blob: 297928dd97ccbe1d67ee67e2448ae3f549526f3d [file] [log] [blame]
Caitlin Sadowski33208342011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://gcc.gnu.org/wiki/ThreadSafetyAnnotation for the gcc version.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
Caitlin Sadowski82e2de52011-09-09 23:00:59 +000018#include "clang/Analysis/AnalysisContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/Analysis/CFGStmtMap.h"
Caitlin Sadowski33208342011-09-09 16:11:56 +000021#include "clang/AST/DeclCXX.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtVisitor.h"
Caitlin Sadowski82e2de52011-09-09 23:00:59 +000025#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/SourceLocation.h"
Caitlin Sadowski33208342011-09-09 16:11:56 +000027#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/ImmutableMap.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include <algorithm>
34#include <vector>
35
36using namespace clang;
37using namespace thread_safety;
38
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +000039// Helper functions
40static Expr *getParent(Expr *Exp) {
41 if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
42 return ME->getBase();
43 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
44 return CE->getImplicitObjectArgument();
45 return 0;
46}
47
Caitlin Sadowski33208342011-09-09 16:11:56 +000048namespace {
49/// \brief Implements a set of CFGBlocks using a BitVector.
50///
51/// This class contains a minimal interface, primarily dictated by the SetType
52/// template parameter of the llvm::po_iterator template, as used with external
53/// storage. We also use this set to keep track of which CFGBlocks we visit
54/// during the analysis.
55class CFGBlockSet {
56 llvm::BitVector VisitedBlockIDs;
57
58public:
59 // po_iterator requires this iterator, but the only interface needed is the
60 // value_type typedef.
61 struct iterator {
62 typedef const CFGBlock *value_type;
63 };
64
65 CFGBlockSet() {}
66 CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
67
68 /// \brief Set the bit associated with a particular CFGBlock.
69 /// This is the important method for the SetType template parameter.
70 bool insert(const CFGBlock *Block) {
71 // Note that insert() is called by po_iterator, which doesn't check to make
72 // sure that Block is non-null. Moreover, the CFGBlock iterator will
73 // occasionally hand out null pointers for pruned edges, so we catch those
74 // here.
75 if (Block == 0)
76 return false; // if an edge is trivially false.
77 if (VisitedBlockIDs.test(Block->getBlockID()))
78 return false;
79 VisitedBlockIDs.set(Block->getBlockID());
80 return true;
81 }
82
83 /// \brief Check if the bit for a CFGBlock has been already set.
84 /// This method is for tracking visited blocks in the main threadsafety loop.
85 /// Block must not be null.
86 bool alreadySet(const CFGBlock *Block) {
87 return VisitedBlockIDs.test(Block->getBlockID());
88 }
89};
90
91/// \brief We create a helper class which we use to iterate through CFGBlocks in
92/// the topological order.
93class TopologicallySortedCFG {
94 typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
95
96 std::vector<const CFGBlock*> Blocks;
97
98public:
99 typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
100
101 TopologicallySortedCFG(const CFG *CFGraph) {
102 Blocks.reserve(CFGraph->getNumBlockIDs());
103 CFGBlockSet BSet(CFGraph);
104
105 for (po_iterator I = po_iterator::begin(CFGraph, BSet),
106 E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
107 Blocks.push_back(*I);
108 }
109 }
110
111 iterator begin() {
112 return Blocks.rbegin();
113 }
114
115 iterator end() {
116 return Blocks.rend();
117 }
118};
119
120/// \brief A MutexID object uniquely identifies a particular mutex, and
121/// is built from an Expr* (i.e. calling a lock function).
122///
123/// Thread-safety analysis works by comparing lock expressions. Within the
124/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
125/// a particular mutex object at run-time. Subsequent occurrences of the same
126/// expression (where "same" means syntactic equality) will refer to the same
127/// run-time object if three conditions hold:
128/// (1) Local variables in the expression, such as "x" have not changed.
129/// (2) Values on the heap that affect the expression have not changed.
130/// (3) The expression involves only pure function calls.
131/// The current implementation assumes, but does not verify, that multiple uses
132/// of the same lock expression satisfies these criteria.
133///
134/// Clang introduces an additional wrinkle, which is that it is difficult to
135/// derive canonical expressions, or compare expressions directly for equality.
136/// Thus, we identify a mutex not by an Expr, but by the set of named
137/// declarations that are referenced by the Expr. In other words,
138/// x->foo->bar.mu will be a four element vector with the Decls for
139/// mu, bar, and foo, and x. The vector will uniquely identify the expression
140/// for all practical purposes.
141///
142/// Note we will need to perform substitution on "this" and function parameter
143/// names when constructing a lock expression.
144///
145/// For example:
146/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
147/// void myFunc(C *X) { ... X->lock() ... }
148/// The original expression for the mutex acquired by myFunc is "this->Mu", but
149/// "X" is substituted for "this" so we get X->Mu();
150///
151/// For another example:
152/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
153/// MyList *MyL;
154/// foo(MyL); // requires lock MyL->Mu to be held
155class MutexID {
156 SmallVector<NamedDecl*, 2> DeclSeq;
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000157 ThreadSafetyHandler &Handler;
Caitlin Sadowski33208342011-09-09 16:11:56 +0000158
159 /// Build a Decl sequence representing the lock from the given expression.
160 /// Recursive function that bottoms out when the final DeclRefExpr is reached.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000161 void buildMutexID(Expr *Exp, Expr *Parent) {
Caitlin Sadowski33208342011-09-09 16:11:56 +0000162 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
163 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
164 DeclSeq.push_back(ND);
165 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
166 NamedDecl *ND = ME->getMemberDecl();
167 DeclSeq.push_back(ND);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000168 buildMutexID(ME->getBase(), Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000169 } else if (isa<CXXThisExpr>(Exp)) {
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000170 if (!Parent)
171 return;
172 buildMutexID(Parent, 0);
173 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
174 buildMutexID(CE->getSubExpr(), Parent);
175 else
176 Handler.handleInvalidLockExp(Exp->getExprLoc());
Caitlin Sadowski33208342011-09-09 16:11:56 +0000177 }
178
179public:
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000180 MutexID(ThreadSafetyHandler &Handler, Expr *LExpr, Expr *ParentExpr)
181 : Handler(Handler) {
182 buildMutexID(LExpr, ParentExpr);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000183 assert(!DeclSeq.empty());
184 }
185
186 bool operator==(const MutexID &other) const {
187 return DeclSeq == other.DeclSeq;
188 }
189
190 bool operator!=(const MutexID &other) const {
191 return !(*this == other);
192 }
193
194 // SmallVector overloads Operator< to do lexicographic ordering. Note that
195 // we use pointer equality (and <) to compare NamedDecls. This means the order
196 // of MutexIDs in a lockset is nondeterministic. In order to output
197 // diagnostics in a deterministic ordering, we must order all diagnostics to
198 // output by SourceLocation when iterating through this lockset.
199 bool operator<(const MutexID &other) const {
200 return DeclSeq < other.DeclSeq;
201 }
202
203 /// \brief Returns the name of the first Decl in the list for a given MutexID;
204 /// e.g. the lock expression foo.bar() has name "bar".
205 /// The caret will point unambiguously to the lock expression, so using this
206 /// name in diagnostics is a way to get simple, and consistent, mutex names.
207 /// We do not want to output the entire expression text for security reasons.
208 StringRef getName() const {
209 return DeclSeq.front()->getName();
210 }
211
212 void Profile(llvm::FoldingSetNodeID &ID) const {
213 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
214 E = DeclSeq.end(); I != E; ++I) {
215 ID.AddPointer(*I);
216 }
217 }
218};
219
220/// \brief This is a helper class that stores info about the most recent
221/// accquire of a Lock.
222///
223/// The main body of the analysis maps MutexIDs to LockDatas.
224struct LockData {
225 SourceLocation AcquireLoc;
226
227 /// \brief LKind stores whether a lock is held shared or exclusively.
228 /// Note that this analysis does not currently support either re-entrant
229 /// locking or lock "upgrading" and "downgrading" between exclusive and
230 /// shared.
231 ///
232 /// FIXME: add support for re-entrant locking and lock up/downgrading
233 LockKind LKind;
234
235 LockData(SourceLocation AcquireLoc, LockKind LKind)
236 : AcquireLoc(AcquireLoc), LKind(LKind) {}
237
238 bool operator==(const LockData &other) const {
239 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
240 }
241
242 bool operator!=(const LockData &other) const {
243 return !(*this == other);
244 }
245
246 void Profile(llvm::FoldingSetNodeID &ID) const {
247 ID.AddInteger(AcquireLoc.getRawEncoding());
248 ID.AddInteger(LKind);
249 }
250};
251
252/// A Lockset maps each MutexID (defined above) to information about how it has
253/// been locked.
254typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
255
256/// \brief We use this class to visit different types of expressions in
257/// CFGBlocks, and build up the lockset.
258/// An expression may cause us to add or remove locks from the lockset, or else
259/// output error messages related to missing locks.
260/// FIXME: In future, we may be able to not inherit from a visitor.
261class BuildLockset : public StmtVisitor<BuildLockset> {
262 ThreadSafetyHandler &Handler;
263 Lockset LSet;
264 Lockset::Factory &LocksetFactory;
265
266 // Helper functions
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000267 void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
268 void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
269 LockKind LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000270 const ValueDecl *getValueDecl(Expr *Exp);
271 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
272 Expr *MutexExp, ProtectedOperationKind POK);
273 void checkAccess(Expr *Exp, AccessKind AK);
274 void checkDereference(Expr *Exp, AccessKind AK);
275
276 template <class AttrType>
277 void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
278
279 /// \brief Returns true if the lockset contains a lock, regardless of whether
280 /// the lock is held exclusively or shared.
281 bool locksetContains(MutexID Lock) const {
282 return LSet.lookup(Lock);
283 }
284
285 /// \brief Returns true if the lockset contains a lock with the passed in
286 /// locktype.
287 bool locksetContains(MutexID Lock, LockKind KindRequested) const {
288 const LockData *LockHeld = LSet.lookup(Lock);
289 return (LockHeld && KindRequested == LockHeld->LKind);
290 }
291
292 /// \brief Returns true if the lockset contains a lock with at least the
293 /// passed in locktype. So for example, if we pass in LK_Shared, this function
294 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
295 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
296 bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
297 switch (KindRequested) {
298 case LK_Shared:
299 return locksetContains(Lock);
300 case LK_Exclusive:
301 return locksetContains(Lock, KindRequested);
302 }
Benjamin Kramer8a8051f2011-09-10 21:52:04 +0000303 llvm_unreachable("Unknown LockKind");
Caitlin Sadowski33208342011-09-09 16:11:56 +0000304 }
305
306public:
307 BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
308 : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
309 LocksetFactory(F) {}
310
311 Lockset getLockset() {
312 return LSet;
313 }
314
315 void VisitUnaryOperator(UnaryOperator *UO);
316 void VisitBinaryOperator(BinaryOperator *BO);
317 void VisitCastExpr(CastExpr *CE);
318 void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
319};
320
321/// \brief Add a new lock to the lockset, warning if the lock is already there.
322/// \param LockLoc The source location of the acquire
323/// \param LockExp The lock expression corresponding to the lock to be added
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000324void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
Caitlin Sadowski33208342011-09-09 16:11:56 +0000325 LockKind LK) {
326 // FIXME: deal with acquired before/after annotations
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000327 MutexID Mutex(Handler, LockExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000328 LockData NewLock(LockLoc, LK);
329
330 // FIXME: Don't always warn when we have support for reentrant locks.
331 if (locksetContains(Mutex))
332 Handler.handleDoubleLock(Mutex.getName(), LockLoc);
333 LSet = LocksetFactory.add(LSet, Mutex, NewLock);
334}
335
336/// \brief Remove a lock from the lockset, warning if the lock is not there.
337/// \param LockExp The lock expression corresponding to the lock to be removed
338/// \param UnlockLoc The source location of the unlock (only used in error msg)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000339void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
340 Expr *Parent) {
341 MutexID Mutex(Handler, LockExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000342
343 Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
344 if(NewLSet == LSet)
345 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
346
347 LSet = NewLSet;
348}
349
350/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
351const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
352 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
353 return DR->getDecl();
354
355 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
356 return ME->getMemberDecl();
357
358 return 0;
359}
360
361/// \brief Warn if the LSet does not contain a lock sufficient to protect access
362/// of at least the passed in AccessType.
363void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
364 AccessKind AK, Expr *MutexExp,
365 ProtectedOperationKind POK) {
366 LockKind LK = getLockKindFromAccessKind(AK);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000367 Expr *Parent = getParent(Exp);
368 MutexID Mutex(Handler, MutexExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000369 if (!locksetContainsAtLeast(Mutex, LK))
370 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
371}
372
373
374/// \brief This method identifies variable dereferences and checks pt_guarded_by
375/// and pt_guarded_var annotations. Note that we only check these annotations
376/// at the time a pointer is dereferenced.
377/// FIXME: We need to check for other types of pointer dereferences
378/// (e.g. [], ->) and deal with them here.
379/// \param Exp An expression that has been read or written.
380void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
381 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
382 if (!UO || UO->getOpcode() != clang::UO_Deref)
383 return;
384 Exp = UO->getSubExpr()->IgnoreParenCasts();
385
386 const ValueDecl *D = getValueDecl(Exp);
387 if(!D || !D->hasAttrs())
388 return;
389
390 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
391 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
392
393 const AttrVec &ArgAttrs = D->getAttrs();
394 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
395 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
396 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
397}
398
399/// \brief Checks guarded_by and guarded_var attributes.
400/// Whenever we identify an access (read or write) of a DeclRefExpr or
401/// MemberExpr, we need to check whether there are any guarded_by or
402/// guarded_var attributes, and make sure we hold the appropriate mutexes.
403void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
404 const ValueDecl *D = getValueDecl(Exp);
405 if(!D || !D->hasAttrs())
406 return;
407
408 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
409 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
410
411 const AttrVec &ArgAttrs = D->getAttrs();
412 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
413 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
414 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
415}
416
417/// \brief For unary operations which read and write a variable, we need to
418/// check whether we hold any required mutexes. Reads are checked in
419/// VisitCastExpr.
420void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
421 switch (UO->getOpcode()) {
422 case clang::UO_PostDec:
423 case clang::UO_PostInc:
424 case clang::UO_PreDec:
425 case clang::UO_PreInc: {
426 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
427 checkAccess(SubExp, AK_Written);
428 checkDereference(SubExp, AK_Written);
429 break;
430 }
431 default:
432 break;
433 }
434}
435
436/// For binary operations which assign to a variable (writes), we need to check
437/// whether we hold any required mutexes.
438/// FIXME: Deal with non-primitive types.
439void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
440 if (!BO->isAssignmentOp())
441 return;
442 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
443 checkAccess(LHSExp, AK_Written);
444 checkDereference(LHSExp, AK_Written);
445}
446
447/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
448/// need to ensure we hold any required mutexes.
449/// FIXME: Deal with non-primitive types.
450void BuildLockset::VisitCastExpr(CastExpr *CE) {
451 if (CE->getCastKind() != CK_LValueToRValue)
452 return;
453 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
454 checkAccess(SubExp, AK_Read);
455 checkDereference(SubExp, AK_Read);
456}
457
458/// \brief This function, parameterized by an attribute type, is used to add a
459/// set of locks specified as attribute arguments to the lockset.
460template <typename AttrType>
461void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
462 CXXMemberCallExpr *Exp) {
463 typedef typename AttrType::args_iterator iterator_type;
464 SourceLocation ExpLocation = Exp->getExprLoc();
465 Expr *Parent = Exp->getImplicitObjectArgument();
466 AttrType *SpecificAttr = cast<AttrType>(Attr);
467
468 if (SpecificAttr->args_size() == 0) {
469 // The mutex held is the "this" object.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000470 addLock(ExpLocation, Parent, Parent, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000471 return;
472 }
473
474 for (iterator_type I = SpecificAttr->args_begin(),
475 E = SpecificAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000476 addLock(ExpLocation, *I, Parent, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000477}
478
479/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
480/// the method that is being called and add, remove or check locks in the
481/// lockset accordingly.
482///
483/// FIXME: For classes annotated with one of the guarded annotations, we need
484/// to treat const method calls as reads and non-const method calls as writes,
485/// and check that the appropriate locks are held. Non-const method calls with
486/// the same signature as const method calls can be also treated as reads.
487///
488/// FIXME: We need to also visit CallExprs to catch/check global functions.
489void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
490 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
491
492 SourceLocation ExpLocation = Exp->getExprLoc();
493 Expr *Parent = Exp->getImplicitObjectArgument();
494
495 if(!D || !D->hasAttrs())
496 return;
497
498 AttrVec &ArgAttrs = D->getAttrs();
499 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
500 Attr *Attr = ArgAttrs[i];
501 switch (Attr->getKind()) {
502 // When we encounter an exclusive lock function, we need to add the lock
503 // to our lockset with kind exclusive.
504 case attr::ExclusiveLockFunction:
505 addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
506 break;
507
508 // When we encounter a shared lock function, we need to add the lock
509 // to our lockset with kind shared.
510 case attr::SharedLockFunction:
511 addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
512 break;
513
514 // When we encounter an unlock function, we need to remove unlocked
515 // mutexes from the lockset, and flag a warning if they are not there.
516 case attr::UnlockFunction: {
517 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
518
519 if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000520 removeLock(ExpLocation, Parent, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000521 break;
522 }
523
524 for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
525 E = UFAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000526 removeLock(ExpLocation, *I, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000527 break;
528 }
529
530 case attr::ExclusiveLocksRequired: {
531 // FIXME: Also use this attribute to add required locks to the initial
532 // lockset when processing a CFG for a function annotated with this
533 // attribute.
534 ExclusiveLocksRequiredAttr *ELRAttr =
535 cast<ExclusiveLocksRequiredAttr>(Attr);
536
537 for (ExclusiveLocksRequiredAttr::args_iterator
538 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
539 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
540 break;
541 }
542
543 case attr::SharedLocksRequired: {
544 // FIXME: Also use this attribute to add required locks to the initial
545 // lockset when processing a CFG for a function annotated with this
546 // attribute.
547 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
548
549 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
550 E = SLRAttr->args_end(); I != E; ++I)
551 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
552 break;
553 }
554
555 case attr::LocksExcluded: {
556 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
557 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
558 E = LEAttr->args_end(); I != E; ++I) {
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000559 MutexID Mutex(Handler, *I, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000560 if (locksetContains(Mutex))
561 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
562 ExpLocation);
563 }
564 break;
565 }
566
567 case attr::LockReturned:
568 // FIXME: Deal with this attribute.
569 break;
570
571 // Ignore other (non thread-safety) attributes
572 default:
573 break;
574 }
575 }
576}
577
578} // end anonymous namespace
579
580/// \brief Flags a warning for each lock that is in LSet2 but not LSet1, or
581/// else mutexes that are held shared in one lockset and exclusive in the other.
582static Lockset warnIfNotInFirstSetOrNotSameKind(ThreadSafetyHandler &Handler,
583 const Lockset LSet1,
584 const Lockset LSet2,
585 Lockset Intersection,
586 Lockset::Factory &Fact) {
587 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
588 const MutexID &LSet2Mutex = I.getKey();
589 const LockData &LSet2LockData = I.getData();
590 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
591 if (LD->LKind != LSet2LockData.LKind) {
592 Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
593 LSet2LockData.AcquireLoc,
594 LD->AcquireLoc);
595 if (LD->LKind != LK_Exclusive)
596 Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
597 }
598 } else {
599 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
600 LSet2LockData.AcquireLoc);
601 }
602 }
603 return Intersection;
604}
605
606
607/// \brief Compute the intersection of two locksets and issue warnings for any
608/// locks in the symmetric difference.
609///
610/// This function is used at a merge point in the CFG when comparing the lockset
611/// of each branch being merged. For example, given the following sequence:
612/// A; if () then B; else C; D; we need to check that the lockset after B and C
613/// are the same. In the event of a difference, we use the intersection of these
614/// two locksets at the start of D.
615static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
616 const Lockset LSet1, const Lockset LSet2,
617 Lockset::Factory &Fact) {
618 Lockset Intersection = LSet1;
619 Intersection = warnIfNotInFirstSetOrNotSameKind(Handler, LSet1, LSet2,
620 Intersection, Fact);
621
622 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
623 if (!LSet2.contains(I.getKey())) {
624 const MutexID &Mutex = I.getKey();
625 const LockData &MissingLock = I.getData();
626 Handler.handleMutexHeldEndOfScope(Mutex.getName(),
627 MissingLock.AcquireLoc);
628 Intersection = Fact.remove(Intersection, Mutex);
629 }
630 }
631 return Intersection;
632}
633
634/// \brief Returns the location of the first Stmt in a Block.
635static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
636 SourceLocation Loc;
637 for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
638 BI != BE; ++BI) {
639 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
640 Loc = CfgStmt->getStmt()->getLocStart();
641 if (Loc.isValid()) return Loc;
642 }
643 }
644 if (Stmt *S = Block->getTerminator().getStmt()) {
645 Loc = S->getLocStart();
646 if (Loc.isValid()) return Loc;
647 }
648 return Loc;
649}
650
651/// \brief Warn about different locksets along backedges of loops.
652/// This function is called when we encounter a back edge. At that point,
653/// we need to verify that the lockset before taking the backedge is the
654/// same as the lockset before entering the loop.
655///
656/// \param LoopEntrySet Locks before starting the loop
657/// \param LoopReentrySet Locks in the last CFG block of the loop
658static void warnBackEdgeUnequalLocksets(ThreadSafetyHandler &Handler,
659 const Lockset LoopReentrySet,
660 const Lockset LoopEntrySet,
661 SourceLocation FirstLocInLoop,
662 Lockset::Factory &Fact) {
663 assert(FirstLocInLoop.isValid());
664 // Warn for locks held at the start of the loop, but not the end.
665 for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
666 I != E; ++I) {
667 if (!LoopReentrySet.contains(I.getKey())) {
668 // We report this error at the location of the first statement in a loop
669 Handler.handleNoLockLoopEntry(I.getKey().getName(), FirstLocInLoop);
670 }
671 }
672
673 // Warn for locks held at the end of the loop, but not at the start.
674 warnIfNotInFirstSetOrNotSameKind(Handler, LoopEntrySet, LoopReentrySet,
675 LoopReentrySet, Fact);
676}
677
678
679namespace clang { namespace thread_safety {
680/// \brief Check a function's CFG for thread-safety violations.
681///
682/// We traverse the blocks in the CFG, compute the set of mutexes that are held
683/// at the end of each block, and issue warnings for thread safety violations.
684/// Each block in the CFG is traversed exactly once.
685void runThreadSafetyAnalysis(AnalysisContext &AC,
686 ThreadSafetyHandler &Handler) {
687 CFG *CFGraph = AC.getCFG();
688 if (!CFGraph) return;
689 const Decl *D = AC.getDecl();
690 if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
691
692 Lockset::Factory LocksetFactory;
693
694 // FIXME: Swith to SmallVector? Otherwise improve performance impact?
695 std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
696 LocksetFactory.getEmptyMap());
697 std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
698 LocksetFactory.getEmptyMap());
699
700 // We need to explore the CFG via a "topological" ordering.
701 // That way, we will be guaranteed to have information about required
702 // predecessor locksets when exploring a new block.
703 TopologicallySortedCFG SortedGraph(CFGraph);
704 CFGBlockSet VisitedBlocks(CFGraph);
705
706 for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
707 E = SortedGraph.end(); I!= E; ++I) {
708 const CFGBlock *CurrBlock = *I;
709 int CurrBlockID = CurrBlock->getBlockID();
710
711 VisitedBlocks.insert(CurrBlock);
712
713 // Use the default initial lockset in case there are no predecessors.
714 Lockset &Entryset = EntryLocksets[CurrBlockID];
715 Lockset &Exitset = ExitLocksets[CurrBlockID];
716
717 // Iterate through the predecessor blocks and warn if the lockset for all
718 // predecessors is not the same. We take the entry lockset of the current
719 // block to be the intersection of all previous locksets.
720 // FIXME: By keeping the intersection, we may output more errors in future
721 // for a lock which is not in the intersection, but was in the union. We
722 // may want to also keep the union in future. As an example, let's say
723 // the intersection contains Mutex L, and the union contains L and M.
724 // Later we unlock M. At this point, we would output an error because we
725 // never locked M; although the real error is probably that we forgot to
726 // lock M on all code paths. Conversely, let's say that later we lock M.
727 // In this case, we should compare against the intersection instead of the
728 // union because the real error is probably that we forgot to unlock M on
729 // all code paths.
730 bool LocksetInitialized = false;
731 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
732 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
733
734 // if *PI -> CurrBlock is a back edge
735 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
736 continue;
737
738 int PrevBlockID = (*PI)->getBlockID();
739 if (!LocksetInitialized) {
740 Entryset = ExitLocksets[PrevBlockID];
741 LocksetInitialized = true;
742 } else {
743 Entryset = intersectAndWarn(Handler, Entryset,
744 ExitLocksets[PrevBlockID], LocksetFactory);
745 }
746 }
747
748 BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
749 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
750 BE = CurrBlock->end(); BI != BE; ++BI) {
751 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
752 LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
753 }
754 Exitset = LocksetBuilder.getLockset();
755
756 // For every back edge from CurrBlock (the end of the loop) to another block
757 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
758 // the one held at the beginning of FirstLoopBlock. We can look up the
759 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
760 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
761 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
762
763 // if CurrBlock -> *SI is *not* a back edge
764 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
765 continue;
766
767 CFGBlock *FirstLoopBlock = *SI;
768 SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
769
770 assert(FirstLoopLocation.isValid());
771
772 // Fail gracefully in release code.
773 if (!FirstLoopLocation.isValid())
774 continue;
775
776 Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
777 Lockset LoopEnd = ExitLocksets[CurrBlockID];
778 warnBackEdgeUnequalLocksets(Handler, LoopEnd, PreLoop, FirstLoopLocation,
779 LocksetFactory);
780 }
781 }
782
783 Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
784 if (!FinalLockset.isEmpty()) {
785 for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
786 I != E; ++I) {
787 const MutexID &Mutex = I.getKey();
788 const LockData &MissingLock = I.getData();
789
790 std::string FunName = "<unknown>";
791 if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
792 FunName = ContextDecl->getDeclName().getAsString();
793 }
794
795 Handler.handleNoUnlock(Mutex.getName(), FunName, MissingLock.AcquireLoc);
796 }
797 }
798}
799
800/// \brief Helper function that returns a LockKind required for the given level
801/// of access.
802LockKind getLockKindFromAccessKind(AccessKind AK) {
803 switch (AK) {
804 case AK_Read :
805 return LK_Shared;
806 case AK_Written :
807 return LK_Exclusive;
808 }
Benjamin Kramer8a8051f2011-09-10 21:52:04 +0000809 llvm_unreachable("Unknown AccessKind");
Caitlin Sadowski33208342011-09-09 16:11:56 +0000810}
811}} // end namespace clang::thread_safety