Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 1 | //===-- safestack.cc ------------------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the runtime support for the safe stack protection |
| 11 | // mechanism. The runtime manages allocation/deallocation of the unsafe stack |
| 12 | // for the main thread, as well as all pthreads that are created/destroyed |
| 13 | // during program execution. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include <limits.h> |
| 18 | #include <pthread.h> |
| 19 | #include <stddef.h> |
Peter Collingbourne | 8454044 | 2015-06-24 17:23:13 +0000 | [diff] [blame] | 20 | #include <stdint.h> |
Adhemerval Zanella | eaf1162 | 2015-12-11 17:38:38 +0000 | [diff] [blame^] | 21 | #include <unistd.h> |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 22 | #include <sys/resource.h> |
Peter Collingbourne | 19e8619 | 2015-06-24 18:16:05 +0000 | [diff] [blame] | 23 | #include <sys/types.h> |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 24 | #include <sys/user.h> |
| 25 | |
| 26 | #include "interception/interception.h" |
| 27 | #include "sanitizer_common/sanitizer_common.h" |
| 28 | |
Peter Collingbourne | adbde27 | 2015-06-23 22:26:48 +0000 | [diff] [blame] | 29 | // TODO: The runtime library does not currently protect the safe stack beyond |
| 30 | // relying on the system-enforced ASLR. The protection of the (safe) stack can |
| 31 | // be provided by three alternative features: |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 32 | // |
Peter Collingbourne | adbde27 | 2015-06-23 22:26:48 +0000 | [diff] [blame] | 33 | // 1) Protection via hardware segmentation on x86-32 and some x86-64 |
| 34 | // architectures: the (safe) stack segment (implicitly accessed via the %ss |
| 35 | // segment register) can be separated from the data segment (implicitly |
| 36 | // accessed via the %ds segment register). Dereferencing a pointer to the safe |
| 37 | // segment would result in a segmentation fault. |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 38 | // |
Peter Collingbourne | adbde27 | 2015-06-23 22:26:48 +0000 | [diff] [blame] | 39 | // 2) Protection via software fault isolation: memory writes that are not meant |
| 40 | // to access the safe stack can be prevented from doing so through runtime |
| 41 | // instrumentation. One way to do it is to allocate the safe stack(s) in the |
| 42 | // upper half of the userspace and bitmask the corresponding upper bit of the |
| 43 | // memory addresses of memory writes that are not meant to access the safe |
| 44 | // stack. |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 45 | // |
Peter Collingbourne | adbde27 | 2015-06-23 22:26:48 +0000 | [diff] [blame] | 46 | // 3) Protection via information hiding on 64 bit architectures: the location |
| 47 | // of the safe stack(s) can be randomized through secure mechanisms, and the |
| 48 | // leakage of the stack pointer can be prevented. Currently, libc can leak the |
| 49 | // stack pointer in several ways (e.g. in longjmp, signal handling, user-level |
| 50 | // context switching related functions, etc.). These can be fixed in libc and |
| 51 | // in other low-level libraries, by either eliminating the escaping/dumping of |
| 52 | // the stack pointer (i.e., %rsp) when that's possible, or by using |
| 53 | // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret |
| 54 | // we control and protect better, as is already done for setjmp in glibc.) |
| 55 | // Furthermore, a static machine code level verifier can be ran after code |
| 56 | // generation to make sure that the stack pointer is never written to memory, |
| 57 | // or if it is, its written on the safe stack. |
| 58 | // |
| 59 | // Finally, while the Unsafe Stack pointer is currently stored in a thread |
| 60 | // local variable, with libc support it could be stored in the TCB (thread |
| 61 | // control block) as well, eliminating another level of indirection and making |
| 62 | // such accesses faster. Alternatively, dedicating a separate register for |
| 63 | // storing it would also be possible. |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 64 | |
| 65 | /// Minimum stack alignment for the unsafe stack. |
| 66 | const unsigned kStackAlign = 16; |
| 67 | |
| 68 | /// Default size of the unsafe stack. This value is only used if the stack |
| 69 | /// size rlimit is set to infinity. |
| 70 | const unsigned kDefaultUnsafeStackSize = 0x2800000; |
| 71 | |
Adhemerval Zanella | eaf1162 | 2015-12-11 17:38:38 +0000 | [diff] [blame^] | 72 | /// Runtime page size obtained through sysconf |
| 73 | static unsigned pageSize; |
| 74 | |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 75 | // TODO: To make accessing the unsafe stack pointer faster, we plan to |
| 76 | // eventually store it directly in the thread control block data structure on |
| 77 | // platforms where this structure is pointed to by %fs or %gs. This is exactly |
| 78 | // the same mechanism as currently being used by the traditional stack |
| 79 | // protector pass to store the stack guard (see getStackCookieLocation() |
| 80 | // function above). Doing so requires changing the tcbhead_t struct in glibc |
| 81 | // on Linux and tcb struct in libc on FreeBSD. |
| 82 | // |
| 83 | // For now, store it in a thread-local variable. |
| 84 | extern "C" { |
| 85 | __attribute__((visibility( |
| 86 | "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr; |
| 87 | } |
| 88 | |
| 89 | // Per-thread unsafe stack information. It's not frequently accessed, so there |
| 90 | // it can be kept out of the tcb in normal thread-local variables. |
| 91 | static __thread void *unsafe_stack_start = nullptr; |
| 92 | static __thread size_t unsafe_stack_size = 0; |
| 93 | static __thread size_t unsafe_stack_guard = 0; |
| 94 | |
| 95 | static inline void *unsafe_stack_alloc(size_t size, size_t guard) { |
| 96 | CHECK_GE(size + guard, size); |
| 97 | void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc"); |
| 98 | MprotectNoAccess((uptr)addr, (uptr)guard); |
| 99 | return (char *)addr + guard; |
| 100 | } |
| 101 | |
| 102 | static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) { |
| 103 | CHECK_GE((char *)start + size, (char *)start); |
| 104 | CHECK_GE((char *)start + guard, (char *)start); |
| 105 | void *stack_ptr = (char *)start + size; |
| 106 | CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0); |
| 107 | |
| 108 | __safestack_unsafe_stack_ptr = stack_ptr; |
| 109 | unsafe_stack_start = start; |
| 110 | unsafe_stack_size = size; |
| 111 | unsafe_stack_guard = guard; |
| 112 | } |
| 113 | |
| 114 | static void unsafe_stack_free() { |
| 115 | if (unsafe_stack_start) { |
| 116 | UnmapOrDie((char *)unsafe_stack_start - unsafe_stack_guard, |
| 117 | unsafe_stack_size + unsafe_stack_guard); |
| 118 | } |
| 119 | unsafe_stack_start = nullptr; |
| 120 | } |
| 121 | |
| 122 | /// Thread data for the cleanup handler |
| 123 | static pthread_key_t thread_cleanup_key; |
| 124 | |
| 125 | /// Safe stack per-thread information passed to the thread_start function |
| 126 | struct tinfo { |
| 127 | void *(*start_routine)(void *); |
| 128 | void *start_routine_arg; |
| 129 | |
| 130 | void *unsafe_stack_start; |
| 131 | size_t unsafe_stack_size; |
| 132 | size_t unsafe_stack_guard; |
| 133 | }; |
| 134 | |
| 135 | /// Wrap the thread function in order to deallocate the unsafe stack when the |
| 136 | /// thread terminates by returning from its main function. |
| 137 | static void *thread_start(void *arg) { |
| 138 | struct tinfo *tinfo = (struct tinfo *)arg; |
| 139 | |
| 140 | void *(*start_routine)(void *) = tinfo->start_routine; |
| 141 | void *start_routine_arg = tinfo->start_routine_arg; |
| 142 | |
| 143 | // Setup the unsafe stack; this will destroy tinfo content |
| 144 | unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size, |
| 145 | tinfo->unsafe_stack_guard); |
| 146 | |
| 147 | // Make sure out thread-specific destructor will be called |
| 148 | // FIXME: we can do this only any other specific key is set by |
| 149 | // intercepting the pthread_setspecific function itself |
| 150 | pthread_setspecific(thread_cleanup_key, (void *)1); |
| 151 | |
| 152 | return start_routine(start_routine_arg); |
| 153 | } |
| 154 | |
| 155 | /// Thread-specific data destructor |
| 156 | static void thread_cleanup_handler(void *_iter) { |
| 157 | // We want to free the unsafe stack only after all other destructors |
| 158 | // have already run. We force this function to be called multiple times. |
| 159 | // User destructors that might run more then PTHREAD_DESTRUCTOR_ITERATIONS-1 |
| 160 | // times might still end up executing after the unsafe stack is deallocated. |
| 161 | size_t iter = (size_t)_iter; |
| 162 | if (iter < PTHREAD_DESTRUCTOR_ITERATIONS) { |
| 163 | pthread_setspecific(thread_cleanup_key, (void *)(iter + 1)); |
| 164 | } else { |
| 165 | // This is the last iteration |
| 166 | unsafe_stack_free(); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | /// Intercept thread creation operation to allocate and setup the unsafe stack |
| 171 | INTERCEPTOR(int, pthread_create, pthread_t *thread, |
| 172 | const pthread_attr_t *attr, |
| 173 | void *(*start_routine)(void*), void *arg) { |
| 174 | |
| 175 | size_t size = 0; |
| 176 | size_t guard = 0; |
| 177 | |
Vedant Kumar | 59ba7b8 | 2015-10-01 00:22:21 +0000 | [diff] [blame] | 178 | if (attr) { |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 179 | pthread_attr_getstacksize(attr, &size); |
| 180 | pthread_attr_getguardsize(attr, &guard); |
| 181 | } else { |
| 182 | // get pthread default stack size |
| 183 | pthread_attr_t tmpattr; |
| 184 | pthread_attr_init(&tmpattr); |
| 185 | pthread_attr_getstacksize(&tmpattr, &size); |
| 186 | pthread_attr_getguardsize(&tmpattr, &guard); |
| 187 | pthread_attr_destroy(&tmpattr); |
| 188 | } |
| 189 | |
| 190 | CHECK_NE(size, 0); |
| 191 | CHECK_EQ((size & (kStackAlign - 1)), 0); |
Adhemerval Zanella | eaf1162 | 2015-12-11 17:38:38 +0000 | [diff] [blame^] | 192 | CHECK_EQ((guard & (pageSize - 1)), 0); |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 193 | |
| 194 | void *addr = unsafe_stack_alloc(size, guard); |
| 195 | struct tinfo *tinfo = |
| 196 | (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo)); |
| 197 | tinfo->start_routine = start_routine; |
| 198 | tinfo->start_routine_arg = arg; |
| 199 | tinfo->unsafe_stack_start = addr; |
| 200 | tinfo->unsafe_stack_size = size; |
| 201 | tinfo->unsafe_stack_guard = guard; |
| 202 | |
| 203 | return REAL(pthread_create)(thread, attr, thread_start, tinfo); |
| 204 | } |
| 205 | |
| 206 | extern "C" __attribute__((visibility("default"))) |
| 207 | #if !SANITIZER_CAN_USE_PREINIT_ARRAY |
| 208 | // On ELF platforms, the constructor is invoked using .preinit_array (see below) |
| 209 | __attribute__((constructor(0))) |
| 210 | #endif |
| 211 | void __safestack_init() { |
| 212 | // Determine the stack size for the main thread. |
| 213 | size_t size = kDefaultUnsafeStackSize; |
| 214 | size_t guard = 4096; |
| 215 | |
| 216 | struct rlimit limit; |
| 217 | if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY) |
| 218 | size = limit.rlim_cur; |
| 219 | |
| 220 | // Allocate unsafe stack for main thread |
| 221 | void *addr = unsafe_stack_alloc(size, guard); |
| 222 | |
| 223 | unsafe_stack_setup(addr, size, guard); |
Adhemerval Zanella | eaf1162 | 2015-12-11 17:38:38 +0000 | [diff] [blame^] | 224 | pageSize = sysconf(_SC_PAGESIZE); |
Peter Collingbourne | b64d0b1 | 2015-06-15 21:08:47 +0000 | [diff] [blame] | 225 | |
| 226 | // Initialize pthread interceptors for thread allocation |
| 227 | INTERCEPT_FUNCTION(pthread_create); |
| 228 | |
| 229 | // Setup the cleanup handler |
| 230 | pthread_key_create(&thread_cleanup_key, thread_cleanup_handler); |
| 231 | } |
| 232 | |
| 233 | #if SANITIZER_CAN_USE_PREINIT_ARRAY |
| 234 | // On ELF platforms, run safestack initialization before any other constructors. |
| 235 | // On other platforms we use the constructor attribute to arrange to run our |
| 236 | // initialization early. |
| 237 | extern "C" { |
| 238 | __attribute__((section(".preinit_array"), |
| 239 | used)) void (*__safestack_preinit)(void) = __safestack_init; |
| 240 | } |
| 241 | #endif |
| 242 | |
| 243 | extern "C" |
| 244 | __attribute__((visibility("default"))) void *__get_unsafe_stack_start() { |
| 245 | return unsafe_stack_start; |
| 246 | } |
| 247 | |
| 248 | extern "C" |
| 249 | __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() { |
| 250 | return __safestack_unsafe_stack_ptr; |
| 251 | } |