blob: 04deb434cec24bdec55f31881e2ecc710200e41a [file] [log] [blame]
Anna Thomas740f5292017-07-05 01:16:29 +00001//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Run a sanity check on the IR to ensure that Safepoints - if they've been
11// inserted - were inserted correctly. In particular, look for use of
12// non-relocated values after a safepoint. It's primary use is to check the
13// correctness of safepoint insertion immediately after insertion, but it can
14// also be used to verify that later transforms have not found a way to break
15// safepoint semenatics.
16//
17// In its current form, this verify checks a property which is sufficient, but
18// not neccessary for correctness. There are some cases where an unrelocated
19// pointer can be used after the safepoint. Consider this example:
20//
21// a = ...
22// b = ...
23// (a',b') = safepoint(a,b)
24// c = cmp eq a b
25// br c, ..., ....
26//
27// Because it is valid to reorder 'c' above the safepoint, this is legal. In
28// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
Anna Thomascace0532017-07-07 13:02:29 +000029// idioms like this. The verifier knows about these cases and avoids reporting
30// false positives.
Anna Thomas740f5292017-07-05 01:16:29 +000031//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/ADT/DenseSet.h"
Anna Thomas7df1a922017-12-05 21:39:37 +000035#include "llvm/ADT/PostOrderIterator.h"
Anna Thomas740f5292017-07-05 01:16:29 +000036#include "llvm/ADT/SetOperations.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Value.h"
46#include "llvm/IR/SafepointIRVerifier.h"
47#include "llvm/IR/Statepoint.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51
52#define DEBUG_TYPE "safepoint-ir-verifier"
53
54using namespace llvm;
55
56/// This option is used for writing test cases. Instead of crashing the program
57/// when verification fails, report a message to the console (for FileCheck
58/// usage) and continue execution as if nothing happened.
59static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
60 cl::init(false));
61
62static void Verify(const Function &F, const DominatorTree &DT);
63
Benjamin Kramer49a49fe2017-08-20 13:03:48 +000064namespace {
Anna Thomas740f5292017-07-05 01:16:29 +000065struct SafepointIRVerifier : public FunctionPass {
66 static char ID; // Pass identification, replacement for typeid
67 DominatorTree DT;
68 SafepointIRVerifier() : FunctionPass(ID) {
69 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
70 }
71
72 bool runOnFunction(Function &F) override {
73 DT.recalculate(F);
74 Verify(F, DT);
75 return false; // no modifications
76 }
77
78 void getAnalysisUsage(AnalysisUsage &AU) const override {
79 AU.setPreservesAll();
80 }
81
82 StringRef getPassName() const override { return "safepoint verifier"; }
83};
Benjamin Kramer49a49fe2017-08-20 13:03:48 +000084} // namespace
Anna Thomas740f5292017-07-05 01:16:29 +000085
86void llvm::verifySafepointIR(Function &F) {
87 SafepointIRVerifier pass;
88 pass.runOnFunction(F);
89}
90
91char SafepointIRVerifier::ID = 0;
92
93FunctionPass *llvm::createSafepointIRVerifierPass() {
94 return new SafepointIRVerifier();
95}
96
97INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
98 "Safepoint IR Verifier", false, true)
99INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
100 "Safepoint IR Verifier", false, true)
101
102static bool isGCPointerType(Type *T) {
103 if (auto *PT = dyn_cast<PointerType>(T))
104 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
105 // GC managed heap. We know that a pointer into this heap needs to be
106 // updated and that no other pointer does.
107 return (1 == PT->getAddressSpace());
108 return false;
109}
110
111static bool containsGCPtrType(Type *Ty) {
112 if (isGCPointerType(Ty))
113 return true;
114 if (VectorType *VT = dyn_cast<VectorType>(Ty))
115 return isGCPointerType(VT->getScalarType());
116 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
117 return containsGCPtrType(AT->getElementType());
118 if (StructType *ST = dyn_cast<StructType>(Ty))
119 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
120 containsGCPtrType);
121 return false;
122}
123
124// Debugging aid -- prints a [Begin, End) range of values.
125template<typename IteratorTy>
126static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
127 OS << "[ ";
128 while (Begin != End) {
129 OS << **Begin << " ";
130 ++Begin;
131 }
132 OS << "]";
133}
134
135/// The verifier algorithm is phrased in terms of availability. The set of
136/// values "available" at a given point in the control flow graph is the set of
137/// correctly relocated value at that point, and is a subset of the set of
138/// definitions dominating that point.
139
Serguei Katkovf4ceb772017-12-12 09:44:41 +0000140using AvailableValueSet = DenseSet<const Value *>;
141
Anna Thomas740f5292017-07-05 01:16:29 +0000142/// State we compute and track per basic block.
143struct BasicBlockState {
144 // Set of values available coming in, before the phi nodes
Serguei Katkovf4ceb772017-12-12 09:44:41 +0000145 AvailableValueSet AvailableIn;
Anna Thomas740f5292017-07-05 01:16:29 +0000146
147 // Set of values available going out
Serguei Katkovf4ceb772017-12-12 09:44:41 +0000148 AvailableValueSet AvailableOut;
Anna Thomas740f5292017-07-05 01:16:29 +0000149
150 // AvailableOut minus AvailableIn.
151 // All elements are Instructions
Serguei Katkovf4ceb772017-12-12 09:44:41 +0000152 AvailableValueSet Contribution;
Anna Thomas740f5292017-07-05 01:16:29 +0000153
154 // True if this block contains a safepoint and thus AvailableIn does not
155 // contribute to AvailableOut.
156 bool Cleared = false;
157};
158
Anna Thomasccce8532017-07-07 00:40:37 +0000159/// A given derived pointer can have multiple base pointers through phi/selects.
160/// This type indicates when the base pointer is exclusively constant
161/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
162/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
163/// NonConstant.
164enum BaseType {
165 NonConstant = 1, // Base pointers is not exclusively constant.
166 ExclusivelyNull,
167 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
168 // set of constants, but they are not exclusively
169 // null.
170};
Anna Thomas740f5292017-07-05 01:16:29 +0000171
Anna Thomasccce8532017-07-07 00:40:37 +0000172/// Return the baseType for Val which states whether Val is exclusively
173/// derived from constant/null, or not exclusively derived from constant.
174/// Val is exclusively derived off a constant base when all operands of phi and
175/// selects are derived off a constant base.
176static enum BaseType getBaseType(const Value *Val) {
Anna Thomas740f5292017-07-05 01:16:29 +0000177
Anna Thomasccce8532017-07-07 00:40:37 +0000178 SmallVector<const Value *, 32> Worklist;
179 DenseSet<const Value *> Visited;
180 bool isExclusivelyDerivedFromNull = true;
181 Worklist.push_back(Val);
182 // Strip through all the bitcasts and geps to get base pointer. Also check for
183 // the exclusive value when there can be multiple base pointers (through phis
184 // or selects).
185 while(!Worklist.empty()) {
186 const Value *V = Worklist.pop_back_val();
187 if (!Visited.insert(V).second)
188 continue;
Anna Thomas740f5292017-07-05 01:16:29 +0000189
Anna Thomasccce8532017-07-07 00:40:37 +0000190 if (const auto *CI = dyn_cast<CastInst>(V)) {
191 Worklist.push_back(CI->stripPointerCasts());
192 continue;
193 }
194 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
195 Worklist.push_back(GEP->getPointerOperand());
196 continue;
197 }
198 // Push all the incoming values of phi node into the worklist for
199 // processing.
200 if (const auto *PN = dyn_cast<PHINode>(V)) {
201 for (Value *InV: PN->incoming_values())
202 Worklist.push_back(InV);
203 continue;
204 }
205 if (const auto *SI = dyn_cast<SelectInst>(V)) {
206 // Push in the true and false values
207 Worklist.push_back(SI->getTrueValue());
208 Worklist.push_back(SI->getFalseValue());
209 continue;
210 }
211 if (isa<Constant>(V)) {
212 // We found at least one base pointer which is non-null, so this derived
213 // pointer is not exclusively derived from null.
214 if (V != Constant::getNullValue(V->getType()))
215 isExclusivelyDerivedFromNull = false;
216 // Continue processing the remaining values to make sure it's exclusively
217 // constant.
218 continue;
219 }
220 // At this point, we know that the base pointer is not exclusively
221 // constant.
222 return BaseType::NonConstant;
Anna Thomas740f5292017-07-05 01:16:29 +0000223 }
Anna Thomasccce8532017-07-07 00:40:37 +0000224 // Now, we know that the base pointer is exclusively constant, but we need to
225 // differentiate between exclusive null constant and non-null constant.
226 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
227 : BaseType::ExclusivelySomeConstant;
Anna Thomas740f5292017-07-05 01:16:29 +0000228}
229
Anna Thomas7df1a922017-12-05 21:39:37 +0000230static bool isNotExclusivelyConstantDerived(const Value *V) {
231 return getBaseType(V) == BaseType::NonConstant;
232}
233
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000234namespace {
235class InstructionVerifier;
Anna Thomas7df1a922017-12-05 21:39:37 +0000236
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000237/// Builds BasicBlockState for each BB of the function.
238/// It can traverse function for verification and provides all required
239/// information.
Max Kazantsevddb09682017-12-25 09:35:10 +0000240///
241/// GC pointer may be in one of three states: relocated, unrelocated and
242/// poisoned.
243/// Relocated pointer may be used without any restrictions.
244/// Unrelocated pointer cannot be dereferenced, passed as argument to any call
245/// or returned. Unrelocated pointer may be safely compared against another
246/// unrelocated pointer or against a pointer exclusively derived from null.
247/// Poisoned pointers are produced when we somehow derive pointer from relocated
248/// and unrelocated pointers (e.g. phi, select). This pointers may be safely
249/// used in a very limited number of situations. Currently the only way to use
250/// it is comparison against constant exclusively derived from null. All
251/// limitations arise due to their undefined state: this pointers should be
252/// treated as relocated and unrelocated simultaneously.
253/// Rules of deriving:
254/// R + U = P - that's where the poisoned pointers come from
255/// P + X = P
256/// U + U = U
257/// R + R = R
258/// X + C = X
259/// Where "+" - any operation that somehow derive pointer, U - unrelocated,
260/// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
261/// nothing (in case when "+" is unary operation).
262/// Deriving of pointers by itself is always safe.
263/// NOTE: when we are making decision on the status of instruction's result:
264/// a) for phi we need to check status of each input *at the end of
265/// corresponding predecessor BB*.
266/// b) for other instructions we need to check status of each input *at the
267/// current point*.
268///
269/// FIXME: This works fairly well except one case
270/// bb1:
271/// p = *some GC-ptr def*
272/// p1 = gep p, offset
273/// / |
274/// / |
275/// bb2: |
276/// safepoint |
277/// \ |
278/// \ |
279/// bb3:
280/// p2 = phi [p, bb2] [p1, bb1]
281/// p3 = phi [p, bb2] [p, bb1]
282/// here p and p1 is unrelocated
283/// p2 and p3 is poisoned (though they shouldn't be)
284///
285/// This leads to some weird results:
286/// cmp eq p, p2 - illegal instruction (false-positive)
287/// cmp eq p1, p2 - illegal instruction (false-positive)
288/// cmp eq p, p3 - illegal instruction (false-positive)
289/// cmp eq p, p1 - ok
290/// To fix this we need to introduce conception of generations and be able to
291/// check if two values belong to one generation or not. This way p2 will be
292/// considered to be unrelocated and no false alarm will happen.
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000293class GCPtrTracker {
294 const Function &F;
295 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
296 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
297 // This set contains defs of unrelocated pointers that are proved to be legal
298 // and don't need verification.
299 DenseSet<const Instruction *> ValidUnrelocatedDefs;
Max Kazantsevddb09682017-12-25 09:35:10 +0000300 // This set contains poisoned defs. They can be safely ignored during
301 // verification too.
302 DenseSet<const Value *> PoisonedDefs;
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000303
304public:
305 GCPtrTracker(const Function &F, const DominatorTree &DT);
306
307 BasicBlockState *getBasicBlockState(const BasicBlock *BB);
308 const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
309
Max Kazantsevddb09682017-12-25 09:35:10 +0000310 bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
311
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000312 /// Traverse each BB of the function and call
313 /// InstructionVerifier::verifyInstruction for each possibly invalid
314 /// instruction.
315 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
316 /// in order to prohibit further usages of GCPtrTracker as it'll be in
317 /// inconsistent state.
318 static void verifyFunction(GCPtrTracker &&Tracker,
319 InstructionVerifier &Verifier);
320
321private:
322 /// Returns true if the instruction may be safely skipped during verification.
323 bool instructionMayBeSkipped(const Instruction *I) const;
324
325 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
326 /// each of them until it converges.
327 void recalculateBBsStates();
328
329 /// Remove from Contribution all defs that legally produce unrelocated
330 /// pointers and saves them to ValidUnrelocatedDefs.
331 /// Though Contribution should belong to BBS it is passed separately with
332 /// different const-modifier in order to emphasize (and guarantee) that only
333 /// Contribution will be changed.
334 /// Returns true if Contribution was changed otherwise false.
335 bool removeValidUnrelocatedDefs(const BasicBlock *BB,
336 const BasicBlockState *BBS,
337 AvailableValueSet &Contribution);
338
339 /// Gather all the definitions dominating the start of BB into Result. This is
340 /// simply the defs introduced by every dominating basic block and the
341 /// function arguments.
342 void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
343 const DominatorTree &DT);
344
345 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
346 /// which is the BasicBlockState for BB.
347 /// ContributionChanged is set when the verifier runs for the first time
348 /// (in this case Contribution was changed from 'empty' to its initial state)
349 /// or when Contribution of this BB was changed since last computation.
350 static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
351 bool ContributionChanged);
352
353 /// Model the effect of an instruction on the set of available values.
354 static void transferInstruction(const Instruction &I, bool &Cleared,
355 AvailableValueSet &Available);
356};
357
358/// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
359/// instruction (which uses heap reference) is legal or not, given our safepoint
360/// semantics.
361class InstructionVerifier {
362 bool AnyInvalidUses = false;
363
364public:
365 void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
366 const AvailableValueSet &AvailableSet);
367
368 bool hasAnyInvalidUses() const { return AnyInvalidUses; }
369
370private:
371 void reportInvalidUse(const Value &V, const Instruction &I);
372};
373} // end anonymous namespace
374
375GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT) : F(F) {
376 // First, calculate Contribution of each BB.
377 for (const BasicBlock &BB : F) {
378 BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
379 for (const auto &I : BB)
380 transferInstruction(I, BBS->Cleared, BBS->Contribution);
381 BlockMap[&BB] = BBS;
382 }
383
384 // Initialize AvailableIn/Out sets of each BB using only information about
385 // dominating BBs.
386 for (auto &BBI : BlockMap) {
387 gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
388 transferBlock(BBI.first, *BBI.second, true);
389 }
390
391 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
392 // sets of each BB until it converges. If any def is proved to be an
393 // unrelocated pointer, it will be removed from all BBSs.
394 recalculateBBsStates();
395}
396
397BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
398 auto it = BlockMap.find(BB);
399 assert(it != BlockMap.end() &&
400 "No such BB in BlockMap! Probably BB from another function");
401 return it->second;
402}
403
404const BasicBlockState *GCPtrTracker::getBasicBlockState(
405 const BasicBlock *BB) const {
406 return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
407}
408
409bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
Max Kazantsevddb09682017-12-25 09:35:10 +0000410 // Poisoned defs are skipped since they are always safe by itself by
411 // definition (for details see comment to this class).
412 return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000413}
414
415void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
416 InstructionVerifier &Verifier) {
417 // We need RPO here to a) report always the first error b) report errors in
418 // same order from run to run.
419 ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
420 for (const BasicBlock *BB : RPOT) {
421 BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
422 // We destructively modify AvailableIn as we traverse the block instruction
423 // by instruction.
424 AvailableValueSet &AvailableSet = BBS->AvailableIn;
425 for (const Instruction &I : *BB) {
426 if (Tracker.instructionMayBeSkipped(&I))
427 continue; // This instruction shouldn't be added to AvailableSet.
428
429 Verifier.verifyInstruction(&Tracker, I, AvailableSet);
430
431 // Model the effect of current instruction on AvailableSet to keep the set
432 // relevant at each point of BB.
433 bool Cleared = false;
434 transferInstruction(I, Cleared, AvailableSet);
435 (void)Cleared;
436 }
437 }
438}
439
440void GCPtrTracker::recalculateBBsStates() {
Anna Thomas7df1a922017-12-05 21:39:37 +0000441 SetVector<const BasicBlock *> Worklist;
442 // TODO: This order is suboptimal, it's better to replace it with priority
443 // queue where priority is RPO number of BB.
444 for (auto &BBI : BlockMap)
445 Worklist.insert(BBI.first);
446
447 // This loop iterates the AvailableIn/Out sets until it converges.
448 // The AvailableIn and AvailableOut sets decrease as we iterate.
449 while (!Worklist.empty()) {
450 const BasicBlock *BB = Worklist.pop_back_val();
451 BasicBlockState *BBS = BlockMap[BB];
452
453 size_t OldInCount = BBS->AvailableIn.size();
454 for (const BasicBlock *PBB : predecessors(BB))
455 set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
456
457 assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
458
459 bool InputsChanged = OldInCount != BBS->AvailableIn.size();
460 bool ContributionChanged =
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000461 removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
Anna Thomas7df1a922017-12-05 21:39:37 +0000462 if (!InputsChanged && !ContributionChanged)
463 continue;
464
465 size_t OldOutCount = BBS->AvailableOut.size();
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000466 transferBlock(BB, *BBS, ContributionChanged);
Anna Thomas7df1a922017-12-05 21:39:37 +0000467 if (OldOutCount != BBS->AvailableOut.size()) {
468 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
469 Worklist.insert(succ_begin(BB), succ_end(BB));
470 }
471 }
472}
473
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000474bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
475 const BasicBlockState *BBS,
476 AvailableValueSet &Contribution) {
477 assert(&BBS->Contribution == &Contribution &&
478 "Passed Contribution should be from the passed BasicBlockState!");
479 AvailableValueSet AvailableSet = BBS->AvailableIn;
480 bool ContributionChanged = false;
Max Kazantsevddb09682017-12-25 09:35:10 +0000481 // For explanation why instructions are processed this way see
482 // "Rules of deriving" in the comment to this class.
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000483 for (const Instruction &I : *BB) {
Max Kazantsevddb09682017-12-25 09:35:10 +0000484 bool ValidUnrelocatedPointerDef = false;
485 bool PoisonedPointerDef = false;
486 // TODO: `select` instructions should be handled here too.
487 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
488 if (containsGCPtrType(PN->getType())) {
489 // If both is true, output is poisoned.
490 bool HasRelocatedInputs = false;
491 bool HasUnrelocatedInputs = false;
492 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
493 const BasicBlock *InBB = PN->getIncomingBlock(i);
494 const Value *InValue = PN->getIncomingValue(i);
495
496 if (isNotExclusivelyConstantDerived(InValue)) {
497 if (isValuePoisoned(InValue)) {
498 // If any of inputs is poisoned, output is always poisoned too.
499 HasRelocatedInputs = true;
500 HasUnrelocatedInputs = true;
501 break;
502 }
503 if (BlockMap[InBB]->AvailableOut.count(InValue))
504 HasRelocatedInputs = true;
505 else
506 HasUnrelocatedInputs = true;
507 }
508 }
509 if (HasUnrelocatedInputs) {
510 if (HasRelocatedInputs)
511 PoisonedPointerDef = true;
512 else
513 ValidUnrelocatedPointerDef = true;
514 }
515 }
516 } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
517 containsGCPtrType(I.getType())) {
518 // GEP/bitcast of unrelocated pointer is legal by itself but this def
519 // shouldn't appear in any AvailableSet.
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000520 for (const Value *V : I.operands())
521 if (containsGCPtrType(V->getType()) &&
522 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
Max Kazantsevddb09682017-12-25 09:35:10 +0000523 if (isValuePoisoned(V))
524 PoisonedPointerDef = true;
525 else
526 ValidUnrelocatedPointerDef = true;
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000527 break;
528 }
529 }
Max Kazantsevddb09682017-12-25 09:35:10 +0000530 assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
531 "Value cannot be both unrelocated and poisoned!");
532 if (ValidUnrelocatedPointerDef) {
533 // Remove def of unrelocated pointer from Contribution of this BB and
534 // trigger update of all its successors.
535 Contribution.erase(&I);
536 PoisonedDefs.erase(&I);
537 ValidUnrelocatedDefs.insert(&I);
538 DEBUG(dbgs() << "Removing urelocated " << I << " from Contribution of "
539 << BB->getName() << "\n");
540 ContributionChanged = true;
541 } else if (PoisonedPointerDef) {
542 // Mark pointer as poisoned, remove its def from Contribution and trigger
543 // update of all successors.
544 Contribution.erase(&I);
545 PoisonedDefs.insert(&I);
546 DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
547 << BB->getName() << "\n");
548 ContributionChanged = true;
549 } else {
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000550 bool Cleared = false;
551 transferInstruction(I, Cleared, AvailableSet);
552 (void)Cleared;
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000553 }
554 }
555 return ContributionChanged;
556}
Anna Thomas7df1a922017-12-05 21:39:37 +0000557
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000558void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
559 AvailableValueSet &Result,
560 const DominatorTree &DT) {
561 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
562
563 while (DTN->getIDom()) {
564 DTN = DTN->getIDom();
565 const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
566 Result.insert(Defs.begin(), Defs.end());
567 // If this block is 'Cleared', then nothing LiveIn to this block can be
568 // available after this block completes. Note: This turns out to be
569 // really important for reducing memory consuption of the initial available
570 // sets and thus peak memory usage by this verifier.
571 if (BlockMap[DTN->getBlock()]->Cleared)
572 return;
573 }
574
575 for (const Argument &A : BB->getParent()->args())
576 if (containsGCPtrType(A.getType()))
577 Result.insert(&A);
578}
579
580void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
581 bool ContributionChanged) {
582 const AvailableValueSet &AvailableIn = BBS.AvailableIn;
583 AvailableValueSet &AvailableOut = BBS.AvailableOut;
584
585 if (BBS.Cleared) {
586 // AvailableOut will change only when Contribution changed.
587 if (ContributionChanged)
588 AvailableOut = BBS.Contribution;
589 } else {
590 // Otherwise, we need to reduce the AvailableOut set by things which are no
591 // longer in our AvailableIn
592 AvailableValueSet Temp = BBS.Contribution;
593 set_union(Temp, AvailableIn);
594 AvailableOut = std::move(Temp);
595 }
596
597 DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
598 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
599 dbgs() << " to ";
600 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
601 dbgs() << "\n";);
602}
603
604void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
605 AvailableValueSet &Available) {
606 if (isStatepoint(I)) {
607 Cleared = true;
608 Available.clear();
609 } else if (containsGCPtrType(I.getType()))
610 Available.insert(&I);
611}
612
613void InstructionVerifier::verifyInstruction(
614 const GCPtrTracker *Tracker, const Instruction &I,
615 const AvailableValueSet &AvailableSet) {
616 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
617 if (containsGCPtrType(PN->getType()))
618 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
619 const BasicBlock *InBB = PN->getIncomingBlock(i);
620 const Value *InValue = PN->getIncomingValue(i);
621
622 if (isNotExclusivelyConstantDerived(InValue) &&
623 !Tracker->getBasicBlockState(InBB)->AvailableOut.count(InValue))
624 reportInvalidUse(*InValue, *PN);
625 }
626 } else if (isa<CmpInst>(I) &&
627 containsGCPtrType(I.getOperand(0)->getType())) {
628 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
629 enum BaseType baseTyLHS = getBaseType(LHS),
630 baseTyRHS = getBaseType(RHS);
631
632 // Returns true if LHS and RHS are unrelocated pointers and they are
633 // valid unrelocated uses.
Max Kazantsevddb09682017-12-25 09:35:10 +0000634 auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
635 &LHS, &RHS] () {
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000636 // A cmp instruction has valid unrelocated pointer operands only if
637 // both operands are unrelocated pointers.
638 // In the comparison between two pointers, if one is an unrelocated
639 // use, the other *should be* an unrelocated use, for this
640 // instruction to contain valid unrelocated uses. This unrelocated
641 // use can be a null constant as well, or another unrelocated
642 // pointer.
643 if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
644 return false;
645 // Constant pointers (that are not exclusively null) may have
646 // meaning in different VMs, so we cannot reorder the compare
647 // against constant pointers before the safepoint. In other words,
648 // comparison of an unrelocated use against a non-null constant
649 // maybe invalid.
650 if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
651 baseTyRHS == BaseType::NonConstant) ||
652 (baseTyLHS == BaseType::NonConstant &&
653 baseTyRHS == BaseType::ExclusivelySomeConstant))
654 return false;
Max Kazantsevddb09682017-12-25 09:35:10 +0000655
656 // If one of pointers is poisoned and other is not exclusively derived
657 // from null it is an invalid expression: it produces poisoned result
658 // and unless we want to track all defs (not only gc pointers) the only
659 // option is to prohibit such instructions.
660 if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
661 (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
662 return false;
663
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000664 // All other cases are valid cases enumerated below:
Max Kazantsevddb09682017-12-25 09:35:10 +0000665 // 1. Comparison between an exclusively derived null pointer and a
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000666 // constant base pointer.
Max Kazantsevddb09682017-12-25 09:35:10 +0000667 // 2. Comparison between an exclusively derived null pointer and a
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000668 // non-constant unrelocated base pointer.
669 // 3. Comparison between 2 unrelocated pointers.
Max Kazantsevddb09682017-12-25 09:35:10 +0000670 // 4. Comparison between a pointer exclusively derived from null and a
671 // non-constant poisoned pointer.
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000672 return true;
673 };
674 if (!hasValidUnrelocatedUse()) {
675 // Print out all non-constant derived pointers that are unrelocated
676 // uses, which are invalid.
677 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
678 reportInvalidUse(*LHS, I);
679 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
680 reportInvalidUse(*RHS, I);
681 }
682 } else {
683 for (const Value *V : I.operands())
684 if (containsGCPtrType(V->getType()) &&
685 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
686 reportInvalidUse(*V, I);
687 }
688}
689
690void InstructionVerifier::reportInvalidUse(const Value &V,
691 const Instruction &I) {
692 errs() << "Illegal use of unrelocated value found!\n";
693 errs() << "Def: " << V << "\n";
694 errs() << "Use: " << I << "\n";
695 if (!PrintOnly)
696 abort();
697 AnyInvalidUses = true;
698}
699
700static void Verify(const Function &F, const DominatorTree &DT) {
Anna Thomas740f5292017-07-05 01:16:29 +0000701 DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
702 if (PrintOnly)
703 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
704
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000705 GCPtrTracker Tracker(F, DT);
Anna Thomas740f5292017-07-05 01:16:29 +0000706
707 // We now have all the information we need to decide if the use of a heap
708 // reference is legal or not, given our safepoint semantics.
709
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000710 InstructionVerifier Verifier;
711 GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
Anna Thomas740f5292017-07-05 01:16:29 +0000712
Serguei Katkovc80e76c2017-12-13 05:32:46 +0000713 if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
Anna Thomas740f5292017-07-05 01:16:29 +0000714 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
715 << "\n";
716 }
717}