382 | createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false); |
| 383 | createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false); |
| 384 | scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]); |
| 385 | scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 386 | |
| 387 | // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 |
| 388 | // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 |
| 389 | // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 |
| 390 | // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 |
Michael Zuckerman | b92b6d4 | 2017-09-30 14:55:03 +0000 | [diff] [blame] | 391 | Value *IntrVec[4]; |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 392 | |
Michael Zuckerman | b92b6d4 | 2017-09-30 14:55:03 +0000 | [diff] [blame] | 393 | IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); |
| 394 | IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); |
| 395 | IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); |
| 396 | IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 397 | |
| 398 | // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 |
| 399 | // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 |
| 400 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 |
| 401 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 |
| 402 | |
Michael Zuckerman | b92b6d4 | 2017-09-30 14:55:03 +0000 | [diff] [blame] | 403 | Value *VecOut[4]; |
| 404 | for (int i = 0; i < 4; i++) |
| 405 | VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2], |
| 406 | LowHighMask[i % 2]); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 407 | |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 408 | // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 |
| 409 | // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 410 | // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 |
| 411 | // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 |
| 412 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 413 | if (VT == MVT::v16i8) { |
| 414 | std::copy(VecOut, VecOut + 4, TransposedMatrix.begin()); |
| 415 | return; |
| 416 | } |
Michael Zuckerman | 80d3649f | 2017-09-13 18:28:09 +0000 | [diff] [blame] | 417 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 418 | reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16), |
| 419 | NumOfElm, 4, Builder); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 420 | } |
| 421 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 422 | // createShuffleStride returns shuffle mask of size N. |
| 423 | // The shuffle pattern is as following : |
| 424 | // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), |
| 425 | // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., |
| 426 | // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} |
| 427 | // Where Lane is the # of lanes in a register: |
| 428 | // VectorSize = 128 => Lane = 1 |
| 429 | // VectorSize = 256 => Lane = 2 |
| 430 | // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 |
| 431 | // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} |
| 432 | static void createShuffleStride(MVT VT, int Stride, |
| 433 | SmallVectorImpl<uint32_t> &Mask) { |
| 434 | int VectorSize = VT.getSizeInBits(); |
| 435 | int VF = VT.getVectorNumElements(); |
| 436 | int LaneCount = std::max(VectorSize / 128, 1); |
| 437 | for (int Lane = 0; Lane < LaneCount; Lane++) |
| 438 | for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) |
| 439 | Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); |
| 440 | } |
| 441 | |
| 442 | // setGroupSize sets 'SizeInfo' to the size(number of elements) of group |
| 443 | // inside mask a shuffleMask. A mask contains exactly 3 groups, where |
| 444 | // each group is a monotonically increasing sequence with stride 3. |
| 445 | // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} |
| 446 | static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) { |
| 447 | int VectorSize = VT.getSizeInBits(); |
| 448 | int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); |
| 449 | for (int i = 0, FirstGroupElement = 0; i < 3; i++) { |
| 450 | int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); |
| 451 | SizeInfo.push_back(GroupSize); |
| 452 | FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. |
| 457 | // vpalign works according to lanes |
| 458 | // Where Lane is the # of lanes in a register: |
| 459 | // VectorWide = 128 => Lane = 1 |
| 460 | // VectorWide = 256 => Lane = 2 |
| 461 | // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. |
| 462 | // For Lane = 2 shuffle pattern is: |
| 463 | // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. |
| 464 | // Imm variable sets the offset amount. The result of the |
| 465 | // function is stored inside ShuffleMask vector and it built as described in |
| 466 | // the begin of the description. AlignDirection is a boolean that indecat the |
| 467 | // direction of the alignment. (false - align to the "right" side while true - |
| 468 | // align to the "left" side) |
| 469 | static void DecodePALIGNRMask(MVT VT, unsigned Imm, |
| 470 | SmallVectorImpl<uint32_t> &ShuffleMask, |
| 471 | bool AlignDirection = true, bool Unary = false) { |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 472 | unsigned NumElts = VT.getVectorNumElements(); |
| 473 | unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); |
| 474 | unsigned NumLaneElts = NumElts / NumLanes; |
| 475 | |
| 476 | Imm = AlignDirection ? Imm : (NumLaneElts - Imm); |
| 477 | unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); |
| 478 | |
| 479 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| 480 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
| 481 | unsigned Base = i + Offset; |
| 482 | // if i+offset is out of this lane then we actually need the other source |
| 483 | // If Unary the other source is the first source. |
| 484 | if (Base >= NumLaneElts) |
| 485 | Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; |
| 486 | ShuffleMask.push_back(Base + l); |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 491 | // concatSubVector - The function rebuilds the data to a correct expected |
| 492 | // order. An assumption(The shape of the matrix) was taken for the |
| 493 | // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. |
| 494 | // This function ensures that the data is built in correct way for the lane |
| 495 | // instructions. Each lane inside the vector is a 128-bit length. |
| 496 | // |
| 497 | // The 'InVec' argument contains the data in increasing order. In InVec[0] You |
| 498 | // can find the first 128 bit data. The number of different lanes inside a |
| 499 | // vector depends on the 'VecElems'.In general, the formula is |
| 500 | // VecElems * type / 128. The size of the array 'InVec' depends and equal to |
| 501 | // 'VecElems'. |
| 502 | |
| 503 | // For VecElems = 16 |
| 504 | // Invec[0] - |0| Vec[0] - |0| |
| 505 | // Invec[1] - |1| => Vec[1] - |1| |
| 506 | // Invec[2] - |2| Vec[2] - |2| |
| 507 | |
| 508 | // For VecElems = 32 |
| 509 | // Invec[0] - |0|1| Vec[0] - |0|3| |
| 510 | // Invec[1] - |2|3| => Vec[1] - |1|4| |
| 511 | // Invec[2] - |4|5| Vec[2] - |2|5| |
| 512 | |
| 513 | // For VecElems = 64 |
| 514 | // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | |
| 515 | // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| |
| 516 | // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| |
| 517 | |
| 518 | static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, |
| 519 | unsigned VecElems, IRBuilder<> Builder) { |
| 520 | if (VecElems == 16) { |
| 521 | for (int i = 0; i < 3; i++) |
| 522 | Vec[i] = InVec[i]; |
| 523 | return; |
| 524 | } |
| 525 | |
| 526 | for (unsigned j = 0; j < VecElems / 32; j++) |
| 527 | for (int i = 0; i < 3; i++) |
| 528 | Vec[i + j * 3] = Builder.CreateShuffleVector( |
| 529 | InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32)); |
| 530 | |
| 531 | if (VecElems == 32) |
| 532 | return; |
| 533 | |
| 534 | for (int i = 0; i < 3; i++) |
| 535 | Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat); |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 536 | } |
| 537 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 538 | void X86InterleavedAccessGroup::deinterleave8bitStride3( |
| 539 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
| 540 | unsigned VecElems) { |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 541 | // Example: Assuming we start from the following vectors: |
| 542 | // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 |
| 543 | // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 |
| 544 | // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 |
| 545 | |
| 546 | TransposedMatrix.resize(3); |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 547 | SmallVector<uint32_t, 32> VPShuf; |
| 548 | SmallVector<uint32_t, 32> VPAlign[2]; |
| 549 | SmallVector<uint32_t, 32> VPAlign2; |
| 550 | SmallVector<uint32_t, 32> VPAlign3; |
| 551 | SmallVector<uint32_t, 3> GroupSize; |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 552 | Value *Vec[6], *TempVector[3]; |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 553 | |
| 554 | MVT VT = MVT::getVT(Shuffles[0]->getType()); |
| 555 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 556 | createShuffleStride(VT, 3, VPShuf); |
| 557 | setGroupSize(VT, GroupSize); |
| 558 | |
| 559 | for (int i = 0; i < 2; i++) |
| 560 | DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); |
| 561 | |
| 562 | DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); |
| 563 | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); |
| 564 | |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 565 | concatSubVector(Vec, InVec, VecElems, Builder); |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 566 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
| 567 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
| 568 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
| 569 | |
| 570 | for (int i = 0; i < 3; i++) |
| 571 | Vec[i] = Builder.CreateShuffleVector( |
| 572 | Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf); |
| 573 | |
| 574 | // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
| 575 | // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
| 576 | // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
| 577 | |
| 578 | for (int i = 0; i < 3; i++) |
| 579 | TempVector[i] = |
| 580 | Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); |
| 581 | |
| 582 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
| 583 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
| 584 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 585 | |
| 586 | for (int i = 0; i < 3; i++) |
| 587 | Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], |
| 588 | VPAlign[1]); |
| 589 | |
| 590 | // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
| 591 | // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 592 | // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 |
| 593 | |
| 594 | Value *TempVec = Builder.CreateShuffleVector( |
| 595 | Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3); |
| 596 | TransposedMatrix[0] = Builder.CreateShuffleVector( |
| 597 | Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2); |
| 598 | TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; |
| 599 | TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 600 | } |
| 601 | |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 602 | // group2Shuffle reorder the shuffle stride back into continuous order. |
| 603 | // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => |
| 604 | // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. |
| 605 | static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask, |
| 606 | SmallVectorImpl<uint32_t> &Output) { |
| 607 | int IndexGroup[3] = {0, 0, 0}; |
| 608 | int Index = 0; |
| 609 | int VectorWidth = VT.getSizeInBits(); |
| 610 | int VF = VT.getVectorNumElements(); |
| 611 | // Find the index of the different groups. |
| 612 | int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; |
| 613 | for (int i = 0; i < 3; i++) { |
| 614 | IndexGroup[(Index * 3) % (VF / Lane)] = Index; |
| 615 | Index += Mask[i]; |
| 616 | } |
| 617 | // According to the index compute the convert mask. |
| 618 | for (int i = 0; i < VF / Lane; i++) { |
| 619 | Output.push_back(IndexGroup[i % 3]); |
| 620 | IndexGroup[i % 3]++; |
| 621 | } |
| 622 | } |
| 623 | |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 624 | void X86InterleavedAccessGroup::interleave8bitStride3( |
| 625 | ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix, |
| 626 | unsigned VecElems) { |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 627 | // Example: Assuming we start from the following vectors: |
| 628 | // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 |
| 629 | // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 630 | // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 |
| 631 | |
| 632 | TransposedMatrix.resize(3); |
| 633 | SmallVector<uint32_t, 3> GroupSize; |
| 634 | SmallVector<uint32_t, 32> VPShuf; |
| 635 | SmallVector<uint32_t, 32> VPAlign[3]; |
| 636 | SmallVector<uint32_t, 32> VPAlign2; |
| 637 | SmallVector<uint32_t, 32> VPAlign3; |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 638 | |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 639 | Value *Vec[3], *TempVector[3]; |
| 640 | MVT VT = MVT::getVectorVT(MVT::i8, VecElems); |
| 641 | |
| 642 | setGroupSize(VT, GroupSize); |
| 643 | |
| 644 | for (int i = 0; i < 3; i++) |
| 645 | DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]); |
| 646 | |
| 647 | DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true); |
| 648 | DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true); |
| 649 | |
| 650 | // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 |
| 651 | // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 |
| 652 | // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 |
| 653 | |
| 654 | Vec[0] = Builder.CreateShuffleVector( |
| 655 | InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2); |
| 656 | Vec[1] = Builder.CreateShuffleVector( |
| 657 | InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3); |
| 658 | Vec[2] = InVec[2]; |
| 659 | |
| 660 | // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 |
| 661 | // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 |
| 662 | // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 |
| 663 | |
| 664 | for (int i = 0; i < 3; i++) |
| 665 | TempVector[i] = |
| 666 | Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]); |
| 667 | |
| 668 | // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 |
| 669 | // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 |
| 670 | // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 |
| 671 | |
| 672 | for (int i = 0; i < 3; i++) |
| 673 | Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3], |
| 674 | VPAlign[2]); |
| 675 | |
| 676 | // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 |
| 677 | // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 |
| 678 | // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 |
| 679 | |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 680 | unsigned NumOfElm = VT.getVectorNumElements(); |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 681 | group2Shuffle(VT, GroupSize, VPShuf); |
| 682 | reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder); |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 683 | } |
| 684 | |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 685 | void X86InterleavedAccessGroup::transpose_4x4( |
| 686 | ArrayRef<Instruction *> Matrix, |
| 687 | SmallVectorImpl<Value *> &TransposedMatrix) { |
| 688 | assert(Matrix.size() == 4 && "Invalid matrix size"); |
| 689 | TransposedMatrix.resize(4); |
| 690 | |
| 691 | // dst = src1[0,1],src2[0,1] |
| 692 | uint32_t IntMask1[] = {0, 1, 4, 5}; |
| 693 | ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4); |
| 694 | Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); |
| 695 | Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); |
| 696 | |
| 697 | // dst = src1[2,3],src2[2,3] |
| 698 | uint32_t IntMask2[] = {2, 3, 6, 7}; |
| 699 | Mask = makeArrayRef(IntMask2, 4); |
| 700 | Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); |
| 701 | Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); |
| 702 | |
| 703 | // dst = src1[0],src2[0],src1[2],src2[2] |
| 704 | uint32_t IntMask3[] = {0, 4, 2, 6}; |
| 705 | Mask = makeArrayRef(IntMask3, 4); |
| 706 | TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); |
| 707 | TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); |
| 708 | |
| 709 | // dst = src1[1],src2[1],src1[3],src2[3] |
| 710 | uint32_t IntMask4[] = {1, 5, 3, 7}; |
| 711 | Mask = makeArrayRef(IntMask4, 4); |
| 712 | TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); |
| 713 | TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); |
| 714 | } |
| 715 | |
| 716 | // Lowers this interleaved access group into X86-specific |
| 717 | // instructions/intrinsics. |
| 718 | bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { |
| 719 | SmallVector<Instruction *, 4> DecomposedVectors; |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 720 | SmallVector<Value *, 4> TransposedVectors; |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 721 | VectorType *ShuffleTy = Shuffles[0]->getType(); |
| 722 | |
| 723 | if (isa<LoadInst>(Inst)) { |
| 724 | // Try to generate target-sized register(/instruction). |
| 725 | decompose(Inst, Factor, ShuffleTy, DecomposedVectors); |
| 726 | |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 727 | Type *ShuffleEltTy = Inst->getType(); |
| 728 | unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor; |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 729 | // Perform matrix-transposition in order to compute interleaved |
| 730 | // results by generating some sort of (optimized) target-specific |
| 731 | // instructions. |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 732 | |
| 733 | switch (NumSubVecElems) { |
| 734 | default: |
| 735 | return false; |
| 736 | case 4: |
| 737 | transpose_4x4(DecomposedVectors, TransposedVectors); |
| 738 | break; |
| 739 | case 8: |
| 740 | case 16: |
| 741 | case 32: |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 742 | case 64: |
Michael Zuckerman | 5a38594 | 2017-09-07 14:02:13 +0000 | [diff] [blame] | 743 | deinterleave8bitStride3(DecomposedVectors, TransposedVectors, |
| 744 | NumSubVecElems); |
| 745 | break; |
| 746 | } |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 747 | |
| 748 | // Now replace the unoptimized-interleaved-vectors with the |
| 749 | // transposed-interleaved vectors. |
| 750 | for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) |
| 751 | Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); |
| 752 | |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | Type *ShuffleEltTy = ShuffleTy->getVectorElementType(); |
| 757 | unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor; |
| 758 | |
| 759 | // Lower the interleaved stores: |
| 760 | // 1. Decompose the interleaved wide shuffle into individual shuffle |
| 761 | // vectors. |
Farhana Aleen | e4a89a6 | 2017-07-21 21:35:00 +0000 | [diff] [blame] | 762 | decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems), |
| 763 | DecomposedVectors); |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 764 | |
| 765 | // 2. Transpose the interleaved-vectors into vectors of contiguous |
| 766 | // elements. |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 767 | switch (NumSubVecElems) { |
| 768 | case 4: |
| 769 | transpose_4x4(DecomposedVectors, TransposedVectors); |
| 770 | break; |
Michael Zuckerman | 4a97df0 | 2017-09-25 14:50:38 +0000 | [diff] [blame] | 771 | case 8: |
| 772 | interleave8bitStride4VF8(DecomposedVectors, TransposedVectors); |
| 773 | break; |
Michael Zuckerman | 680ac10 | 2017-08-07 13:22:39 +0000 | [diff] [blame] | 774 | case 16: |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 775 | case 32: |
Michael Zuckerman | e4084f6b | 2017-10-02 07:35:25 +0000 | [diff] [blame] | 776 | case 64: |
Michael Zuckerman | 645f777 | 2017-09-26 18:49:11 +0000 | [diff] [blame] | 777 | if (Factor == 4) |
| 778 | interleave8bitStride4(DecomposedVectors, TransposedVectors, |
| 779 | NumSubVecElems); |
| 780 | if (Factor == 3) |
| 781 | interleave8bitStride3(DecomposedVectors, TransposedVectors, |
| 782 | NumSubVecElems); |
Michael Zuckerman | c1918ad | 2017-07-26 08:10:14 +0000 | [diff] [blame] | 783 | break; |
| 784 | default: |
| 785 | return false; |
| 786 | } |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 787 | |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 788 | // 3. Concatenate the contiguous-vectors back into a wide vector. |
| 789 | Value *WideVec = concatenateVectors(Builder, TransposedVectors); |
| 790 | |
| 791 | // 4. Generate a store instruction for wide-vec. |
| 792 | StoreInst *SI = cast<StoreInst>(Inst); |
| 793 | Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), |
| 794 | SI->getAlignment()); |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 795 | |
| 796 | return true; |
| 797 | } |
| 798 | |
| 799 | // Lower interleaved load(s) into target specific instructions/ |
| 800 | // intrinsics. Lowering sequence varies depending on the vector-types, factor, |
| 801 | // number of shuffles and ISA. |
| 802 | // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 803 | bool X86TargetLowering::lowerInterleavedLoad( |
| 804 | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, |
| 805 | ArrayRef<unsigned> Indices, unsigned Factor) const { |
| 806 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| 807 | "Invalid interleave factor"); |
| 808 | assert(!Shuffles.empty() && "Empty shufflevector input"); |
| 809 | assert(Shuffles.size() == Indices.size() && |
| 810 | "Unmatched number of shufflevectors and indices"); |
| 811 | |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 812 | // Create an interleaved access group. |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 813 | IRBuilder<> Builder(LI); |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 814 | X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, |
| 815 | Builder); |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 816 | |
David L Kreitzer | 0e3ae30 | 2016-12-01 19:56:39 +0000 | [diff] [blame] | 817 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
David L Kreitzer | 01a057a | 2016-10-14 18:20:41 +0000 | [diff] [blame] | 818 | } |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 819 | |
| 820 | bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, |
| 821 | ShuffleVectorInst *SVI, |
| 822 | unsigned Factor) const { |
| 823 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| 824 | "Invalid interleave factor"); |
| 825 | |
Farhana Aleen | 9bd593e | 2017-06-22 23:56:31 +0000 | [diff] [blame] | 826 | assert(SVI->getType()->getVectorNumElements() % Factor == 0 && |
Farhana Aleen | 4b652a5 | 2017-06-22 22:59:04 +0000 | [diff] [blame] | 827 | "Invalid interleaved store"); |
| 828 | |
| 829 | // Holds the indices of SVI that correspond to the starting index of each |
| 830 | // interleaved shuffle. |
| 831 | SmallVector<unsigned, 4> Indices; |
| 832 | auto Mask = SVI->getShuffleMask(); |
| 833 | for (unsigned i = 0; i < Factor; i++) |
| 834 | Indices.push_back(Mask[i]); |
| 835 | |
| 836 | ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI); |
| 837 | |
| 838 | // Create an interleaved access group. |
| 839 | IRBuilder<> Builder(SI); |
| 840 | X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, |
| 841 | Builder); |
| 842 | |
| 843 | return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); |
| 844 | } |