NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 1 | //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Define several functions to decode x86 specific shuffle semantics into a |
| 11 | // generic vector mask. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "X86ShuffleDecode.h" |
| 16 | #include "llvm/IR/Constants.h" |
| 17 | #include "llvm/CodeGen/MachineValueType.h" |
| 18 | |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | // Vector Mask Decoding |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
| 25 | void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 26 | // Defaults the copying the dest value. |
| 27 | ShuffleMask.push_back(0); |
| 28 | ShuffleMask.push_back(1); |
| 29 | ShuffleMask.push_back(2); |
| 30 | ShuffleMask.push_back(3); |
| 31 | |
| 32 | // Decode the immediate. |
| 33 | unsigned ZMask = Imm & 15; |
| 34 | unsigned CountD = (Imm >> 4) & 3; |
| 35 | unsigned CountS = (Imm >> 6) & 3; |
| 36 | |
| 37 | // CountS selects which input element to use. |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 38 | unsigned InVal = 4 + CountS; |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 39 | // CountD specifies which element of destination to update. |
| 40 | ShuffleMask[CountD] = InVal; |
| 41 | // ZMask zaps values, potentially overriding the CountD elt. |
| 42 | if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; |
| 43 | if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; |
| 44 | if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; |
| 45 | if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; |
| 46 | } |
| 47 | |
| 48 | // <3,1> or <6,7,2,3> |
| 49 | void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 50 | for (unsigned i = NElts / 2; i != NElts; ++i) |
| 51 | ShuffleMask.push_back(NElts + i); |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 52 | |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 53 | for (unsigned i = NElts / 2; i != NElts; ++i) |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 54 | ShuffleMask.push_back(i); |
| 55 | } |
| 56 | |
| 57 | // <0,2> or <0,1,4,5> |
| 58 | void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 59 | for (unsigned i = 0; i != NElts / 2; ++i) |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 60 | ShuffleMask.push_back(i); |
| 61 | |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 62 | for (unsigned i = 0; i != NElts / 2; ++i) |
| 63 | ShuffleMask.push_back(NElts + i); |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 64 | } |
| 65 | |
| 66 | void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 67 | unsigned NumElts = VT.getVectorNumElements(); |
| 68 | for (int i = 0, e = NumElts / 2; i < e; ++i) { |
| 69 | ShuffleMask.push_back(2 * i); |
| 70 | ShuffleMask.push_back(2 * i); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 75 | unsigned NumElts = VT.getVectorNumElements(); |
| 76 | for (int i = 0, e = NumElts / 2; i < e; ++i) { |
| 77 | ShuffleMask.push_back(2 * i + 1); |
| 78 | ShuffleMask.push_back(2 * i + 1); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 83 | unsigned VectorSizeInBits = VT.getSizeInBits(); |
| 84 | unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); |
| 85 | unsigned NumElts = VT.getVectorNumElements(); |
| 86 | unsigned NumLanes = VectorSizeInBits / 128; |
| 87 | unsigned NumLaneElts = NumElts / NumLanes; |
| 88 | unsigned NumLaneSubElts = 64 / ScalarSizeInBits; |
| 89 | |
| 90 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| 91 | for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts) |
| 92 | for (unsigned s = 0; s != NumLaneSubElts; s++) |
| 93 | ShuffleMask.push_back(l + s); |
| 94 | } |
| 95 | |
| 96 | void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 97 | unsigned VectorSizeInBits = VT.getSizeInBits(); |
| 98 | unsigned NumElts = VectorSizeInBits / 8; |
| 99 | unsigned NumLanes = VectorSizeInBits / 128; |
| 100 | unsigned NumLaneElts = NumElts / NumLanes; |
| 101 | |
| 102 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| 103 | for (unsigned i = 0; i < NumLaneElts; ++i) { |
| 104 | int M = SM_SentinelZero; |
| 105 | if (i >= Imm) M = i - Imm + l; |
| 106 | ShuffleMask.push_back(M); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 111 | unsigned VectorSizeInBits = VT.getSizeInBits(); |
| 112 | unsigned NumElts = VectorSizeInBits / 8; |
| 113 | unsigned NumLanes = VectorSizeInBits / 128; |
| 114 | unsigned NumLaneElts = NumElts / NumLanes; |
| 115 | |
| 116 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
| 117 | for (unsigned i = 0; i < NumLaneElts; ++i) { |
| 118 | unsigned Base = i + Imm; |
| 119 | int M = Base + l; |
| 120 | if (Base >= NumLaneElts) M = SM_SentinelZero; |
| 121 | ShuffleMask.push_back(M); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | void DecodePALIGNRMask(MVT VT, unsigned Imm, |
| 126 | SmallVectorImpl<int> &ShuffleMask) { |
| 127 | unsigned NumElts = VT.getVectorNumElements(); |
| 128 | unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); |
| 129 | |
| 130 | unsigned NumLanes = VT.getSizeInBits() / 128; |
| 131 | unsigned NumLaneElts = NumElts / NumLanes; |
| 132 | |
| 133 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| 134 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
| 135 | unsigned Base = i + Offset; |
| 136 | // if i+offset is out of this lane then we actually need the other source |
| 137 | if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; |
| 138 | ShuffleMask.push_back(Base + l); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*. |
| 144 | /// VT indicates the type of the vector allowing it to handle different |
| 145 | /// datatypes and vector widths. |
| 146 | void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 147 | unsigned NumElts = VT.getVectorNumElements(); |
| 148 | |
| 149 | unsigned NumLanes = VT.getSizeInBits() / 128; |
| 150 | unsigned NumLaneElts = NumElts / NumLanes; |
| 151 | |
| 152 | unsigned NewImm = Imm; |
| 153 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| 154 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
| 155 | ShuffleMask.push_back(NewImm % NumLaneElts + l); |
| 156 | NewImm /= NumLaneElts; |
| 157 | } |
| 158 | if (NumLaneElts == 4) NewImm = Imm; // reload imm |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void DecodePSHUFHWMask(MVT VT, unsigned Imm, |
| 163 | SmallVectorImpl<int> &ShuffleMask) { |
| 164 | unsigned NumElts = VT.getVectorNumElements(); |
| 165 | |
| 166 | for (unsigned l = 0; l != NumElts; l += 8) { |
| 167 | unsigned NewImm = Imm; |
| 168 | for (unsigned i = 0, e = 4; i != e; ++i) { |
| 169 | ShuffleMask.push_back(l + i); |
| 170 | } |
| 171 | for (unsigned i = 4, e = 8; i != e; ++i) { |
| 172 | ShuffleMask.push_back(l + 4 + (NewImm & 3)); |
| 173 | NewImm >>= 2; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | void DecodePSHUFLWMask(MVT VT, unsigned Imm, |
| 179 | SmallVectorImpl<int> &ShuffleMask) { |
| 180 | unsigned NumElts = VT.getVectorNumElements(); |
| 181 | |
| 182 | for (unsigned l = 0; l != NumElts; l += 8) { |
| 183 | unsigned NewImm = Imm; |
| 184 | for (unsigned i = 0, e = 4; i != e; ++i) { |
| 185 | ShuffleMask.push_back(l + (NewImm & 3)); |
| 186 | NewImm >>= 2; |
| 187 | } |
| 188 | for (unsigned i = 4, e = 8; i != e; ++i) { |
| 189 | ShuffleMask.push_back(l + i); |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates |
| 195 | /// the type of the vector allowing it to handle different datatypes and vector |
| 196 | /// widths. |
| 197 | void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 198 | unsigned NumElts = VT.getVectorNumElements(); |
| 199 | |
| 200 | unsigned NumLanes = VT.getSizeInBits() / 128; |
| 201 | unsigned NumLaneElts = NumElts / NumLanes; |
| 202 | |
| 203 | unsigned NewImm = Imm; |
| 204 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| 205 | // each half of a lane comes from different source |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 206 | for (unsigned s = 0; s != NumElts * 2; s += NumElts) { |
| 207 | for (unsigned i = 0; i != NumLaneElts / 2; ++i) { |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 208 | ShuffleMask.push_back(NewImm % NumLaneElts + s + l); |
| 209 | NewImm /= NumLaneElts; |
| 210 | } |
| 211 | } |
| 212 | if (NumLaneElts == 4) NewImm = Imm; // reload imm |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd |
| 217 | /// and punpckh*. VT indicates the type of the vector allowing it to handle |
| 218 | /// different datatypes and vector widths. |
| 219 | void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 220 | unsigned NumElts = VT.getVectorNumElements(); |
| 221 | |
| 222 | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| 223 | // independently on 128-bit lanes. |
| 224 | unsigned NumLanes = VT.getSizeInBits() / 128; |
| 225 | if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
| 226 | unsigned NumLaneElts = NumElts / NumLanes; |
| 227 | |
| 228 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 229 | for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { |
| 230 | ShuffleMask.push_back(i); // Reads from dest/src1 |
| 231 | ShuffleMask.push_back(i + NumElts); // Reads from src/src2 |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd |
| 237 | /// and punpckl*. VT indicates the type of the vector allowing it to handle |
| 238 | /// different datatypes and vector widths. |
| 239 | void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 240 | unsigned NumElts = VT.getVectorNumElements(); |
| 241 | |
| 242 | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| 243 | // independently on 128-bit lanes. |
| 244 | unsigned NumLanes = VT.getSizeInBits() / 128; |
| 245 | if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
| 246 | unsigned NumLaneElts = NumElts / NumLanes; |
| 247 | |
| 248 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 249 | for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { |
| 250 | ShuffleMask.push_back(i); // Reads from dest/src1 |
| 251 | ShuffleMask.push_back(i + NumElts); // Reads from src/src2 |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 252 | } |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | void DecodeVPERM2X128Mask(MVT VT, unsigned Imm, |
| 257 | SmallVectorImpl<int> &ShuffleMask) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 258 | unsigned HalfSize = VT.getVectorNumElements() / 2; |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 259 | |
| 260 | for (unsigned l = 0; l != 2; ++l) { |
Simon Pilgrim | 40343e6 | 2015-07-06 22:46:46 +0000 | [diff] [blame] | 261 | unsigned HalfMask = Imm >> (l * 4); |
| 262 | unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 263 | for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) |
Denis Protivensky | b612902 | 2015-07-07 07:48:48 +0000 | [diff] [blame] | 264 | ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i); |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 265 | } |
| 266 | } |
| 267 | |
| 268 | void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) { |
| 269 | Type *MaskTy = C->getType(); |
| 270 | // It is not an error for the PSHUFB mask to not be a vector of i8 because the |
| 271 | // constant pool uniques constants by their bit representation. |
| 272 | // e.g. the following take up the same space in the constant pool: |
| 273 | // i128 -170141183420855150465331762880109871104 |
| 274 | // |
| 275 | // <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160> |
| 276 | // |
| 277 | // <4 x i32> <i32 -2147483648, i32 -2147483648, |
| 278 | // i32 -2147483648, i32 -2147483648> |
| 279 | |
| 280 | unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits(); |
| 281 | |
| 282 | if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512. |
| 283 | return; |
| 284 | |
| 285 | // This is a straightforward byte vector. |
| 286 | if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) { |
| 287 | int NumElements = MaskTy->getVectorNumElements(); |
| 288 | ShuffleMask.reserve(NumElements); |
| 289 | |
| 290 | for (int i = 0; i < NumElements; ++i) { |
| 291 | // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte |
| 292 | // lane of the vector we're inside. |
| 293 | int Base = i < 16 ? 0 : 16; |
| 294 | Constant *COp = C->getAggregateElement(i); |
| 295 | if (!COp) { |
| 296 | ShuffleMask.clear(); |
| 297 | return; |
| 298 | } else if (isa<UndefValue>(COp)) { |
| 299 | ShuffleMask.push_back(SM_SentinelUndef); |
| 300 | continue; |
| 301 | } |
| 302 | uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); |
| 303 | // If the high bit (7) of the byte is set, the element is zeroed. |
| 304 | if (Element & (1 << 7)) |
| 305 | ShuffleMask.push_back(SM_SentinelZero); |
| 306 | else { |
| 307 | // Only the least significant 4 bits of the byte are used. |
| 308 | int Index = Base + (Element & 0xf); |
| 309 | ShuffleMask.push_back(Index); |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | // TODO: Handle funny-looking vectors too. |
| 314 | } |
| 315 | |
| 316 | void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, |
| 317 | SmallVectorImpl<int> &ShuffleMask) { |
| 318 | for (int i = 0, e = RawMask.size(); i < e; ++i) { |
| 319 | uint64_t M = RawMask[i]; |
| 320 | if (M == (uint64_t)SM_SentinelUndef) { |
| 321 | ShuffleMask.push_back(M); |
| 322 | continue; |
| 323 | } |
| 324 | // For AVX vectors with 32 bytes the base of the shuffle is the half of |
| 325 | // the vector we're inside. |
| 326 | int Base = i < 16 ? 0 : 16; |
| 327 | // If the high bit (7) of the byte is set, the element is zeroed. |
| 328 | if (M & (1 << 7)) |
| 329 | ShuffleMask.push_back(SM_SentinelZero); |
| 330 | else { |
| 331 | // Only the least significant 4 bits of the byte are used. |
| 332 | int Index = Base + (M & 0xf); |
| 333 | ShuffleMask.push_back(Index); |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 339 | int ElementBits = VT.getScalarSizeInBits(); |
| 340 | int NumElements = VT.getVectorNumElements(); |
| 341 | for (int i = 0; i < NumElements; ++i) { |
| 342 | // If there are more than 8 elements in the vector, then any immediate blend |
| 343 | // mask applies to each 128-bit lane. There can never be more than |
| 344 | // 8 elements in a 128-bit lane with an immediate blend. |
| 345 | int Bit = NumElements > 8 ? i % (128 / ElementBits) : i; |
| 346 | assert(Bit < 8 && |
| 347 | "Immediate blends only operate over 8 elements at a time!"); |
| 348 | ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. |
| 353 | /// No VT provided since it only works on 256-bit, 4 element vectors. |
| 354 | void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
| 355 | for (unsigned i = 0; i != 4; ++i) { |
NAKAMURA Takumi | 5582a6a | 2015-05-25 01:43:34 +0000 | [diff] [blame] | 356 | ShuffleMask.push_back((Imm >> (2 * i)) & 3); |
NAKAMURA Takumi | fb3bd71 | 2015-05-25 01:43:23 +0000 | [diff] [blame] | 357 | } |
| 358 | } |
| 359 | |
| 360 | void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) { |
| 361 | Type *MaskTy = C->getType(); |
| 362 | assert(MaskTy->isVectorTy() && "Expected a vector constant mask!"); |
| 363 | assert(MaskTy->getVectorElementType()->isIntegerTy() && |
| 364 | "Expected integer constant mask elements!"); |
| 365 | int ElementBits = MaskTy->getScalarSizeInBits(); |
| 366 | int NumElements = MaskTy->getVectorNumElements(); |
| 367 | assert((NumElements == 2 || NumElements == 4 || NumElements == 8) && |
| 368 | "Unexpected number of vector elements."); |
| 369 | ShuffleMask.reserve(NumElements); |
| 370 | if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { |
| 371 | assert((unsigned)NumElements == CDS->getNumElements() && |
| 372 | "Constant mask has a different number of elements!"); |
| 373 | |
| 374 | for (int i = 0; i < NumElements; ++i) { |
| 375 | int Base = (i * ElementBits / 128) * (128 / ElementBits); |
| 376 | uint64_t Element = CDS->getElementAsInteger(i); |
| 377 | // Only the least significant 2 bits of the integer are used. |
| 378 | int Index = Base + (Element & 0x3); |
| 379 | ShuffleMask.push_back(Index); |
| 380 | } |
| 381 | } else if (auto *CV = dyn_cast<ConstantVector>(C)) { |
| 382 | assert((unsigned)NumElements == C->getNumOperands() && |
| 383 | "Constant mask has a different number of elements!"); |
| 384 | |
| 385 | for (int i = 0; i < NumElements; ++i) { |
| 386 | int Base = (i * ElementBits / 128) * (128 / ElementBits); |
| 387 | Constant *COp = CV->getOperand(i); |
| 388 | if (isa<UndefValue>(COp)) { |
| 389 | ShuffleMask.push_back(SM_SentinelUndef); |
| 390 | continue; |
| 391 | } |
| 392 | uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); |
| 393 | // Only the least significant 2 bits of the integer are used. |
| 394 | int Index = Base + (Element & 0x3); |
| 395 | ShuffleMask.push_back(Index); |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) { |
| 401 | unsigned NumDstElts = DstVT.getVectorNumElements(); |
| 402 | unsigned SrcScalarBits = SrcVT.getScalarSizeInBits(); |
| 403 | unsigned DstScalarBits = DstVT.getScalarSizeInBits(); |
| 404 | unsigned Scale = DstScalarBits / SrcScalarBits; |
| 405 | assert(SrcScalarBits < DstScalarBits && |
| 406 | "Expected zero extension mask to increase scalar size"); |
| 407 | assert(SrcVT.getVectorNumElements() >= NumDstElts && |
| 408 | "Too many zero extension lanes"); |
| 409 | |
| 410 | for (unsigned i = 0; i != NumDstElts; i++) { |
| 411 | Mask.push_back(i); |
| 412 | for (unsigned j = 1; j != Scale; j++) |
| 413 | Mask.push_back(SM_SentinelZero); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 418 | unsigned NumElts = VT.getVectorNumElements(); |
| 419 | ShuffleMask.push_back(0); |
| 420 | for (unsigned i = 1; i < NumElts; i++) |
| 421 | ShuffleMask.push_back(SM_SentinelZero); |
| 422 | } |
| 423 | |
| 424 | void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) { |
| 425 | // First element comes from the first element of second source. |
| 426 | // Remaining elements: Load zero extends / Move copies from first source. |
| 427 | unsigned NumElts = VT.getVectorNumElements(); |
| 428 | Mask.push_back(NumElts); |
| 429 | for (unsigned i = 1; i < NumElts; i++) |
| 430 | Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); |
| 431 | } |
Simon Pilgrim | d85cae3 | 2015-07-06 20:46:41 +0000 | [diff] [blame] | 432 | |
| 433 | void DecodeEXTRQIMask(int Len, int Idx, |
| 434 | SmallVectorImpl<int> &ShuffleMask) { |
| 435 | // Only the bottom 6 bits are valid for each immediate. |
| 436 | Len &= 0x3F; |
| 437 | Idx &= 0x3F; |
| 438 | |
| 439 | // We can only decode this bit extraction instruction as a shuffle if both the |
| 440 | // length and index work with whole bytes. |
| 441 | if (0 != (Len % 8) || 0 != (Idx % 8)) |
| 442 | return; |
| 443 | |
| 444 | // A length of zero is equivalent to a bit length of 64. |
| 445 | if (Len == 0) |
| 446 | Len = 64; |
| 447 | |
| 448 | // If the length + index exceeds the bottom 64 bits the result is undefined. |
| 449 | if ((Len + Idx) > 64) { |
| 450 | ShuffleMask.append(16, SM_SentinelUndef); |
| 451 | return; |
| 452 | } |
| 453 | |
| 454 | // Convert index and index to work with bytes. |
| 455 | Len /= 8; |
| 456 | Idx /= 8; |
| 457 | |
| 458 | // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes |
| 459 | // of the lower 64-bits. The upper 64-bits are undefined. |
| 460 | for (int i = 0; i != Len; ++i) |
| 461 | ShuffleMask.push_back(i + Idx); |
| 462 | for (int i = Len; i != 8; ++i) |
| 463 | ShuffleMask.push_back(SM_SentinelZero); |
| 464 | for (int i = 8; i != 16; ++i) |
| 465 | ShuffleMask.push_back(SM_SentinelUndef); |
| 466 | } |
| 467 | |
| 468 | void DecodeINSERTQIMask(int Len, int Idx, |
| 469 | SmallVectorImpl<int> &ShuffleMask) { |
| 470 | // Only the bottom 6 bits are valid for each immediate. |
| 471 | Len &= 0x3F; |
| 472 | Idx &= 0x3F; |
| 473 | |
| 474 | // We can only decode this bit insertion instruction as a shuffle if both the |
| 475 | // length and index work with whole bytes. |
| 476 | if (0 != (Len % 8) || 0 != (Idx % 8)) |
| 477 | return; |
| 478 | |
| 479 | // A length of zero is equivalent to a bit length of 64. |
| 480 | if (Len == 0) |
| 481 | Len = 64; |
| 482 | |
| 483 | // If the length + index exceeds the bottom 64 bits the result is undefined. |
| 484 | if ((Len + Idx) > 64) { |
| 485 | ShuffleMask.append(16, SM_SentinelUndef); |
| 486 | return; |
| 487 | } |
| 488 | |
| 489 | // Convert index and index to work with bytes. |
| 490 | Len /= 8; |
| 491 | Idx /= 8; |
| 492 | |
| 493 | // INSERTQ: Extract lowest Len bytes from lower half of second source and |
| 494 | // insert over first source starting at Idx byte. The upper 64-bits are |
| 495 | // undefined. |
| 496 | for (int i = 0; i != Idx; ++i) |
| 497 | ShuffleMask.push_back(i); |
| 498 | for (int i = 0; i != Len; ++i) |
| 499 | ShuffleMask.push_back(i + 16); |
| 500 | for (int i = Idx + Len; i != 8; ++i) |
| 501 | ShuffleMask.push_back(i); |
| 502 | for (int i = 8; i != 16; ++i) |
| 503 | ShuffleMask.push_back(SM_SentinelUndef); |
| 504 | } |
| 505 | |
Elena Demikhovsky | e88038f | 2015-09-08 06:38:21 +0000 | [diff] [blame^] | 506 | void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, |
| 507 | SmallVectorImpl<int> &ShuffleMask) { |
| 508 | for (int i = 0, e = RawMask.size(); i < e; ++i) { |
| 509 | uint64_t M = RawMask[i]; |
| 510 | ShuffleMask.push_back((int)M); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, |
| 515 | SmallVectorImpl<int> &ShuffleMask) { |
| 516 | for (int i = 0, e = RawMask.size(); i < e; ++i) { |
| 517 | uint64_t M = RawMask[i]; |
| 518 | ShuffleMask.push_back((int)M); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | void DecodeVPERMVMask(const Constant *C, MVT VT, |
| 523 | SmallVectorImpl<int> &ShuffleMask) { |
| 524 | Type *MaskTy = C->getType(); |
| 525 | if (MaskTy->isVectorTy()) { |
| 526 | unsigned NumElements = MaskTy->getVectorNumElements(); |
| 527 | if (NumElements == VT.getVectorNumElements()) { |
| 528 | for (unsigned i = 0; i < NumElements; ++i) { |
| 529 | Constant *COp = C->getAggregateElement(i); |
| 530 | if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) { |
| 531 | ShuffleMask.clear(); |
| 532 | return; |
| 533 | } |
| 534 | if (isa<UndefValue>(COp)) |
| 535 | ShuffleMask.push_back(SM_SentinelUndef); |
| 536 | else { |
| 537 | uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); |
| 538 | Element &= (1 << NumElements) - 1; |
| 539 | ShuffleMask.push_back(Element); |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | return; |
| 544 | } |
| 545 | // Scalar value; just broadcast it |
| 546 | if (!isa<ConstantInt>(C)) |
| 547 | return; |
| 548 | uint64_t Element = cast<ConstantInt>(C)->getZExtValue(); |
| 549 | int NumElements = VT.getVectorNumElements(); |
| 550 | Element &= (1 << NumElements) - 1; |
| 551 | for (int i = 0; i < NumElements; ++i) |
| 552 | ShuffleMask.push_back(Element); |
| 553 | } |
| 554 | |
| 555 | void DecodeVPERMV3Mask(const Constant *C, MVT VT, |
| 556 | SmallVectorImpl<int> &ShuffleMask) { |
| 557 | Type *MaskTy = C->getType(); |
| 558 | unsigned NumElements = MaskTy->getVectorNumElements(); |
| 559 | if (NumElements == VT.getVectorNumElements()) { |
| 560 | for (unsigned i = 0; i < NumElements; ++i) { |
| 561 | Constant *COp = C->getAggregateElement(i); |
| 562 | if (!COp) { |
| 563 | ShuffleMask.clear(); |
| 564 | return; |
| 565 | } |
| 566 | if (isa<UndefValue>(COp)) |
| 567 | ShuffleMask.push_back(SM_SentinelUndef); |
| 568 | else { |
| 569 | uint64_t Element = cast<ConstantInt>(COp)->getZExtValue(); |
| 570 | Element &= (1 << NumElements*2) - 1; |
| 571 | ShuffleMask.push_back(Element); |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | } |
Alexander Kornienko | f00654e | 2015-06-23 09:49:53 +0000 | [diff] [blame] | 576 | } // llvm namespace |