JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 1 | //===--- PatternInit.cpp - Pattern Initialization -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "PatternInit.h" |
| 10 | #include "CodeGenModule.h" |
| 11 | #include "llvm/IR/Constant.h" |
| 12 | #include "llvm/IR/Type.h" |
| 13 | |
| 14 | llvm::Constant *clang::CodeGen::initializationPatternFor(CodeGenModule &CGM, |
| 15 | llvm::Type *Ty) { |
| 16 | // The following value is a guaranteed unmappable pointer value and has a |
| 17 | // repeated byte-pattern which makes it easier to synthesize. We use it for |
| 18 | // pointers as well as integers so that aggregates are likely to be |
| 19 | // initialized with this repeated value. |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 20 | // For 32-bit platforms it's a bit trickier because, across systems, only the |
Vitaly Buka | c2ac925 | 2019-07-12 17:21:55 +0000 | [diff] [blame] | 21 | // zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF |
| 22 | // assuming that memory access will overlap into zero page. |
| 23 | const uint64_t IntValue = |
| 24 | CGM.getContext().getTargetInfo().getMaxPointerWidth() < 64 |
| 25 | ? 0xFFFFFFFFFFFFFFFFull |
| 26 | : 0xAAAAAAAAAAAAAAAAull; |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 27 | // Floating-point values are initialized as NaNs because they propagate. Using |
| 28 | // a repeated byte pattern means that it will be easier to initialize |
| 29 | // all-floating-point aggregates and arrays with memset. Further, aggregates |
| 30 | // which mix integral and a few floats might also initialize with memset |
| 31 | // followed by a handful of stores for the floats. Using fairly unique NaNs |
| 32 | // also means they'll be easier to distinguish in a crash. |
| 33 | constexpr bool NegativeNaN = true; |
| 34 | constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; |
| 35 | if (Ty->isIntOrIntVectorTy()) { |
| 36 | unsigned BitWidth = cast<llvm::IntegerType>( |
| 37 | Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) |
| 38 | ->getBitWidth(); |
| 39 | if (BitWidth <= 64) |
Vitaly Buka | c2ac925 | 2019-07-12 17:21:55 +0000 | [diff] [blame] | 40 | return llvm::ConstantInt::get(Ty, IntValue); |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 41 | return llvm::ConstantInt::get( |
Vitaly Buka | c2ac925 | 2019-07-12 17:21:55 +0000 | [diff] [blame] | 42 | Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, IntValue))); |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 43 | } |
| 44 | if (Ty->isPtrOrPtrVectorTy()) { |
| 45 | auto *PtrTy = cast<llvm::PointerType>( |
| 46 | Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); |
| 47 | unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( |
| 48 | PtrTy->getAddressSpace()); |
Vitaly Buka | c2ac925 | 2019-07-12 17:21:55 +0000 | [diff] [blame] | 49 | if (PtrWidth > 64) |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 50 | llvm_unreachable("pattern initialization of unsupported pointer width"); |
Vitaly Buka | c2ac925 | 2019-07-12 17:21:55 +0000 | [diff] [blame] | 51 | llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); |
JF Bastien | ef202c3 | 2019-04-12 00:11:27 +0000 | [diff] [blame] | 52 | auto *Int = llvm::ConstantInt::get(IntTy, IntValue); |
| 53 | return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); |
| 54 | } |
| 55 | if (Ty->isFPOrFPVectorTy()) { |
| 56 | unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( |
| 57 | (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) |
| 58 | ->getFltSemantics()); |
| 59 | llvm::APInt Payload(64, NaNPayload); |
| 60 | if (BitWidth >= 64) |
| 61 | Payload = llvm::APInt::getSplat(BitWidth, Payload); |
| 62 | return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); |
| 63 | } |
| 64 | if (Ty->isArrayTy()) { |
| 65 | // Note: this doesn't touch tail padding (at the end of an object, before |
| 66 | // the next array object). It is instead handled by replaceUndef. |
| 67 | auto *ArrTy = cast<llvm::ArrayType>(Ty); |
| 68 | llvm::SmallVector<llvm::Constant *, 8> Element( |
| 69 | ArrTy->getNumElements(), |
| 70 | initializationPatternFor(CGM, ArrTy->getElementType())); |
| 71 | return llvm::ConstantArray::get(ArrTy, Element); |
| 72 | } |
| 73 | |
| 74 | // Note: this doesn't touch struct padding. It will initialize as much union |
| 75 | // padding as is required for the largest type in the union. Padding is |
| 76 | // instead handled by replaceUndef. Stores to structs with volatile members |
| 77 | // don't have a volatile qualifier when initialized according to C++. This is |
| 78 | // fine because stack-based volatiles don't really have volatile semantics |
| 79 | // anyways, and the initialization shouldn't be observable. |
| 80 | auto *StructTy = cast<llvm::StructType>(Ty); |
| 81 | llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); |
| 82 | for (unsigned El = 0; El != Struct.size(); ++El) |
| 83 | Struct[El] = initializationPatternFor(CGM, StructTy->getElementType(El)); |
| 84 | return llvm::ConstantStruct::get(StructTy, Struct); |
| 85 | } |