blob: 4826ac407d7f0a58a51e9e4b811c1eb682d2853f [file] [log] [blame]
Sebastian Pop59b61b92012-10-11 07:32:34 +00001//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an (incomplete) implementation of the approach
12// described in
13//
14// Practical Dependence Testing
15// Goff, Kennedy, Tseng
16// PLDI 1991
17//
18// There's a single entry point that analyzes the dependence between a pair
19// of memory references in a function, returning either NULL, for no dependence,
20// or a more-or-less detailed description of the dependence between them.
21//
22// Currently, the implementation cannot propagate constraints between
23// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24// Both of these are conservative weaknesses;
25// that is, not a source of correctness problems.
26//
Sebastian Pop7ee14722013-11-13 22:37:58 +000027// The implementation depends on the GEP instruction to differentiate
28// subscripts. Since Clang linearizes some array subscripts, the dependence
29// analysis is using SCEV->delinearize to recover the representation of multiple
30// subscripts, and thus avoid the more expensive and less precise MIV tests. The
31// delinearization is controlled by the flag -da-delinearize.
Sebastian Pop59b61b92012-10-11 07:32:34 +000032//
33// We should pay some careful attention to the possibility of integer overflow
34// in the implementation of the various tests. This could happen with Add,
35// Subtract, or Multiply, with both APInt's and SCEV's.
36//
37// Some non-linear subscript pairs can be handled by the GCD test
38// (and perhaps other tests).
39// Should explore how often these things occur.
40//
41// Finally, it seems like certain test cases expose weaknesses in the SCEV
42// simplification, especially in the handling of sign and zero extensions.
43// It could be useful to spend time exploring these.
44//
45// Please note that this is work in progress and the interface is subject to
46// change.
47//
48//===----------------------------------------------------------------------===//
49// //
50// In memory of Ken Kennedy, 1945 - 2007 //
51// //
52//===----------------------------------------------------------------------===//
53
Sebastian Pop59b61b92012-10-11 07:32:34 +000054#include "llvm/Analysis/DependenceAnalysis.h"
Benjamin Kramer0a446fd2015-03-01 21:28:53 +000055#include "llvm/ADT/STLExtras.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000056#include "llvm/ADT/Statistic.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000057#include "llvm/Analysis/AliasAnalysis.h"
58#include "llvm/Analysis/LoopInfo.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000059#include "llvm/Analysis/ScalarEvolution.h"
60#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth83948572014-03-04 10:30:26 +000062#include "llvm/IR/InstIterator.h"
Mehdi Aminia28d91d2015-03-10 02:37:25 +000063#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000064#include "llvm/IR/Operator.h"
Sebastian Popc62c6792013-11-12 22:47:20 +000065#include "llvm/Support/CommandLine.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000066#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000068#include "llvm/Support/raw_ostream.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000069
70using namespace llvm;
71
Chandler Carruthf1221bd2014-04-22 02:48:03 +000072#define DEBUG_TYPE "da"
73
Sebastian Pop59b61b92012-10-11 07:32:34 +000074//===----------------------------------------------------------------------===//
75// statistics
76
77STATISTIC(TotalArrayPairs, "Array pairs tested");
78STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81STATISTIC(ZIVapplications, "ZIV applications");
82STATISTIC(ZIVindependence, "ZIV independence");
83STATISTIC(StrongSIVapplications, "Strong SIV applications");
84STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85STATISTIC(StrongSIVindependence, "Strong SIV independence");
86STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89STATISTIC(ExactSIVapplications, "Exact SIV applications");
90STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91STATISTIC(ExactSIVindependence, "Exact SIV independence");
92STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99STATISTIC(DeltaApplications, "Delta applications");
100STATISTIC(DeltaSuccesses, "Delta successes");
101STATISTIC(DeltaIndependence, "Delta independence");
102STATISTIC(DeltaPropagations, "Delta propagations");
103STATISTIC(GCDapplications, "GCD applications");
104STATISTIC(GCDsuccesses, "GCD successes");
105STATISTIC(GCDindependence, "GCD independence");
106STATISTIC(BanerjeeApplications, "Banerjee applications");
107STATISTIC(BanerjeeIndependence, "Banerjee independence");
108STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109
Sebastian Popc62c6792013-11-12 22:47:20 +0000110static cl::opt<bool>
111Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
112 cl::desc("Try to delinearize array references."));
113
Sebastian Pop59b61b92012-10-11 07:32:34 +0000114//===----------------------------------------------------------------------===//
115// basics
116
117INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
118 "Dependence Analysis", true, true)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000119INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Sebastian Pop59b61b92012-10-11 07:32:34 +0000120INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
121INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
122INITIALIZE_PASS_END(DependenceAnalysis, "da",
123 "Dependence Analysis", true, true)
124
125char DependenceAnalysis::ID = 0;
126
127
128FunctionPass *llvm::createDependenceAnalysisPass() {
129 return new DependenceAnalysis();
130}
131
132
133bool DependenceAnalysis::runOnFunction(Function &F) {
134 this->F = &F;
135 AA = &getAnalysis<AliasAnalysis>();
136 SE = &getAnalysis<ScalarEvolution>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000137 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000138 return false;
139}
140
141
142void DependenceAnalysis::releaseMemory() {
143}
144
145
146void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
147 AU.setPreservesAll();
148 AU.addRequiredTransitive<AliasAnalysis>();
149 AU.addRequiredTransitive<ScalarEvolution>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000150 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Sebastian Pop59b61b92012-10-11 07:32:34 +0000151}
152
153
154// Used to test the dependence analyzer.
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000155// Looks through the function, noting loads and stores.
156// Calls depends() on every possible pair and prints out the result.
Sebastian Pop59b61b92012-10-11 07:32:34 +0000157// Ignores all other instructions.
158static
159void dumpExampleDependence(raw_ostream &OS, Function *F,
160 DependenceAnalysis *DA) {
161 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
162 SrcI != SrcE; ++SrcI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000163 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000164 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
165 DstI != DstE; ++DstI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000166 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000167 OS << "da analyze - ";
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +0000168 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000169 D->dump(OS);
170 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
171 if (D->isSplitable(Level)) {
172 OS << "da analyze - split level = " << Level;
Dylan Noblesmithd96ce662014-08-25 00:28:35 +0000173 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
Sebastian Pop59b61b92012-10-11 07:32:34 +0000174 OS << "!\n";
175 }
176 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000177 }
178 else
179 OS << "none!\n";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000180 }
181 }
182 }
183 }
184}
185
186
187void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
188 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
189}
190
191//===----------------------------------------------------------------------===//
192// Dependence methods
193
194// Returns true if this is an input dependence.
195bool Dependence::isInput() const {
196 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
197}
198
199
200// Returns true if this is an output dependence.
201bool Dependence::isOutput() const {
202 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
203}
204
205
206// Returns true if this is an flow (aka true) dependence.
207bool Dependence::isFlow() const {
208 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
209}
210
211
212// Returns true if this is an anti dependence.
213bool Dependence::isAnti() const {
214 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
215}
216
217
218// Returns true if a particular level is scalar; that is,
219// if no subscript in the source or destination mention the induction
220// variable associated with the loop at this level.
221// Leave this out of line, so it will serve as a virtual method anchor
222bool Dependence::isScalar(unsigned level) const {
223 return false;
224}
225
226
227//===----------------------------------------------------------------------===//
228// FullDependence methods
229
NAKAMURA Takumi478559a2015-03-05 01:25:19 +0000230FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
Sebastian Pop59b61b92012-10-11 07:32:34 +0000231 bool PossiblyLoopIndependent,
NAKAMURA Takumi478559a2015-03-05 01:25:19 +0000232 unsigned CommonLevels)
233 : Dependence(Source, Destination), Levels(CommonLevels),
234 LoopIndependent(PossiblyLoopIndependent) {
NAKAMURA Takumie110d642015-03-05 01:25:06 +0000235 Consistent = true;
236 DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
237}
Sebastian Pop59b61b92012-10-11 07:32:34 +0000238
239// The rest are simple getters that hide the implementation.
240
241// getDirection - Returns the direction associated with a particular level.
242unsigned FullDependence::getDirection(unsigned Level) const {
243 assert(0 < Level && Level <= Levels && "Level out of range");
244 return DV[Level - 1].Direction;
245}
246
247
248// Returns the distance (or NULL) associated with a particular level.
249const SCEV *FullDependence::getDistance(unsigned Level) const {
250 assert(0 < Level && Level <= Levels && "Level out of range");
251 return DV[Level - 1].Distance;
252}
253
254
255// Returns true if a particular level is scalar; that is,
256// if no subscript in the source or destination mention the induction
257// variable associated with the loop at this level.
258bool FullDependence::isScalar(unsigned Level) const {
259 assert(0 < Level && Level <= Levels && "Level out of range");
260 return DV[Level - 1].Scalar;
261}
262
263
264// Returns true if peeling the first iteration from this loop
265// will break this dependence.
266bool FullDependence::isPeelFirst(unsigned Level) const {
267 assert(0 < Level && Level <= Levels && "Level out of range");
268 return DV[Level - 1].PeelFirst;
269}
270
271
272// Returns true if peeling the last iteration from this loop
273// will break this dependence.
274bool FullDependence::isPeelLast(unsigned Level) const {
275 assert(0 < Level && Level <= Levels && "Level out of range");
276 return DV[Level - 1].PeelLast;
277}
278
279
280// Returns true if splitting this loop will break the dependence.
281bool FullDependence::isSplitable(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].Splitable;
284}
285
286
287//===----------------------------------------------------------------------===//
288// DependenceAnalysis::Constraint methods
289
290// If constraint is a point <X, Y>, returns X.
291// Otherwise assert.
292const SCEV *DependenceAnalysis::Constraint::getX() const {
293 assert(Kind == Point && "Kind should be Point");
294 return A;
295}
296
297
298// If constraint is a point <X, Y>, returns Y.
299// Otherwise assert.
300const SCEV *DependenceAnalysis::Constraint::getY() const {
301 assert(Kind == Point && "Kind should be Point");
302 return B;
303}
304
305
306// If constraint is a line AX + BY = C, returns A.
307// Otherwise assert.
308const SCEV *DependenceAnalysis::Constraint::getA() const {
309 assert((Kind == Line || Kind == Distance) &&
310 "Kind should be Line (or Distance)");
311 return A;
312}
313
314
315// If constraint is a line AX + BY = C, returns B.
316// Otherwise assert.
317const SCEV *DependenceAnalysis::Constraint::getB() const {
318 assert((Kind == Line || Kind == Distance) &&
319 "Kind should be Line (or Distance)");
320 return B;
321}
322
323
324// If constraint is a line AX + BY = C, returns C.
325// Otherwise assert.
326const SCEV *DependenceAnalysis::Constraint::getC() const {
327 assert((Kind == Line || Kind == Distance) &&
328 "Kind should be Line (or Distance)");
329 return C;
330}
331
332
333// If constraint is a distance, returns D.
334// Otherwise assert.
335const SCEV *DependenceAnalysis::Constraint::getD() const {
336 assert(Kind == Distance && "Kind should be Distance");
337 return SE->getNegativeSCEV(C);
338}
339
340
341// Returns the loop associated with this constraint.
342const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
343 assert((Kind == Distance || Kind == Line || Kind == Point) &&
344 "Kind should be Distance, Line, or Point");
345 return AssociatedLoop;
346}
347
348
349void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
350 const SCEV *Y,
351 const Loop *CurLoop) {
352 Kind = Point;
353 A = X;
354 B = Y;
355 AssociatedLoop = CurLoop;
356}
357
358
359void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
360 const SCEV *BB,
361 const SCEV *CC,
362 const Loop *CurLoop) {
363 Kind = Line;
364 A = AA;
365 B = BB;
366 C = CC;
367 AssociatedLoop = CurLoop;
368}
369
370
371void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
372 const Loop *CurLoop) {
373 Kind = Distance;
374 A = SE->getConstant(D->getType(), 1);
375 B = SE->getNegativeSCEV(A);
376 C = SE->getNegativeSCEV(D);
377 AssociatedLoop = CurLoop;
378}
379
380
381void DependenceAnalysis::Constraint::setEmpty() {
382 Kind = Empty;
383}
384
385
386void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
387 SE = NewSE;
388 Kind = Any;
389}
390
391
392// For debugging purposes. Dumps the constraint out to OS.
393void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
394 if (isEmpty())
395 OS << " Empty\n";
396 else if (isAny())
397 OS << " Any\n";
398 else if (isPoint())
399 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
400 else if (isDistance())
401 OS << " Distance is " << *getD() <<
402 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
403 else if (isLine())
404 OS << " Line is " << *getA() << "*X + " <<
405 *getB() << "*Y = " << *getC() << "\n";
406 else
407 llvm_unreachable("unknown constraint type in Constraint::dump");
408}
409
410
411// Updates X with the intersection
412// of the Constraints X and Y. Returns true if X has changed.
413// Corresponds to Figure 4 from the paper
414//
415// Practical Dependence Testing
416// Goff, Kennedy, Tseng
417// PLDI 1991
418bool DependenceAnalysis::intersectConstraints(Constraint *X,
419 const Constraint *Y) {
420 ++DeltaApplications;
421 DEBUG(dbgs() << "\tintersect constraints\n");
422 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
423 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
424 assert(!Y->isPoint() && "Y must not be a Point");
425 if (X->isAny()) {
426 if (Y->isAny())
427 return false;
428 *X = *Y;
429 return true;
430 }
431 if (X->isEmpty())
432 return false;
433 if (Y->isEmpty()) {
434 X->setEmpty();
435 return true;
436 }
437
438 if (X->isDistance() && Y->isDistance()) {
439 DEBUG(dbgs() << "\t intersect 2 distances\n");
440 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
441 return false;
442 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
443 X->setEmpty();
444 ++DeltaSuccesses;
445 return true;
446 }
447 // Hmmm, interesting situation.
448 // I guess if either is constant, keep it and ignore the other.
449 if (isa<SCEVConstant>(Y->getD())) {
450 *X = *Y;
451 return true;
452 }
453 return false;
454 }
455
456 // At this point, the pseudo-code in Figure 4 of the paper
457 // checks if (X->isPoint() && Y->isPoint()).
458 // This case can't occur in our implementation,
459 // since a Point can only arise as the result of intersecting
460 // two Line constraints, and the right-hand value, Y, is never
461 // the result of an intersection.
462 assert(!(X->isPoint() && Y->isPoint()) &&
463 "We shouldn't ever see X->isPoint() && Y->isPoint()");
464
465 if (X->isLine() && Y->isLine()) {
466 DEBUG(dbgs() << "\t intersect 2 lines\n");
467 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
468 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
469 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
470 // slopes are equal, so lines are parallel
471 DEBUG(dbgs() << "\t\tsame slope\n");
472 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
473 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
474 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
475 return false;
476 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
477 X->setEmpty();
478 ++DeltaSuccesses;
479 return true;
480 }
481 return false;
482 }
483 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
484 // slopes differ, so lines intersect
485 DEBUG(dbgs() << "\t\tdifferent slopes\n");
486 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
487 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
488 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
489 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
490 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
491 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
492 const SCEVConstant *C1A2_C2A1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
494 const SCEVConstant *C1B2_C2B1 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
496 const SCEVConstant *A1B2_A2B1 =
497 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
498 const SCEVConstant *A2B1_A1B2 =
499 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
500 if (!C1B2_C2B1 || !C1A2_C2A1 ||
501 !A1B2_A2B1 || !A2B1_A1B2)
502 return false;
503 APInt Xtop = C1B2_C2B1->getValue()->getValue();
504 APInt Xbot = A1B2_A2B1->getValue()->getValue();
505 APInt Ytop = C1A2_C2A1->getValue()->getValue();
506 APInt Ybot = A2B1_A1B2->getValue()->getValue();
507 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
508 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
509 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
510 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
511 APInt Xq = Xtop; // these need to be initialized, even
512 APInt Xr = Xtop; // though they're just going to be overwritten
513 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
514 APInt Yq = Ytop;
Jakub Staszak340c7802013-08-06 16:40:40 +0000515 APInt Yr = Ytop;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000516 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
517 if (Xr != 0 || Yr != 0) {
518 X->setEmpty();
519 ++DeltaSuccesses;
520 return true;
521 }
522 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
523 if (Xq.slt(0) || Yq.slt(0)) {
524 X->setEmpty();
525 ++DeltaSuccesses;
526 return true;
527 }
528 if (const SCEVConstant *CUB =
529 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
530 APInt UpperBound = CUB->getValue()->getValue();
531 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
532 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
533 X->setEmpty();
534 ++DeltaSuccesses;
535 return true;
536 }
537 }
538 X->setPoint(SE->getConstant(Xq),
539 SE->getConstant(Yq),
540 X->getAssociatedLoop());
541 ++DeltaSuccesses;
542 return true;
543 }
544 return false;
545 }
546
547 // if (X->isLine() && Y->isPoint()) This case can't occur.
548 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
549
550 if (X->isPoint() && Y->isLine()) {
551 DEBUG(dbgs() << "\t intersect Point and Line\n");
552 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
553 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
554 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
555 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
556 return false;
557 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
558 X->setEmpty();
559 ++DeltaSuccesses;
560 return true;
561 }
562 return false;
563 }
564
565 llvm_unreachable("shouldn't reach the end of Constraint intersection");
566 return false;
567}
568
569
570//===----------------------------------------------------------------------===//
571// DependenceAnalysis methods
572
573// For debugging purposes. Dumps a dependence to OS.
574void Dependence::dump(raw_ostream &OS) const {
575 bool Splitable = false;
576 if (isConfused())
577 OS << "confused";
578 else {
579 if (isConsistent())
580 OS << "consistent ";
581 if (isFlow())
582 OS << "flow";
583 else if (isOutput())
584 OS << "output";
585 else if (isAnti())
586 OS << "anti";
587 else if (isInput())
588 OS << "input";
589 unsigned Levels = getLevels();
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000590 OS << " [";
591 for (unsigned II = 1; II <= Levels; ++II) {
592 if (isSplitable(II))
593 Splitable = true;
594 if (isPeelFirst(II))
595 OS << 'p';
596 const SCEV *Distance = getDistance(II);
597 if (Distance)
598 OS << *Distance;
599 else if (isScalar(II))
600 OS << "S";
601 else {
602 unsigned Direction = getDirection(II);
603 if (Direction == DVEntry::ALL)
604 OS << "*";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000605 else {
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000606 if (Direction & DVEntry::LT)
607 OS << "<";
608 if (Direction & DVEntry::EQ)
609 OS << "=";
610 if (Direction & DVEntry::GT)
611 OS << ">";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000612 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000613 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000614 if (isPeelLast(II))
615 OS << 'p';
616 if (II < Levels)
617 OS << " ";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000618 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000619 if (isLoopIndependent())
620 OS << "|<";
621 OS << "]";
622 if (Splitable)
623 OS << " splitable";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000624 }
625 OS << "!\n";
626}
627
Chandler Carruthc3f49eb2015-06-22 02:16:51 +0000628static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
629 const DataLayout &DL, const Value *A,
630 const Value *B) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000631 const Value *AObj = GetUnderlyingObject(A, DL);
632 const Value *BObj = GetUnderlyingObject(B, DL);
Sebastian Pop59b61b92012-10-11 07:32:34 +0000633 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
634 BObj, AA->getTypeStoreSize(BObj->getType()));
635}
636
637
638// Returns true if the load or store can be analyzed. Atomic and volatile
639// operations have properties which this analysis does not understand.
640static
641bool isLoadOrStore(const Instruction *I) {
642 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
643 return LI->isUnordered();
644 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
645 return SI->isUnordered();
646 return false;
647}
648
649
650static
Sebastian Pop87ce43c2012-11-20 22:28:04 +0000651Value *getPointerOperand(Instruction *I) {
652 if (LoadInst *LI = dyn_cast<LoadInst>(I))
Sebastian Pop59b61b92012-10-11 07:32:34 +0000653 return LI->getPointerOperand();
Sebastian Pop87ce43c2012-11-20 22:28:04 +0000654 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Sebastian Pop59b61b92012-10-11 07:32:34 +0000655 return SI->getPointerOperand();
656 llvm_unreachable("Value is not load or store instruction");
Craig Topper9f008862014-04-15 04:59:12 +0000657 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000658}
659
660
661// Examines the loop nesting of the Src and Dst
662// instructions and establishes their shared loops. Sets the variables
663// CommonLevels, SrcLevels, and MaxLevels.
664// The source and destination instructions needn't be contained in the same
665// loop. The routine establishNestingLevels finds the level of most deeply
666// nested loop that contains them both, CommonLevels. An instruction that's
667// not contained in a loop is at level = 0. MaxLevels is equal to the level
668// of the source plus the level of the destination, minus CommonLevels.
669// This lets us allocate vectors MaxLevels in length, with room for every
670// distinct loop referenced in both the source and destination subscripts.
671// The variable SrcLevels is the nesting depth of the source instruction.
672// It's used to help calculate distinct loops referenced by the destination.
673// Here's the map from loops to levels:
674// 0 - unused
675// 1 - outermost common loop
676// ... - other common loops
677// CommonLevels - innermost common loop
678// ... - loops containing Src but not Dst
679// SrcLevels - innermost loop containing Src but not Dst
680// ... - loops containing Dst but not Src
681// MaxLevels - innermost loops containing Dst but not Src
682// Consider the follow code fragment:
683// for (a = ...) {
684// for (b = ...) {
685// for (c = ...) {
686// for (d = ...) {
687// A[] = ...;
688// }
689// }
690// for (e = ...) {
691// for (f = ...) {
692// for (g = ...) {
693// ... = A[];
694// }
695// }
696// }
697// }
698// }
699// If we're looking at the possibility of a dependence between the store
700// to A (the Src) and the load from A (the Dst), we'll note that they
701// have 2 loops in common, so CommonLevels will equal 2 and the direction
702// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
703// A map from loop names to loop numbers would look like
704// a - 1
705// b - 2 = CommonLevels
706// c - 3
707// d - 4 = SrcLevels
708// e - 5
709// f - 6
710// g - 7 = MaxLevels
711void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
712 const Instruction *Dst) {
713 const BasicBlock *SrcBlock = Src->getParent();
714 const BasicBlock *DstBlock = Dst->getParent();
715 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
716 unsigned DstLevel = LI->getLoopDepth(DstBlock);
717 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
718 const Loop *DstLoop = LI->getLoopFor(DstBlock);
719 SrcLevels = SrcLevel;
720 MaxLevels = SrcLevel + DstLevel;
721 while (SrcLevel > DstLevel) {
722 SrcLoop = SrcLoop->getParentLoop();
723 SrcLevel--;
724 }
725 while (DstLevel > SrcLevel) {
726 DstLoop = DstLoop->getParentLoop();
727 DstLevel--;
728 }
729 while (SrcLoop != DstLoop) {
730 SrcLoop = SrcLoop->getParentLoop();
731 DstLoop = DstLoop->getParentLoop();
732 SrcLevel--;
733 }
734 CommonLevels = SrcLevel;
735 MaxLevels -= CommonLevels;
736}
737
738
739// Given one of the loops containing the source, return
740// its level index in our numbering scheme.
741unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
742 return SrcLoop->getLoopDepth();
743}
744
745
746// Given one of the loops containing the destination,
747// return its level index in our numbering scheme.
748unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
749 unsigned D = DstLoop->getLoopDepth();
750 if (D > CommonLevels)
751 return D - CommonLevels + SrcLevels;
752 else
753 return D;
754}
755
756
757// Returns true if Expression is loop invariant in LoopNest.
758bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
759 const Loop *LoopNest) const {
760 if (!LoopNest)
761 return true;
762 return SE->isLoopInvariant(Expression, LoopNest) &&
763 isLoopInvariant(Expression, LoopNest->getParentLoop());
764}
765
766
767
768// Finds the set of loops from the LoopNest that
769// have a level <= CommonLevels and are referred to by the SCEV Expression.
770void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
771 const Loop *LoopNest,
772 SmallBitVector &Loops) const {
773 while (LoopNest) {
774 unsigned Level = LoopNest->getLoopDepth();
775 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
776 Loops.set(Level);
777 LoopNest = LoopNest->getParentLoop();
778 }
779}
780
Jingyue Wua84feb12015-05-29 16:58:08 +0000781void DependenceAnalysis::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
782
783 unsigned widestWidthSeen = 0;
784 Type *widestType;
785
786 // Go through each pair and find the widest bit to which we need
787 // to extend all of them.
788 for (unsigned i = 0; i < Pairs.size(); i++) {
789 const SCEV *Src = Pairs[i]->Src;
790 const SCEV *Dst = Pairs[i]->Dst;
791 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
792 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
793 if (SrcTy == nullptr || DstTy == nullptr) {
794 assert(SrcTy == DstTy && "This function only unify integer types and "
795 "expect Src and Dst share the same type "
796 "otherwise.");
797 continue;
798 }
799 if (SrcTy->getBitWidth() > widestWidthSeen) {
800 widestWidthSeen = SrcTy->getBitWidth();
801 widestType = SrcTy;
802 }
803 if (DstTy->getBitWidth() > widestWidthSeen) {
804 widestWidthSeen = DstTy->getBitWidth();
805 widestType = DstTy;
806 }
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000807 }
Jingyue Wua84feb12015-05-29 16:58:08 +0000808
809
810 assert(widestWidthSeen > 0);
811
812 // Now extend each pair to the widest seen.
813 for (unsigned i = 0; i < Pairs.size(); i++) {
814 const SCEV *Src = Pairs[i]->Src;
815 const SCEV *Dst = Pairs[i]->Dst;
816 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
817 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
818 if (SrcTy == nullptr || DstTy == nullptr) {
819 assert(SrcTy == DstTy && "This function only unify integer types and "
820 "expect Src and Dst share the same type "
821 "otherwise.");
822 continue;
823 }
824 if (SrcTy->getBitWidth() < widestWidthSeen)
825 // Sign-extend Src to widestType
826 Pairs[i]->Src = SE->getSignExtendExpr(Src, widestType);
827 if (DstTy->getBitWidth() < widestWidthSeen) {
828 // Sign-extend Dst to widestType
829 Pairs[i]->Dst = SE->getSignExtendExpr(Dst, widestType);
830 }
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000831 }
832}
Sebastian Pop59b61b92012-10-11 07:32:34 +0000833
834// removeMatchingExtensions - Examines a subscript pair.
835// If the source and destination are identically sign (or zero)
836// extended, it strips off the extension in an effect to simplify
837// the actual analysis.
838void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
839 const SCEV *Src = Pair->Src;
840 const SCEV *Dst = Pair->Dst;
841 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
842 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
843 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
844 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
Jingyue Wu0fa125a2014-11-16 16:52:44 +0000845 const SCEV *SrcCastOp = SrcCast->getOperand();
846 const SCEV *DstCastOp = DstCast->getOperand();
847 if (SrcCastOp->getType() == DstCastOp->getType()) {
848 Pair->Src = SrcCastOp;
849 Pair->Dst = DstCastOp;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000850 }
851 }
852}
853
854
855// Examine the scev and return true iff it's linear.
856// Collect any loops mentioned in the set of "Loops".
857bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
858 const Loop *LoopNest,
859 SmallBitVector &Loops) {
860 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
861 if (!AddRec)
862 return isLoopInvariant(Src, LoopNest);
863 const SCEV *Start = AddRec->getStart();
864 const SCEV *Step = AddRec->getStepRecurrence(*SE);
James Molloyc0661ae2015-05-15 12:17:22 +0000865 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
866 if (!isa<SCEVCouldNotCompute>(UB)) {
867 if (SE->getTypeSizeInBits(Start->getType()) <
868 SE->getTypeSizeInBits(UB->getType())) {
869 if (!AddRec->getNoWrapFlags())
870 return false;
871 }
872 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000873 if (!isLoopInvariant(Step, LoopNest))
874 return false;
875 Loops.set(mapSrcLoop(AddRec->getLoop()));
876 return checkSrcSubscript(Start, LoopNest, Loops);
877}
878
879
880
881// Examine the scev and return true iff it's linear.
882// Collect any loops mentioned in the set of "Loops".
883bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
884 const Loop *LoopNest,
885 SmallBitVector &Loops) {
886 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
887 if (!AddRec)
888 return isLoopInvariant(Dst, LoopNest);
889 const SCEV *Start = AddRec->getStart();
890 const SCEV *Step = AddRec->getStepRecurrence(*SE);
James Molloyc0661ae2015-05-15 12:17:22 +0000891 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
892 if (!isa<SCEVCouldNotCompute>(UB)) {
893 if (SE->getTypeSizeInBits(Start->getType()) <
894 SE->getTypeSizeInBits(UB->getType())) {
895 if (!AddRec->getNoWrapFlags())
896 return false;
897 }
898 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000899 if (!isLoopInvariant(Step, LoopNest))
900 return false;
901 Loops.set(mapDstLoop(AddRec->getLoop()));
902 return checkDstSubscript(Start, LoopNest, Loops);
903}
904
905
906// Examines the subscript pair (the Src and Dst SCEVs)
907// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
908// Collects the associated loops in a set.
909DependenceAnalysis::Subscript::ClassificationKind
910DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
911 const SCEV *Dst, const Loop *DstLoopNest,
912 SmallBitVector &Loops) {
913 SmallBitVector SrcLoops(MaxLevels + 1);
914 SmallBitVector DstLoops(MaxLevels + 1);
915 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
916 return Subscript::NonLinear;
917 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
918 return Subscript::NonLinear;
919 Loops = SrcLoops;
920 Loops |= DstLoops;
921 unsigned N = Loops.count();
922 if (N == 0)
923 return Subscript::ZIV;
924 if (N == 1)
925 return Subscript::SIV;
926 if (N == 2 && (SrcLoops.count() == 0 ||
927 DstLoops.count() == 0 ||
928 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
929 return Subscript::RDIV;
930 return Subscript::MIV;
931}
932
933
934// A wrapper around SCEV::isKnownPredicate.
935// Looks for cases where we're interested in comparing for equality.
936// If both X and Y have been identically sign or zero extended,
937// it strips off the (confusing) extensions before invoking
938// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
939// will be similarly updated.
940//
941// If SCEV::isKnownPredicate can't prove the predicate,
942// we try simple subtraction, which seems to help in some cases
943// involving symbolics.
944bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
945 const SCEV *X,
946 const SCEV *Y) const {
947 if (Pred == CmpInst::ICMP_EQ ||
948 Pred == CmpInst::ICMP_NE) {
949 if ((isa<SCEVSignExtendExpr>(X) &&
950 isa<SCEVSignExtendExpr>(Y)) ||
951 (isa<SCEVZeroExtendExpr>(X) &&
952 isa<SCEVZeroExtendExpr>(Y))) {
953 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
954 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
955 const SCEV *Xop = CX->getOperand();
956 const SCEV *Yop = CY->getOperand();
957 if (Xop->getType() == Yop->getType()) {
958 X = Xop;
959 Y = Yop;
960 }
961 }
962 }
963 if (SE->isKnownPredicate(Pred, X, Y))
964 return true;
965 // If SE->isKnownPredicate can't prove the condition,
966 // we try the brute-force approach of subtracting
967 // and testing the difference.
968 // By testing with SE->isKnownPredicate first, we avoid
969 // the possibility of overflow when the arguments are constants.
970 const SCEV *Delta = SE->getMinusSCEV(X, Y);
971 switch (Pred) {
972 case CmpInst::ICMP_EQ:
973 return Delta->isZero();
974 case CmpInst::ICMP_NE:
975 return SE->isKnownNonZero(Delta);
976 case CmpInst::ICMP_SGE:
977 return SE->isKnownNonNegative(Delta);
978 case CmpInst::ICMP_SLE:
979 return SE->isKnownNonPositive(Delta);
980 case CmpInst::ICMP_SGT:
981 return SE->isKnownPositive(Delta);
982 case CmpInst::ICMP_SLT:
983 return SE->isKnownNegative(Delta);
984 default:
985 llvm_unreachable("unexpected predicate in isKnownPredicate");
986 }
987}
988
989
990// All subscripts are all the same type.
991// Loop bound may be smaller (e.g., a char).
992// Should zero extend loop bound, since it's always >= 0.
James Molloyc0661ae2015-05-15 12:17:22 +0000993// This routine collects upper bound and extends or truncates if needed.
994// Truncating is safe when subscripts are known not to wrap. Cases without
995// nowrap flags should have been rejected earlier.
Sebastian Pop59b61b92012-10-11 07:32:34 +0000996// Return null if no bound available.
997const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
998 Type *T) const {
999 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1000 const SCEV *UB = SE->getBackedgeTakenCount(L);
James Molloyc0661ae2015-05-15 12:17:22 +00001001 return SE->getTruncateOrZeroExtend(UB, T);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001002 }
Craig Topper9f008862014-04-15 04:59:12 +00001003 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00001004}
1005
1006
1007// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1008// If the cast fails, returns NULL.
1009const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
1010 Type *T
1011 ) const {
1012 if (const SCEV *UB = collectUpperBound(L, T))
1013 return dyn_cast<SCEVConstant>(UB);
Craig Topper9f008862014-04-15 04:59:12 +00001014 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00001015}
1016
1017
1018// testZIV -
1019// When we have a pair of subscripts of the form [c1] and [c2],
1020// where c1 and c2 are both loop invariant, we attack it using
1021// the ZIV test. Basically, we test by comparing the two values,
1022// but there are actually three possible results:
1023// 1) the values are equal, so there's a dependence
1024// 2) the values are different, so there's no dependence
1025// 3) the values might be equal, so we have to assume a dependence.
1026//
1027// Return true if dependence disproved.
1028bool DependenceAnalysis::testZIV(const SCEV *Src,
1029 const SCEV *Dst,
1030 FullDependence &Result) const {
1031 DEBUG(dbgs() << " src = " << *Src << "\n");
1032 DEBUG(dbgs() << " dst = " << *Dst << "\n");
1033 ++ZIVapplications;
1034 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1035 DEBUG(dbgs() << " provably dependent\n");
1036 return false; // provably dependent
1037 }
1038 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1039 DEBUG(dbgs() << " provably independent\n");
1040 ++ZIVindependence;
1041 return true; // provably independent
1042 }
1043 DEBUG(dbgs() << " possibly dependent\n");
1044 Result.Consistent = false;
1045 return false; // possibly dependent
1046}
1047
1048
1049// strongSIVtest -
1050// From the paper, Practical Dependence Testing, Section 4.2.1
1051//
1052// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1053// where i is an induction variable, c1 and c2 are loop invariant,
1054// and a is a constant, we can solve it exactly using the Strong SIV test.
1055//
1056// Can prove independence. Failing that, can compute distance (and direction).
1057// In the presence of symbolic terms, we can sometimes make progress.
1058//
1059// If there's a dependence,
1060//
1061// c1 + a*i = c2 + a*i'
1062//
1063// The dependence distance is
1064//
1065// d = i' - i = (c1 - c2)/a
1066//
1067// A dependence only exists if d is an integer and abs(d) <= U, where U is the
1068// loop's upper bound. If a dependence exists, the dependence direction is
1069// defined as
1070//
1071// { < if d > 0
1072// direction = { = if d = 0
1073// { > if d < 0
1074//
1075// Return true if dependence disproved.
1076bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1077 const SCEV *SrcConst,
1078 const SCEV *DstConst,
1079 const Loop *CurLoop,
1080 unsigned Level,
1081 FullDependence &Result,
1082 Constraint &NewConstraint) const {
1083 DEBUG(dbgs() << "\tStrong SIV test\n");
1084 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1085 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1086 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1087 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1088 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1089 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1090 ++StrongSIVapplications;
1091 assert(0 < Level && Level <= CommonLevels && "level out of range");
1092 Level--;
1093
1094 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1095 DEBUG(dbgs() << "\t Delta = " << *Delta);
1096 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1097
1098 // check that |Delta| < iteration count
1099 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1100 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1101 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1102 const SCEV *AbsDelta =
1103 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1104 const SCEV *AbsCoeff =
1105 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1106 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1107 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1108 // Distance greater than trip count - no dependence
1109 ++StrongSIVindependence;
1110 ++StrongSIVsuccesses;
1111 return true;
1112 }
1113 }
1114
1115 // Can we compute distance?
1116 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1117 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1118 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1119 APInt Distance = ConstDelta; // these need to be initialized
1120 APInt Remainder = ConstDelta;
1121 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1122 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1123 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1124 // Make sure Coeff divides Delta exactly
1125 if (Remainder != 0) {
1126 // Coeff doesn't divide Distance, no dependence
1127 ++StrongSIVindependence;
1128 ++StrongSIVsuccesses;
1129 return true;
1130 }
1131 Result.DV[Level].Distance = SE->getConstant(Distance);
1132 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1133 if (Distance.sgt(0))
1134 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1135 else if (Distance.slt(0))
1136 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1137 else
1138 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1139 ++StrongSIVsuccesses;
1140 }
1141 else if (Delta->isZero()) {
1142 // since 0/X == 0
1143 Result.DV[Level].Distance = Delta;
1144 NewConstraint.setDistance(Delta, CurLoop);
1145 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1146 ++StrongSIVsuccesses;
1147 }
1148 else {
1149 if (Coeff->isOne()) {
1150 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1151 Result.DV[Level].Distance = Delta; // since X/1 == X
1152 NewConstraint.setDistance(Delta, CurLoop);
1153 }
1154 else {
1155 Result.Consistent = false;
1156 NewConstraint.setLine(Coeff,
1157 SE->getNegativeSCEV(Coeff),
1158 SE->getNegativeSCEV(Delta), CurLoop);
1159 }
1160
1161 // maybe we can get a useful direction
1162 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1163 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1164 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1165 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1166 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1167 // The double negatives above are confusing.
1168 // It helps to read !SE->isKnownNonZero(Delta)
1169 // as "Delta might be Zero"
1170 unsigned NewDirection = Dependence::DVEntry::NONE;
1171 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1172 (DeltaMaybeNegative && CoeffMaybeNegative))
1173 NewDirection = Dependence::DVEntry::LT;
1174 if (DeltaMaybeZero)
1175 NewDirection |= Dependence::DVEntry::EQ;
1176 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1177 (DeltaMaybePositive && CoeffMaybeNegative))
1178 NewDirection |= Dependence::DVEntry::GT;
1179 if (NewDirection < Result.DV[Level].Direction)
1180 ++StrongSIVsuccesses;
1181 Result.DV[Level].Direction &= NewDirection;
1182 }
1183 return false;
1184}
1185
1186
1187// weakCrossingSIVtest -
1188// From the paper, Practical Dependence Testing, Section 4.2.2
1189//
1190// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1191// where i is an induction variable, c1 and c2 are loop invariant,
1192// and a is a constant, we can solve it exactly using the
1193// Weak-Crossing SIV test.
1194//
1195// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1196// the two lines, where i = i', yielding
1197//
1198// c1 + a*i = c2 - a*i
1199// 2a*i = c2 - c1
1200// i = (c2 - c1)/2a
1201//
1202// If i < 0, there is no dependence.
1203// If i > upperbound, there is no dependence.
1204// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1205// If i = upperbound, there's a dependence with distance = 0.
1206// If i is integral, there's a dependence (all directions).
1207// If the non-integer part = 1/2, there's a dependence (<> directions).
1208// Otherwise, there's no dependence.
1209//
1210// Can prove independence. Failing that,
1211// can sometimes refine the directions.
1212// Can determine iteration for splitting.
1213//
1214// Return true if dependence disproved.
1215bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1216 const SCEV *SrcConst,
1217 const SCEV *DstConst,
1218 const Loop *CurLoop,
1219 unsigned Level,
1220 FullDependence &Result,
1221 Constraint &NewConstraint,
1222 const SCEV *&SplitIter) const {
1223 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1224 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1225 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1226 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1227 ++WeakCrossingSIVapplications;
1228 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1229 Level--;
1230 Result.Consistent = false;
1231 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1232 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1233 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1234 if (Delta->isZero()) {
Sebastian Pope96232612012-10-12 02:04:32 +00001235 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1236 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001237 ++WeakCrossingSIVsuccesses;
1238 if (!Result.DV[Level].Direction) {
1239 ++WeakCrossingSIVindependence;
1240 return true;
1241 }
1242 Result.DV[Level].Distance = Delta; // = 0
1243 return false;
1244 }
1245 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1246 if (!ConstCoeff)
1247 return false;
1248
1249 Result.DV[Level].Splitable = true;
1250 if (SE->isKnownNegative(ConstCoeff)) {
1251 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1252 assert(ConstCoeff &&
1253 "dynamic cast of negative of ConstCoeff should yield constant");
1254 Delta = SE->getNegativeSCEV(Delta);
1255 }
1256 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1257
1258 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1259 SplitIter =
1260 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1261 Delta),
1262 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1263 ConstCoeff));
1264 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1265
1266 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1267 if (!ConstDelta)
1268 return false;
1269
1270 // We're certain that ConstCoeff > 0; therefore,
1271 // if Delta < 0, then no dependence.
1272 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1273 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1274 if (SE->isKnownNegative(Delta)) {
1275 // No dependence, Delta < 0
1276 ++WeakCrossingSIVindependence;
1277 ++WeakCrossingSIVsuccesses;
1278 return true;
1279 }
1280
1281 // We're certain that Delta > 0 and ConstCoeff > 0.
1282 // Check Delta/(2*ConstCoeff) against upper loop bound
1283 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1284 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1285 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1286 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1287 ConstantTwo);
1288 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1289 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1290 // Delta too big, no dependence
1291 ++WeakCrossingSIVindependence;
1292 ++WeakCrossingSIVsuccesses;
1293 return true;
1294 }
1295 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1296 // i = i' = UB
Sebastian Pope96232612012-10-12 02:04:32 +00001297 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1298 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001299 ++WeakCrossingSIVsuccesses;
1300 if (!Result.DV[Level].Direction) {
1301 ++WeakCrossingSIVindependence;
1302 return true;
1303 }
1304 Result.DV[Level].Splitable = false;
1305 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1306 return false;
1307 }
1308 }
1309
1310 // check that Coeff divides Delta
1311 APInt APDelta = ConstDelta->getValue()->getValue();
1312 APInt APCoeff = ConstCoeff->getValue()->getValue();
1313 APInt Distance = APDelta; // these need to be initialzed
1314 APInt Remainder = APDelta;
1315 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1316 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1317 if (Remainder != 0) {
1318 // Coeff doesn't divide Delta, no dependence
1319 ++WeakCrossingSIVindependence;
1320 ++WeakCrossingSIVsuccesses;
1321 return true;
1322 }
1323 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1324
1325 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1326 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1327 Remainder = Distance.srem(Two);
1328 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1329 if (Remainder != 0) {
1330 // Equal direction isn't possible
Sebastian Pope96232612012-10-12 02:04:32 +00001331 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001332 ++WeakCrossingSIVsuccesses;
1333 }
1334 return false;
1335}
1336
1337
1338// Kirch's algorithm, from
1339//
1340// Optimizing Supercompilers for Supercomputers
1341// Michael Wolfe
1342// MIT Press, 1989
1343//
1344// Program 2.1, page 29.
1345// Computes the GCD of AM and BM.
Mingjie Xing9deac1b2014-01-07 01:54:16 +00001346// Also finds a solution to the equation ax - by = gcd(a, b).
1347// Returns true if dependence disproved; i.e., gcd does not divide Delta.
Sebastian Pop59b61b92012-10-11 07:32:34 +00001348static
1349bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1350 APInt &G, APInt &X, APInt &Y) {
1351 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1352 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1353 APInt G0 = AM.abs();
1354 APInt G1 = BM.abs();
1355 APInt Q = G0; // these need to be initialized
1356 APInt R = G0;
1357 APInt::sdivrem(G0, G1, Q, R);
1358 while (R != 0) {
1359 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1360 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1361 G0 = G1; G1 = R;
1362 APInt::sdivrem(G0, G1, Q, R);
1363 }
1364 G = G1;
1365 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1366 X = AM.slt(0) ? -A1 : A1;
1367 Y = BM.slt(0) ? B1 : -B1;
1368
1369 // make sure gcd divides Delta
1370 R = Delta.srem(G);
1371 if (R != 0)
1372 return true; // gcd doesn't divide Delta, no dependence
1373 Q = Delta.sdiv(G);
1374 X *= Q;
1375 Y *= Q;
1376 return false;
1377}
1378
1379
1380static
1381APInt floorOfQuotient(APInt A, APInt B) {
1382 APInt Q = A; // these need to be initialized
1383 APInt R = A;
1384 APInt::sdivrem(A, B, Q, R);
1385 if (R == 0)
1386 return Q;
1387 if ((A.sgt(0) && B.sgt(0)) ||
1388 (A.slt(0) && B.slt(0)))
1389 return Q;
1390 else
1391 return Q - 1;
1392}
1393
1394
1395static
1396APInt ceilingOfQuotient(APInt A, APInt B) {
1397 APInt Q = A; // these need to be initialized
1398 APInt R = A;
1399 APInt::sdivrem(A, B, Q, R);
1400 if (R == 0)
1401 return Q;
1402 if ((A.sgt(0) && B.sgt(0)) ||
1403 (A.slt(0) && B.slt(0)))
1404 return Q + 1;
1405 else
1406 return Q;
1407}
1408
1409
1410static
1411APInt maxAPInt(APInt A, APInt B) {
1412 return A.sgt(B) ? A : B;
1413}
1414
1415
1416static
1417APInt minAPInt(APInt A, APInt B) {
1418 return A.slt(B) ? A : B;
1419}
1420
1421
1422// exactSIVtest -
1423// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1424// where i is an induction variable, c1 and c2 are loop invariant, and a1
1425// and a2 are constant, we can solve it exactly using an algorithm developed
1426// by Banerjee and Wolfe. See Section 2.5.3 in
1427//
1428// Optimizing Supercompilers for Supercomputers
1429// Michael Wolfe
1430// MIT Press, 1989
1431//
1432// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1433// so use them if possible. They're also a bit better with symbolics and,
1434// in the case of the strong SIV test, can compute Distances.
1435//
1436// Return true if dependence disproved.
1437bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1438 const SCEV *DstCoeff,
1439 const SCEV *SrcConst,
1440 const SCEV *DstConst,
1441 const Loop *CurLoop,
1442 unsigned Level,
1443 FullDependence &Result,
1444 Constraint &NewConstraint) const {
1445 DEBUG(dbgs() << "\tExact SIV test\n");
1446 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1447 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1448 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1449 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1450 ++ExactSIVapplications;
1451 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1452 Level--;
1453 Result.Consistent = false;
1454 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1455 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1456 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1457 Delta, CurLoop);
1458 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1459 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1460 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1461 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1462 return false;
1463
1464 // find gcd
1465 APInt G, X, Y;
1466 APInt AM = ConstSrcCoeff->getValue()->getValue();
1467 APInt BM = ConstDstCoeff->getValue()->getValue();
1468 unsigned Bits = AM.getBitWidth();
1469 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1470 // gcd doesn't divide Delta, no dependence
1471 ++ExactSIVindependence;
1472 ++ExactSIVsuccesses;
1473 return true;
1474 }
1475
1476 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1477
1478 // since SCEV construction normalizes, LM = 0
1479 APInt UM(Bits, 1, true);
1480 bool UMvalid = false;
1481 // UM is perhaps unavailable, let's check
1482 if (const SCEVConstant *CUB =
1483 collectConstantUpperBound(CurLoop, Delta->getType())) {
1484 UM = CUB->getValue()->getValue();
1485 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1486 UMvalid = true;
1487 }
1488
1489 APInt TU(APInt::getSignedMaxValue(Bits));
1490 APInt TL(APInt::getSignedMinValue(Bits));
1491
1492 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1493 APInt TMUL = BM.sdiv(G);
1494 if (TMUL.sgt(0)) {
1495 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1496 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1497 if (UMvalid) {
1498 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1499 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1500 }
1501 }
1502 else {
1503 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1504 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1505 if (UMvalid) {
1506 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1507 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1508 }
1509 }
1510
1511 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1512 TMUL = AM.sdiv(G);
1513 if (TMUL.sgt(0)) {
1514 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1515 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1516 if (UMvalid) {
1517 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1518 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1519 }
1520 }
1521 else {
1522 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1523 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1524 if (UMvalid) {
1525 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1526 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1527 }
1528 }
1529 if (TL.sgt(TU)) {
1530 ++ExactSIVindependence;
1531 ++ExactSIVsuccesses;
1532 return true;
1533 }
1534
1535 // explore directions
1536 unsigned NewDirection = Dependence::DVEntry::NONE;
1537
1538 // less than
1539 APInt SaveTU(TU); // save these
1540 APInt SaveTL(TL);
1541 DEBUG(dbgs() << "\t exploring LT direction\n");
1542 TMUL = AM - BM;
1543 if (TMUL.sgt(0)) {
1544 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1545 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1546 }
1547 else {
1548 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1549 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1550 }
1551 if (TL.sle(TU)) {
1552 NewDirection |= Dependence::DVEntry::LT;
1553 ++ExactSIVsuccesses;
1554 }
1555
1556 // equal
1557 TU = SaveTU; // restore
1558 TL = SaveTL;
1559 DEBUG(dbgs() << "\t exploring EQ direction\n");
1560 if (TMUL.sgt(0)) {
1561 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1562 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1563 }
1564 else {
1565 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1566 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1567 }
1568 TMUL = BM - AM;
1569 if (TMUL.sgt(0)) {
1570 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1571 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1572 }
1573 else {
1574 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1575 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1576 }
1577 if (TL.sle(TU)) {
1578 NewDirection |= Dependence::DVEntry::EQ;
1579 ++ExactSIVsuccesses;
1580 }
1581
1582 // greater than
1583 TU = SaveTU; // restore
1584 TL = SaveTL;
1585 DEBUG(dbgs() << "\t exploring GT direction\n");
1586 if (TMUL.sgt(0)) {
1587 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1588 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1589 }
1590 else {
1591 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1592 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1593 }
1594 if (TL.sle(TU)) {
1595 NewDirection |= Dependence::DVEntry::GT;
1596 ++ExactSIVsuccesses;
1597 }
1598
1599 // finished
1600 Result.DV[Level].Direction &= NewDirection;
1601 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1602 ++ExactSIVindependence;
1603 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1604}
1605
1606
1607
1608// Return true if the divisor evenly divides the dividend.
1609static
1610bool isRemainderZero(const SCEVConstant *Dividend,
1611 const SCEVConstant *Divisor) {
1612 APInt ConstDividend = Dividend->getValue()->getValue();
1613 APInt ConstDivisor = Divisor->getValue()->getValue();
1614 return ConstDividend.srem(ConstDivisor) == 0;
1615}
1616
1617
1618// weakZeroSrcSIVtest -
1619// From the paper, Practical Dependence Testing, Section 4.2.2
1620//
1621// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1622// where i is an induction variable, c1 and c2 are loop invariant,
1623// and a is a constant, we can solve it exactly using the
1624// Weak-Zero SIV test.
1625//
1626// Given
1627//
1628// c1 = c2 + a*i
1629//
1630// we get
1631//
1632// (c1 - c2)/a = i
1633//
1634// If i is not an integer, there's no dependence.
1635// If i < 0 or > UB, there's no dependence.
1636// If i = 0, the direction is <= and peeling the
1637// 1st iteration will break the dependence.
1638// If i = UB, the direction is >= and peeling the
1639// last iteration will break the dependence.
1640// Otherwise, the direction is *.
1641//
1642// Can prove independence. Failing that, we can sometimes refine
1643// the directions. Can sometimes show that first or last
1644// iteration carries all the dependences (so worth peeling).
1645//
1646// (see also weakZeroDstSIVtest)
1647//
1648// Return true if dependence disproved.
1649bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1650 const SCEV *SrcConst,
1651 const SCEV *DstConst,
1652 const Loop *CurLoop,
1653 unsigned Level,
1654 FullDependence &Result,
1655 Constraint &NewConstraint) const {
1656 // For the WeakSIV test, it's possible the loop isn't common to
1657 // the Src and Dst loops. If it isn't, then there's no need to
1658 // record a direction.
1659 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1660 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1661 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1662 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1663 ++WeakZeroSIVapplications;
1664 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1665 Level--;
1666 Result.Consistent = false;
1667 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1668 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1669 DstCoeff, Delta, CurLoop);
1670 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1671 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1672 if (Level < CommonLevels) {
1673 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1674 Result.DV[Level].PeelFirst = true;
1675 ++WeakZeroSIVsuccesses;
1676 }
1677 return false; // dependences caused by first iteration
1678 }
1679 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1680 if (!ConstCoeff)
1681 return false;
1682 const SCEV *AbsCoeff =
1683 SE->isKnownNegative(ConstCoeff) ?
1684 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1685 const SCEV *NewDelta =
1686 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1687
1688 // check that Delta/SrcCoeff < iteration count
1689 // really check NewDelta < count*AbsCoeff
1690 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1691 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1692 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1693 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1694 ++WeakZeroSIVindependence;
1695 ++WeakZeroSIVsuccesses;
1696 return true;
1697 }
1698 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1699 // dependences caused by last iteration
1700 if (Level < CommonLevels) {
1701 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1702 Result.DV[Level].PeelLast = true;
1703 ++WeakZeroSIVsuccesses;
1704 }
1705 return false;
1706 }
1707 }
1708
1709 // check that Delta/SrcCoeff >= 0
1710 // really check that NewDelta >= 0
1711 if (SE->isKnownNegative(NewDelta)) {
1712 // No dependence, newDelta < 0
1713 ++WeakZeroSIVindependence;
1714 ++WeakZeroSIVsuccesses;
1715 return true;
1716 }
1717
1718 // if SrcCoeff doesn't divide Delta, then no dependence
1719 if (isa<SCEVConstant>(Delta) &&
1720 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1721 ++WeakZeroSIVindependence;
1722 ++WeakZeroSIVsuccesses;
1723 return true;
1724 }
1725 return false;
1726}
1727
1728
1729// weakZeroDstSIVtest -
1730// From the paper, Practical Dependence Testing, Section 4.2.2
1731//
1732// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1733// where i is an induction variable, c1 and c2 are loop invariant,
1734// and a is a constant, we can solve it exactly using the
1735// Weak-Zero SIV test.
1736//
1737// Given
1738//
1739// c1 + a*i = c2
1740//
1741// we get
1742//
1743// i = (c2 - c1)/a
1744//
1745// If i is not an integer, there's no dependence.
1746// If i < 0 or > UB, there's no dependence.
1747// If i = 0, the direction is <= and peeling the
1748// 1st iteration will break the dependence.
1749// If i = UB, the direction is >= and peeling the
1750// last iteration will break the dependence.
1751// Otherwise, the direction is *.
1752//
1753// Can prove independence. Failing that, we can sometimes refine
1754// the directions. Can sometimes show that first or last
1755// iteration carries all the dependences (so worth peeling).
1756//
1757// (see also weakZeroSrcSIVtest)
1758//
1759// Return true if dependence disproved.
1760bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1761 const SCEV *SrcConst,
1762 const SCEV *DstConst,
1763 const Loop *CurLoop,
1764 unsigned Level,
1765 FullDependence &Result,
1766 Constraint &NewConstraint) const {
1767 // For the WeakSIV test, it's possible the loop isn't common to the
1768 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1769 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1770 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1771 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1772 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1773 ++WeakZeroSIVapplications;
1774 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1775 Level--;
1776 Result.Consistent = false;
1777 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1778 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1779 Delta, CurLoop);
1780 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1781 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1782 if (Level < CommonLevels) {
1783 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1784 Result.DV[Level].PeelFirst = true;
1785 ++WeakZeroSIVsuccesses;
1786 }
1787 return false; // dependences caused by first iteration
1788 }
1789 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1790 if (!ConstCoeff)
1791 return false;
1792 const SCEV *AbsCoeff =
1793 SE->isKnownNegative(ConstCoeff) ?
1794 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1795 const SCEV *NewDelta =
1796 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1797
1798 // check that Delta/SrcCoeff < iteration count
1799 // really check NewDelta < count*AbsCoeff
1800 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1801 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1802 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1803 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1804 ++WeakZeroSIVindependence;
1805 ++WeakZeroSIVsuccesses;
1806 return true;
1807 }
1808 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1809 // dependences caused by last iteration
1810 if (Level < CommonLevels) {
1811 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1812 Result.DV[Level].PeelLast = true;
1813 ++WeakZeroSIVsuccesses;
1814 }
1815 return false;
1816 }
1817 }
1818
1819 // check that Delta/SrcCoeff >= 0
1820 // really check that NewDelta >= 0
1821 if (SE->isKnownNegative(NewDelta)) {
1822 // No dependence, newDelta < 0
1823 ++WeakZeroSIVindependence;
1824 ++WeakZeroSIVsuccesses;
1825 return true;
1826 }
1827
1828 // if SrcCoeff doesn't divide Delta, then no dependence
1829 if (isa<SCEVConstant>(Delta) &&
1830 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1831 ++WeakZeroSIVindependence;
1832 ++WeakZeroSIVsuccesses;
1833 return true;
1834 }
1835 return false;
1836}
1837
1838
1839// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1840// Things of the form [c1 + a*i] and [c2 + b*j],
1841// where i and j are induction variable, c1 and c2 are loop invariant,
1842// and a and b are constants.
1843// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00001844// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00001845// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1846bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1847 const SCEV *DstCoeff,
1848 const SCEV *SrcConst,
1849 const SCEV *DstConst,
1850 const Loop *SrcLoop,
1851 const Loop *DstLoop,
1852 FullDependence &Result) const {
1853 DEBUG(dbgs() << "\tExact RDIV test\n");
1854 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1855 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1856 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1857 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1858 ++ExactRDIVapplications;
1859 Result.Consistent = false;
1860 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1861 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1862 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1863 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1864 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1865 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1866 return false;
1867
1868 // find gcd
1869 APInt G, X, Y;
1870 APInt AM = ConstSrcCoeff->getValue()->getValue();
1871 APInt BM = ConstDstCoeff->getValue()->getValue();
1872 unsigned Bits = AM.getBitWidth();
1873 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1874 // gcd doesn't divide Delta, no dependence
1875 ++ExactRDIVindependence;
1876 return true;
1877 }
1878
1879 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1880
1881 // since SCEV construction seems to normalize, LM = 0
1882 APInt SrcUM(Bits, 1, true);
1883 bool SrcUMvalid = false;
1884 // SrcUM is perhaps unavailable, let's check
1885 if (const SCEVConstant *UpperBound =
1886 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1887 SrcUM = UpperBound->getValue()->getValue();
1888 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1889 SrcUMvalid = true;
1890 }
1891
1892 APInt DstUM(Bits, 1, true);
1893 bool DstUMvalid = false;
1894 // UM is perhaps unavailable, let's check
1895 if (const SCEVConstant *UpperBound =
1896 collectConstantUpperBound(DstLoop, Delta->getType())) {
1897 DstUM = UpperBound->getValue()->getValue();
1898 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1899 DstUMvalid = true;
1900 }
1901
1902 APInt TU(APInt::getSignedMaxValue(Bits));
1903 APInt TL(APInt::getSignedMinValue(Bits));
1904
1905 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1906 APInt TMUL = BM.sdiv(G);
1907 if (TMUL.sgt(0)) {
1908 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1909 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1910 if (SrcUMvalid) {
1911 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1912 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1913 }
1914 }
1915 else {
1916 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1917 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1918 if (SrcUMvalid) {
1919 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1920 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1921 }
1922 }
1923
1924 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1925 TMUL = AM.sdiv(G);
1926 if (TMUL.sgt(0)) {
1927 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1928 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1929 if (DstUMvalid) {
1930 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1931 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1932 }
1933 }
1934 else {
1935 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1936 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1937 if (DstUMvalid) {
1938 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1939 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1940 }
1941 }
1942 if (TL.sgt(TU))
1943 ++ExactRDIVindependence;
1944 return TL.sgt(TU);
1945}
1946
1947
1948// symbolicRDIVtest -
1949// In Section 4.5 of the Practical Dependence Testing paper,the authors
1950// introduce a special case of Banerjee's Inequalities (also called the
1951// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1952// particularly cases with symbolics. Since it's only able to disprove
1953// dependence (not compute distances or directions), we'll use it as a
1954// fall back for the other tests.
1955//
1956// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1957// where i and j are induction variables and c1 and c2 are loop invariants,
1958// we can use the symbolic tests to disprove some dependences, serving as a
1959// backup for the RDIV test. Note that i and j can be the same variable,
1960// letting this test serve as a backup for the various SIV tests.
1961//
1962// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1963// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1964// loop bounds for the i and j loops, respectively. So, ...
1965//
1966// c1 + a1*i = c2 + a2*j
1967// a1*i - a2*j = c2 - c1
1968//
1969// To test for a dependence, we compute c2 - c1 and make sure it's in the
1970// range of the maximum and minimum possible values of a1*i - a2*j.
1971// Considering the signs of a1 and a2, we have 4 possible cases:
1972//
1973// 1) If a1 >= 0 and a2 >= 0, then
1974// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1975// -a2*N2 <= c2 - c1 <= a1*N1
1976//
1977// 2) If a1 >= 0 and a2 <= 0, then
1978// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1979// 0 <= c2 - c1 <= a1*N1 - a2*N2
1980//
1981// 3) If a1 <= 0 and a2 >= 0, then
1982// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1983// a1*N1 - a2*N2 <= c2 - c1 <= 0
1984//
1985// 4) If a1 <= 0 and a2 <= 0, then
1986// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1987// a1*N1 <= c2 - c1 <= -a2*N2
1988//
1989// return true if dependence disproved
1990bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1991 const SCEV *A2,
1992 const SCEV *C1,
1993 const SCEV *C2,
1994 const Loop *Loop1,
1995 const Loop *Loop2) const {
1996 ++SymbolicRDIVapplications;
1997 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1998 DEBUG(dbgs() << "\t A1 = " << *A1);
1999 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2000 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2001 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2002 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2003 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2004 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2005 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2006 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2007 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2008 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2009 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2010 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2011 if (SE->isKnownNonNegative(A1)) {
2012 if (SE->isKnownNonNegative(A2)) {
2013 // A1 >= 0 && A2 >= 0
2014 if (N1) {
2015 // make sure that c2 - c1 <= a1*N1
2016 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2017 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2018 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2019 ++SymbolicRDIVindependence;
2020 return true;
2021 }
2022 }
2023 if (N2) {
2024 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2025 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2026 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2027 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2028 ++SymbolicRDIVindependence;
2029 return true;
2030 }
2031 }
2032 }
2033 else if (SE->isKnownNonPositive(A2)) {
2034 // a1 >= 0 && a2 <= 0
2035 if (N1 && N2) {
2036 // make sure that c2 - c1 <= a1*N1 - a2*N2
2037 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2038 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2039 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2040 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2041 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2042 ++SymbolicRDIVindependence;
2043 return true;
2044 }
2045 }
2046 // make sure that 0 <= c2 - c1
2047 if (SE->isKnownNegative(C2_C1)) {
2048 ++SymbolicRDIVindependence;
2049 return true;
2050 }
2051 }
2052 }
2053 else if (SE->isKnownNonPositive(A1)) {
2054 if (SE->isKnownNonNegative(A2)) {
2055 // a1 <= 0 && a2 >= 0
2056 if (N1 && N2) {
2057 // make sure that a1*N1 - a2*N2 <= c2 - c1
2058 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2059 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2060 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2061 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2062 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2063 ++SymbolicRDIVindependence;
2064 return true;
2065 }
2066 }
2067 // make sure that c2 - c1 <= 0
2068 if (SE->isKnownPositive(C2_C1)) {
2069 ++SymbolicRDIVindependence;
2070 return true;
2071 }
2072 }
2073 else if (SE->isKnownNonPositive(A2)) {
2074 // a1 <= 0 && a2 <= 0
2075 if (N1) {
2076 // make sure that a1*N1 <= c2 - c1
2077 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2078 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2079 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2080 ++SymbolicRDIVindependence;
2081 return true;
2082 }
2083 }
2084 if (N2) {
2085 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2086 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2087 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2088 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2089 ++SymbolicRDIVindependence;
2090 return true;
2091 }
2092 }
2093 }
2094 }
2095 return false;
2096}
2097
2098
2099// testSIV -
2100// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2101// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2102// a2 are constant, we attack it with an SIV test. While they can all be
2103// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2104// they apply; they're cheaper and sometimes more precise.
2105//
2106// Return true if dependence disproved.
2107bool DependenceAnalysis::testSIV(const SCEV *Src,
2108 const SCEV *Dst,
2109 unsigned &Level,
2110 FullDependence &Result,
2111 Constraint &NewConstraint,
2112 const SCEV *&SplitIter) const {
2113 DEBUG(dbgs() << " src = " << *Src << "\n");
2114 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2115 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2116 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2117 if (SrcAddRec && DstAddRec) {
2118 const SCEV *SrcConst = SrcAddRec->getStart();
2119 const SCEV *DstConst = DstAddRec->getStart();
2120 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2121 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2122 const Loop *CurLoop = SrcAddRec->getLoop();
2123 assert(CurLoop == DstAddRec->getLoop() &&
2124 "both loops in SIV should be same");
2125 Level = mapSrcLoop(CurLoop);
2126 bool disproven;
2127 if (SrcCoeff == DstCoeff)
2128 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2129 Level, Result, NewConstraint);
2130 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2131 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2132 Level, Result, NewConstraint, SplitIter);
2133 else
2134 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2135 Level, Result, NewConstraint);
2136 return disproven ||
2137 gcdMIVtest(Src, Dst, Result) ||
2138 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2139 }
2140 if (SrcAddRec) {
2141 const SCEV *SrcConst = SrcAddRec->getStart();
2142 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2143 const SCEV *DstConst = Dst;
2144 const Loop *CurLoop = SrcAddRec->getLoop();
2145 Level = mapSrcLoop(CurLoop);
2146 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2147 Level, Result, NewConstraint) ||
2148 gcdMIVtest(Src, Dst, Result);
2149 }
2150 if (DstAddRec) {
2151 const SCEV *DstConst = DstAddRec->getStart();
2152 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2153 const SCEV *SrcConst = Src;
2154 const Loop *CurLoop = DstAddRec->getLoop();
2155 Level = mapDstLoop(CurLoop);
2156 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2157 CurLoop, Level, Result, NewConstraint) ||
2158 gcdMIVtest(Src, Dst, Result);
2159 }
2160 llvm_unreachable("SIV test expected at least one AddRec");
2161 return false;
2162}
2163
2164
2165// testRDIV -
2166// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2167// where i and j are induction variables, c1 and c2 are loop invariant,
2168// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2169// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2170// It doesn't make sense to talk about distance or direction in this case,
2171// so there's no point in making special versions of the Strong SIV test or
2172// the Weak-crossing SIV test.
2173//
2174// With minor algebra, this test can also be used for things like
2175// [c1 + a1*i + a2*j][c2].
2176//
2177// Return true if dependence disproved.
2178bool DependenceAnalysis::testRDIV(const SCEV *Src,
2179 const SCEV *Dst,
2180 FullDependence &Result) const {
2181 // we have 3 possible situations here:
2182 // 1) [a*i + b] and [c*j + d]
2183 // 2) [a*i + c*j + b] and [d]
2184 // 3) [b] and [a*i + c*j + d]
2185 // We need to find what we've got and get organized
2186
2187 const SCEV *SrcConst, *DstConst;
2188 const SCEV *SrcCoeff, *DstCoeff;
2189 const Loop *SrcLoop, *DstLoop;
2190
2191 DEBUG(dbgs() << " src = " << *Src << "\n");
2192 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2193 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2194 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2195 if (SrcAddRec && DstAddRec) {
2196 SrcConst = SrcAddRec->getStart();
2197 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2198 SrcLoop = SrcAddRec->getLoop();
2199 DstConst = DstAddRec->getStart();
2200 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2201 DstLoop = DstAddRec->getLoop();
2202 }
2203 else if (SrcAddRec) {
2204 if (const SCEVAddRecExpr *tmpAddRec =
2205 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2206 SrcConst = tmpAddRec->getStart();
2207 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2208 SrcLoop = tmpAddRec->getLoop();
2209 DstConst = Dst;
2210 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2211 DstLoop = SrcAddRec->getLoop();
2212 }
2213 else
2214 llvm_unreachable("RDIV reached by surprising SCEVs");
2215 }
2216 else if (DstAddRec) {
2217 if (const SCEVAddRecExpr *tmpAddRec =
2218 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2219 DstConst = tmpAddRec->getStart();
2220 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2221 DstLoop = tmpAddRec->getLoop();
2222 SrcConst = Src;
2223 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2224 SrcLoop = DstAddRec->getLoop();
2225 }
2226 else
2227 llvm_unreachable("RDIV reached by surprising SCEVs");
2228 }
2229 else
2230 llvm_unreachable("RDIV expected at least one AddRec");
2231 return exactRDIVtest(SrcCoeff, DstCoeff,
2232 SrcConst, DstConst,
2233 SrcLoop, DstLoop,
2234 Result) ||
2235 gcdMIVtest(Src, Dst, Result) ||
2236 symbolicRDIVtest(SrcCoeff, DstCoeff,
2237 SrcConst, DstConst,
2238 SrcLoop, DstLoop);
2239}
2240
2241
2242// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2243// Return true if dependence disproved.
2244// Can sometimes refine direction vectors.
2245bool DependenceAnalysis::testMIV(const SCEV *Src,
2246 const SCEV *Dst,
2247 const SmallBitVector &Loops,
2248 FullDependence &Result) const {
2249 DEBUG(dbgs() << " src = " << *Src << "\n");
2250 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2251 Result.Consistent = false;
2252 return gcdMIVtest(Src, Dst, Result) ||
2253 banerjeeMIVtest(Src, Dst, Loops, Result);
2254}
2255
2256
2257// Given a product, e.g., 10*X*Y, returns the first constant operand,
2258// in this case 10. If there is no constant part, returns NULL.
2259static
2260const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2261 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2262 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2263 return Constant;
2264 }
Craig Topper9f008862014-04-15 04:59:12 +00002265 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002266}
2267
2268
2269//===----------------------------------------------------------------------===//
2270// gcdMIVtest -
2271// Tests an MIV subscript pair for dependence.
2272// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00002273// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002274// Can sometimes disprove the equal direction for 1 or more loops,
2275// as discussed in Michael Wolfe's book,
2276// High Performance Compilers for Parallel Computing, page 235.
2277//
2278// We spend some effort (code!) to handle cases like
2279// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2280// but M and N are just loop-invariant variables.
2281// This should help us handle linearized subscripts;
2282// also makes this test a useful backup to the various SIV tests.
2283//
2284// It occurs to me that the presence of loop-invariant variables
2285// changes the nature of the test from "greatest common divisor"
Preston Briggs4eb7ee52012-11-29 04:30:52 +00002286// to "a common divisor".
Sebastian Pop59b61b92012-10-11 07:32:34 +00002287bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2288 const SCEV *Dst,
2289 FullDependence &Result) const {
2290 DEBUG(dbgs() << "starting gcd\n");
2291 ++GCDapplications;
Preston Briggs3ad39492012-11-21 23:50:04 +00002292 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002293 APInt RunningGCD = APInt::getNullValue(BitWidth);
2294
2295 // Examine Src coefficients.
2296 // Compute running GCD and record source constant.
2297 // Because we're looking for the constant at the end of the chain,
2298 // we can't quit the loop just because the GCD == 1.
2299 const SCEV *Coefficients = Src;
2300 while (const SCEVAddRecExpr *AddRec =
2301 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2302 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2303 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2304 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2305 // If the coefficient is the product of a constant and other stuff,
2306 // we can use the constant in the GCD computation.
2307 Constant = getConstantPart(Product);
2308 if (!Constant)
2309 return false;
2310 APInt ConstCoeff = Constant->getValue()->getValue();
2311 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2312 Coefficients = AddRec->getStart();
2313 }
2314 const SCEV *SrcConst = Coefficients;
2315
2316 // Examine Dst coefficients.
2317 // Compute running GCD and record destination constant.
2318 // Because we're looking for the constant at the end of the chain,
2319 // we can't quit the loop just because the GCD == 1.
2320 Coefficients = Dst;
2321 while (const SCEVAddRecExpr *AddRec =
2322 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2323 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2324 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2325 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2326 // If the coefficient is the product of a constant and other stuff,
2327 // we can use the constant in the GCD computation.
2328 Constant = getConstantPart(Product);
2329 if (!Constant)
2330 return false;
2331 APInt ConstCoeff = Constant->getValue()->getValue();
2332 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2333 Coefficients = AddRec->getStart();
2334 }
2335 const SCEV *DstConst = Coefficients;
2336
2337 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2338 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2339 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2340 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2341 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2342 // If Delta is a sum of products, we may be able to make further progress.
2343 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2344 const SCEV *Operand = Sum->getOperand(Op);
2345 if (isa<SCEVConstant>(Operand)) {
2346 assert(!Constant && "Surprised to find multiple constants");
2347 Constant = cast<SCEVConstant>(Operand);
2348 }
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002349 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002350 // Search for constant operand to participate in GCD;
2351 // If none found; return false.
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002352 const SCEVConstant *ConstOp = getConstantPart(Product);
2353 if (!ConstOp)
2354 return false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002355 APInt ConstOpValue = ConstOp->getValue()->getValue();
2356 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2357 ConstOpValue.abs());
2358 }
2359 else
2360 return false;
2361 }
2362 }
2363 if (!Constant)
2364 return false;
2365 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2366 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2367 if (ConstDelta == 0)
2368 return false;
2369 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2370 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2371 APInt Remainder = ConstDelta.srem(RunningGCD);
2372 if (Remainder != 0) {
2373 ++GCDindependence;
2374 return true;
2375 }
2376
2377 // Try to disprove equal directions.
2378 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2379 // the code above can't disprove the dependence because the GCD = 1.
2380 // So we consider what happen if i = i' and what happens if j = j'.
2381 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2382 // which is infeasible, so we can disallow the = direction for the i level.
2383 // Setting j = j' doesn't help matters, so we end up with a direction vector
2384 // of [<>, *]
2385 //
2386 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2387 // we need to remember that the constant part is 5 and the RunningGCD should
2388 // be initialized to ExtraGCD = 30.
2389 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2390
2391 bool Improved = false;
2392 Coefficients = Src;
2393 while (const SCEVAddRecExpr *AddRec =
2394 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2395 Coefficients = AddRec->getStart();
2396 const Loop *CurLoop = AddRec->getLoop();
2397 RunningGCD = ExtraGCD;
2398 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2399 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2400 const SCEV *Inner = Src;
2401 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2402 AddRec = cast<SCEVAddRecExpr>(Inner);
2403 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2404 if (CurLoop == AddRec->getLoop())
2405 ; // SrcCoeff == Coeff
2406 else {
2407 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2408 // If the coefficient is the product of a constant and other stuff,
2409 // we can use the constant in the GCD computation.
2410 Constant = getConstantPart(Product);
2411 else
2412 Constant = cast<SCEVConstant>(Coeff);
2413 APInt ConstCoeff = Constant->getValue()->getValue();
2414 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2415 }
2416 Inner = AddRec->getStart();
2417 }
2418 Inner = Dst;
2419 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2420 AddRec = cast<SCEVAddRecExpr>(Inner);
2421 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2422 if (CurLoop == AddRec->getLoop())
2423 DstCoeff = Coeff;
2424 else {
2425 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2426 // If the coefficient is the product of a constant and other stuff,
2427 // we can use the constant in the GCD computation.
2428 Constant = getConstantPart(Product);
2429 else
2430 Constant = cast<SCEVConstant>(Coeff);
2431 APInt ConstCoeff = Constant->getValue()->getValue();
2432 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2433 }
2434 Inner = AddRec->getStart();
2435 }
2436 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2437 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2438 // If the coefficient is the product of a constant and other stuff,
2439 // we can use the constant in the GCD computation.
2440 Constant = getConstantPart(Product);
2441 else if (isa<SCEVConstant>(Delta))
2442 Constant = cast<SCEVConstant>(Delta);
2443 else {
2444 // The difference of the two coefficients might not be a product
2445 // or constant, in which case we give up on this direction.
2446 continue;
2447 }
2448 APInt ConstCoeff = Constant->getValue()->getValue();
2449 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2450 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2451 if (RunningGCD != 0) {
2452 Remainder = ConstDelta.srem(RunningGCD);
2453 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2454 if (Remainder != 0) {
2455 unsigned Level = mapSrcLoop(CurLoop);
Sebastian Pope96232612012-10-12 02:04:32 +00002456 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002457 Improved = true;
2458 }
2459 }
2460 }
2461 if (Improved)
2462 ++GCDsuccesses;
2463 DEBUG(dbgs() << "all done\n");
2464 return false;
2465}
2466
2467
2468//===----------------------------------------------------------------------===//
2469// banerjeeMIVtest -
2470// Use Banerjee's Inequalities to test an MIV subscript pair.
2471// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2472// Generally follows the discussion in Section 2.5.2 of
2473//
2474// Optimizing Supercompilers for Supercomputers
2475// Michael Wolfe
2476//
2477// The inequalities given on page 25 are simplified in that loops are
2478// normalized so that the lower bound is always 0 and the stride is always 1.
2479// For example, Wolfe gives
2480//
2481// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2482//
2483// where A_k is the coefficient of the kth index in the source subscript,
2484// B_k is the coefficient of the kth index in the destination subscript,
2485// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2486// index, and N_k is the stride of the kth index. Since all loops are normalized
2487// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2488// equation to
2489//
2490// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2491// = (A^-_k - B_k)^- (U_k - 1) - B_k
2492//
2493// Similar simplifications are possible for the other equations.
2494//
2495// When we can't determine the number of iterations for a loop,
2496// we use NULL as an indicator for the worst case, infinity.
2497// When computing the upper bound, NULL denotes +inf;
2498// for the lower bound, NULL denotes -inf.
2499//
2500// Return true if dependence disproved.
2501bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2502 const SCEV *Dst,
2503 const SmallBitVector &Loops,
2504 FullDependence &Result) const {
2505 DEBUG(dbgs() << "starting Banerjee\n");
2506 ++BanerjeeApplications;
2507 DEBUG(dbgs() << " Src = " << *Src << '\n');
2508 const SCEV *A0;
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002509 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002510 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2511 const SCEV *B0;
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002512 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2513 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
Sebastian Pop59b61b92012-10-11 07:32:34 +00002514 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2515 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2516
2517 // Compute bounds for all the * directions.
2518 DEBUG(dbgs() << "\tBounds[*]\n");
2519 for (unsigned K = 1; K <= MaxLevels; ++K) {
2520 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2521 Bound[K].Direction = Dependence::DVEntry::ALL;
2522 Bound[K].DirSet = Dependence::DVEntry::NONE;
2523 findBoundsALL(A, B, Bound, K);
2524#ifndef NDEBUG
2525 DEBUG(dbgs() << "\t " << K << '\t');
2526 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2527 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2528 else
2529 DEBUG(dbgs() << "-inf\t");
2530 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2531 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2532 else
2533 DEBUG(dbgs() << "+inf\n");
2534#endif
2535 }
2536
2537 // Test the *, *, *, ... case.
2538 bool Disproved = false;
2539 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2540 // Explore the direction vector hierarchy.
2541 unsigned DepthExpanded = 0;
2542 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2543 Loops, DepthExpanded, Delta);
2544 if (NewDeps > 0) {
2545 bool Improved = false;
2546 for (unsigned K = 1; K <= CommonLevels; ++K) {
2547 if (Loops[K]) {
2548 unsigned Old = Result.DV[K - 1].Direction;
2549 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2550 Improved |= Old != Result.DV[K - 1].Direction;
2551 if (!Result.DV[K - 1].Direction) {
2552 Improved = false;
2553 Disproved = true;
2554 break;
2555 }
2556 }
2557 }
2558 if (Improved)
2559 ++BanerjeeSuccesses;
2560 }
2561 else {
2562 ++BanerjeeIndependence;
2563 Disproved = true;
2564 }
2565 }
2566 else {
2567 ++BanerjeeIndependence;
2568 Disproved = true;
2569 }
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002570 delete [] Bound;
2571 delete [] A;
2572 delete [] B;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002573 return Disproved;
2574}
2575
2576
2577// Hierarchically expands the direction vector
2578// search space, combining the directions of discovered dependences
2579// in the DirSet field of Bound. Returns the number of distinct
2580// dependences discovered. If the dependence is disproved,
2581// it will return 0.
2582unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2583 CoefficientInfo *A,
2584 CoefficientInfo *B,
2585 BoundInfo *Bound,
2586 const SmallBitVector &Loops,
2587 unsigned &DepthExpanded,
2588 const SCEV *Delta) const {
2589 if (Level > CommonLevels) {
2590 // record result
2591 DEBUG(dbgs() << "\t[");
2592 for (unsigned K = 1; K <= CommonLevels; ++K) {
2593 if (Loops[K]) {
2594 Bound[K].DirSet |= Bound[K].Direction;
2595#ifndef NDEBUG
2596 switch (Bound[K].Direction) {
2597 case Dependence::DVEntry::LT:
2598 DEBUG(dbgs() << " <");
2599 break;
2600 case Dependence::DVEntry::EQ:
2601 DEBUG(dbgs() << " =");
2602 break;
2603 case Dependence::DVEntry::GT:
2604 DEBUG(dbgs() << " >");
2605 break;
2606 case Dependence::DVEntry::ALL:
2607 DEBUG(dbgs() << " *");
2608 break;
2609 default:
2610 llvm_unreachable("unexpected Bound[K].Direction");
2611 }
2612#endif
2613 }
2614 }
2615 DEBUG(dbgs() << " ]\n");
2616 return 1;
2617 }
2618 if (Loops[Level]) {
2619 if (Level > DepthExpanded) {
2620 DepthExpanded = Level;
2621 // compute bounds for <, =, > at current level
2622 findBoundsLT(A, B, Bound, Level);
2623 findBoundsGT(A, B, Bound, Level);
2624 findBoundsEQ(A, B, Bound, Level);
2625#ifndef NDEBUG
2626 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2627 DEBUG(dbgs() << "\t <\t");
2628 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2629 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2630 else
2631 DEBUG(dbgs() << "-inf\t");
2632 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2633 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2634 else
2635 DEBUG(dbgs() << "+inf\n");
2636 DEBUG(dbgs() << "\t =\t");
2637 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2638 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2639 else
2640 DEBUG(dbgs() << "-inf\t");
2641 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2642 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2643 else
2644 DEBUG(dbgs() << "+inf\n");
2645 DEBUG(dbgs() << "\t >\t");
2646 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2647 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2648 else
2649 DEBUG(dbgs() << "-inf\t");
2650 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2651 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2652 else
2653 DEBUG(dbgs() << "+inf\n");
2654#endif
2655 }
2656
2657 unsigned NewDeps = 0;
2658
2659 // test bounds for <, *, *, ...
2660 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2661 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2662 Loops, DepthExpanded, Delta);
2663
2664 // Test bounds for =, *, *, ...
2665 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2666 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2667 Loops, DepthExpanded, Delta);
2668
2669 // test bounds for >, *, *, ...
2670 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2671 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2672 Loops, DepthExpanded, Delta);
2673
2674 Bound[Level].Direction = Dependence::DVEntry::ALL;
2675 return NewDeps;
2676 }
2677 else
2678 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2679}
2680
2681
2682// Returns true iff the current bounds are plausible.
2683bool DependenceAnalysis::testBounds(unsigned char DirKind,
2684 unsigned Level,
2685 BoundInfo *Bound,
2686 const SCEV *Delta) const {
2687 Bound[Level].Direction = DirKind;
2688 if (const SCEV *LowerBound = getLowerBound(Bound))
2689 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2690 return false;
2691 if (const SCEV *UpperBound = getUpperBound(Bound))
2692 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2693 return false;
2694 return true;
2695}
2696
2697
2698// Computes the upper and lower bounds for level K
2699// using the * direction. Records them in Bound.
2700// Wolfe gives the equations
2701//
2702// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2703// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2704//
2705// Since we normalize loops, we can simplify these equations to
2706//
2707// LB^*_k = (A^-_k - B^+_k)U_k
2708// UB^*_k = (A^+_k - B^-_k)U_k
2709//
2710// We must be careful to handle the case where the upper bound is unknown.
2711// Note that the lower bound is always <= 0
2712// and the upper bound is always >= 0.
2713void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2714 CoefficientInfo *B,
2715 BoundInfo *Bound,
2716 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002717 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2718 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002719 if (Bound[K].Iterations) {
2720 Bound[K].Lower[Dependence::DVEntry::ALL] =
2721 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2722 Bound[K].Iterations);
2723 Bound[K].Upper[Dependence::DVEntry::ALL] =
2724 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2725 Bound[K].Iterations);
2726 }
2727 else {
2728 // If the difference is 0, we won't need to know the number of iterations.
2729 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2730 Bound[K].Lower[Dependence::DVEntry::ALL] =
2731 SE->getConstant(A[K].Coeff->getType(), 0);
2732 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2733 Bound[K].Upper[Dependence::DVEntry::ALL] =
2734 SE->getConstant(A[K].Coeff->getType(), 0);
2735 }
2736}
2737
2738
2739// Computes the upper and lower bounds for level K
2740// using the = direction. Records them in Bound.
2741// Wolfe gives the equations
2742//
2743// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2744// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2745//
2746// Since we normalize loops, we can simplify these equations to
2747//
2748// LB^=_k = (A_k - B_k)^- U_k
2749// UB^=_k = (A_k - B_k)^+ U_k
2750//
2751// We must be careful to handle the case where the upper bound is unknown.
2752// Note that the lower bound is always <= 0
2753// and the upper bound is always >= 0.
2754void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2755 CoefficientInfo *B,
2756 BoundInfo *Bound,
2757 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002758 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2759 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002760 if (Bound[K].Iterations) {
2761 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2762 const SCEV *NegativePart = getNegativePart(Delta);
2763 Bound[K].Lower[Dependence::DVEntry::EQ] =
2764 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2765 const SCEV *PositivePart = getPositivePart(Delta);
2766 Bound[K].Upper[Dependence::DVEntry::EQ] =
2767 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2768 }
2769 else {
2770 // If the positive/negative part of the difference is 0,
2771 // we won't need to know the number of iterations.
2772 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2773 const SCEV *NegativePart = getNegativePart(Delta);
2774 if (NegativePart->isZero())
2775 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2776 const SCEV *PositivePart = getPositivePart(Delta);
2777 if (PositivePart->isZero())
2778 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2779 }
2780}
2781
2782
2783// Computes the upper and lower bounds for level K
2784// using the < direction. Records them in Bound.
2785// Wolfe gives the equations
2786//
2787// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2788// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2789//
2790// Since we normalize loops, we can simplify these equations to
2791//
2792// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2793// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2794//
2795// We must be careful to handle the case where the upper bound is unknown.
2796void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2797 CoefficientInfo *B,
2798 BoundInfo *Bound,
2799 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002800 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2801 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002802 if (Bound[K].Iterations) {
2803 const SCEV *Iter_1 =
2804 SE->getMinusSCEV(Bound[K].Iterations,
2805 SE->getConstant(Bound[K].Iterations->getType(), 1));
2806 const SCEV *NegPart =
2807 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2808 Bound[K].Lower[Dependence::DVEntry::LT] =
2809 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2810 const SCEV *PosPart =
2811 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2812 Bound[K].Upper[Dependence::DVEntry::LT] =
2813 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2814 }
2815 else {
2816 // If the positive/negative part of the difference is 0,
2817 // we won't need to know the number of iterations.
2818 const SCEV *NegPart =
2819 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2820 if (NegPart->isZero())
2821 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2822 const SCEV *PosPart =
2823 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2824 if (PosPart->isZero())
2825 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2826 }
2827}
2828
2829
2830// Computes the upper and lower bounds for level K
2831// using the > direction. Records them in Bound.
2832// Wolfe gives the equations
2833//
2834// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2835// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2836//
2837// Since we normalize loops, we can simplify these equations to
2838//
2839// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2840// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2841//
2842// We must be careful to handle the case where the upper bound is unknown.
2843void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2844 CoefficientInfo *B,
2845 BoundInfo *Bound,
2846 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002847 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2848 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002849 if (Bound[K].Iterations) {
2850 const SCEV *Iter_1 =
2851 SE->getMinusSCEV(Bound[K].Iterations,
2852 SE->getConstant(Bound[K].Iterations->getType(), 1));
2853 const SCEV *NegPart =
2854 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2855 Bound[K].Lower[Dependence::DVEntry::GT] =
2856 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2857 const SCEV *PosPart =
2858 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2859 Bound[K].Upper[Dependence::DVEntry::GT] =
2860 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2861 }
2862 else {
2863 // If the positive/negative part of the difference is 0,
2864 // we won't need to know the number of iterations.
2865 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2866 if (NegPart->isZero())
2867 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2868 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2869 if (PosPart->isZero())
2870 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2871 }
2872}
2873
2874
2875// X^+ = max(X, 0)
2876const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2877 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2878}
2879
2880
2881// X^- = min(X, 0)
2882const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2883 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2884}
2885
2886
2887// Walks through the subscript,
2888// collecting each coefficient, the associated loop bounds,
2889// and recording its positive and negative parts for later use.
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002890DependenceAnalysis::CoefficientInfo *
Sebastian Pop59b61b92012-10-11 07:32:34 +00002891DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2892 bool SrcFlag,
2893 const SCEV *&Constant) const {
2894 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
Dylan Noblesmith4ffafef2014-08-26 02:03:38 +00002895 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
Sebastian Pop59b61b92012-10-11 07:32:34 +00002896 for (unsigned K = 1; K <= MaxLevels; ++K) {
2897 CI[K].Coeff = Zero;
2898 CI[K].PosPart = Zero;
2899 CI[K].NegPart = Zero;
Craig Topper9f008862014-04-15 04:59:12 +00002900 CI[K].Iterations = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002901 }
2902 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2903 const Loop *L = AddRec->getLoop();
2904 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2905 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2906 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2907 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2908 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2909 Subscript = AddRec->getStart();
2910 }
2911 Constant = Subscript;
2912#ifndef NDEBUG
2913 DEBUG(dbgs() << "\tCoefficient Info\n");
2914 for (unsigned K = 1; K <= MaxLevels; ++K) {
2915 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2916 DEBUG(dbgs() << "\tPos Part = ");
2917 DEBUG(dbgs() << *CI[K].PosPart);
2918 DEBUG(dbgs() << "\tNeg Part = ");
2919 DEBUG(dbgs() << *CI[K].NegPart);
2920 DEBUG(dbgs() << "\tUpper Bound = ");
2921 if (CI[K].Iterations)
2922 DEBUG(dbgs() << *CI[K].Iterations);
2923 else
2924 DEBUG(dbgs() << "+inf");
2925 DEBUG(dbgs() << '\n');
2926 }
2927 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2928#endif
2929 return CI;
2930}
2931
2932
2933// Looks through all the bounds info and
2934// computes the lower bound given the current direction settings
2935// at each level. If the lower bound for any level is -inf,
2936// the result is -inf.
2937const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2938 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2939 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2940 if (Bound[K].Lower[Bound[K].Direction])
2941 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2942 else
Craig Topper9f008862014-04-15 04:59:12 +00002943 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002944 }
2945 return Sum;
2946}
2947
2948
2949// Looks through all the bounds info and
2950// computes the upper bound given the current direction settings
2951// at each level. If the upper bound at any level is +inf,
2952// the result is +inf.
2953const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2954 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2955 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2956 if (Bound[K].Upper[Bound[K].Direction])
2957 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2958 else
Craig Topper9f008862014-04-15 04:59:12 +00002959 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002960 }
2961 return Sum;
2962}
2963
2964
2965//===----------------------------------------------------------------------===//
2966// Constraint manipulation for Delta test.
2967
2968// Given a linear SCEV,
2969// return the coefficient (the step)
2970// corresponding to the specified loop.
2971// If there isn't one, return 0.
Jingyue Wua84feb12015-05-29 16:58:08 +00002972// For example, given a*i + b*j + c*k, finding the coefficient
Sebastian Pop59b61b92012-10-11 07:32:34 +00002973// corresponding to the j loop would yield b.
2974const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2975 const Loop *TargetLoop) const {
2976 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2977 if (!AddRec)
2978 return SE->getConstant(Expr->getType(), 0);
2979 if (AddRec->getLoop() == TargetLoop)
2980 return AddRec->getStepRecurrence(*SE);
2981 return findCoefficient(AddRec->getStart(), TargetLoop);
2982}
2983
2984
2985// Given a linear SCEV,
2986// return the SCEV given by zeroing out the coefficient
2987// corresponding to the specified loop.
2988// For example, given a*i + b*j + c*k, zeroing the coefficient
2989// corresponding to the j loop would yield a*i + c*k.
2990const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2991 const Loop *TargetLoop) const {
2992 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2993 if (!AddRec)
2994 return Expr; // ignore
2995 if (AddRec->getLoop() == TargetLoop)
2996 return AddRec->getStart();
2997 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2998 AddRec->getStepRecurrence(*SE),
2999 AddRec->getLoop(),
3000 AddRec->getNoWrapFlags());
3001}
3002
3003
3004// Given a linear SCEV Expr,
3005// return the SCEV given by adding some Value to the
3006// coefficient corresponding to the specified TargetLoop.
3007// For example, given a*i + b*j + c*k, adding 1 to the coefficient
3008// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3009const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
3010 const Loop *TargetLoop,
3011 const SCEV *Value) const {
3012 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3013 if (!AddRec) // create a new addRec
3014 return SE->getAddRecExpr(Expr,
3015 Value,
3016 TargetLoop,
3017 SCEV::FlagAnyWrap); // Worst case, with no info.
3018 if (AddRec->getLoop() == TargetLoop) {
3019 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3020 if (Sum->isZero())
3021 return AddRec->getStart();
3022 return SE->getAddRecExpr(AddRec->getStart(),
3023 Sum,
3024 AddRec->getLoop(),
3025 AddRec->getNoWrapFlags());
3026 }
Preston Briggs6c286b62013-06-28 18:44:48 +00003027 if (SE->isLoopInvariant(AddRec, TargetLoop))
NAKAMURA Takumid0e13af2014-10-28 11:54:52 +00003028 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3029 return SE->getAddRecExpr(
3030 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3031 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3032 AddRec->getNoWrapFlags());
Sebastian Pop59b61b92012-10-11 07:32:34 +00003033}
3034
3035
3036// Review the constraints, looking for opportunities
3037// to simplify a subscript pair (Src and Dst).
3038// Return true if some simplification occurs.
3039// If the simplification isn't exact (that is, if it is conservative
3040// in terms of dependence), set consistent to false.
3041// Corresponds to Figure 5 from the paper
3042//
3043// Practical Dependence Testing
3044// Goff, Kennedy, Tseng
3045// PLDI 1991
3046bool DependenceAnalysis::propagate(const SCEV *&Src,
3047 const SCEV *&Dst,
3048 SmallBitVector &Loops,
Craig Topperb94011f2013-07-14 04:42:23 +00003049 SmallVectorImpl<Constraint> &Constraints,
Sebastian Pop59b61b92012-10-11 07:32:34 +00003050 bool &Consistent) {
3051 bool Result = false;
3052 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
3053 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3054 DEBUG(Constraints[LI].dump(dbgs()));
3055 if (Constraints[LI].isDistance())
3056 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3057 else if (Constraints[LI].isLine())
3058 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3059 else if (Constraints[LI].isPoint())
3060 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3061 }
3062 return Result;
3063}
3064
3065
3066// Attempt to propagate a distance
3067// constraint into a subscript pair (Src and Dst).
3068// Return true if some simplification occurs.
3069// If the simplification isn't exact (that is, if it is conservative
3070// in terms of dependence), set consistent to false.
3071bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3072 const SCEV *&Dst,
3073 Constraint &CurConstraint,
3074 bool &Consistent) {
3075 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3076 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3077 const SCEV *A_K = findCoefficient(Src, CurLoop);
3078 if (A_K->isZero())
3079 return false;
3080 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3081 Src = SE->getMinusSCEV(Src, DA_K);
3082 Src = zeroCoefficient(Src, CurLoop);
3083 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3084 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3085 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3086 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3087 if (!findCoefficient(Dst, CurLoop)->isZero())
3088 Consistent = false;
3089 return true;
3090}
3091
3092
3093// Attempt to propagate a line
3094// constraint into a subscript pair (Src and Dst).
3095// Return true if some simplification occurs.
3096// If the simplification isn't exact (that is, if it is conservative
3097// in terms of dependence), set consistent to false.
3098bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3099 const SCEV *&Dst,
3100 Constraint &CurConstraint,
3101 bool &Consistent) {
3102 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3103 const SCEV *A = CurConstraint.getA();
3104 const SCEV *B = CurConstraint.getB();
3105 const SCEV *C = CurConstraint.getC();
3106 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3107 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3108 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3109 if (A->isZero()) {
3110 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3111 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3112 if (!Bconst || !Cconst) return false;
3113 APInt Beta = Bconst->getValue()->getValue();
3114 APInt Charlie = Cconst->getValue()->getValue();
3115 APInt CdivB = Charlie.sdiv(Beta);
3116 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3117 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3118 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3119 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3120 Dst = zeroCoefficient(Dst, CurLoop);
3121 if (!findCoefficient(Src, CurLoop)->isZero())
3122 Consistent = false;
3123 }
3124 else if (B->isZero()) {
3125 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3126 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3127 if (!Aconst || !Cconst) return false;
3128 APInt Alpha = Aconst->getValue()->getValue();
3129 APInt Charlie = Cconst->getValue()->getValue();
3130 APInt CdivA = Charlie.sdiv(Alpha);
3131 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3132 const SCEV *A_K = findCoefficient(Src, CurLoop);
3133 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3134 Src = zeroCoefficient(Src, CurLoop);
3135 if (!findCoefficient(Dst, CurLoop)->isZero())
3136 Consistent = false;
3137 }
3138 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3139 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3140 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3141 if (!Aconst || !Cconst) return false;
3142 APInt Alpha = Aconst->getValue()->getValue();
3143 APInt Charlie = Cconst->getValue()->getValue();
3144 APInt CdivA = Charlie.sdiv(Alpha);
3145 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3146 const SCEV *A_K = findCoefficient(Src, CurLoop);
3147 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3148 Src = zeroCoefficient(Src, CurLoop);
3149 Dst = addToCoefficient(Dst, CurLoop, A_K);
3150 if (!findCoefficient(Dst, CurLoop)->isZero())
3151 Consistent = false;
3152 }
3153 else {
3154 // paper is incorrect here, or perhaps just misleading
3155 const SCEV *A_K = findCoefficient(Src, CurLoop);
3156 Src = SE->getMulExpr(Src, A);
3157 Dst = SE->getMulExpr(Dst, A);
3158 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3159 Src = zeroCoefficient(Src, CurLoop);
3160 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3161 if (!findCoefficient(Dst, CurLoop)->isZero())
3162 Consistent = false;
3163 }
3164 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3165 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3166 return true;
3167}
3168
3169
3170// Attempt to propagate a point
3171// constraint into a subscript pair (Src and Dst).
3172// Return true if some simplification occurs.
3173bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3174 const SCEV *&Dst,
3175 Constraint &CurConstraint) {
3176 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3177 const SCEV *A_K = findCoefficient(Src, CurLoop);
3178 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3179 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3180 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3181 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3182 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3183 Src = zeroCoefficient(Src, CurLoop);
3184 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3185 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3186 Dst = zeroCoefficient(Dst, CurLoop);
3187 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3188 return true;
3189}
3190
3191
3192// Update direction vector entry based on the current constraint.
3193void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3194 const Constraint &CurConstraint
3195 ) const {
3196 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3197 DEBUG(CurConstraint.dump(dbgs()));
3198 if (CurConstraint.isAny())
3199 ; // use defaults
3200 else if (CurConstraint.isDistance()) {
3201 // this one is consistent, the others aren't
3202 Level.Scalar = false;
3203 Level.Distance = CurConstraint.getD();
3204 unsigned NewDirection = Dependence::DVEntry::NONE;
3205 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3206 NewDirection = Dependence::DVEntry::EQ;
3207 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3208 NewDirection |= Dependence::DVEntry::LT;
3209 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3210 NewDirection |= Dependence::DVEntry::GT;
3211 Level.Direction &= NewDirection;
3212 }
3213 else if (CurConstraint.isLine()) {
3214 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003215 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003216 // direction should be accurate
3217 }
3218 else if (CurConstraint.isPoint()) {
3219 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003220 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003221 unsigned NewDirection = Dependence::DVEntry::NONE;
3222 if (!isKnownPredicate(CmpInst::ICMP_NE,
3223 CurConstraint.getY(),
3224 CurConstraint.getX()))
3225 // if X may be = Y
3226 NewDirection |= Dependence::DVEntry::EQ;
3227 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3228 CurConstraint.getY(),
3229 CurConstraint.getX()))
3230 // if Y may be > X
3231 NewDirection |= Dependence::DVEntry::LT;
3232 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3233 CurConstraint.getY(),
3234 CurConstraint.getX()))
3235 // if Y may be < X
3236 NewDirection |= Dependence::DVEntry::GT;
3237 Level.Direction &= NewDirection;
3238 }
3239 else
3240 llvm_unreachable("constraint has unexpected kind");
3241}
3242
Sebastian Popc62c6792013-11-12 22:47:20 +00003243/// Check if we can delinearize the subscripts. If the SCEVs representing the
3244/// source and destination array references are recurrences on a nested loop,
Alp Tokercb402912014-01-24 17:20:08 +00003245/// this function flattens the nested recurrences into separate recurrences
Sebastian Popc62c6792013-11-12 22:47:20 +00003246/// for each loop level.
Sebastian Popa6e58602014-05-27 22:41:45 +00003247bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
3248 const SCEV *DstSCEV,
3249 SmallVectorImpl<Subscript> &Pair,
Jingyue Wu0fa125a2014-11-16 16:52:44 +00003250 const SCEV *ElementSize) {
Sebastian Pop28e6b972014-05-27 22:41:51 +00003251 const SCEVUnknown *SrcBase =
3252 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
3253 const SCEVUnknown *DstBase =
3254 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
3255
3256 if (!SrcBase || !DstBase || SrcBase != DstBase)
3257 return false;
3258
3259 SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
3260 DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
3261
Sebastian Popc62c6792013-11-12 22:47:20 +00003262 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3263 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3264 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3265 return false;
3266
Sebastian Pop448712b2014-05-07 18:01:20 +00003267 // First step: collect parametric terms in both array references.
3268 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00003269 SE->collectParametricTerms(SrcAR, Terms);
3270 SE->collectParametricTerms(DstAR, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00003271
Sebastian Pop448712b2014-05-07 18:01:20 +00003272 // Second step: find subscript sizes.
3273 SmallVector<const SCEV *, 4> Sizes;
Sebastian Popa6e58602014-05-27 22:41:45 +00003274 SE->findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop448712b2014-05-07 18:01:20 +00003275
3276 // Third step: compute the access functions for each subscript.
3277 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00003278 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3279 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
Sebastian Pop448712b2014-05-07 18:01:20 +00003280
Sebastian Pop5133d2e2014-02-21 18:15:07 +00003281 // Fail when there is only a subscript: that's a linearized access function.
Sebastian Pop448712b2014-05-07 18:01:20 +00003282 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3283 SrcSubscripts.size() != DstSubscripts.size())
Sebastian Popc62c6792013-11-12 22:47:20 +00003284 return false;
3285
Sebastian Pop448712b2014-05-07 18:01:20 +00003286 int size = SrcSubscripts.size();
Sebastian Pop29026d32014-02-21 18:15:11 +00003287
Sebastian Pop448712b2014-05-07 18:01:20 +00003288 DEBUG({
3289 dbgs() << "\nSrcSubscripts: ";
3290 for (int i = 0; i < size; i++)
3291 dbgs() << *SrcSubscripts[i];
3292 dbgs() << "\nDstSubscripts: ";
3293 for (int i = 0; i < size; i++)
3294 dbgs() << *DstSubscripts[i];
3295 });
Sebastian Popc62c6792013-11-12 22:47:20 +00003296
Sebastian Pop7ee14722013-11-13 22:37:58 +00003297 // The delinearization transforms a single-subscript MIV dependence test into
3298 // a multi-subscript SIV dependence test that is easier to compute. So we
3299 // resize Pair to contain as many pairs of subscripts as the delinearization
3300 // has found, and then initialize the pairs following the delinearization.
Sebastian Popc62c6792013-11-12 22:47:20 +00003301 Pair.resize(size);
3302 for (int i = 0; i < size; ++i) {
3303 Pair[i].Src = SrcSubscripts[i];
3304 Pair[i].Dst = DstSubscripts[i];
Jingyue Wu0fa125a2014-11-16 16:52:44 +00003305 unifySubscriptType(&Pair[i]);
Sebastian Pop7ee14722013-11-13 22:37:58 +00003306
3307 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3308 // delinearization has found, and add these constraints to the dependence
3309 // check to avoid memory accesses overflow from one dimension into another.
3310 // This is related to the problem of determining the existence of data
3311 // dependences in array accesses using a different number of subscripts: in
3312 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
Sebastian Popc62c6792013-11-12 22:47:20 +00003313 }
3314
3315 return true;
3316}
Sebastian Pop59b61b92012-10-11 07:32:34 +00003317
3318//===----------------------------------------------------------------------===//
3319
3320#ifndef NDEBUG
3321// For debugging purposes, dump a small bit vector to dbgs().
3322static void dumpSmallBitVector(SmallBitVector &BV) {
3323 dbgs() << "{";
3324 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3325 dbgs() << VI;
3326 if (BV.find_next(VI) >= 0)
3327 dbgs() << ' ';
3328 }
3329 dbgs() << "}\n";
3330}
3331#endif
3332
3333
3334// depends -
3335// Returns NULL if there is no dependence.
3336// Otherwise, return a Dependence with as many details as possible.
3337// Corresponds to Section 3.1 in the paper
3338//
3339// Practical Dependence Testing
3340// Goff, Kennedy, Tseng
3341// PLDI 1991
3342//
Preston Briggs3ad39492012-11-21 23:50:04 +00003343// Care is required to keep the routine below, getSplitIteration(),
3344// up to date with respect to this routine.
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003345std::unique_ptr<Dependence>
3346DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
3347 bool PossiblyLoopIndependent) {
Preston Briggs1084fa22012-11-27 06:41:46 +00003348 if (Src == Dst)
3349 PossiblyLoopIndependent = false;
3350
Sebastian Pop59b61b92012-10-11 07:32:34 +00003351 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3352 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3353 // if both instructions don't reference memory, there's no dependence
Craig Topper9f008862014-04-15 04:59:12 +00003354 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003355
Preston Briggs3ad39492012-11-21 23:50:04 +00003356 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003357 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
Preston Briggs3ad39492012-11-21 23:50:04 +00003358 DEBUG(dbgs() << "can only handle simple loads and stores\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003359 return make_unique<Dependence>(Src, Dst);
Preston Briggs3ad39492012-11-21 23:50:04 +00003360 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003361
Sebastian Pop87ce43c2012-11-20 22:28:04 +00003362 Value *SrcPtr = getPointerOperand(Src);
3363 Value *DstPtr = getPointerOperand(Dst);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003364
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003365 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3366 SrcPtr)) {
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003367 case MayAlias:
3368 case PartialAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003369 // cannot analyse objects if we don't understand their aliasing.
Preston Briggs3ad39492012-11-21 23:50:04 +00003370 DEBUG(dbgs() << "can't analyze may or partial alias\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003371 return make_unique<Dependence>(Src, Dst);
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003372 case NoAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003373 // If the objects noalias, they are distinct, accesses are independent.
Preston Briggs3ad39492012-11-21 23:50:04 +00003374 DEBUG(dbgs() << "no alias\n");
Craig Topper9f008862014-04-15 04:59:12 +00003375 return nullptr;
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003376 case MustAlias:
Sebastian Pop59b61b92012-10-11 07:32:34 +00003377 break; // The underlying objects alias; test accesses for dependence.
3378 }
3379
Sebastian Pop59b61b92012-10-11 07:32:34 +00003380 // establish loop nesting levels
3381 establishNestingLevels(Src, Dst);
3382 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3383 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3384
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003385 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003386 ++TotalArrayPairs;
3387
Preston Briggs3ad39492012-11-21 23:50:04 +00003388 // See if there are GEPs we can use.
3389 bool UsefulGEP = false;
3390 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3391 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3392 if (SrcGEP && DstGEP &&
3393 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3394 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3395 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3396 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3397 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3398
Karthik Bhat8d0099b2015-03-10 13:31:03 +00003399 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3400 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3401 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
Sebastian Pop59b61b92012-10-11 07:32:34 +00003402 }
Preston Briggs3ad39492012-11-21 23:50:04 +00003403 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3404 SmallVector<Subscript, 4> Pair(Pairs);
3405 if (UsefulGEP) {
3406 DEBUG(dbgs() << " using GEPs\n");
3407 unsigned P = 0;
3408 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3409 SrcEnd = SrcGEP->idx_end(),
3410 DstIdx = DstGEP->idx_begin();
3411 SrcIdx != SrcEnd;
3412 ++SrcIdx, ++DstIdx, ++P) {
3413 Pair[P].Src = SE->getSCEV(*SrcIdx);
3414 Pair[P].Dst = SE->getSCEV(*DstIdx);
Jingyue Wu0fa125a2014-11-16 16:52:44 +00003415 unifySubscriptType(&Pair[P]);
Preston Briggs3ad39492012-11-21 23:50:04 +00003416 }
3417 }
3418 else {
3419 DEBUG(dbgs() << " ignoring GEPs\n");
3420 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3421 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3422 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3423 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3424 Pair[0].Src = SrcSCEV;
3425 Pair[0].Dst = DstSCEV;
3426 }
3427
Sebastian Popc62c6792013-11-12 22:47:20 +00003428 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
Sebastian Popa6e58602014-05-27 22:41:45 +00003429 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
Sebastian Popc62c6792013-11-12 22:47:20 +00003430 DEBUG(dbgs() << " delinerized GEP\n");
3431 Pairs = Pair.size();
3432 }
3433
Preston Briggs3ad39492012-11-21 23:50:04 +00003434 for (unsigned P = 0; P < Pairs; ++P) {
3435 Pair[P].Loops.resize(MaxLevels + 1);
3436 Pair[P].GroupLoops.resize(MaxLevels + 1);
3437 Pair[P].Group.resize(Pairs);
3438 removeMatchingExtensions(&Pair[P]);
3439 Pair[P].Classification =
3440 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3441 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3442 Pair[P].Loops);
3443 Pair[P].GroupLoops = Pair[P].Loops;
3444 Pair[P].Group.set(P);
3445 DEBUG(dbgs() << " subscript " << P << "\n");
3446 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3447 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3448 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
Sebastian Pop59b61b92012-10-11 07:32:34 +00003449 DEBUG(dbgs() << "\tloops = ");
Preston Briggs3ad39492012-11-21 23:50:04 +00003450 DEBUG(dumpSmallBitVector(Pair[P].Loops));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003451 }
3452
3453 SmallBitVector Separable(Pairs);
3454 SmallBitVector Coupled(Pairs);
3455
3456 // Partition subscripts into separable and minimally-coupled groups
3457 // Algorithm in paper is algorithmically better;
3458 // this may be faster in practice. Check someday.
3459 //
3460 // Here's an example of how it works. Consider this code:
3461 //
3462 // for (i = ...) {
3463 // for (j = ...) {
3464 // for (k = ...) {
3465 // for (l = ...) {
3466 // for (m = ...) {
3467 // A[i][j][k][m] = ...;
3468 // ... = A[0][j][l][i + j];
3469 // }
3470 // }
3471 // }
3472 // }
3473 // }
3474 //
3475 // There are 4 subscripts here:
3476 // 0 [i] and [0]
3477 // 1 [j] and [j]
3478 // 2 [k] and [l]
3479 // 3 [m] and [i + j]
3480 //
3481 // We've already classified each subscript pair as ZIV, SIV, etc.,
3482 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3483 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3484 // and set Pair[P].Group = {P}.
3485 //
3486 // Src Dst Classification Loops GroupLoops Group
3487 // 0 [i] [0] SIV {1} {1} {0}
3488 // 1 [j] [j] SIV {2} {2} {1}
3489 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3490 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3491 //
3492 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3493 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3494 //
3495 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3496 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3497 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3498 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3499 // to either Separable or Coupled).
3500 //
3501 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3502 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3503 // so Pair[3].Group = {0, 1, 3} and Done = false.
3504 //
3505 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3506 // Since Done remains true, we add 2 to the set of Separable pairs.
3507 //
3508 // Finally, we consider 3. There's nothing to compare it with,
3509 // so Done remains true and we add it to the Coupled set.
3510 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3511 //
3512 // In the end, we've got 1 separable subscript and 1 coupled group.
3513 for (unsigned SI = 0; SI < Pairs; ++SI) {
3514 if (Pair[SI].Classification == Subscript::NonLinear) {
3515 // ignore these, but collect loops for later
3516 ++NonlinearSubscriptPairs;
3517 collectCommonLoops(Pair[SI].Src,
3518 LI->getLoopFor(Src->getParent()),
3519 Pair[SI].Loops);
3520 collectCommonLoops(Pair[SI].Dst,
3521 LI->getLoopFor(Dst->getParent()),
3522 Pair[SI].Loops);
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003523 Result.Consistent = false;
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003524 } else if (Pair[SI].Classification == Subscript::ZIV) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003525 // always separable
3526 Separable.set(SI);
3527 }
3528 else {
3529 // SIV, RDIV, or MIV, so check for coupled group
3530 bool Done = true;
3531 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3532 SmallBitVector Intersection = Pair[SI].GroupLoops;
3533 Intersection &= Pair[SJ].GroupLoops;
3534 if (Intersection.any()) {
3535 // accumulate set of all the loops in group
3536 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3537 // accumulate set of all subscripts in group
3538 Pair[SJ].Group |= Pair[SI].Group;
3539 Done = false;
3540 }
3541 }
3542 if (Done) {
3543 if (Pair[SI].Group.count() == 1) {
3544 Separable.set(SI);
3545 ++SeparableSubscriptPairs;
3546 }
3547 else {
3548 Coupled.set(SI);
3549 ++CoupledSubscriptPairs;
3550 }
3551 }
3552 }
3553 }
3554
3555 DEBUG(dbgs() << " Separable = ");
3556 DEBUG(dumpSmallBitVector(Separable));
3557 DEBUG(dbgs() << " Coupled = ");
3558 DEBUG(dumpSmallBitVector(Coupled));
3559
3560 Constraint NewConstraint;
3561 NewConstraint.setAny(SE);
3562
3563 // test separable subscripts
3564 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3565 DEBUG(dbgs() << "testing subscript " << SI);
3566 switch (Pair[SI].Classification) {
3567 case Subscript::ZIV:
3568 DEBUG(dbgs() << ", ZIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003569 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003570 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003571 break;
3572 case Subscript::SIV: {
3573 DEBUG(dbgs() << ", SIV\n");
3574 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003575 const SCEV *SplitIter = nullptr;
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003576 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3577 SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003578 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003579 break;
3580 }
3581 case Subscript::RDIV:
3582 DEBUG(dbgs() << ", RDIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003583 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003584 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003585 break;
3586 case Subscript::MIV:
3587 DEBUG(dbgs() << ", MIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003588 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003589 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003590 break;
3591 default:
3592 llvm_unreachable("subscript has unexpected classification");
3593 }
3594 }
3595
3596 if (Coupled.count()) {
3597 // test coupled subscript groups
3598 DEBUG(dbgs() << "starting on coupled subscripts\n");
3599 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3600 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3601 for (unsigned II = 0; II <= MaxLevels; ++II)
3602 Constraints[II].setAny(SE);
3603 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3604 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3605 SmallBitVector Group(Pair[SI].Group);
3606 SmallBitVector Sivs(Pairs);
3607 SmallBitVector Mivs(Pairs);
3608 SmallBitVector ConstrainedLevels(MaxLevels + 1);
Jingyue Wua84feb12015-05-29 16:58:08 +00003609 SmallVector<Subscript *, 4> PairsInGroup;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003610 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3611 DEBUG(dbgs() << SJ << " ");
3612 if (Pair[SJ].Classification == Subscript::SIV)
3613 Sivs.set(SJ);
3614 else
3615 Mivs.set(SJ);
Jingyue Wua84feb12015-05-29 16:58:08 +00003616 PairsInGroup.push_back(&Pair[SJ]);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003617 }
Jingyue Wua84feb12015-05-29 16:58:08 +00003618 unifySubscriptType(PairsInGroup);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003619 DEBUG(dbgs() << "}\n");
3620 while (Sivs.any()) {
3621 bool Changed = false;
3622 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3623 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3624 // SJ is an SIV subscript that's part of the current coupled group
3625 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003626 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003627 DEBUG(dbgs() << "SIV\n");
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003628 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3629 SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003630 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003631 ConstrainedLevels.set(Level);
3632 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3633 if (Constraints[Level].isEmpty()) {
3634 ++DeltaIndependence;
Craig Topper9f008862014-04-15 04:59:12 +00003635 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003636 }
3637 Changed = true;
3638 }
3639 Sivs.reset(SJ);
3640 }
3641 if (Changed) {
3642 // propagate, possibly creating new SIVs and ZIVs
3643 DEBUG(dbgs() << " propagating\n");
3644 DEBUG(dbgs() << "\tMivs = ");
3645 DEBUG(dumpSmallBitVector(Mivs));
3646 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3647 // SJ is an MIV subscript that's part of the current coupled group
3648 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3649 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003650 Constraints, Result.Consistent)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003651 DEBUG(dbgs() << "\t Changed\n");
3652 ++DeltaPropagations;
3653 Pair[SJ].Classification =
3654 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3655 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3656 Pair[SJ].Loops);
3657 switch (Pair[SJ].Classification) {
3658 case Subscript::ZIV:
3659 DEBUG(dbgs() << "ZIV\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003660 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003661 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003662 Mivs.reset(SJ);
3663 break;
3664 case Subscript::SIV:
3665 Sivs.set(SJ);
3666 Mivs.reset(SJ);
3667 break;
3668 case Subscript::RDIV:
3669 case Subscript::MIV:
3670 break;
3671 default:
3672 llvm_unreachable("bad subscript classification");
3673 }
3674 }
3675 }
3676 }
3677 }
3678
3679 // test & propagate remaining RDIVs
3680 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3681 if (Pair[SJ].Classification == Subscript::RDIV) {
3682 DEBUG(dbgs() << "RDIV test\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003683 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003684 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003685 // I don't yet understand how to propagate RDIV results
3686 Mivs.reset(SJ);
3687 }
3688 }
3689
3690 // test remaining MIVs
3691 // This code is temporary.
3692 // Better to somehow test all remaining subscripts simultaneously.
3693 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3694 if (Pair[SJ].Classification == Subscript::MIV) {
3695 DEBUG(dbgs() << "MIV test\n");
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003696 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003697 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003698 }
3699 else
3700 llvm_unreachable("expected only MIV subscripts at this point");
3701 }
3702
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003703 // update Result.DV from constraint vector
Sebastian Pop59b61b92012-10-11 07:32:34 +00003704 DEBUG(dbgs() << " updating\n");
NAKAMURA Takumi478559a2015-03-05 01:25:19 +00003705 for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
3706 SJ = ConstrainedLevels.find_next(SJ)) {
Karthik Bhat8d7f7ed2015-03-10 14:32:02 +00003707 if (SJ > (int)CommonLevels)
3708 break;
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003709 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3710 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
Craig Topper9f008862014-04-15 04:59:12 +00003711 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003712 }
3713 }
3714 }
3715
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003716 // Make sure the Scalar flags are set correctly.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003717 SmallBitVector CompleteLoops(MaxLevels + 1);
3718 for (unsigned SI = 0; SI < Pairs; ++SI)
3719 CompleteLoops |= Pair[SI].Loops;
3720 for (unsigned II = 1; II <= CommonLevels; ++II)
3721 if (CompleteLoops[II])
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003722 Result.DV[II - 1].Scalar = false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003723
Sebastian Pop59b61b92012-10-11 07:32:34 +00003724 if (PossiblyLoopIndependent) {
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003725 // Make sure the LoopIndependent flag is set correctly.
3726 // All directions must include equal, otherwise no
3727 // loop-independent dependence is possible.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003728 for (unsigned II = 1; II <= CommonLevels; ++II) {
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003729 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3730 Result.LoopIndependent = false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003731 break;
3732 }
3733 }
3734 }
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003735 else {
3736 // On the other hand, if all directions are equal and there's no
3737 // loop-independent dependence possible, then no dependence exists.
3738 bool AllEqual = true;
3739 for (unsigned II = 1; II <= CommonLevels; ++II) {
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003740 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003741 AllEqual = false;
3742 break;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003743 }
3744 }
3745 if (AllEqual)
Craig Topper9f008862014-04-15 04:59:12 +00003746 return nullptr;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003747 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003748
NAKAMURA Takumid8422ce2015-03-05 01:25:12 +00003749 auto Final = make_unique<FullDependence>(Result);
3750 Result.DV = nullptr;
3751 return std::move(Final);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003752}
3753
3754
3755
3756//===----------------------------------------------------------------------===//
3757// getSplitIteration -
3758// Rather than spend rarely-used space recording the splitting iteration
3759// during the Weak-Crossing SIV test, we re-compute it on demand.
3760// The re-computation is basically a repeat of the entire dependence test,
3761// though simplified since we know that the dependence exists.
3762// It's tedious, since we must go through all propagations, etc.
3763//
Preston Briggs3ad39492012-11-21 23:50:04 +00003764// Care is required to keep this code up to date with respect to the routine
3765// above, depends().
Sebastian Pop59b61b92012-10-11 07:32:34 +00003766//
3767// Generally, the dependence analyzer will be used to build
3768// a dependence graph for a function (basically a map from instructions
3769// to dependences). Looking for cycles in the graph shows us loops
3770// that cannot be trivially vectorized/parallelized.
3771//
3772// We can try to improve the situation by examining all the dependences
3773// that make up the cycle, looking for ones we can break.
3774// Sometimes, peeling the first or last iteration of a loop will break
3775// dependences, and we've got flags for those possibilities.
3776// Sometimes, splitting a loop at some other iteration will do the trick,
3777// and we've got a flag for that case. Rather than waste the space to
3778// record the exact iteration (since we rarely know), we provide
3779// a method that calculates the iteration. It's a drag that it must work
3780// from scratch, but wonderful in that it's possible.
3781//
3782// Here's an example:
3783//
3784// for (i = 0; i < 10; i++)
3785// A[i] = ...
3786// ... = A[11 - i]
3787//
3788// There's a loop-carried flow dependence from the store to the load,
3789// found by the weak-crossing SIV test. The dependence will have a flag,
3790// indicating that the dependence can be broken by splitting the loop.
3791// Calling getSplitIteration will return 5.
3792// Splitting the loop breaks the dependence, like so:
3793//
3794// for (i = 0; i <= 5; i++)
3795// A[i] = ...
3796// ... = A[11 - i]
3797// for (i = 6; i < 10; i++)
3798// A[i] = ...
3799// ... = A[11 - i]
3800//
3801// breaks the dependence and allows us to vectorize/parallelize
3802// both loops.
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003803const SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
Sebastian Pop59b61b92012-10-11 07:32:34 +00003804 unsigned SplitLevel) {
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003805 assert(Dep.isSplitable(SplitLevel) &&
Sebastian Pop59b61b92012-10-11 07:32:34 +00003806 "Dep should be splitable at SplitLevel");
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003807 Instruction *Src = Dep.getSrc();
3808 Instruction *Dst = Dep.getDst();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003809 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3810 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3811 assert(isLoadOrStore(Src));
3812 assert(isLoadOrStore(Dst));
Preston Briggs3ad39492012-11-21 23:50:04 +00003813 Value *SrcPtr = getPointerOperand(Src);
3814 Value *DstPtr = getPointerOperand(Dst);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003815 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
Chandler Carruthc3f49eb2015-06-22 02:16:51 +00003816 SrcPtr) == MustAlias);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003817
3818 // establish loop nesting levels
3819 establishNestingLevels(Src, Dst);
3820
3821 FullDependence Result(Src, Dst, false, CommonLevels);
3822
Preston Briggs3ad39492012-11-21 23:50:04 +00003823 // See if there are GEPs we can use.
3824 bool UsefulGEP = false;
3825 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3826 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3827 if (SrcGEP && DstGEP &&
3828 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3829 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3830 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
Karthik Bhat8d0099b2015-03-10 13:31:03 +00003831 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3832 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3833 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
Sebastian Pop59b61b92012-10-11 07:32:34 +00003834 }
Preston Briggs3ad39492012-11-21 23:50:04 +00003835 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3836 SmallVector<Subscript, 4> Pair(Pairs);
3837 if (UsefulGEP) {
3838 unsigned P = 0;
3839 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3840 SrcEnd = SrcGEP->idx_end(),
3841 DstIdx = DstGEP->idx_begin();
3842 SrcIdx != SrcEnd;
3843 ++SrcIdx, ++DstIdx, ++P) {
3844 Pair[P].Src = SE->getSCEV(*SrcIdx);
3845 Pair[P].Dst = SE->getSCEV(*DstIdx);
3846 }
3847 }
3848 else {
3849 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3850 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3851 Pair[0].Src = SrcSCEV;
3852 Pair[0].Dst = DstSCEV;
3853 }
3854
Sebastian Popc62c6792013-11-12 22:47:20 +00003855 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
Sebastian Popa6e58602014-05-27 22:41:45 +00003856 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
Sebastian Popc62c6792013-11-12 22:47:20 +00003857 DEBUG(dbgs() << " delinerized GEP\n");
3858 Pairs = Pair.size();
3859 }
3860
Preston Briggs3ad39492012-11-21 23:50:04 +00003861 for (unsigned P = 0; P < Pairs; ++P) {
3862 Pair[P].Loops.resize(MaxLevels + 1);
3863 Pair[P].GroupLoops.resize(MaxLevels + 1);
3864 Pair[P].Group.resize(Pairs);
3865 removeMatchingExtensions(&Pair[P]);
3866 Pair[P].Classification =
3867 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3868 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3869 Pair[P].Loops);
3870 Pair[P].GroupLoops = Pair[P].Loops;
3871 Pair[P].Group.set(P);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003872 }
3873
3874 SmallBitVector Separable(Pairs);
3875 SmallBitVector Coupled(Pairs);
3876
3877 // partition subscripts into separable and minimally-coupled groups
3878 for (unsigned SI = 0; SI < Pairs; ++SI) {
3879 if (Pair[SI].Classification == Subscript::NonLinear) {
3880 // ignore these, but collect loops for later
3881 collectCommonLoops(Pair[SI].Src,
3882 LI->getLoopFor(Src->getParent()),
3883 Pair[SI].Loops);
3884 collectCommonLoops(Pair[SI].Dst,
3885 LI->getLoopFor(Dst->getParent()),
3886 Pair[SI].Loops);
3887 Result.Consistent = false;
3888 }
3889 else if (Pair[SI].Classification == Subscript::ZIV)
3890 Separable.set(SI);
3891 else {
3892 // SIV, RDIV, or MIV, so check for coupled group
3893 bool Done = true;
3894 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3895 SmallBitVector Intersection = Pair[SI].GroupLoops;
3896 Intersection &= Pair[SJ].GroupLoops;
3897 if (Intersection.any()) {
3898 // accumulate set of all the loops in group
3899 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3900 // accumulate set of all subscripts in group
3901 Pair[SJ].Group |= Pair[SI].Group;
3902 Done = false;
3903 }
3904 }
3905 if (Done) {
3906 if (Pair[SI].Group.count() == 1)
3907 Separable.set(SI);
3908 else
3909 Coupled.set(SI);
3910 }
3911 }
3912 }
3913
3914 Constraint NewConstraint;
3915 NewConstraint.setAny(SE);
3916
3917 // test separable subscripts
3918 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3919 switch (Pair[SI].Classification) {
3920 case Subscript::SIV: {
3921 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003922 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003923 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3924 Result, NewConstraint, SplitIter);
3925 if (Level == SplitLevel) {
Craig Topper9f008862014-04-15 04:59:12 +00003926 assert(SplitIter != nullptr);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003927 return SplitIter;
3928 }
3929 break;
3930 }
3931 case Subscript::ZIV:
3932 case Subscript::RDIV:
3933 case Subscript::MIV:
3934 break;
3935 default:
3936 llvm_unreachable("subscript has unexpected classification");
3937 }
3938 }
3939
3940 if (Coupled.count()) {
3941 // test coupled subscript groups
3942 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3943 for (unsigned II = 0; II <= MaxLevels; ++II)
3944 Constraints[II].setAny(SE);
3945 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3946 SmallBitVector Group(Pair[SI].Group);
3947 SmallBitVector Sivs(Pairs);
3948 SmallBitVector Mivs(Pairs);
3949 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3950 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3951 if (Pair[SJ].Classification == Subscript::SIV)
3952 Sivs.set(SJ);
3953 else
3954 Mivs.set(SJ);
3955 }
3956 while (Sivs.any()) {
3957 bool Changed = false;
3958 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3959 // SJ is an SIV subscript that's part of the current coupled group
3960 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003961 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003962 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3963 Result, NewConstraint, SplitIter);
3964 if (Level == SplitLevel && SplitIter)
3965 return SplitIter;
3966 ConstrainedLevels.set(Level);
3967 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3968 Changed = true;
3969 Sivs.reset(SJ);
3970 }
3971 if (Changed) {
3972 // propagate, possibly creating new SIVs and ZIVs
3973 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3974 // SJ is an MIV subscript that's part of the current coupled group
3975 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3976 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3977 Pair[SJ].Classification =
3978 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3979 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3980 Pair[SJ].Loops);
3981 switch (Pair[SJ].Classification) {
3982 case Subscript::ZIV:
3983 Mivs.reset(SJ);
3984 break;
3985 case Subscript::SIV:
3986 Sivs.set(SJ);
3987 Mivs.reset(SJ);
3988 break;
3989 case Subscript::RDIV:
3990 case Subscript::MIV:
3991 break;
3992 default:
3993 llvm_unreachable("bad subscript classification");
3994 }
3995 }
3996 }
3997 }
3998 }
3999 }
4000 }
4001 llvm_unreachable("somehow reached end of routine");
Craig Topper9f008862014-04-15 04:59:12 +00004002 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00004003}