Peter Collingbourne | e6909c8 | 2015-02-20 20:30:47 +0000 | [diff] [blame^] | 1 | //===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic. |
| 11 | // See http://llvm.org/docs/LangRef.html#bitsets for more information. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/IPO/LowerBitSets.h" |
| 16 | #include "llvm/Transforms/IPO.h" |
| 17 | #include "llvm/ADT/EquivalenceClasses.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/IR/Constant.h" |
| 20 | #include "llvm/IR/Constants.h" |
| 21 | #include "llvm/IR/GlobalVariable.h" |
| 22 | #include "llvm/IR/IRBuilder.h" |
| 23 | #include "llvm/IR/Instructions.h" |
| 24 | #include "llvm/IR/Intrinsics.h" |
| 25 | #include "llvm/IR/Module.h" |
| 26 | #include "llvm/IR/Operator.h" |
| 27 | #include "llvm/Pass.h" |
| 28 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | #define DEBUG_TYPE "lowerbitsets" |
| 33 | |
| 34 | STATISTIC(NumBitSetsCreated, "Number of bitsets created"); |
| 35 | STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered"); |
| 36 | STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets"); |
| 37 | |
| 38 | bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const { |
| 39 | if (Offset < ByteOffset) |
| 40 | return false; |
| 41 | |
| 42 | if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0) |
| 43 | return false; |
| 44 | |
| 45 | uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2; |
| 46 | if (BitOffset >= BitSize) |
| 47 | return false; |
| 48 | |
| 49 | return (Bits[BitOffset / 8] >> (BitOffset % 8)) & 1; |
| 50 | } |
| 51 | |
| 52 | bool BitSetInfo::containsValue( |
| 53 | const DataLayout *DL, |
| 54 | const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout, Value *V, |
| 55 | uint64_t COffset) const { |
| 56 | if (auto GV = dyn_cast<GlobalVariable>(V)) { |
| 57 | auto I = GlobalLayout.find(GV); |
| 58 | if (I == GlobalLayout.end()) |
| 59 | return false; |
| 60 | return containsGlobalOffset(I->second + COffset); |
| 61 | } |
| 62 | |
| 63 | if (auto GEP = dyn_cast<GEPOperator>(V)) { |
| 64 | APInt APOffset(DL->getPointerSizeInBits(0), 0); |
| 65 | bool Result = GEP->accumulateConstantOffset(*DL, APOffset); |
| 66 | if (!Result) |
| 67 | return false; |
| 68 | COffset += APOffset.getZExtValue(); |
| 69 | return containsValue(DL, GlobalLayout, GEP->getPointerOperand(), |
| 70 | COffset); |
| 71 | } |
| 72 | |
| 73 | if (auto Op = dyn_cast<Operator>(V)) { |
| 74 | if (Op->getOpcode() == Instruction::BitCast) |
| 75 | return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset); |
| 76 | |
| 77 | if (Op->getOpcode() == Instruction::Select) |
| 78 | return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) && |
| 79 | containsValue(DL, GlobalLayout, Op->getOperand(2), COffset); |
| 80 | } |
| 81 | |
| 82 | return false; |
| 83 | } |
| 84 | |
| 85 | BitSetInfo BitSetBuilder::build() { |
| 86 | if (Min > Max) |
| 87 | Min = 0; |
| 88 | |
| 89 | // Normalize each offset against the minimum observed offset, and compute |
| 90 | // the bitwise OR of each of the offsets. The number of trailing zeros |
| 91 | // in the mask gives us the log2 of the alignment of all offsets, which |
| 92 | // allows us to compress the bitset by only storing one bit per aligned |
| 93 | // address. |
| 94 | uint64_t Mask = 0; |
| 95 | for (uint64_t &Offset : Offsets) { |
| 96 | Offset -= Min; |
| 97 | Mask |= Offset; |
| 98 | } |
| 99 | |
| 100 | BitSetInfo BSI; |
| 101 | BSI.ByteOffset = Min; |
| 102 | |
| 103 | BSI.AlignLog2 = 0; |
| 104 | // FIXME: Can probably do something smarter if all offsets are 0. |
| 105 | if (Mask != 0) |
| 106 | BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined); |
| 107 | |
| 108 | // Build the compressed bitset while normalizing the offsets against the |
| 109 | // computed alignment. |
| 110 | BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1; |
| 111 | uint64_t ByteSize = (BSI.BitSize + 7) / 8; |
| 112 | BSI.Bits.resize(ByteSize); |
| 113 | for (uint64_t Offset : Offsets) { |
| 114 | Offset >>= BSI.AlignLog2; |
| 115 | BSI.Bits[Offset / 8] |= 1 << (Offset % 8); |
| 116 | } |
| 117 | |
| 118 | return BSI; |
| 119 | } |
| 120 | |
| 121 | namespace { |
| 122 | |
| 123 | struct LowerBitSets : public ModulePass { |
| 124 | static char ID; |
| 125 | LowerBitSets() : ModulePass(ID) { |
| 126 | initializeLowerBitSetsPass(*PassRegistry::getPassRegistry()); |
| 127 | } |
| 128 | |
| 129 | const DataLayout *DL; |
| 130 | IntegerType *Int1Ty; |
| 131 | IntegerType *Int32Ty; |
| 132 | Type *Int32PtrTy; |
| 133 | IntegerType *Int64Ty; |
| 134 | Type *IntPtrTy; |
| 135 | |
| 136 | // The llvm.bitsets named metadata. |
| 137 | NamedMDNode *BitSetNM; |
| 138 | |
| 139 | // Mapping from bitset mdstrings to the call sites that test them. |
| 140 | DenseMap<MDString *, std::vector<CallInst *>> BitSetTestCallSites; |
| 141 | |
| 142 | BitSetInfo |
| 143 | buildBitSet(MDString *BitSet, |
| 144 | const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout); |
| 145 | Value *createBitSetTest(IRBuilder<> &B, const BitSetInfo &BSI, |
| 146 | GlobalVariable *BitSetGlobal, Value *BitOffset); |
| 147 | void |
| 148 | lowerBitSetCall(CallInst *CI, const BitSetInfo &BSI, |
| 149 | GlobalVariable *BitSetGlobal, GlobalVariable *CombinedGlobal, |
| 150 | const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout); |
| 151 | void buildBitSetsFromGlobals(Module &M, |
| 152 | const std::vector<MDString *> &BitSets, |
| 153 | const std::vector<GlobalVariable *> &Globals); |
| 154 | bool buildBitSets(Module &M); |
| 155 | bool eraseBitSetMetadata(Module &M); |
| 156 | |
| 157 | bool doInitialization(Module &M) override; |
| 158 | bool runOnModule(Module &M) override; |
| 159 | }; |
| 160 | |
| 161 | } // namespace |
| 162 | |
| 163 | INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets", |
| 164 | "Lower bitset metadata", false, false) |
| 165 | INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets", |
| 166 | "Lower bitset metadata", false, false) |
| 167 | char LowerBitSets::ID = 0; |
| 168 | |
| 169 | ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; } |
| 170 | |
| 171 | bool LowerBitSets::doInitialization(Module &M) { |
| 172 | DL = M.getDataLayout(); |
| 173 | if (!DL) |
| 174 | report_fatal_error("Data layout required"); |
| 175 | |
| 176 | Int1Ty = Type::getInt1Ty(M.getContext()); |
| 177 | Int32Ty = Type::getInt32Ty(M.getContext()); |
| 178 | Int32PtrTy = PointerType::getUnqual(Int32Ty); |
| 179 | Int64Ty = Type::getInt64Ty(M.getContext()); |
| 180 | IntPtrTy = DL->getIntPtrType(M.getContext(), 0); |
| 181 | |
| 182 | BitSetNM = M.getNamedMetadata("llvm.bitsets"); |
| 183 | |
| 184 | BitSetTestCallSites.clear(); |
| 185 | |
| 186 | return false; |
| 187 | } |
| 188 | |
| 189 | /// Build a bit set for \param BitSet using the object layouts in |
| 190 | /// \param GlobalLayout. |
| 191 | BitSetInfo LowerBitSets::buildBitSet( |
| 192 | MDString *BitSet, |
| 193 | const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) { |
| 194 | BitSetBuilder BSB; |
| 195 | |
| 196 | // Compute the byte offset of each element of this bitset. |
| 197 | if (BitSetNM) { |
| 198 | for (MDNode *Op : BitSetNM->operands()) { |
| 199 | if (Op->getOperand(0) != BitSet || !Op->getOperand(1)) |
| 200 | continue; |
| 201 | auto OpGlobal = cast<GlobalVariable>( |
| 202 | cast<ConstantAsMetadata>(Op->getOperand(1))->getValue()); |
| 203 | uint64_t Offset = |
| 204 | cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2)) |
| 205 | ->getValue())->getZExtValue(); |
| 206 | |
| 207 | Offset += GlobalLayout.find(OpGlobal)->second; |
| 208 | |
| 209 | BSB.addOffset(Offset); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | return BSB.build(); |
| 214 | } |
| 215 | |
| 216 | /// Build a test that bit \param BitOffset mod sizeof(Bits)*8 is set in |
| 217 | /// \param Bits. This pattern matches to the bt instruction on x86. |
| 218 | static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits, |
| 219 | Value *BitOffset) { |
| 220 | auto BitsType = cast<IntegerType>(Bits->getType()); |
| 221 | unsigned BitWidth = BitsType->getBitWidth(); |
| 222 | |
| 223 | BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType); |
| 224 | Value *BitIndex = |
| 225 | B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1)); |
| 226 | Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex); |
| 227 | Value *MaskedBits = B.CreateAnd(Bits, BitMask); |
| 228 | return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0)); |
| 229 | } |
| 230 | |
| 231 | /// Build a test that bit \param BitOffset is set in \param BSI, where |
| 232 | /// \param BitSetGlobal is a global containing the bits in \param BSI. |
| 233 | Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, const BitSetInfo &BSI, |
| 234 | GlobalVariable *BitSetGlobal, |
| 235 | Value *BitOffset) { |
| 236 | if (BSI.Bits.size() <= 8) { |
| 237 | // If the bit set is sufficiently small, we can avoid a load by bit testing |
| 238 | // a constant. |
| 239 | IntegerType *BitsTy; |
| 240 | if (BSI.Bits.size() <= 4) |
| 241 | BitsTy = Int32Ty; |
| 242 | else |
| 243 | BitsTy = Int64Ty; |
| 244 | |
| 245 | uint64_t Bits = 0; |
| 246 | for (auto I = BSI.Bits.rbegin(), E = BSI.Bits.rend(); I != E; ++I) { |
| 247 | Bits <<= 8; |
| 248 | Bits |= *I; |
| 249 | } |
| 250 | Constant *BitsConst = ConstantInt::get(BitsTy, Bits); |
| 251 | return createMaskedBitTest(B, BitsConst, BitOffset); |
| 252 | } else { |
| 253 | // TODO: We might want to use the memory variant of the bt instruction |
| 254 | // with the previously computed bit offset at -Os. This instruction does |
| 255 | // exactly what we want but has been benchmarked as being slower than open |
| 256 | // coding the load+bt. |
| 257 | Value *BitSetGlobalOffset = |
| 258 | B.CreateLShr(BitOffset, ConstantInt::get(IntPtrTy, 5)); |
| 259 | Value *BitSetEntryAddr = B.CreateGEP( |
| 260 | ConstantExpr::getBitCast(BitSetGlobal, Int32PtrTy), BitSetGlobalOffset); |
| 261 | Value *BitSetEntry = B.CreateLoad(BitSetEntryAddr); |
| 262 | |
| 263 | return createMaskedBitTest(B, BitSetEntry, BitOffset); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /// Lower a llvm.bitset.test call to its implementation. |
| 268 | void LowerBitSets::lowerBitSetCall( |
| 269 | CallInst *CI, const BitSetInfo &BSI, GlobalVariable *BitSetGlobal, |
| 270 | GlobalVariable *CombinedGlobal, |
| 271 | const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) { |
| 272 | Value *Ptr = CI->getArgOperand(0); |
| 273 | |
| 274 | if (BSI.containsValue(DL, GlobalLayout, Ptr)) { |
| 275 | CI->replaceAllUsesWith( |
| 276 | ConstantInt::getTrue(BitSetGlobal->getParent()->getContext())); |
| 277 | CI->eraseFromParent(); |
| 278 | return; |
| 279 | } |
| 280 | |
| 281 | Constant *GlobalAsInt = ConstantExpr::getPtrToInt(CombinedGlobal, IntPtrTy); |
| 282 | Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd( |
| 283 | GlobalAsInt, ConstantInt::get(IntPtrTy, BSI.ByteOffset)); |
| 284 | |
| 285 | BasicBlock *InitialBB = CI->getParent(); |
| 286 | |
| 287 | IRBuilder<> B(CI); |
| 288 | |
| 289 | Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy); |
| 290 | |
| 291 | if (BSI.isSingleOffset()) { |
| 292 | Value *Eq = B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt); |
| 293 | CI->replaceAllUsesWith(Eq); |
| 294 | CI->eraseFromParent(); |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt); |
| 299 | |
| 300 | Value *BitOffset; |
| 301 | if (BSI.AlignLog2 == 0) { |
| 302 | BitOffset = PtrOffset; |
| 303 | } else { |
| 304 | // We need to check that the offset both falls within our range and is |
| 305 | // suitably aligned. We can check both properties at the same time by |
| 306 | // performing a right rotate by log2(alignment) followed by an integer |
| 307 | // comparison against the bitset size. The rotate will move the lower |
| 308 | // order bits that need to be zero into the higher order bits of the |
| 309 | // result, causing the comparison to fail if they are nonzero. The rotate |
| 310 | // also conveniently gives us a bit offset to use during the load from |
| 311 | // the bitset. |
| 312 | Value *OffsetSHR = |
| 313 | B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2)); |
| 314 | Value *OffsetSHL = B.CreateShl( |
| 315 | PtrOffset, ConstantInt::get(IntPtrTy, DL->getPointerSizeInBits(0) - |
| 316 | BSI.AlignLog2)); |
| 317 | BitOffset = B.CreateOr(OffsetSHR, OffsetSHL); |
| 318 | } |
| 319 | |
| 320 | Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize); |
| 321 | Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst); |
| 322 | |
| 323 | TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false); |
| 324 | IRBuilder<> ThenB(Term); |
| 325 | |
| 326 | // Now that we know that the offset is in range and aligned, load the |
| 327 | // appropriate bit from the bitset. |
| 328 | Value *Bit = createBitSetTest(ThenB, BSI, BitSetGlobal, BitOffset); |
| 329 | |
| 330 | // The value we want is 0 if we came directly from the initial block |
| 331 | // (having failed the range or alignment checks), or the loaded bit if |
| 332 | // we came from the block in which we loaded it. |
| 333 | B.SetInsertPoint(CI); |
| 334 | PHINode *P = B.CreatePHI(Int1Ty, 2); |
| 335 | P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB); |
| 336 | P->addIncoming(Bit, ThenB.GetInsertBlock()); |
| 337 | |
| 338 | CI->replaceAllUsesWith(P); |
| 339 | CI->eraseFromParent(); |
| 340 | } |
| 341 | |
| 342 | /// Given a disjoint set of bitsets and globals, layout the globals, build the |
| 343 | /// bit sets and lower the llvm.bitset.test calls. |
| 344 | void LowerBitSets::buildBitSetsFromGlobals( |
| 345 | Module &M, |
| 346 | const std::vector<MDString *> &BitSets, |
| 347 | const std::vector<GlobalVariable *> &Globals) { |
| 348 | // Build a new global with the combined contents of the referenced globals. |
| 349 | std::vector<Constant *> GlobalInits; |
| 350 | for (GlobalVariable *G : Globals) |
| 351 | GlobalInits.push_back(G->getInitializer()); |
| 352 | Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits); |
| 353 | auto CombinedGlobal = |
| 354 | new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true, |
| 355 | GlobalValue::PrivateLinkage, NewInit); |
| 356 | |
| 357 | const StructLayout *CombinedGlobalLayout = |
| 358 | DL->getStructLayout(cast<StructType>(NewInit->getType())); |
| 359 | |
| 360 | // Compute the offsets of the original globals within the new global. |
| 361 | DenseMap<GlobalVariable *, uint64_t> GlobalLayout; |
| 362 | for (unsigned I = 0; I != Globals.size(); ++I) |
| 363 | GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I); |
| 364 | |
| 365 | // For each bitset in this disjoint set... |
| 366 | for (MDString *BS : BitSets) { |
| 367 | // Build the bitset. |
| 368 | BitSetInfo BSI = buildBitSet(BS, GlobalLayout); |
| 369 | |
| 370 | // Create a global in which to store it. |
| 371 | ++NumBitSetsCreated; |
| 372 | Constant *BitsConst = ConstantDataArray::get(M.getContext(), BSI.Bits); |
| 373 | auto BitSetGlobal = new GlobalVariable( |
| 374 | M, BitsConst->getType(), /*isConstant=*/true, |
| 375 | GlobalValue::PrivateLinkage, BitsConst, BS->getString() + ".bits"); |
| 376 | |
| 377 | // Lower each call to llvm.bitset.test for this bitset. |
| 378 | for (CallInst *CI : BitSetTestCallSites[BS]) { |
| 379 | ++NumBitSetCallsLowered; |
| 380 | lowerBitSetCall(CI, BSI, BitSetGlobal, CombinedGlobal, GlobalLayout); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // Build aliases pointing to offsets into the combined global for each |
| 385 | // global from which we built the combined global, and replace references |
| 386 | // to the original globals with references to the aliases. |
| 387 | for (unsigned I = 0; I != Globals.size(); ++I) { |
| 388 | Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0), |
| 389 | ConstantInt::get(Int32Ty, I)}; |
| 390 | Constant *CombinedGlobalElemPtr = |
| 391 | ConstantExpr::getGetElementPtr(CombinedGlobal, CombinedGlobalIdxs); |
| 392 | GlobalAlias *GAlias = GlobalAlias::create( |
| 393 | Globals[I]->getType()->getElementType(), |
| 394 | Globals[I]->getType()->getAddressSpace(), Globals[I]->getLinkage(), |
| 395 | "", CombinedGlobalElemPtr, &M); |
| 396 | GAlias->takeName(Globals[I]); |
| 397 | Globals[I]->replaceAllUsesWith(GAlias); |
| 398 | Globals[I]->eraseFromParent(); |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | /// Lower all bit sets in this module. |
| 403 | bool LowerBitSets::buildBitSets(Module &M) { |
| 404 | Function *BitSetTestFunc = |
| 405 | M.getFunction(Intrinsic::getName(Intrinsic::bitset_test)); |
| 406 | if (!BitSetTestFunc) |
| 407 | return false; |
| 408 | |
| 409 | // Equivalence class set containing bitsets and the globals they reference. |
| 410 | // This is used to partition the set of bitsets in the module into disjoint |
| 411 | // sets. |
| 412 | typedef EquivalenceClasses<PointerUnion<GlobalVariable *, MDString *>> |
| 413 | GlobalClassesTy; |
| 414 | GlobalClassesTy GlobalClasses; |
| 415 | |
| 416 | for (const Use &U : BitSetTestFunc->uses()) { |
| 417 | auto CI = cast<CallInst>(U.getUser()); |
| 418 | |
| 419 | auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1)); |
| 420 | if (!BitSetMDVal || !isa<MDString>(BitSetMDVal->getMetadata())) |
| 421 | report_fatal_error( |
| 422 | "Second argument of llvm.bitset.test must be metadata string"); |
| 423 | auto BitSet = cast<MDString>(BitSetMDVal->getMetadata()); |
| 424 | |
| 425 | // Add the call site to the list of call sites for this bit set. We also use |
| 426 | // BitSetTestCallSites to keep track of whether we have seen this bit set |
| 427 | // before. If we have, we don't need to re-add the referenced globals to the |
| 428 | // equivalence class. |
| 429 | std::pair<DenseMap<MDString *, std::vector<CallInst *>>::iterator, |
| 430 | bool> Ins = |
| 431 | BitSetTestCallSites.insert( |
| 432 | std::make_pair(BitSet, std::vector<CallInst *>())); |
| 433 | Ins.first->second.push_back(CI); |
| 434 | if (!Ins.second) |
| 435 | continue; |
| 436 | |
| 437 | // Add the bitset to the equivalence class. |
| 438 | GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet); |
| 439 | GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI); |
| 440 | |
| 441 | if (!BitSetNM) |
| 442 | continue; |
| 443 | |
| 444 | // Verify the bitset metadata and add the referenced globals to the bitset's |
| 445 | // equivalence class. |
| 446 | for (MDNode *Op : BitSetNM->operands()) { |
| 447 | if (Op->getNumOperands() != 3) |
| 448 | report_fatal_error( |
| 449 | "All operands of llvm.bitsets metadata must have 3 elements"); |
| 450 | |
| 451 | if (Op->getOperand(0) != BitSet || !Op->getOperand(1)) |
| 452 | continue; |
| 453 | |
| 454 | auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1)); |
| 455 | if (!OpConstMD) |
| 456 | report_fatal_error("Bit set element must be a constant"); |
| 457 | auto OpGlobal = dyn_cast<GlobalVariable>(OpConstMD->getValue()); |
| 458 | if (!OpGlobal) |
| 459 | report_fatal_error("Bit set element must refer to global"); |
| 460 | |
| 461 | auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2)); |
| 462 | if (!OffsetConstMD) |
| 463 | report_fatal_error("Bit set element offset must be a constant"); |
| 464 | auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue()); |
| 465 | if (!OffsetInt) |
| 466 | report_fatal_error( |
| 467 | "Bit set element offset must be an integer constant"); |
| 468 | |
| 469 | CurSet = GlobalClasses.unionSets( |
| 470 | CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal))); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | if (GlobalClasses.empty()) |
| 475 | return false; |
| 476 | |
| 477 | // For each disjoint set we found... |
| 478 | for (GlobalClassesTy::iterator I = GlobalClasses.begin(), |
| 479 | E = GlobalClasses.end(); |
| 480 | I != E; ++I) { |
| 481 | if (!I->isLeader()) continue; |
| 482 | |
| 483 | ++NumBitSetDisjointSets; |
| 484 | |
| 485 | // Build the list of bitsets and referenced globals in this disjoint set. |
| 486 | std::vector<MDString *> BitSets; |
| 487 | std::vector<GlobalVariable *> Globals; |
| 488 | for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I); |
| 489 | MI != GlobalClasses.member_end(); ++MI) { |
| 490 | if ((*MI).is<MDString *>()) |
| 491 | BitSets.push_back(MI->get<MDString *>()); |
| 492 | else |
| 493 | Globals.push_back(MI->get<GlobalVariable *>()); |
| 494 | } |
| 495 | |
| 496 | // Order bitsets and globals by name for determinism. TODO: We may later |
| 497 | // want to use a more sophisticated ordering that lays out globals so as to |
| 498 | // minimize the sizes of the bitsets. |
| 499 | std::sort(BitSets.begin(), BitSets.end(), [](MDString *S1, MDString *S2) { |
| 500 | return S1->getString() < S2->getString(); |
| 501 | }); |
| 502 | std::sort(Globals.begin(), Globals.end(), |
| 503 | [](GlobalVariable *GV1, GlobalVariable *GV2) { |
| 504 | return GV1->getName() < GV2->getName(); |
| 505 | }); |
| 506 | |
| 507 | // Build the bitsets from this disjoint set. |
| 508 | buildBitSetsFromGlobals(M, BitSets, Globals); |
| 509 | } |
| 510 | |
| 511 | return true; |
| 512 | } |
| 513 | |
| 514 | bool LowerBitSets::eraseBitSetMetadata(Module &M) { |
| 515 | if (!BitSetNM) |
| 516 | return false; |
| 517 | |
| 518 | M.eraseNamedMetadata(BitSetNM); |
| 519 | return true; |
| 520 | } |
| 521 | |
| 522 | bool LowerBitSets::runOnModule(Module &M) { |
| 523 | bool Changed = buildBitSets(M); |
| 524 | Changed |= eraseBitSetMetadata(M); |
| 525 | return Changed; |
| 526 | } |