blob: 4fae0a53b325d404104819dac48822f94f34999a [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// AArch64 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#include "AArch64.h"
18#include "AArch64TargetMachine.h"
19#include "MCTargetDesc/AArch64AddressingModes.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/CostTable.h"
23#include "llvm/Target/TargetLowering.h"
24#include <algorithm>
25using namespace llvm;
26
27#define DEBUG_TYPE "aarch64tti"
28
29// Declare the pass initialization routine locally as target-specific passes
30// don't have a target-wide initialization entry point, and so we rely on the
31// pass constructor initialization.
32namespace llvm {
33void initializeAArch64TTIPass(PassRegistry &);
34}
35
36namespace {
37
38class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
39 const AArch64TargetMachine *TM;
40 const AArch64Subtarget *ST;
41 const AArch64TargetLowering *TLI;
42
43 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
44 /// are set if the result needs to be inserted and/or extracted from vectors.
45 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
46
47public:
48 AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
49 llvm_unreachable("This pass cannot be directly constructed");
50 }
51
52 AArch64TTI(const AArch64TargetMachine *TM)
53 : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
54 TLI(TM->getTargetLowering()) {
55 initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
56 }
57
58 void initializePass() override { pushTTIStack(this); }
59
60 void getAnalysisUsage(AnalysisUsage &AU) const override {
61 TargetTransformInfo::getAnalysisUsage(AU);
62 }
63
64 /// Pass identification.
65 static char ID;
66
67 /// Provide necessary pointer adjustments for the two base classes.
68 void *getAdjustedAnalysisPointer(const void *ID) override {
69 if (ID == &TargetTransformInfo::ID)
70 return (TargetTransformInfo *)this;
71 return this;
72 }
73
74 /// \name Scalar TTI Implementations
75 /// @{
76 unsigned getIntImmCost(int64_t Val) const;
77 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
78 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
79 Type *Ty) const override;
80 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
81 Type *Ty) const override;
82 PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
83
84 /// @}
85
86 /// \name Vector TTI Implementations
87 /// @{
88
89 unsigned getNumberOfRegisters(bool Vector) const override {
90 if (Vector) {
91 if (ST->hasNEON())
92 return 32;
93 return 0;
94 }
95 return 31;
96 }
97
98 unsigned getRegisterBitWidth(bool Vector) const override {
99 if (Vector) {
100 if (ST->hasNEON())
101 return 128;
102 return 0;
103 }
104 return 64;
105 }
106
107 unsigned getMaximumUnrollFactor() const override { return 2; }
108
109 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
110 override;
111
112 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
113 override;
114
115 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
116 OperandValueKind Opd1Info = OK_AnyValue,
117 OperandValueKind Opd2Info = OK_AnyValue) const
118 override;
119
120 unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
121
122 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
123 override;
124
125 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
126 unsigned AddressSpace) const override;
127 /// @}
128};
129
130} // end anonymous namespace
131
132INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
133 "AArch64 Target Transform Info", true, true, false)
134char AArch64TTI::ID = 0;
135
136ImmutablePass *
137llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
138 return new AArch64TTI(TM);
139}
140
141/// \brief Calculate the cost of materializing a 64-bit value. This helper
142/// method might only calculate a fraction of a larger immediate. Therefore it
143/// is valid to return a cost of ZERO.
144unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
145 // Check if the immediate can be encoded within an instruction.
146 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
147 return 0;
148
149 if (Val < 0)
150 Val = ~Val;
151
152 // Calculate how many moves we will need to materialize this constant.
153 unsigned LZ = countLeadingZeros((uint64_t)Val);
154 return (64 - LZ + 15) / 16;
155}
156
157/// \brief Calculate the cost of materializing the given constant.
158unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
159 assert(Ty->isIntegerTy());
160
161 unsigned BitSize = Ty->getPrimitiveSizeInBits();
162 if (BitSize == 0)
163 return ~0U;
164
165 // Sign-extend all constants to a multiple of 64-bit.
166 APInt ImmVal = Imm;
167 if (BitSize & 0x3f)
168 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
169
170 // Split the constant into 64-bit chunks and calculate the cost for each
171 // chunk.
172 unsigned Cost = 0;
173 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
174 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
175 int64_t Val = Tmp.getSExtValue();
176 Cost += getIntImmCost(Val);
177 }
178 // We need at least one instruction to materialze the constant.
179 return std::max(1U, Cost);
180}
181
182unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
183 const APInt &Imm, Type *Ty) const {
184 assert(Ty->isIntegerTy());
185
186 unsigned BitSize = Ty->getPrimitiveSizeInBits();
187 // There is no cost model for constants with a bit size of 0. Return TCC_Free
188 // here, so that constant hoisting will ignore this constant.
189 if (BitSize == 0)
190 return TCC_Free;
191
192 unsigned ImmIdx = ~0U;
193 switch (Opcode) {
194 default:
195 return TCC_Free;
196 case Instruction::GetElementPtr:
197 // Always hoist the base address of a GetElementPtr.
198 if (Idx == 0)
199 return 2 * TCC_Basic;
200 return TCC_Free;
201 case Instruction::Store:
202 ImmIdx = 0;
203 break;
204 case Instruction::Add:
205 case Instruction::Sub:
206 case Instruction::Mul:
207 case Instruction::UDiv:
208 case Instruction::SDiv:
209 case Instruction::URem:
210 case Instruction::SRem:
211 case Instruction::And:
212 case Instruction::Or:
213 case Instruction::Xor:
214 case Instruction::ICmp:
215 ImmIdx = 1;
216 break;
217 // Always return TCC_Free for the shift value of a shift instruction.
218 case Instruction::Shl:
219 case Instruction::LShr:
220 case Instruction::AShr:
221 if (Idx == 1)
222 return TCC_Free;
223 break;
224 case Instruction::Trunc:
225 case Instruction::ZExt:
226 case Instruction::SExt:
227 case Instruction::IntToPtr:
228 case Instruction::PtrToInt:
229 case Instruction::BitCast:
230 case Instruction::PHI:
231 case Instruction::Call:
232 case Instruction::Select:
233 case Instruction::Ret:
234 case Instruction::Load:
235 break;
236 }
237
238 if (Idx == ImmIdx) {
239 unsigned NumConstants = (BitSize + 63) / 64;
240 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
241 return (Cost <= NumConstants * TCC_Basic)
242 ? static_cast<unsigned>(TCC_Free) : Cost;
243 }
244 return AArch64TTI::getIntImmCost(Imm, Ty);
245}
246
247unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
248 const APInt &Imm, Type *Ty) const {
249 assert(Ty->isIntegerTy());
250
251 unsigned BitSize = Ty->getPrimitiveSizeInBits();
252 // There is no cost model for constants with a bit size of 0. Return TCC_Free
253 // here, so that constant hoisting will ignore this constant.
254 if (BitSize == 0)
255 return TCC_Free;
256
257 switch (IID) {
258 default:
259 return TCC_Free;
260 case Intrinsic::sadd_with_overflow:
261 case Intrinsic::uadd_with_overflow:
262 case Intrinsic::ssub_with_overflow:
263 case Intrinsic::usub_with_overflow:
264 case Intrinsic::smul_with_overflow:
265 case Intrinsic::umul_with_overflow:
266 if (Idx == 1) {
267 unsigned NumConstants = (BitSize + 63) / 64;
268 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
269 return (Cost <= NumConstants * TCC_Basic)
270 ? static_cast<unsigned>(TCC_Free) : Cost;
271 }
272 break;
273 case Intrinsic::experimental_stackmap:
274 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
275 return TCC_Free;
276 break;
277 case Intrinsic::experimental_patchpoint_void:
278 case Intrinsic::experimental_patchpoint_i64:
279 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
280 return TCC_Free;
281 break;
282 }
283 return AArch64TTI::getIntImmCost(Imm, Ty);
284}
285
286AArch64TTI::PopcntSupportKind
287AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
288 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
289 if (TyWidth == 32 || TyWidth == 64)
290 return PSK_FastHardware;
291 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
292 return PSK_Software;
293}
294
295unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
296 Type *Src) const {
297 int ISD = TLI->InstructionOpcodeToISD(Opcode);
298 assert(ISD && "Invalid opcode");
299
300 EVT SrcTy = TLI->getValueType(Src);
301 EVT DstTy = TLI->getValueType(Dst);
302
303 if (!SrcTy.isSimple() || !DstTy.isSimple())
304 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
305
306 static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
307 // LowerVectorINT_TO_FP:
308 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000309 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000310 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
311 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000312 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000313 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000314
315 // Complex: to v2f32
316 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
317 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
318 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
319 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
320
321 // Complex: to v4f32
322 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
323 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
324 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
325 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
326
327 // Complex: to v2f64
328 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
329 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
330 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
331 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
332 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
333 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
334
335
Tim Northover3b0846e2014-05-24 12:50:23 +0000336 // LowerVectorFP_TO_INT
Tim Northoveref0d7602014-06-15 09:27:06 +0000337 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000338 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
339 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000340 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000341 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
342 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000343
344 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
345 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
346 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
347 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
348 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
349 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000350 };
351
352 int Idx = ConvertCostTableLookup<MVT>(
353 ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
354 SrcTy.getSimpleVT());
355 if (Idx != -1)
356 return ConversionTbl[Idx].Cost;
357
358 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
359}
360
361unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
362 unsigned Index) const {
363 assert(Val->isVectorTy() && "This must be a vector type");
364
365 if (Index != -1U) {
366 // Legalize the type.
367 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
368
369 // This type is legalized to a scalar type.
370 if (!LT.second.isVector())
371 return 0;
372
373 // The type may be split. Normalize the index to the new type.
374 unsigned Width = LT.second.getVectorNumElements();
375 Index = Index % Width;
376
377 // The element at index zero is already inside the vector.
378 if (Index == 0)
379 return 0;
380 }
381
382 // All other insert/extracts cost this much.
383 return 2;
384}
385
386unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
387 OperandValueKind Opd1Info,
388 OperandValueKind Opd2Info) const {
389 // Legalize the type.
390 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
391
392 int ISD = TLI->InstructionOpcodeToISD(Opcode);
393
394 switch (ISD) {
395 default:
396 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
397 Opd2Info);
398 case ISD::ADD:
399 case ISD::MUL:
400 case ISD::XOR:
401 case ISD::OR:
402 case ISD::AND:
403 // These nodes are marked as 'custom' for combining purposes only.
404 // We know that they are legal. See LowerAdd in ISelLowering.
405 return 1 * LT.first;
406 }
407}
408
409unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
410 // Address computations in vectorized code with non-consecutive addresses will
411 // likely result in more instructions compared to scalar code where the
412 // computation can more often be merged into the index mode. The resulting
413 // extra micro-ops can significantly decrease throughput.
414 unsigned NumVectorInstToHideOverhead = 10;
415
416 if (Ty->isVectorTy() && IsComplex)
417 return NumVectorInstToHideOverhead;
418
419 // In many cases the address computation is not merged into the instruction
420 // addressing mode.
421 return 1;
422}
423
424unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
425 Type *CondTy) const {
426
427 int ISD = TLI->InstructionOpcodeToISD(Opcode);
428 // We don't lower vector selects well that are wider than the register width.
429 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
430 // We would need this many instructions to hide the scalarization happening.
431 unsigned AmortizationCost = 20;
432 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
433 VectorSelectTbl[] = {
434 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
435 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
436 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
437 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
438 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
439 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
440 };
441
442 EVT SelCondTy = TLI->getValueType(CondTy);
443 EVT SelValTy = TLI->getValueType(ValTy);
444 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
445 int Idx =
446 ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
447 SelValTy.getSimpleVT());
448 if (Idx != -1)
449 return VectorSelectTbl[Idx].Cost;
450 }
451 }
452 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
453}
454
455unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
456 unsigned Alignment,
457 unsigned AddressSpace) const {
458 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
459
460 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
461 Src->getVectorElementType()->isIntegerTy(64)) {
462 // Unaligned stores are extremely inefficient. We don't split
463 // unaligned v2i64 stores because the negative impact that has shown in
464 // practice on inlined memcpy code.
465 // We make v2i64 stores expensive so that we will only vectorize if there
466 // are 6 other instructions getting vectorized.
467 unsigned AmortizationCost = 6;
468
469 return LT.first * 2 * AmortizationCost;
470 }
471
472 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
473 Src->getVectorNumElements() < 8) {
474 // We scalarize the loads/stores because there is not v.4b register and we
475 // have to promote the elements to v.4h.
476 unsigned NumVecElts = Src->getVectorNumElements();
477 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
478 // We generate 2 instructions per vector element.
479 return NumVectorizableInstsToAmortize * NumVecElts * 2;
480 }
481
482 return LT.first;
483}