Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1 | //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the SystemZTargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "systemz-lower" |
| 15 | |
| 16 | #include "SystemZISelLowering.h" |
| 17 | #include "SystemZCallingConv.h" |
| 18 | #include "SystemZConstantPoolValue.h" |
| 19 | #include "SystemZMachineFunctionInfo.h" |
| 20 | #include "SystemZTargetMachine.h" |
| 21 | #include "llvm/CodeGen/CallingConvLower.h" |
| 22 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 24 | #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| 25 | |
| 26 | using namespace llvm; |
| 27 | |
| 28 | // Classify VT as either 32 or 64 bit. |
| 29 | static bool is32Bit(EVT VT) { |
| 30 | switch (VT.getSimpleVT().SimpleTy) { |
| 31 | case MVT::i32: |
| 32 | return true; |
| 33 | case MVT::i64: |
| 34 | return false; |
| 35 | default: |
| 36 | llvm_unreachable("Unsupported type"); |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | // Return a version of MachineOperand that can be safely used before the |
| 41 | // final use. |
| 42 | static MachineOperand earlyUseOperand(MachineOperand Op) { |
| 43 | if (Op.isReg()) |
| 44 | Op.setIsKill(false); |
| 45 | return Op; |
| 46 | } |
| 47 | |
| 48 | SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) |
| 49 | : TargetLowering(tm, new TargetLoweringObjectFileELF()), |
| 50 | Subtarget(*tm.getSubtargetImpl()), TM(tm) { |
| 51 | MVT PtrVT = getPointerTy(); |
| 52 | |
| 53 | // Set up the register classes. |
| 54 | addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); |
| 55 | addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); |
| 56 | addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); |
| 57 | addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); |
| 58 | addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); |
| 59 | |
| 60 | // Compute derived properties from the register classes |
| 61 | computeRegisterProperties(); |
| 62 | |
| 63 | // Set up special registers. |
| 64 | setExceptionPointerRegister(SystemZ::R6D); |
| 65 | setExceptionSelectorRegister(SystemZ::R7D); |
| 66 | setStackPointerRegisterToSaveRestore(SystemZ::R15D); |
| 67 | |
| 68 | // TODO: It may be better to default to latency-oriented scheduling, however |
| 69 | // LLVM's current latency-oriented scheduler can't handle physreg definitions |
Richard Sandiford | 14a4449 | 2013-05-22 13:38:45 +0000 | [diff] [blame] | 70 | // such as SystemZ has with CC, so set this to the register-pressure |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 71 | // scheduler, because it can. |
| 72 | setSchedulingPreference(Sched::RegPressure); |
| 73 | |
| 74 | setBooleanContents(ZeroOrOneBooleanContent); |
| 75 | setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? |
| 76 | |
| 77 | // Instructions are strings of 2-byte aligned 2-byte values. |
| 78 | setMinFunctionAlignment(2); |
| 79 | |
| 80 | // Handle operations that are handled in a similar way for all types. |
| 81 | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| 82 | I <= MVT::LAST_FP_VALUETYPE; |
| 83 | ++I) { |
| 84 | MVT VT = MVT::SimpleValueType(I); |
| 85 | if (isTypeLegal(VT)) { |
| 86 | // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND). |
| 87 | setOperationAction(ISD::SETCC, VT, Expand); |
| 88 | |
| 89 | // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). |
| 90 | setOperationAction(ISD::SELECT, VT, Expand); |
| 91 | |
| 92 | // Lower SELECT_CC and BR_CC into separate comparisons and branches. |
| 93 | setOperationAction(ISD::SELECT_CC, VT, Custom); |
| 94 | setOperationAction(ISD::BR_CC, VT, Custom); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // Expand jump table branches as address arithmetic followed by an |
| 99 | // indirect jump. |
| 100 | setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| 101 | |
| 102 | // Expand BRCOND into a BR_CC (see above). |
| 103 | setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| 104 | |
| 105 | // Handle integer types. |
| 106 | for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| 107 | I <= MVT::LAST_INTEGER_VALUETYPE; |
| 108 | ++I) { |
| 109 | MVT VT = MVT::SimpleValueType(I); |
| 110 | if (isTypeLegal(VT)) { |
| 111 | // Expand individual DIV and REMs into DIVREMs. |
| 112 | setOperationAction(ISD::SDIV, VT, Expand); |
| 113 | setOperationAction(ISD::UDIV, VT, Expand); |
| 114 | setOperationAction(ISD::SREM, VT, Expand); |
| 115 | setOperationAction(ISD::UREM, VT, Expand); |
| 116 | setOperationAction(ISD::SDIVREM, VT, Custom); |
| 117 | setOperationAction(ISD::UDIVREM, VT, Custom); |
| 118 | |
| 119 | // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP. |
| 120 | // FIXME: probably much too conservative. |
| 121 | setOperationAction(ISD::ATOMIC_LOAD, VT, Expand); |
| 122 | setOperationAction(ISD::ATOMIC_STORE, VT, Expand); |
| 123 | |
| 124 | // No special instructions for these. |
| 125 | setOperationAction(ISD::CTPOP, VT, Expand); |
| 126 | setOperationAction(ISD::CTTZ, VT, Expand); |
| 127 | setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); |
| 128 | setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); |
| 129 | setOperationAction(ISD::ROTR, VT, Expand); |
| 130 | |
| 131 | // Use *MUL_LOHI where possible and a wider multiplication otherwise. |
| 132 | setOperationAction(ISD::MULHS, VT, Expand); |
| 133 | setOperationAction(ISD::MULHU, VT, Expand); |
| 134 | |
| 135 | // We have instructions for signed but not unsigned FP conversion. |
| 136 | setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | // Type legalization will convert 8- and 16-bit atomic operations into |
| 141 | // forms that operate on i32s (but still keeping the original memory VT). |
| 142 | // Lower them into full i32 operations. |
| 143 | setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); |
| 144 | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); |
| 145 | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); |
| 146 | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); |
| 147 | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); |
| 148 | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); |
| 149 | setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); |
| 150 | setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); |
| 151 | setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); |
| 152 | setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); |
| 153 | setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); |
| 154 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); |
| 155 | |
| 156 | // We have instructions for signed but not unsigned FP conversion. |
| 157 | // Handle unsigned 32-bit types as signed 64-bit types. |
| 158 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); |
| 159 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| 160 | |
| 161 | // We have native support for a 64-bit CTLZ, via FLOGR. |
| 162 | setOperationAction(ISD::CTLZ, MVT::i32, Promote); |
| 163 | setOperationAction(ISD::CTLZ, MVT::i64, Legal); |
| 164 | |
| 165 | // Give LowerOperation the chance to replace 64-bit ORs with subregs. |
| 166 | setOperationAction(ISD::OR, MVT::i64, Custom); |
| 167 | |
| 168 | // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR), |
| 169 | // but they aren't really worth using. There is no 64-bit SMUL_LOHI, |
| 170 | // but there is a 64-bit UMUL_LOHI: MLGR. |
| 171 | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| 172 | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| 173 | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| 174 | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); |
| 175 | |
| 176 | // FIXME: Can we support these natively? |
| 177 | setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); |
| 178 | setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); |
| 179 | setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); |
| 180 | |
| 181 | // We have native instructions for i8, i16 and i32 extensions, but not i1. |
| 182 | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| 183 | setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); |
| 184 | setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); |
| 185 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| 186 | |
| 187 | // Handle the various types of symbolic address. |
| 188 | setOperationAction(ISD::ConstantPool, PtrVT, Custom); |
| 189 | setOperationAction(ISD::GlobalAddress, PtrVT, Custom); |
| 190 | setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); |
| 191 | setOperationAction(ISD::BlockAddress, PtrVT, Custom); |
| 192 | setOperationAction(ISD::JumpTable, PtrVT, Custom); |
| 193 | |
| 194 | // We need to handle dynamic allocations specially because of the |
| 195 | // 160-byte area at the bottom of the stack. |
| 196 | setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); |
| 197 | |
| 198 | // Use custom expanders so that we can force the function to use |
| 199 | // a frame pointer. |
| 200 | setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); |
| 201 | setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); |
| 202 | |
| 203 | // Expand these using getExceptionSelectorRegister() and |
| 204 | // getExceptionPointerRegister(). |
| 205 | setOperationAction(ISD::EXCEPTIONADDR, PtrVT, Expand); |
| 206 | setOperationAction(ISD::EHSELECTION, PtrVT, Expand); |
| 207 | |
| 208 | // Handle floating-point types. |
| 209 | for (unsigned I = MVT::FIRST_FP_VALUETYPE; |
| 210 | I <= MVT::LAST_FP_VALUETYPE; |
| 211 | ++I) { |
| 212 | MVT VT = MVT::SimpleValueType(I); |
| 213 | if (isTypeLegal(VT)) { |
| 214 | // We can use FI for FRINT. |
| 215 | setOperationAction(ISD::FRINT, VT, Legal); |
| 216 | |
| 217 | // No special instructions for these. |
| 218 | setOperationAction(ISD::FSIN, VT, Expand); |
| 219 | setOperationAction(ISD::FCOS, VT, Expand); |
| 220 | setOperationAction(ISD::FREM, VT, Expand); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | // We have fused multiply-addition for f32 and f64 but not f128. |
| 225 | setOperationAction(ISD::FMA, MVT::f32, Legal); |
| 226 | setOperationAction(ISD::FMA, MVT::f64, Legal); |
| 227 | setOperationAction(ISD::FMA, MVT::f128, Expand); |
| 228 | |
| 229 | // Needed so that we don't try to implement f128 constant loads using |
| 230 | // a load-and-extend of a f80 constant (in cases where the constant |
| 231 | // would fit in an f80). |
| 232 | setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); |
| 233 | |
| 234 | // Floating-point truncation and stores need to be done separately. |
| 235 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| 236 | setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| 237 | setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| 238 | |
| 239 | // We have 64-bit FPR<->GPR moves, but need special handling for |
| 240 | // 32-bit forms. |
| 241 | setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| 242 | setOperationAction(ISD::BITCAST, MVT::f32, Custom); |
| 243 | |
| 244 | // VASTART and VACOPY need to deal with the SystemZ-specific varargs |
| 245 | // structure, but VAEND is a no-op. |
| 246 | setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| 247 | setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| 248 | setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| 249 | } |
| 250 | |
| 251 | bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| 252 | // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. |
| 253 | return Imm.isZero() || Imm.isNegZero(); |
| 254 | } |
| 255 | |
| 256 | //===----------------------------------------------------------------------===// |
| 257 | // Inline asm support |
| 258 | //===----------------------------------------------------------------------===// |
| 259 | |
| 260 | TargetLowering::ConstraintType |
| 261 | SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { |
| 262 | if (Constraint.size() == 1) { |
| 263 | switch (Constraint[0]) { |
| 264 | case 'a': // Address register |
| 265 | case 'd': // Data register (equivalent to 'r') |
| 266 | case 'f': // Floating-point register |
| 267 | case 'r': // General-purpose register |
| 268 | return C_RegisterClass; |
| 269 | |
| 270 | case 'Q': // Memory with base and unsigned 12-bit displacement |
| 271 | case 'R': // Likewise, plus an index |
| 272 | case 'S': // Memory with base and signed 20-bit displacement |
| 273 | case 'T': // Likewise, plus an index |
| 274 | case 'm': // Equivalent to 'T'. |
| 275 | return C_Memory; |
| 276 | |
| 277 | case 'I': // Unsigned 8-bit constant |
| 278 | case 'J': // Unsigned 12-bit constant |
| 279 | case 'K': // Signed 16-bit constant |
| 280 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 281 | case 'M': // 0x7fffffff |
| 282 | return C_Other; |
| 283 | |
| 284 | default: |
| 285 | break; |
| 286 | } |
| 287 | } |
| 288 | return TargetLowering::getConstraintType(Constraint); |
| 289 | } |
| 290 | |
| 291 | TargetLowering::ConstraintWeight SystemZTargetLowering:: |
| 292 | getSingleConstraintMatchWeight(AsmOperandInfo &info, |
| 293 | const char *constraint) const { |
| 294 | ConstraintWeight weight = CW_Invalid; |
| 295 | Value *CallOperandVal = info.CallOperandVal; |
| 296 | // If we don't have a value, we can't do a match, |
| 297 | // but allow it at the lowest weight. |
| 298 | if (CallOperandVal == NULL) |
| 299 | return CW_Default; |
| 300 | Type *type = CallOperandVal->getType(); |
| 301 | // Look at the constraint type. |
| 302 | switch (*constraint) { |
| 303 | default: |
| 304 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| 305 | break; |
| 306 | |
| 307 | case 'a': // Address register |
| 308 | case 'd': // Data register (equivalent to 'r') |
| 309 | case 'r': // General-purpose register |
| 310 | if (CallOperandVal->getType()->isIntegerTy()) |
| 311 | weight = CW_Register; |
| 312 | break; |
| 313 | |
| 314 | case 'f': // Floating-point register |
| 315 | if (type->isFloatingPointTy()) |
| 316 | weight = CW_Register; |
| 317 | break; |
| 318 | |
| 319 | case 'I': // Unsigned 8-bit constant |
| 320 | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| 321 | if (isUInt<8>(C->getZExtValue())) |
| 322 | weight = CW_Constant; |
| 323 | break; |
| 324 | |
| 325 | case 'J': // Unsigned 12-bit constant |
| 326 | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| 327 | if (isUInt<12>(C->getZExtValue())) |
| 328 | weight = CW_Constant; |
| 329 | break; |
| 330 | |
| 331 | case 'K': // Signed 16-bit constant |
| 332 | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| 333 | if (isInt<16>(C->getSExtValue())) |
| 334 | weight = CW_Constant; |
| 335 | break; |
| 336 | |
| 337 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 338 | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| 339 | if (isInt<20>(C->getSExtValue())) |
| 340 | weight = CW_Constant; |
| 341 | break; |
| 342 | |
| 343 | case 'M': // 0x7fffffff |
| 344 | if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| 345 | if (C->getZExtValue() == 0x7fffffff) |
| 346 | weight = CW_Constant; |
| 347 | break; |
| 348 | } |
| 349 | return weight; |
| 350 | } |
| 351 | |
| 352 | std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: |
| 353 | getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { |
| 354 | if (Constraint.size() == 1) { |
| 355 | // GCC Constraint Letters |
| 356 | switch (Constraint[0]) { |
| 357 | default: break; |
| 358 | case 'd': // Data register (equivalent to 'r') |
| 359 | case 'r': // General-purpose register |
| 360 | if (VT == MVT::i64) |
| 361 | return std::make_pair(0U, &SystemZ::GR64BitRegClass); |
| 362 | else if (VT == MVT::i128) |
| 363 | return std::make_pair(0U, &SystemZ::GR128BitRegClass); |
| 364 | return std::make_pair(0U, &SystemZ::GR32BitRegClass); |
| 365 | |
| 366 | case 'a': // Address register |
| 367 | if (VT == MVT::i64) |
| 368 | return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); |
| 369 | else if (VT == MVT::i128) |
| 370 | return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); |
| 371 | return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); |
| 372 | |
| 373 | case 'f': // Floating-point register |
| 374 | if (VT == MVT::f64) |
| 375 | return std::make_pair(0U, &SystemZ::FP64BitRegClass); |
| 376 | else if (VT == MVT::f128) |
| 377 | return std::make_pair(0U, &SystemZ::FP128BitRegClass); |
| 378 | return std::make_pair(0U, &SystemZ::FP32BitRegClass); |
| 379 | } |
| 380 | } |
| 381 | return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| 382 | } |
| 383 | |
| 384 | void SystemZTargetLowering:: |
| 385 | LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, |
| 386 | std::vector<SDValue> &Ops, |
| 387 | SelectionDAG &DAG) const { |
| 388 | // Only support length 1 constraints for now. |
| 389 | if (Constraint.length() == 1) { |
| 390 | switch (Constraint[0]) { |
| 391 | case 'I': // Unsigned 8-bit constant |
| 392 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| 393 | if (isUInt<8>(C->getZExtValue())) |
| 394 | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), |
| 395 | Op.getValueType())); |
| 396 | return; |
| 397 | |
| 398 | case 'J': // Unsigned 12-bit constant |
| 399 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| 400 | if (isUInt<12>(C->getZExtValue())) |
| 401 | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), |
| 402 | Op.getValueType())); |
| 403 | return; |
| 404 | |
| 405 | case 'K': // Signed 16-bit constant |
| 406 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| 407 | if (isInt<16>(C->getSExtValue())) |
| 408 | Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), |
| 409 | Op.getValueType())); |
| 410 | return; |
| 411 | |
| 412 | case 'L': // Signed 20-bit displacement (on all targets we support) |
| 413 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| 414 | if (isInt<20>(C->getSExtValue())) |
| 415 | Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), |
| 416 | Op.getValueType())); |
| 417 | return; |
| 418 | |
| 419 | case 'M': // 0x7fffffff |
| 420 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| 421 | if (C->getZExtValue() == 0x7fffffff) |
| 422 | Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), |
| 423 | Op.getValueType())); |
| 424 | return; |
| 425 | } |
| 426 | } |
| 427 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 428 | } |
| 429 | |
| 430 | //===----------------------------------------------------------------------===// |
| 431 | // Calling conventions |
| 432 | //===----------------------------------------------------------------------===// |
| 433 | |
| 434 | #include "SystemZGenCallingConv.inc" |
| 435 | |
| 436 | // Value is a value that has been passed to us in the location described by VA |
| 437 | // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining |
| 438 | // any loads onto Chain. |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 439 | static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 440 | CCValAssign &VA, SDValue Chain, |
| 441 | SDValue Value) { |
| 442 | // If the argument has been promoted from a smaller type, insert an |
| 443 | // assertion to capture this. |
| 444 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 445 | Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, |
| 446 | DAG.getValueType(VA.getValVT())); |
| 447 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 448 | Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, |
| 449 | DAG.getValueType(VA.getValVT())); |
| 450 | |
| 451 | if (VA.isExtInLoc()) |
| 452 | Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); |
| 453 | else if (VA.getLocInfo() == CCValAssign::Indirect) |
| 454 | Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, |
| 455 | MachinePointerInfo(), false, false, false, 0); |
| 456 | else |
| 457 | assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); |
| 458 | return Value; |
| 459 | } |
| 460 | |
| 461 | // Value is a value of type VA.getValVT() that we need to copy into |
| 462 | // the location described by VA. Return a copy of Value converted to |
| 463 | // VA.getValVT(). The caller is responsible for handling indirect values. |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 464 | static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 465 | CCValAssign &VA, SDValue Value) { |
| 466 | switch (VA.getLocInfo()) { |
| 467 | case CCValAssign::SExt: |
| 468 | return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); |
| 469 | case CCValAssign::ZExt: |
| 470 | return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); |
| 471 | case CCValAssign::AExt: |
| 472 | return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); |
| 473 | case CCValAssign::Full: |
| 474 | return Value; |
| 475 | default: |
| 476 | llvm_unreachable("Unhandled getLocInfo()"); |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | SDValue SystemZTargetLowering:: |
| 481 | LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 482 | const SmallVectorImpl<ISD::InputArg> &Ins, |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 483 | SDLoc DL, SelectionDAG &DAG, |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 484 | SmallVectorImpl<SDValue> &InVals) const { |
| 485 | MachineFunction &MF = DAG.getMachineFunction(); |
| 486 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 487 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 488 | SystemZMachineFunctionInfo *FuncInfo = |
| 489 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 490 | const SystemZFrameLowering *TFL = |
| 491 | static_cast<const SystemZFrameLowering *>(TM.getFrameLowering()); |
| 492 | |
| 493 | // Assign locations to all of the incoming arguments. |
| 494 | SmallVector<CCValAssign, 16> ArgLocs; |
| 495 | CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); |
| 496 | CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); |
| 497 | |
| 498 | unsigned NumFixedGPRs = 0; |
| 499 | unsigned NumFixedFPRs = 0; |
| 500 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 501 | SDValue ArgValue; |
| 502 | CCValAssign &VA = ArgLocs[I]; |
| 503 | EVT LocVT = VA.getLocVT(); |
| 504 | if (VA.isRegLoc()) { |
| 505 | // Arguments passed in registers |
| 506 | const TargetRegisterClass *RC; |
| 507 | switch (LocVT.getSimpleVT().SimpleTy) { |
| 508 | default: |
| 509 | // Integers smaller than i64 should be promoted to i64. |
| 510 | llvm_unreachable("Unexpected argument type"); |
| 511 | case MVT::i32: |
| 512 | NumFixedGPRs += 1; |
| 513 | RC = &SystemZ::GR32BitRegClass; |
| 514 | break; |
| 515 | case MVT::i64: |
| 516 | NumFixedGPRs += 1; |
| 517 | RC = &SystemZ::GR64BitRegClass; |
| 518 | break; |
| 519 | case MVT::f32: |
| 520 | NumFixedFPRs += 1; |
| 521 | RC = &SystemZ::FP32BitRegClass; |
| 522 | break; |
| 523 | case MVT::f64: |
| 524 | NumFixedFPRs += 1; |
| 525 | RC = &SystemZ::FP64BitRegClass; |
| 526 | break; |
| 527 | } |
| 528 | |
| 529 | unsigned VReg = MRI.createVirtualRegister(RC); |
| 530 | MRI.addLiveIn(VA.getLocReg(), VReg); |
| 531 | ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); |
| 532 | } else { |
| 533 | assert(VA.isMemLoc() && "Argument not register or memory"); |
| 534 | |
| 535 | // Create the frame index object for this incoming parameter. |
| 536 | int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, |
| 537 | VA.getLocMemOffset(), true); |
| 538 | |
| 539 | // Create the SelectionDAG nodes corresponding to a load |
| 540 | // from this parameter. Unpromoted ints and floats are |
| 541 | // passed as right-justified 8-byte values. |
| 542 | EVT PtrVT = getPointerTy(); |
| 543 | SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| 544 | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) |
| 545 | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); |
| 546 | ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, |
| 547 | MachinePointerInfo::getFixedStack(FI), |
| 548 | false, false, false, 0); |
| 549 | } |
| 550 | |
| 551 | // Convert the value of the argument register into the value that's |
| 552 | // being passed. |
| 553 | InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); |
| 554 | } |
| 555 | |
| 556 | if (IsVarArg) { |
| 557 | // Save the number of non-varargs registers for later use by va_start, etc. |
| 558 | FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); |
| 559 | FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); |
| 560 | |
| 561 | // Likewise the address (in the form of a frame index) of where the |
| 562 | // first stack vararg would be. The 1-byte size here is arbitrary. |
| 563 | int64_t StackSize = CCInfo.getNextStackOffset(); |
| 564 | FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); |
| 565 | |
| 566 | // ...and a similar frame index for the caller-allocated save area |
| 567 | // that will be used to store the incoming registers. |
| 568 | int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); |
| 569 | unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); |
| 570 | FuncInfo->setRegSaveFrameIndex(RegSaveIndex); |
| 571 | |
| 572 | // Store the FPR varargs in the reserved frame slots. (We store the |
| 573 | // GPRs as part of the prologue.) |
| 574 | if (NumFixedFPRs < SystemZ::NumArgFPRs) { |
| 575 | SDValue MemOps[SystemZ::NumArgFPRs]; |
| 576 | for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { |
| 577 | unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); |
| 578 | int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); |
| 579 | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| 580 | unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], |
| 581 | &SystemZ::FP64BitRegClass); |
| 582 | SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); |
| 583 | MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, |
| 584 | MachinePointerInfo::getFixedStack(FI), |
| 585 | false, false, 0); |
| 586 | |
| 587 | } |
| 588 | // Join the stores, which are independent of one another. |
| 589 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| 590 | &MemOps[NumFixedFPRs], |
| 591 | SystemZ::NumArgFPRs - NumFixedFPRs); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | return Chain; |
| 596 | } |
| 597 | |
| 598 | SDValue |
| 599 | SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 600 | SmallVectorImpl<SDValue> &InVals) const { |
| 601 | SelectionDAG &DAG = CLI.DAG; |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 602 | SDLoc &DL = CLI.DL; |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 603 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| 604 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| 605 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| 606 | SDValue Chain = CLI.Chain; |
| 607 | SDValue Callee = CLI.Callee; |
| 608 | bool &isTailCall = CLI.IsTailCall; |
| 609 | CallingConv::ID CallConv = CLI.CallConv; |
| 610 | bool IsVarArg = CLI.IsVarArg; |
| 611 | MachineFunction &MF = DAG.getMachineFunction(); |
| 612 | EVT PtrVT = getPointerTy(); |
| 613 | |
| 614 | // SystemZ target does not yet support tail call optimization. |
| 615 | isTailCall = false; |
| 616 | |
| 617 | // Analyze the operands of the call, assigning locations to each operand. |
| 618 | SmallVector<CCValAssign, 16> ArgLocs; |
| 619 | CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); |
| 620 | ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); |
| 621 | |
| 622 | // Get a count of how many bytes are to be pushed on the stack. |
| 623 | unsigned NumBytes = ArgCCInfo.getNextStackOffset(); |
| 624 | |
| 625 | // Mark the start of the call. |
| 626 | Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true)); |
| 627 | |
| 628 | // Copy argument values to their designated locations. |
| 629 | SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; |
| 630 | SmallVector<SDValue, 8> MemOpChains; |
| 631 | SDValue StackPtr; |
| 632 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 633 | CCValAssign &VA = ArgLocs[I]; |
| 634 | SDValue ArgValue = OutVals[I]; |
| 635 | |
| 636 | if (VA.getLocInfo() == CCValAssign::Indirect) { |
| 637 | // Store the argument in a stack slot and pass its address. |
| 638 | SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); |
| 639 | int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| 640 | MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, |
| 641 | MachinePointerInfo::getFixedStack(FI), |
| 642 | false, false, 0)); |
| 643 | ArgValue = SpillSlot; |
| 644 | } else |
| 645 | ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); |
| 646 | |
| 647 | if (VA.isRegLoc()) |
| 648 | // Queue up the argument copies and emit them at the end. |
| 649 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); |
| 650 | else { |
| 651 | assert(VA.isMemLoc() && "Argument not register or memory"); |
| 652 | |
| 653 | // Work out the address of the stack slot. Unpromoted ints and |
| 654 | // floats are passed as right-justified 8-byte values. |
| 655 | if (!StackPtr.getNode()) |
| 656 | StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); |
| 657 | unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); |
| 658 | if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) |
| 659 | Offset += 4; |
| 660 | SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, |
| 661 | DAG.getIntPtrConstant(Offset)); |
| 662 | |
| 663 | // Emit the store. |
| 664 | MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, |
| 665 | MachinePointerInfo(), |
| 666 | false, false, 0)); |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | // Join the stores, which are independent of one another. |
| 671 | if (!MemOpChains.empty()) |
| 672 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| 673 | &MemOpChains[0], MemOpChains.size()); |
| 674 | |
| 675 | // Build a sequence of copy-to-reg nodes, chained and glued together. |
| 676 | SDValue Glue; |
| 677 | for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { |
| 678 | Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, |
| 679 | RegsToPass[I].second, Glue); |
| 680 | Glue = Chain.getValue(1); |
| 681 | } |
| 682 | |
| 683 | // Accept direct calls by converting symbolic call addresses to the |
| 684 | // associated Target* opcodes. |
| 685 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 686 | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); |
| 687 | Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); |
| 688 | } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 689 | Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); |
| 690 | Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); |
| 691 | } |
| 692 | |
| 693 | // The first call operand is the chain and the second is the target address. |
| 694 | SmallVector<SDValue, 8> Ops; |
| 695 | Ops.push_back(Chain); |
| 696 | Ops.push_back(Callee); |
| 697 | |
| 698 | // Add argument registers to the end of the list so that they are |
| 699 | // known live into the call. |
| 700 | for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) |
| 701 | Ops.push_back(DAG.getRegister(RegsToPass[I].first, |
| 702 | RegsToPass[I].second.getValueType())); |
| 703 | |
| 704 | // Glue the call to the argument copies, if any. |
| 705 | if (Glue.getNode()) |
| 706 | Ops.push_back(Glue); |
| 707 | |
| 708 | // Emit the call. |
| 709 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| 710 | Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); |
| 711 | Glue = Chain.getValue(1); |
| 712 | |
| 713 | // Mark the end of the call, which is glued to the call itself. |
| 714 | Chain = DAG.getCALLSEQ_END(Chain, |
| 715 | DAG.getConstant(NumBytes, PtrVT, true), |
| 716 | DAG.getConstant(0, PtrVT, true), |
| 717 | Glue); |
| 718 | Glue = Chain.getValue(1); |
| 719 | |
| 720 | // Assign locations to each value returned by this call. |
| 721 | SmallVector<CCValAssign, 16> RetLocs; |
| 722 | CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); |
| 723 | RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); |
| 724 | |
| 725 | // Copy all of the result registers out of their specified physreg. |
| 726 | for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { |
| 727 | CCValAssign &VA = RetLocs[I]; |
| 728 | |
| 729 | // Copy the value out, gluing the copy to the end of the call sequence. |
| 730 | SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), |
| 731 | VA.getLocVT(), Glue); |
| 732 | Chain = RetValue.getValue(1); |
| 733 | Glue = RetValue.getValue(2); |
| 734 | |
| 735 | // Convert the value of the return register into the value that's |
| 736 | // being returned. |
| 737 | InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); |
| 738 | } |
| 739 | |
| 740 | return Chain; |
| 741 | } |
| 742 | |
| 743 | SDValue |
| 744 | SystemZTargetLowering::LowerReturn(SDValue Chain, |
| 745 | CallingConv::ID CallConv, bool IsVarArg, |
| 746 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 747 | const SmallVectorImpl<SDValue> &OutVals, |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 748 | SDLoc DL, SelectionDAG &DAG) const { |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 749 | MachineFunction &MF = DAG.getMachineFunction(); |
| 750 | |
| 751 | // Assign locations to each returned value. |
| 752 | SmallVector<CCValAssign, 16> RetLocs; |
| 753 | CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); |
| 754 | RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); |
| 755 | |
| 756 | // Quick exit for void returns |
| 757 | if (RetLocs.empty()) |
| 758 | return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); |
| 759 | |
| 760 | // Copy the result values into the output registers. |
| 761 | SDValue Glue; |
| 762 | SmallVector<SDValue, 4> RetOps; |
| 763 | RetOps.push_back(Chain); |
| 764 | for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { |
| 765 | CCValAssign &VA = RetLocs[I]; |
| 766 | SDValue RetValue = OutVals[I]; |
| 767 | |
| 768 | // Make the return register live on exit. |
| 769 | assert(VA.isRegLoc() && "Can only return in registers!"); |
| 770 | |
| 771 | // Promote the value as required. |
| 772 | RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); |
| 773 | |
| 774 | // Chain and glue the copies together. |
| 775 | unsigned Reg = VA.getLocReg(); |
| 776 | Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); |
| 777 | Glue = Chain.getValue(1); |
| 778 | RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); |
| 779 | } |
| 780 | |
| 781 | // Update chain and glue. |
| 782 | RetOps[0] = Chain; |
| 783 | if (Glue.getNode()) |
| 784 | RetOps.push_back(Glue); |
| 785 | |
| 786 | return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, |
| 787 | RetOps.data(), RetOps.size()); |
| 788 | } |
| 789 | |
| 790 | // CC is a comparison that will be implemented using an integer or |
| 791 | // floating-point comparison. Return the condition code mask for |
| 792 | // a branch on true. In the integer case, CCMASK_CMP_UO is set for |
| 793 | // unsigned comparisons and clear for signed ones. In the floating-point |
| 794 | // case, CCMASK_CMP_UO has its normal mask meaning (unordered). |
| 795 | static unsigned CCMaskForCondCode(ISD::CondCode CC) { |
| 796 | #define CONV(X) \ |
| 797 | case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ |
| 798 | case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ |
| 799 | case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X |
| 800 | |
| 801 | switch (CC) { |
| 802 | default: |
| 803 | llvm_unreachable("Invalid integer condition!"); |
| 804 | |
| 805 | CONV(EQ); |
| 806 | CONV(NE); |
| 807 | CONV(GT); |
| 808 | CONV(GE); |
| 809 | CONV(LT); |
| 810 | CONV(LE); |
| 811 | |
| 812 | case ISD::SETO: return SystemZ::CCMASK_CMP_O; |
| 813 | case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; |
| 814 | } |
| 815 | #undef CONV |
| 816 | } |
| 817 | |
| 818 | // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 |
| 819 | // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. |
| 820 | static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, |
| 821 | SDValue &CmpOp0, SDValue &CmpOp1, |
| 822 | unsigned &CCMask) { |
| 823 | // For us to make any changes, it must a comparison between a single-use |
| 824 | // load and a constant. |
| 825 | if (!CmpOp0.hasOneUse() || |
| 826 | CmpOp0.getOpcode() != ISD::LOAD || |
| 827 | CmpOp1.getOpcode() != ISD::Constant) |
| 828 | return; |
| 829 | |
| 830 | // We must have an 8- or 16-bit load. |
| 831 | LoadSDNode *Load = cast<LoadSDNode>(CmpOp0); |
| 832 | unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); |
| 833 | if (NumBits != 8 && NumBits != 16) |
| 834 | return; |
| 835 | |
| 836 | // The load must be an extending one and the constant must be within the |
| 837 | // range of the unextended value. |
| 838 | ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1); |
| 839 | uint64_t Value = Constant->getZExtValue(); |
| 840 | uint64_t Mask = (1 << NumBits) - 1; |
| 841 | if (Load->getExtensionType() == ISD::SEXTLOAD) { |
| 842 | int64_t SignedValue = Constant->getSExtValue(); |
Aaron Ballman | b4284e6 | 2013-05-16 16:03:36 +0000 | [diff] [blame] | 843 | if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 844 | return; |
| 845 | // Unsigned comparison between two sign-extended values is equivalent |
| 846 | // to unsigned comparison between two zero-extended values. |
| 847 | if (IsUnsigned) |
| 848 | Value &= Mask; |
| 849 | else if (CCMask == SystemZ::CCMASK_CMP_EQ || |
| 850 | CCMask == SystemZ::CCMASK_CMP_NE) |
| 851 | // Any choice of IsUnsigned is OK for equality comparisons. |
| 852 | // We could use either CHHSI or CLHHSI for 16-bit comparisons, |
| 853 | // but since we use CLHHSI for zero extensions, it seems better |
| 854 | // to be consistent and do the same here. |
| 855 | Value &= Mask, IsUnsigned = true; |
| 856 | else if (NumBits == 8) { |
| 857 | // Try to treat the comparison as unsigned, so that we can use CLI. |
| 858 | // Adjust CCMask and Value as necessary. |
| 859 | if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) |
| 860 | // Test whether the high bit of the byte is set. |
| 861 | Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; |
| 862 | else if (SignedValue == -1 && CCMask == SystemZ::CCMASK_CMP_GT) |
| 863 | // Test whether the high bit of the byte is clear. |
| 864 | Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; |
| 865 | else |
| 866 | // No instruction exists for this combination. |
| 867 | return; |
| 868 | } |
| 869 | } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { |
| 870 | if (Value > Mask) |
| 871 | return; |
| 872 | // Signed comparison between two zero-extended values is equivalent |
| 873 | // to unsigned comparison. |
| 874 | IsUnsigned = true; |
| 875 | } else |
| 876 | return; |
| 877 | |
| 878 | // Make sure that the first operand is an i32 of the right extension type. |
| 879 | ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; |
| 880 | if (CmpOp0.getValueType() != MVT::i32 || |
| 881 | Load->getExtensionType() != ExtType) |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 882 | CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 883 | Load->getChain(), Load->getBasePtr(), |
| 884 | Load->getPointerInfo(), Load->getMemoryVT(), |
| 885 | Load->isVolatile(), Load->isNonTemporal(), |
| 886 | Load->getAlignment()); |
| 887 | |
| 888 | // Make sure that the second operand is an i32 with the right value. |
| 889 | if (CmpOp1.getValueType() != MVT::i32 || |
| 890 | Value != Constant->getZExtValue()) |
| 891 | CmpOp1 = DAG.getConstant(Value, MVT::i32); |
| 892 | } |
| 893 | |
| 894 | // Return true if a comparison described by CCMask, CmpOp0 and CmpOp1 |
| 895 | // is an equality comparison that is better implemented using unsigned |
| 896 | // rather than signed comparison instructions. |
| 897 | static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0, |
| 898 | SDValue CmpOp1, unsigned CCMask) { |
| 899 | // The test must be for equality or inequality. |
| 900 | if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE) |
| 901 | return false; |
| 902 | |
| 903 | if (CmpOp1.getOpcode() == ISD::Constant) { |
| 904 | uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue(); |
| 905 | |
| 906 | // If we're comparing with memory, prefer unsigned comparisons for |
| 907 | // values that are in the unsigned 16-bit range but not the signed |
| 908 | // 16-bit range. We want to use CLFHSI and CLGHSI. |
| 909 | if (CmpOp0.hasOneUse() && |
| 910 | ISD::isNormalLoad(CmpOp0.getNode()) && |
| 911 | (Value >= 32768 && Value < 65536)) |
| 912 | return true; |
| 913 | |
| 914 | // Use unsigned comparisons for values that are in the CLGFI range |
| 915 | // but not in the CGFI range. |
| 916 | if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1) |
| 917 | return true; |
| 918 | |
| 919 | return false; |
| 920 | } |
| 921 | |
| 922 | // Prefer CL for zero-extended loads. |
| 923 | if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND || |
| 924 | ISD::isZEXTLoad(CmpOp1.getNode())) |
| 925 | return true; |
| 926 | |
| 927 | // ...and for "in-register" zero extensions. |
| 928 | if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) { |
| 929 | SDValue Mask = CmpOp1.getOperand(1); |
| 930 | if (Mask.getOpcode() == ISD::Constant && |
| 931 | cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff) |
| 932 | return true; |
| 933 | } |
| 934 | |
| 935 | return false; |
| 936 | } |
| 937 | |
| 938 | // Return a target node that compares CmpOp0 and CmpOp1. Set CCMask to the |
| 939 | // 4-bit condition-code mask for CC. |
| 940 | static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, |
| 941 | ISD::CondCode CC, unsigned &CCMask) { |
| 942 | bool IsUnsigned = false; |
| 943 | CCMask = CCMaskForCondCode(CC); |
| 944 | if (!CmpOp0.getValueType().isFloatingPoint()) { |
| 945 | IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; |
| 946 | CCMask &= ~SystemZ::CCMASK_CMP_UO; |
| 947 | adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); |
| 948 | if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask)) |
| 949 | IsUnsigned = true; |
| 950 | } |
| 951 | |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 952 | SDLoc DL(CmpOp0); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 953 | return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP), |
| 954 | DL, MVT::Glue, CmpOp0, CmpOp1); |
| 955 | } |
| 956 | |
| 957 | // Lower a binary operation that produces two VT results, one in each |
| 958 | // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, |
| 959 | // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation |
| 960 | // on the extended Op0 and (unextended) Op1. Store the even register result |
| 961 | // in Even and the odd register result in Odd. |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 962 | static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 963 | unsigned Extend, unsigned Opcode, |
| 964 | SDValue Op0, SDValue Op1, |
| 965 | SDValue &Even, SDValue &Odd) { |
| 966 | SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); |
| 967 | SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, |
| 968 | SDValue(In128, 0), Op1); |
| 969 | bool Is32Bit = is32Bit(VT); |
| 970 | SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT); |
| 971 | SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT); |
| 972 | SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, |
| 973 | VT, Result, SubReg0); |
| 974 | SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, |
| 975 | VT, Result, SubReg1); |
| 976 | Even = SDValue(Reg0, 0); |
| 977 | Odd = SDValue(Reg1, 0); |
| 978 | } |
| 979 | |
| 980 | SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 981 | SDValue Chain = Op.getOperand(0); |
| 982 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| 983 | SDValue CmpOp0 = Op.getOperand(2); |
| 984 | SDValue CmpOp1 = Op.getOperand(3); |
| 985 | SDValue Dest = Op.getOperand(4); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 986 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 987 | |
| 988 | unsigned CCMask; |
| 989 | SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); |
| 990 | return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), |
| 991 | Chain, DAG.getConstant(CCMask, MVT::i32), Dest, Flags); |
| 992 | } |
| 993 | |
| 994 | SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, |
| 995 | SelectionDAG &DAG) const { |
| 996 | SDValue CmpOp0 = Op.getOperand(0); |
| 997 | SDValue CmpOp1 = Op.getOperand(1); |
| 998 | SDValue TrueOp = Op.getOperand(2); |
| 999 | SDValue FalseOp = Op.getOperand(3); |
| 1000 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1001 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1002 | |
| 1003 | unsigned CCMask; |
| 1004 | SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); |
| 1005 | |
| 1006 | SmallVector<SDValue, 4> Ops; |
| 1007 | Ops.push_back(TrueOp); |
| 1008 | Ops.push_back(FalseOp); |
| 1009 | Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); |
| 1010 | Ops.push_back(Flags); |
| 1011 | |
| 1012 | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| 1013 | return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); |
| 1014 | } |
| 1015 | |
| 1016 | SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, |
| 1017 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1018 | SDLoc DL(Node); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1019 | const GlobalValue *GV = Node->getGlobal(); |
| 1020 | int64_t Offset = Node->getOffset(); |
| 1021 | EVT PtrVT = getPointerTy(); |
| 1022 | Reloc::Model RM = TM.getRelocationModel(); |
| 1023 | CodeModel::Model CM = TM.getCodeModel(); |
| 1024 | |
| 1025 | SDValue Result; |
| 1026 | if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { |
| 1027 | // Make sure that the offset is aligned to a halfword. If it isn't, |
| 1028 | // create an "anchor" at the previous 12-bit boundary. |
| 1029 | // FIXME check whether there is a better way of handling this. |
| 1030 | if (Offset & 1) { |
| 1031 | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, |
| 1032 | Offset & ~uint64_t(0xfff)); |
| 1033 | Offset &= 0xfff; |
| 1034 | } else { |
| 1035 | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset); |
| 1036 | Offset = 0; |
| 1037 | } |
| 1038 | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| 1039 | } else { |
| 1040 | Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); |
| 1041 | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| 1042 | Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, |
| 1043 | MachinePointerInfo::getGOT(), false, false, false, 0); |
| 1044 | } |
| 1045 | |
| 1046 | // If there was a non-zero offset that we didn't fold, create an explicit |
| 1047 | // addition for it. |
| 1048 | if (Offset != 0) |
| 1049 | Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, |
| 1050 | DAG.getConstant(Offset, PtrVT)); |
| 1051 | |
| 1052 | return Result; |
| 1053 | } |
| 1054 | |
| 1055 | SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, |
| 1056 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1057 | SDLoc DL(Node); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1058 | const GlobalValue *GV = Node->getGlobal(); |
| 1059 | EVT PtrVT = getPointerTy(); |
| 1060 | TLSModel::Model model = TM.getTLSModel(GV); |
| 1061 | |
| 1062 | if (model != TLSModel::LocalExec) |
| 1063 | llvm_unreachable("only local-exec TLS mode supported"); |
| 1064 | |
| 1065 | // The high part of the thread pointer is in access register 0. |
| 1066 | SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, |
| 1067 | DAG.getConstant(0, MVT::i32)); |
| 1068 | TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); |
| 1069 | |
| 1070 | // The low part of the thread pointer is in access register 1. |
| 1071 | SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, |
| 1072 | DAG.getConstant(1, MVT::i32)); |
| 1073 | TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); |
| 1074 | |
| 1075 | // Merge them into a single 64-bit address. |
| 1076 | SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, |
| 1077 | DAG.getConstant(32, PtrVT)); |
| 1078 | SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); |
| 1079 | |
| 1080 | // Get the offset of GA from the thread pointer. |
| 1081 | SystemZConstantPoolValue *CPV = |
| 1082 | SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); |
| 1083 | |
| 1084 | // Force the offset into the constant pool and load it from there. |
| 1085 | SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); |
| 1086 | SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), |
| 1087 | CPAddr, MachinePointerInfo::getConstantPool(), |
| 1088 | false, false, false, 0); |
| 1089 | |
| 1090 | // Add the base and offset together. |
| 1091 | return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); |
| 1092 | } |
| 1093 | |
| 1094 | SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, |
| 1095 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1096 | SDLoc DL(Node); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1097 | const BlockAddress *BA = Node->getBlockAddress(); |
| 1098 | int64_t Offset = Node->getOffset(); |
| 1099 | EVT PtrVT = getPointerTy(); |
| 1100 | |
| 1101 | SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); |
| 1102 | Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| 1103 | return Result; |
| 1104 | } |
| 1105 | |
| 1106 | SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, |
| 1107 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1108 | SDLoc DL(JT); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1109 | EVT PtrVT = getPointerTy(); |
| 1110 | SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| 1111 | |
| 1112 | // Use LARL to load the address of the table. |
| 1113 | return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| 1114 | } |
| 1115 | |
| 1116 | SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, |
| 1117 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1118 | SDLoc DL(CP); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1119 | EVT PtrVT = getPointerTy(); |
| 1120 | |
| 1121 | SDValue Result; |
| 1122 | if (CP->isMachineConstantPoolEntry()) |
| 1123 | Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| 1124 | CP->getAlignment()); |
| 1125 | else |
| 1126 | Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| 1127 | CP->getAlignment(), CP->getOffset()); |
| 1128 | |
| 1129 | // Use LARL to load the address of the constant pool entry. |
| 1130 | return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| 1131 | } |
| 1132 | |
| 1133 | SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, |
| 1134 | SelectionDAG &DAG) const { |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1135 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1136 | SDValue In = Op.getOperand(0); |
| 1137 | EVT InVT = In.getValueType(); |
| 1138 | EVT ResVT = Op.getValueType(); |
| 1139 | |
| 1140 | SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); |
| 1141 | SDValue Shift32 = DAG.getConstant(32, MVT::i64); |
| 1142 | if (InVT == MVT::i32 && ResVT == MVT::f32) { |
| 1143 | SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); |
| 1144 | SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32); |
| 1145 | SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift); |
| 1146 | SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, |
| 1147 | MVT::f32, Out64, SubReg32); |
| 1148 | return SDValue(Out, 0); |
| 1149 | } |
| 1150 | if (InVT == MVT::f32 && ResVT == MVT::i32) { |
| 1151 | SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); |
| 1152 | SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, |
| 1153 | MVT::f64, SDValue(U64, 0), In, SubReg32); |
| 1154 | SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0)); |
| 1155 | SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32); |
| 1156 | SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); |
| 1157 | return Out; |
| 1158 | } |
| 1159 | llvm_unreachable("Unexpected bitcast combination"); |
| 1160 | } |
| 1161 | |
| 1162 | SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, |
| 1163 | SelectionDAG &DAG) const { |
| 1164 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1165 | SystemZMachineFunctionInfo *FuncInfo = |
| 1166 | MF.getInfo<SystemZMachineFunctionInfo>(); |
| 1167 | EVT PtrVT = getPointerTy(); |
| 1168 | |
| 1169 | SDValue Chain = Op.getOperand(0); |
| 1170 | SDValue Addr = Op.getOperand(1); |
| 1171 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1172 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1173 | |
| 1174 | // The initial values of each field. |
| 1175 | const unsigned NumFields = 4; |
| 1176 | SDValue Fields[NumFields] = { |
| 1177 | DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), |
| 1178 | DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), |
| 1179 | DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), |
| 1180 | DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) |
| 1181 | }; |
| 1182 | |
| 1183 | // Store each field into its respective slot. |
| 1184 | SDValue MemOps[NumFields]; |
| 1185 | unsigned Offset = 0; |
| 1186 | for (unsigned I = 0; I < NumFields; ++I) { |
| 1187 | SDValue FieldAddr = Addr; |
| 1188 | if (Offset != 0) |
| 1189 | FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, |
| 1190 | DAG.getIntPtrConstant(Offset)); |
| 1191 | MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, |
| 1192 | MachinePointerInfo(SV, Offset), |
| 1193 | false, false, 0); |
| 1194 | Offset += 8; |
| 1195 | } |
| 1196 | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); |
| 1197 | } |
| 1198 | |
| 1199 | SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, |
| 1200 | SelectionDAG &DAG) const { |
| 1201 | SDValue Chain = Op.getOperand(0); |
| 1202 | SDValue DstPtr = Op.getOperand(1); |
| 1203 | SDValue SrcPtr = Op.getOperand(2); |
| 1204 | const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| 1205 | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1206 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1207 | |
| 1208 | return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), |
| 1209 | /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, |
| 1210 | MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); |
| 1211 | } |
| 1212 | |
| 1213 | SDValue SystemZTargetLowering:: |
| 1214 | lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { |
| 1215 | SDValue Chain = Op.getOperand(0); |
| 1216 | SDValue Size = Op.getOperand(1); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1217 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1218 | |
| 1219 | unsigned SPReg = getStackPointerRegisterToSaveRestore(); |
| 1220 | |
| 1221 | // Get a reference to the stack pointer. |
| 1222 | SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); |
| 1223 | |
| 1224 | // Get the new stack pointer value. |
| 1225 | SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); |
| 1226 | |
| 1227 | // Copy the new stack pointer back. |
| 1228 | Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); |
| 1229 | |
| 1230 | // The allocated data lives above the 160 bytes allocated for the standard |
| 1231 | // frame, plus any outgoing stack arguments. We don't know how much that |
| 1232 | // amounts to yet, so emit a special ADJDYNALLOC placeholder. |
| 1233 | SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); |
| 1234 | SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); |
| 1235 | |
| 1236 | SDValue Ops[2] = { Result, Chain }; |
| 1237 | return DAG.getMergeValues(Ops, 2, DL); |
| 1238 | } |
| 1239 | |
| 1240 | SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, |
| 1241 | SelectionDAG &DAG) const { |
| 1242 | EVT VT = Op.getValueType(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1243 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1244 | assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI"); |
| 1245 | |
| 1246 | // UMUL_LOHI64 returns the low result in the odd register and the high |
| 1247 | // result in the even register. UMUL_LOHI is defined to return the |
| 1248 | // low half first, so the results are in reverse order. |
| 1249 | SDValue Ops[2]; |
| 1250 | lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, |
| 1251 | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| 1252 | return DAG.getMergeValues(Ops, 2, DL); |
| 1253 | } |
| 1254 | |
| 1255 | SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, |
| 1256 | SelectionDAG &DAG) const { |
| 1257 | SDValue Op0 = Op.getOperand(0); |
| 1258 | SDValue Op1 = Op.getOperand(1); |
| 1259 | EVT VT = Op.getValueType(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1260 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1261 | |
| 1262 | // We use DSGF for 32-bit division. |
| 1263 | if (is32Bit(VT)) { |
| 1264 | Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); |
| 1265 | Op1 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op1); |
| 1266 | } |
| 1267 | |
| 1268 | // DSG(F) takes a 64-bit dividend, so the even register in the GR128 |
| 1269 | // input is "don't care". The instruction returns the remainder in |
| 1270 | // the even register and the quotient in the odd register. |
| 1271 | SDValue Ops[2]; |
| 1272 | lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::SDIVREM64, |
| 1273 | Op0, Op1, Ops[1], Ops[0]); |
| 1274 | return DAG.getMergeValues(Ops, 2, DL); |
| 1275 | } |
| 1276 | |
| 1277 | SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, |
| 1278 | SelectionDAG &DAG) const { |
| 1279 | EVT VT = Op.getValueType(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1280 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1281 | |
| 1282 | // DL(G) uses a double-width dividend, so we need to clear the even |
| 1283 | // register in the GR128 input. The instruction returns the remainder |
| 1284 | // in the even register and the quotient in the odd register. |
| 1285 | SDValue Ops[2]; |
| 1286 | if (is32Bit(VT)) |
| 1287 | lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, |
| 1288 | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| 1289 | else |
| 1290 | lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, |
| 1291 | Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| 1292 | return DAG.getMergeValues(Ops, 2, DL); |
| 1293 | } |
| 1294 | |
| 1295 | SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { |
| 1296 | assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); |
| 1297 | |
| 1298 | // Get the known-zero masks for each operand. |
| 1299 | SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; |
| 1300 | APInt KnownZero[2], KnownOne[2]; |
| 1301 | DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); |
| 1302 | DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); |
| 1303 | |
| 1304 | // See if the upper 32 bits of one operand and the lower 32 bits of the |
| 1305 | // other are known zero. They are the low and high operands respectively. |
| 1306 | uint64_t Masks[] = { KnownZero[0].getZExtValue(), |
| 1307 | KnownZero[1].getZExtValue() }; |
| 1308 | unsigned High, Low; |
| 1309 | if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) |
| 1310 | High = 1, Low = 0; |
| 1311 | else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) |
| 1312 | High = 0, Low = 1; |
| 1313 | else |
| 1314 | return Op; |
| 1315 | |
| 1316 | SDValue LowOp = Ops[Low]; |
| 1317 | SDValue HighOp = Ops[High]; |
| 1318 | |
| 1319 | // If the high part is a constant, we're better off using IILH. |
| 1320 | if (HighOp.getOpcode() == ISD::Constant) |
| 1321 | return Op; |
| 1322 | |
| 1323 | // If the low part is a constant that is outside the range of LHI, |
| 1324 | // then we're better off using IILF. |
| 1325 | if (LowOp.getOpcode() == ISD::Constant) { |
| 1326 | int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); |
| 1327 | if (!isInt<16>(Value)) |
| 1328 | return Op; |
| 1329 | } |
| 1330 | |
| 1331 | // Check whether the high part is an AND that doesn't change the |
| 1332 | // high 32 bits and just masks out low bits. We can skip it if so. |
| 1333 | if (HighOp.getOpcode() == ISD::AND && |
| 1334 | HighOp.getOperand(1).getOpcode() == ISD::Constant) { |
| 1335 | ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1)); |
| 1336 | uint64_t Mask = MaskNode->getZExtValue() | Masks[High]; |
| 1337 | if ((Mask >> 32) == 0xffffffff) |
| 1338 | HighOp = HighOp.getOperand(0); |
| 1339 | } |
| 1340 | |
| 1341 | // Take advantage of the fact that all GR32 operations only change the |
| 1342 | // low 32 bits by truncating Low to an i32 and inserting it directly |
| 1343 | // using a subreg. The interesting cases are those where the truncation |
| 1344 | // can be folded. |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1345 | SDLoc DL(Op); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1346 | SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); |
| 1347 | SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); |
| 1348 | SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, |
| 1349 | MVT::i64, HighOp, Low32, SubReg32); |
| 1350 | return SDValue(Result, 0); |
| 1351 | } |
| 1352 | |
| 1353 | // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first |
| 1354 | // two into the fullword ATOMIC_LOADW_* operation given by Opcode. |
| 1355 | SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, |
| 1356 | SelectionDAG &DAG, |
| 1357 | unsigned Opcode) const { |
| 1358 | AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); |
| 1359 | |
| 1360 | // 32-bit operations need no code outside the main loop. |
| 1361 | EVT NarrowVT = Node->getMemoryVT(); |
| 1362 | EVT WideVT = MVT::i32; |
| 1363 | if (NarrowVT == WideVT) |
| 1364 | return Op; |
| 1365 | |
| 1366 | int64_t BitSize = NarrowVT.getSizeInBits(); |
| 1367 | SDValue ChainIn = Node->getChain(); |
| 1368 | SDValue Addr = Node->getBasePtr(); |
| 1369 | SDValue Src2 = Node->getVal(); |
| 1370 | MachineMemOperand *MMO = Node->getMemOperand(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1371 | SDLoc DL(Node); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1372 | EVT PtrVT = Addr.getValueType(); |
| 1373 | |
| 1374 | // Convert atomic subtracts of constants into additions. |
| 1375 | if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) |
| 1376 | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) { |
| 1377 | Opcode = SystemZISD::ATOMIC_LOADW_ADD; |
| 1378 | Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); |
| 1379 | } |
| 1380 | |
| 1381 | // Get the address of the containing word. |
| 1382 | SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, |
| 1383 | DAG.getConstant(-4, PtrVT)); |
| 1384 | |
| 1385 | // Get the number of bits that the word must be rotated left in order |
| 1386 | // to bring the field to the top bits of a GR32. |
| 1387 | SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, |
| 1388 | DAG.getConstant(3, PtrVT)); |
| 1389 | BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); |
| 1390 | |
| 1391 | // Get the complementing shift amount, for rotating a field in the top |
| 1392 | // bits back to its proper position. |
| 1393 | SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, |
| 1394 | DAG.getConstant(0, WideVT), BitShift); |
| 1395 | |
| 1396 | // Extend the source operand to 32 bits and prepare it for the inner loop. |
| 1397 | // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other |
| 1398 | // operations require the source to be shifted in advance. (This shift |
| 1399 | // can be folded if the source is constant.) For AND and NAND, the lower |
| 1400 | // bits must be set, while for other opcodes they should be left clear. |
| 1401 | if (Opcode != SystemZISD::ATOMIC_SWAPW) |
| 1402 | Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, |
| 1403 | DAG.getConstant(32 - BitSize, WideVT)); |
| 1404 | if (Opcode == SystemZISD::ATOMIC_LOADW_AND || |
| 1405 | Opcode == SystemZISD::ATOMIC_LOADW_NAND) |
| 1406 | Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, |
| 1407 | DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); |
| 1408 | |
| 1409 | // Construct the ATOMIC_LOADW_* node. |
| 1410 | SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); |
| 1411 | SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, |
| 1412 | DAG.getConstant(BitSize, WideVT) }; |
| 1413 | SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, |
| 1414 | array_lengthof(Ops), |
| 1415 | NarrowVT, MMO); |
| 1416 | |
| 1417 | // Rotate the result of the final CS so that the field is in the lower |
| 1418 | // bits of a GR32, then truncate it. |
| 1419 | SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, |
| 1420 | DAG.getConstant(BitSize, WideVT)); |
| 1421 | SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); |
| 1422 | |
| 1423 | SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; |
| 1424 | return DAG.getMergeValues(RetOps, 2, DL); |
| 1425 | } |
| 1426 | |
| 1427 | // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two |
| 1428 | // into a fullword ATOMIC_CMP_SWAPW operation. |
| 1429 | SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, |
| 1430 | SelectionDAG &DAG) const { |
| 1431 | AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); |
| 1432 | |
| 1433 | // We have native support for 32-bit compare and swap. |
| 1434 | EVT NarrowVT = Node->getMemoryVT(); |
| 1435 | EVT WideVT = MVT::i32; |
| 1436 | if (NarrowVT == WideVT) |
| 1437 | return Op; |
| 1438 | |
| 1439 | int64_t BitSize = NarrowVT.getSizeInBits(); |
| 1440 | SDValue ChainIn = Node->getOperand(0); |
| 1441 | SDValue Addr = Node->getOperand(1); |
| 1442 | SDValue CmpVal = Node->getOperand(2); |
| 1443 | SDValue SwapVal = Node->getOperand(3); |
| 1444 | MachineMemOperand *MMO = Node->getMemOperand(); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1445 | SDLoc DL(Node); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1446 | EVT PtrVT = Addr.getValueType(); |
| 1447 | |
| 1448 | // Get the address of the containing word. |
| 1449 | SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, |
| 1450 | DAG.getConstant(-4, PtrVT)); |
| 1451 | |
| 1452 | // Get the number of bits that the word must be rotated left in order |
| 1453 | // to bring the field to the top bits of a GR32. |
| 1454 | SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, |
| 1455 | DAG.getConstant(3, PtrVT)); |
| 1456 | BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); |
| 1457 | |
| 1458 | // Get the complementing shift amount, for rotating a field in the top |
| 1459 | // bits back to its proper position. |
| 1460 | SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, |
| 1461 | DAG.getConstant(0, WideVT), BitShift); |
| 1462 | |
| 1463 | // Construct the ATOMIC_CMP_SWAPW node. |
| 1464 | SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); |
| 1465 | SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, |
| 1466 | NegBitShift, DAG.getConstant(BitSize, WideVT) }; |
| 1467 | SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, |
| 1468 | VTList, Ops, array_lengthof(Ops), |
| 1469 | NarrowVT, MMO); |
| 1470 | return AtomicOp; |
| 1471 | } |
| 1472 | |
| 1473 | SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, |
| 1474 | SelectionDAG &DAG) const { |
| 1475 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1476 | MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1477 | return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1478 | SystemZ::R15D, Op.getValueType()); |
| 1479 | } |
| 1480 | |
| 1481 | SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, |
| 1482 | SelectionDAG &DAG) const { |
| 1483 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1484 | MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); |
Andrew Trick | ef9de2a | 2013-05-25 02:42:55 +0000 | [diff] [blame^] | 1485 | return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1486 | SystemZ::R15D, Op.getOperand(1)); |
| 1487 | } |
| 1488 | |
| 1489 | SDValue SystemZTargetLowering::LowerOperation(SDValue Op, |
| 1490 | SelectionDAG &DAG) const { |
| 1491 | switch (Op.getOpcode()) { |
| 1492 | case ISD::BR_CC: |
| 1493 | return lowerBR_CC(Op, DAG); |
| 1494 | case ISD::SELECT_CC: |
| 1495 | return lowerSELECT_CC(Op, DAG); |
| 1496 | case ISD::GlobalAddress: |
| 1497 | return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); |
| 1498 | case ISD::GlobalTLSAddress: |
| 1499 | return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); |
| 1500 | case ISD::BlockAddress: |
| 1501 | return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); |
| 1502 | case ISD::JumpTable: |
| 1503 | return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); |
| 1504 | case ISD::ConstantPool: |
| 1505 | return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); |
| 1506 | case ISD::BITCAST: |
| 1507 | return lowerBITCAST(Op, DAG); |
| 1508 | case ISD::VASTART: |
| 1509 | return lowerVASTART(Op, DAG); |
| 1510 | case ISD::VACOPY: |
| 1511 | return lowerVACOPY(Op, DAG); |
| 1512 | case ISD::DYNAMIC_STACKALLOC: |
| 1513 | return lowerDYNAMIC_STACKALLOC(Op, DAG); |
| 1514 | case ISD::UMUL_LOHI: |
| 1515 | return lowerUMUL_LOHI(Op, DAG); |
| 1516 | case ISD::SDIVREM: |
| 1517 | return lowerSDIVREM(Op, DAG); |
| 1518 | case ISD::UDIVREM: |
| 1519 | return lowerUDIVREM(Op, DAG); |
| 1520 | case ISD::OR: |
| 1521 | return lowerOR(Op, DAG); |
| 1522 | case ISD::ATOMIC_SWAP: |
| 1523 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW); |
| 1524 | case ISD::ATOMIC_LOAD_ADD: |
| 1525 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); |
| 1526 | case ISD::ATOMIC_LOAD_SUB: |
| 1527 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); |
| 1528 | case ISD::ATOMIC_LOAD_AND: |
| 1529 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); |
| 1530 | case ISD::ATOMIC_LOAD_OR: |
| 1531 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); |
| 1532 | case ISD::ATOMIC_LOAD_XOR: |
| 1533 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); |
| 1534 | case ISD::ATOMIC_LOAD_NAND: |
| 1535 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); |
| 1536 | case ISD::ATOMIC_LOAD_MIN: |
| 1537 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); |
| 1538 | case ISD::ATOMIC_LOAD_MAX: |
| 1539 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); |
| 1540 | case ISD::ATOMIC_LOAD_UMIN: |
| 1541 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); |
| 1542 | case ISD::ATOMIC_LOAD_UMAX: |
| 1543 | return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); |
| 1544 | case ISD::ATOMIC_CMP_SWAP: |
| 1545 | return lowerATOMIC_CMP_SWAP(Op, DAG); |
| 1546 | case ISD::STACKSAVE: |
| 1547 | return lowerSTACKSAVE(Op, DAG); |
| 1548 | case ISD::STACKRESTORE: |
| 1549 | return lowerSTACKRESTORE(Op, DAG); |
| 1550 | default: |
| 1551 | llvm_unreachable("Unexpected node to lower"); |
| 1552 | } |
| 1553 | } |
| 1554 | |
| 1555 | const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 1556 | #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME |
| 1557 | switch (Opcode) { |
| 1558 | OPCODE(RET_FLAG); |
| 1559 | OPCODE(CALL); |
| 1560 | OPCODE(PCREL_WRAPPER); |
| 1561 | OPCODE(CMP); |
| 1562 | OPCODE(UCMP); |
| 1563 | OPCODE(BR_CCMASK); |
| 1564 | OPCODE(SELECT_CCMASK); |
| 1565 | OPCODE(ADJDYNALLOC); |
| 1566 | OPCODE(EXTRACT_ACCESS); |
| 1567 | OPCODE(UMUL_LOHI64); |
| 1568 | OPCODE(SDIVREM64); |
| 1569 | OPCODE(UDIVREM32); |
| 1570 | OPCODE(UDIVREM64); |
| 1571 | OPCODE(ATOMIC_SWAPW); |
| 1572 | OPCODE(ATOMIC_LOADW_ADD); |
| 1573 | OPCODE(ATOMIC_LOADW_SUB); |
| 1574 | OPCODE(ATOMIC_LOADW_AND); |
| 1575 | OPCODE(ATOMIC_LOADW_OR); |
| 1576 | OPCODE(ATOMIC_LOADW_XOR); |
| 1577 | OPCODE(ATOMIC_LOADW_NAND); |
| 1578 | OPCODE(ATOMIC_LOADW_MIN); |
| 1579 | OPCODE(ATOMIC_LOADW_MAX); |
| 1580 | OPCODE(ATOMIC_LOADW_UMIN); |
| 1581 | OPCODE(ATOMIC_LOADW_UMAX); |
| 1582 | OPCODE(ATOMIC_CMP_SWAPW); |
| 1583 | } |
| 1584 | return NULL; |
| 1585 | #undef OPCODE |
| 1586 | } |
| 1587 | |
| 1588 | //===----------------------------------------------------------------------===// |
| 1589 | // Custom insertion |
| 1590 | //===----------------------------------------------------------------------===// |
| 1591 | |
| 1592 | // Create a new basic block after MBB. |
| 1593 | static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { |
| 1594 | MachineFunction &MF = *MBB->getParent(); |
| 1595 | MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); |
| 1596 | MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); |
| 1597 | return NewMBB; |
| 1598 | } |
| 1599 | |
| 1600 | // Split MBB after MI and return the new block (the one that contains |
| 1601 | // instructions after MI). |
| 1602 | static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, |
| 1603 | MachineBasicBlock *MBB) { |
| 1604 | MachineBasicBlock *NewMBB = emitBlockAfter(MBB); |
| 1605 | NewMBB->splice(NewMBB->begin(), MBB, |
| 1606 | llvm::next(MachineBasicBlock::iterator(MI)), |
| 1607 | MBB->end()); |
| 1608 | NewMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| 1609 | return NewMBB; |
| 1610 | } |
| 1611 | |
| 1612 | // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. |
| 1613 | MachineBasicBlock * |
| 1614 | SystemZTargetLowering::emitSelect(MachineInstr *MI, |
| 1615 | MachineBasicBlock *MBB) const { |
| 1616 | const SystemZInstrInfo *TII = TM.getInstrInfo(); |
| 1617 | |
| 1618 | unsigned DestReg = MI->getOperand(0).getReg(); |
| 1619 | unsigned TrueReg = MI->getOperand(1).getReg(); |
| 1620 | unsigned FalseReg = MI->getOperand(2).getReg(); |
| 1621 | unsigned CCMask = MI->getOperand(3).getImm(); |
| 1622 | DebugLoc DL = MI->getDebugLoc(); |
| 1623 | |
| 1624 | MachineBasicBlock *StartMBB = MBB; |
| 1625 | MachineBasicBlock *JoinMBB = splitBlockAfter(MI, MBB); |
| 1626 | MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); |
| 1627 | |
| 1628 | // StartMBB: |
| 1629 | // ... |
| 1630 | // TrueVal = ... |
| 1631 | // cmpTY ccX, r1, r2 |
| 1632 | // jCC JoinMBB |
| 1633 | // # fallthrough to FalseMBB |
| 1634 | MBB = StartMBB; |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1635 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(CCMask).addMBB(JoinMBB); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1636 | MBB->addSuccessor(JoinMBB); |
| 1637 | MBB->addSuccessor(FalseMBB); |
| 1638 | |
| 1639 | // FalseMBB: |
| 1640 | // # fallthrough to JoinMBB |
| 1641 | MBB = FalseMBB; |
| 1642 | MBB->addSuccessor(JoinMBB); |
| 1643 | |
| 1644 | // JoinMBB: |
| 1645 | // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] |
| 1646 | // ... |
| 1647 | MBB = JoinMBB; |
| 1648 | BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg) |
| 1649 | .addReg(TrueReg).addMBB(StartMBB) |
| 1650 | .addReg(FalseReg).addMBB(FalseMBB); |
| 1651 | |
| 1652 | MI->eraseFromParent(); |
| 1653 | return JoinMBB; |
| 1654 | } |
| 1655 | |
| 1656 | // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* |
| 1657 | // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that |
| 1658 | // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. |
| 1659 | // BitSize is the width of the field in bits, or 0 if this is a partword |
| 1660 | // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize |
| 1661 | // is one of the operands. Invert says whether the field should be |
| 1662 | // inverted after performing BinOpcode (e.g. for NAND). |
| 1663 | MachineBasicBlock * |
| 1664 | SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, |
| 1665 | MachineBasicBlock *MBB, |
| 1666 | unsigned BinOpcode, |
| 1667 | unsigned BitSize, |
| 1668 | bool Invert) const { |
| 1669 | const SystemZInstrInfo *TII = TM.getInstrInfo(); |
| 1670 | MachineFunction &MF = *MBB->getParent(); |
| 1671 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1672 | unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); |
| 1673 | bool IsSubWord = (BitSize < 32); |
| 1674 | |
| 1675 | // Extract the operands. Base can be a register or a frame index. |
| 1676 | // Src2 can be a register or immediate. |
| 1677 | unsigned Dest = MI->getOperand(0).getReg(); |
| 1678 | MachineOperand Base = earlyUseOperand(MI->getOperand(1)); |
| 1679 | int64_t Disp = MI->getOperand(2).getImm(); |
| 1680 | MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); |
| 1681 | unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); |
| 1682 | unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); |
| 1683 | DebugLoc DL = MI->getDebugLoc(); |
| 1684 | if (IsSubWord) |
| 1685 | BitSize = MI->getOperand(6).getImm(); |
| 1686 | |
| 1687 | // Subword operations use 32-bit registers. |
| 1688 | const TargetRegisterClass *RC = (BitSize <= 32 ? |
| 1689 | &SystemZ::GR32BitRegClass : |
| 1690 | &SystemZ::GR64BitRegClass); |
| 1691 | unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; |
| 1692 | unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; |
| 1693 | |
| 1694 | // Get the right opcodes for the displacement. |
| 1695 | LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); |
| 1696 | CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); |
| 1697 | assert(LOpcode && CSOpcode && "Displacement out of range"); |
| 1698 | |
| 1699 | // Create virtual registers for temporary results. |
| 1700 | unsigned OrigVal = MRI.createVirtualRegister(RC); |
| 1701 | unsigned OldVal = MRI.createVirtualRegister(RC); |
| 1702 | unsigned NewVal = (BinOpcode || IsSubWord ? |
| 1703 | MRI.createVirtualRegister(RC) : Src2.getReg()); |
| 1704 | unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); |
| 1705 | unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); |
| 1706 | |
| 1707 | // Insert a basic block for the main loop. |
| 1708 | MachineBasicBlock *StartMBB = MBB; |
| 1709 | MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); |
| 1710 | MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); |
| 1711 | |
| 1712 | // StartMBB: |
| 1713 | // ... |
| 1714 | // %OrigVal = L Disp(%Base) |
| 1715 | // # fall through to LoopMMB |
| 1716 | MBB = StartMBB; |
| 1717 | BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) |
| 1718 | .addOperand(Base).addImm(Disp).addReg(0); |
| 1719 | MBB->addSuccessor(LoopMBB); |
| 1720 | |
| 1721 | // LoopMBB: |
| 1722 | // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] |
| 1723 | // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| 1724 | // %RotatedNewVal = OP %RotatedOldVal, %Src2 |
| 1725 | // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| 1726 | // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| 1727 | // JNE LoopMBB |
| 1728 | // # fall through to DoneMMB |
| 1729 | MBB = LoopMBB; |
| 1730 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| 1731 | .addReg(OrigVal).addMBB(StartMBB) |
| 1732 | .addReg(Dest).addMBB(LoopMBB); |
| 1733 | if (IsSubWord) |
| 1734 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) |
| 1735 | .addReg(OldVal).addReg(BitShift).addImm(0); |
| 1736 | if (Invert) { |
| 1737 | // Perform the operation normally and then invert every bit of the field. |
| 1738 | unsigned Tmp = MRI.createVirtualRegister(RC); |
| 1739 | BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) |
| 1740 | .addReg(RotatedOldVal).addOperand(Src2); |
| 1741 | if (BitSize < 32) |
| 1742 | // XILF with the upper BitSize bits set. |
| 1743 | BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) |
| 1744 | .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); |
| 1745 | else if (BitSize == 32) |
| 1746 | // XILF with every bit set. |
| 1747 | BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) |
| 1748 | .addReg(Tmp).addImm(~uint32_t(0)); |
| 1749 | else { |
| 1750 | // Use LCGR and add -1 to the result, which is more compact than |
| 1751 | // an XILF, XILH pair. |
| 1752 | unsigned Tmp2 = MRI.createVirtualRegister(RC); |
| 1753 | BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); |
| 1754 | BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) |
| 1755 | .addReg(Tmp2).addImm(-1); |
| 1756 | } |
| 1757 | } else if (BinOpcode) |
| 1758 | // A simply binary operation. |
| 1759 | BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) |
| 1760 | .addReg(RotatedOldVal).addOperand(Src2); |
| 1761 | else if (IsSubWord) |
| 1762 | // Use RISBG to rotate Src2 into position and use it to replace the |
| 1763 | // field in RotatedOldVal. |
| 1764 | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) |
| 1765 | .addReg(RotatedOldVal).addReg(Src2.getReg()) |
| 1766 | .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); |
| 1767 | if (IsSubWord) |
| 1768 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) |
| 1769 | .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); |
| 1770 | BuildMI(MBB, DL, TII->get(CSOpcode), Dest) |
| 1771 | .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1772 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1773 | MBB->addSuccessor(LoopMBB); |
| 1774 | MBB->addSuccessor(DoneMBB); |
| 1775 | |
| 1776 | MI->eraseFromParent(); |
| 1777 | return DoneMBB; |
| 1778 | } |
| 1779 | |
| 1780 | // Implement EmitInstrWithCustomInserter for pseudo |
| 1781 | // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the |
| 1782 | // instruction that should be used to compare the current field with the |
| 1783 | // minimum or maximum value. KeepOldMask is the BRC condition-code mask |
| 1784 | // for when the current field should be kept. BitSize is the width of |
| 1785 | // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. |
| 1786 | MachineBasicBlock * |
| 1787 | SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, |
| 1788 | MachineBasicBlock *MBB, |
| 1789 | unsigned CompareOpcode, |
| 1790 | unsigned KeepOldMask, |
| 1791 | unsigned BitSize) const { |
| 1792 | const SystemZInstrInfo *TII = TM.getInstrInfo(); |
| 1793 | MachineFunction &MF = *MBB->getParent(); |
| 1794 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1795 | unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); |
| 1796 | bool IsSubWord = (BitSize < 32); |
| 1797 | |
| 1798 | // Extract the operands. Base can be a register or a frame index. |
| 1799 | unsigned Dest = MI->getOperand(0).getReg(); |
| 1800 | MachineOperand Base = earlyUseOperand(MI->getOperand(1)); |
| 1801 | int64_t Disp = MI->getOperand(2).getImm(); |
| 1802 | unsigned Src2 = MI->getOperand(3).getReg(); |
| 1803 | unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); |
| 1804 | unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); |
| 1805 | DebugLoc DL = MI->getDebugLoc(); |
| 1806 | if (IsSubWord) |
| 1807 | BitSize = MI->getOperand(6).getImm(); |
| 1808 | |
| 1809 | // Subword operations use 32-bit registers. |
| 1810 | const TargetRegisterClass *RC = (BitSize <= 32 ? |
| 1811 | &SystemZ::GR32BitRegClass : |
| 1812 | &SystemZ::GR64BitRegClass); |
| 1813 | unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; |
| 1814 | unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; |
| 1815 | |
| 1816 | // Get the right opcodes for the displacement. |
| 1817 | LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); |
| 1818 | CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); |
| 1819 | assert(LOpcode && CSOpcode && "Displacement out of range"); |
| 1820 | |
| 1821 | // Create virtual registers for temporary results. |
| 1822 | unsigned OrigVal = MRI.createVirtualRegister(RC); |
| 1823 | unsigned OldVal = MRI.createVirtualRegister(RC); |
| 1824 | unsigned NewVal = MRI.createVirtualRegister(RC); |
| 1825 | unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); |
| 1826 | unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); |
| 1827 | unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); |
| 1828 | |
| 1829 | // Insert 3 basic blocks for the loop. |
| 1830 | MachineBasicBlock *StartMBB = MBB; |
| 1831 | MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); |
| 1832 | MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); |
| 1833 | MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); |
| 1834 | MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); |
| 1835 | |
| 1836 | // StartMBB: |
| 1837 | // ... |
| 1838 | // %OrigVal = L Disp(%Base) |
| 1839 | // # fall through to LoopMMB |
| 1840 | MBB = StartMBB; |
| 1841 | BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) |
| 1842 | .addOperand(Base).addImm(Disp).addReg(0); |
| 1843 | MBB->addSuccessor(LoopMBB); |
| 1844 | |
| 1845 | // LoopMBB: |
| 1846 | // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] |
| 1847 | // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| 1848 | // CompareOpcode %RotatedOldVal, %Src2 |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1849 | // BRC KeepOldMask, UpdateMBB |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1850 | MBB = LoopMBB; |
| 1851 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| 1852 | .addReg(OrigVal).addMBB(StartMBB) |
| 1853 | .addReg(Dest).addMBB(UpdateMBB); |
| 1854 | if (IsSubWord) |
| 1855 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) |
| 1856 | .addReg(OldVal).addReg(BitShift).addImm(0); |
| 1857 | BuildMI(MBB, DL, TII->get(CompareOpcode)) |
| 1858 | .addReg(RotatedOldVal).addReg(Src2); |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1859 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1860 | .addImm(KeepOldMask).addMBB(UpdateMBB); |
| 1861 | MBB->addSuccessor(UpdateMBB); |
| 1862 | MBB->addSuccessor(UseAltMBB); |
| 1863 | |
| 1864 | // UseAltMBB: |
| 1865 | // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 |
| 1866 | // # fall through to UpdateMMB |
| 1867 | MBB = UseAltMBB; |
| 1868 | if (IsSubWord) |
| 1869 | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) |
| 1870 | .addReg(RotatedOldVal).addReg(Src2) |
| 1871 | .addImm(32).addImm(31 + BitSize).addImm(0); |
| 1872 | MBB->addSuccessor(UpdateMBB); |
| 1873 | |
| 1874 | // UpdateMBB: |
| 1875 | // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], |
| 1876 | // [ %RotatedAltVal, UseAltMBB ] |
| 1877 | // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| 1878 | // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| 1879 | // JNE LoopMBB |
| 1880 | // # fall through to DoneMMB |
| 1881 | MBB = UpdateMBB; |
| 1882 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) |
| 1883 | .addReg(RotatedOldVal).addMBB(LoopMBB) |
| 1884 | .addReg(RotatedAltVal).addMBB(UseAltMBB); |
| 1885 | if (IsSubWord) |
| 1886 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) |
| 1887 | .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); |
| 1888 | BuildMI(MBB, DL, TII->get(CSOpcode), Dest) |
| 1889 | .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1890 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1891 | MBB->addSuccessor(LoopMBB); |
| 1892 | MBB->addSuccessor(DoneMBB); |
| 1893 | |
| 1894 | MI->eraseFromParent(); |
| 1895 | return DoneMBB; |
| 1896 | } |
| 1897 | |
| 1898 | // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW |
| 1899 | // instruction MI. |
| 1900 | MachineBasicBlock * |
| 1901 | SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, |
| 1902 | MachineBasicBlock *MBB) const { |
| 1903 | const SystemZInstrInfo *TII = TM.getInstrInfo(); |
| 1904 | MachineFunction &MF = *MBB->getParent(); |
| 1905 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1906 | unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); |
| 1907 | |
| 1908 | // Extract the operands. Base can be a register or a frame index. |
| 1909 | unsigned Dest = MI->getOperand(0).getReg(); |
| 1910 | MachineOperand Base = earlyUseOperand(MI->getOperand(1)); |
| 1911 | int64_t Disp = MI->getOperand(2).getImm(); |
| 1912 | unsigned OrigCmpVal = MI->getOperand(3).getReg(); |
| 1913 | unsigned OrigSwapVal = MI->getOperand(4).getReg(); |
| 1914 | unsigned BitShift = MI->getOperand(5).getReg(); |
| 1915 | unsigned NegBitShift = MI->getOperand(6).getReg(); |
| 1916 | int64_t BitSize = MI->getOperand(7).getImm(); |
| 1917 | DebugLoc DL = MI->getDebugLoc(); |
| 1918 | |
| 1919 | const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; |
| 1920 | |
| 1921 | // Get the right opcodes for the displacement. |
| 1922 | unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); |
| 1923 | unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); |
| 1924 | assert(LOpcode && CSOpcode && "Displacement out of range"); |
| 1925 | |
| 1926 | // Create virtual registers for temporary results. |
| 1927 | unsigned OrigOldVal = MRI.createVirtualRegister(RC); |
| 1928 | unsigned OldVal = MRI.createVirtualRegister(RC); |
| 1929 | unsigned CmpVal = MRI.createVirtualRegister(RC); |
| 1930 | unsigned SwapVal = MRI.createVirtualRegister(RC); |
| 1931 | unsigned StoreVal = MRI.createVirtualRegister(RC); |
| 1932 | unsigned RetryOldVal = MRI.createVirtualRegister(RC); |
| 1933 | unsigned RetryCmpVal = MRI.createVirtualRegister(RC); |
| 1934 | unsigned RetrySwapVal = MRI.createVirtualRegister(RC); |
| 1935 | |
| 1936 | // Insert 2 basic blocks for the loop. |
| 1937 | MachineBasicBlock *StartMBB = MBB; |
| 1938 | MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); |
| 1939 | MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); |
| 1940 | MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); |
| 1941 | |
| 1942 | // StartMBB: |
| 1943 | // ... |
| 1944 | // %OrigOldVal = L Disp(%Base) |
| 1945 | // # fall through to LoopMMB |
| 1946 | MBB = StartMBB; |
| 1947 | BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) |
| 1948 | .addOperand(Base).addImm(Disp).addReg(0); |
| 1949 | MBB->addSuccessor(LoopMBB); |
| 1950 | |
| 1951 | // LoopMBB: |
| 1952 | // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] |
| 1953 | // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] |
| 1954 | // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] |
| 1955 | // %Dest = RLL %OldVal, BitSize(%BitShift) |
| 1956 | // ^^ The low BitSize bits contain the field |
| 1957 | // of interest. |
| 1958 | // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 |
| 1959 | // ^^ Replace the upper 32-BitSize bits of the |
| 1960 | // comparison value with those that we loaded, |
| 1961 | // so that we can use a full word comparison. |
| 1962 | // CR %Dest, %RetryCmpVal |
| 1963 | // JNE DoneMBB |
| 1964 | // # Fall through to SetMBB |
| 1965 | MBB = LoopMBB; |
| 1966 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| 1967 | .addReg(OrigOldVal).addMBB(StartMBB) |
| 1968 | .addReg(RetryOldVal).addMBB(SetMBB); |
| 1969 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) |
| 1970 | .addReg(OrigCmpVal).addMBB(StartMBB) |
| 1971 | .addReg(RetryCmpVal).addMBB(SetMBB); |
| 1972 | BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) |
| 1973 | .addReg(OrigSwapVal).addMBB(StartMBB) |
| 1974 | .addReg(RetrySwapVal).addMBB(SetMBB); |
| 1975 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) |
| 1976 | .addReg(OldVal).addReg(BitShift).addImm(BitSize); |
| 1977 | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) |
| 1978 | .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); |
| 1979 | BuildMI(MBB, DL, TII->get(SystemZ::CR)) |
| 1980 | .addReg(Dest).addReg(RetryCmpVal); |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 1981 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(DoneMBB); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1982 | MBB->addSuccessor(DoneMBB); |
| 1983 | MBB->addSuccessor(SetMBB); |
| 1984 | |
| 1985 | // SetMBB: |
| 1986 | // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 |
| 1987 | // ^^ Replace the upper 32-BitSize bits of the new |
| 1988 | // value with those that we loaded. |
| 1989 | // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) |
| 1990 | // ^^ Rotate the new field to its proper position. |
| 1991 | // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) |
| 1992 | // JNE LoopMBB |
| 1993 | // # fall through to ExitMMB |
| 1994 | MBB = SetMBB; |
| 1995 | BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) |
| 1996 | .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); |
| 1997 | BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) |
| 1998 | .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); |
| 1999 | BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) |
| 2000 | .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); |
Richard Sandiford | 312425f | 2013-05-20 14:23:08 +0000 | [diff] [blame] | 2001 | BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 2002 | MBB->addSuccessor(LoopMBB); |
| 2003 | MBB->addSuccessor(DoneMBB); |
| 2004 | |
| 2005 | MI->eraseFromParent(); |
| 2006 | return DoneMBB; |
| 2007 | } |
| 2008 | |
| 2009 | // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true |
| 2010 | // if the high register of the GR128 value must be cleared or false if |
| 2011 | // it's "don't care". SubReg is subreg_odd32 when extending a GR32 |
| 2012 | // and subreg_odd when extending a GR64. |
| 2013 | MachineBasicBlock * |
| 2014 | SystemZTargetLowering::emitExt128(MachineInstr *MI, |
| 2015 | MachineBasicBlock *MBB, |
| 2016 | bool ClearEven, unsigned SubReg) const { |
| 2017 | const SystemZInstrInfo *TII = TM.getInstrInfo(); |
| 2018 | MachineFunction &MF = *MBB->getParent(); |
| 2019 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2020 | DebugLoc DL = MI->getDebugLoc(); |
| 2021 | |
| 2022 | unsigned Dest = MI->getOperand(0).getReg(); |
| 2023 | unsigned Src = MI->getOperand(1).getReg(); |
| 2024 | unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| 2025 | |
| 2026 | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); |
| 2027 | if (ClearEven) { |
| 2028 | unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| 2029 | unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); |
| 2030 | |
| 2031 | BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) |
| 2032 | .addImm(0); |
| 2033 | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) |
| 2034 | .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high); |
| 2035 | In128 = NewIn128; |
| 2036 | } |
| 2037 | BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) |
| 2038 | .addReg(In128).addReg(Src).addImm(SubReg); |
| 2039 | |
| 2040 | MI->eraseFromParent(); |
| 2041 | return MBB; |
| 2042 | } |
| 2043 | |
| 2044 | MachineBasicBlock *SystemZTargetLowering:: |
| 2045 | EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { |
| 2046 | switch (MI->getOpcode()) { |
| 2047 | case SystemZ::Select32: |
| 2048 | case SystemZ::SelectF32: |
| 2049 | case SystemZ::Select64: |
| 2050 | case SystemZ::SelectF64: |
| 2051 | case SystemZ::SelectF128: |
| 2052 | return emitSelect(MI, MBB); |
| 2053 | |
| 2054 | case SystemZ::AEXT128_64: |
| 2055 | return emitExt128(MI, MBB, false, SystemZ::subreg_low); |
| 2056 | case SystemZ::ZEXT128_32: |
| 2057 | return emitExt128(MI, MBB, true, SystemZ::subreg_low32); |
| 2058 | case SystemZ::ZEXT128_64: |
| 2059 | return emitExt128(MI, MBB, true, SystemZ::subreg_low); |
| 2060 | |
| 2061 | case SystemZ::ATOMIC_SWAPW: |
| 2062 | return emitAtomicLoadBinary(MI, MBB, 0, 0); |
| 2063 | case SystemZ::ATOMIC_SWAP_32: |
| 2064 | return emitAtomicLoadBinary(MI, MBB, 0, 32); |
| 2065 | case SystemZ::ATOMIC_SWAP_64: |
| 2066 | return emitAtomicLoadBinary(MI, MBB, 0, 64); |
| 2067 | |
| 2068 | case SystemZ::ATOMIC_LOADW_AR: |
| 2069 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); |
| 2070 | case SystemZ::ATOMIC_LOADW_AFI: |
| 2071 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); |
| 2072 | case SystemZ::ATOMIC_LOAD_AR: |
| 2073 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); |
| 2074 | case SystemZ::ATOMIC_LOAD_AHI: |
| 2075 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); |
| 2076 | case SystemZ::ATOMIC_LOAD_AFI: |
| 2077 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); |
| 2078 | case SystemZ::ATOMIC_LOAD_AGR: |
| 2079 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); |
| 2080 | case SystemZ::ATOMIC_LOAD_AGHI: |
| 2081 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); |
| 2082 | case SystemZ::ATOMIC_LOAD_AGFI: |
| 2083 | return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); |
| 2084 | |
| 2085 | case SystemZ::ATOMIC_LOADW_SR: |
| 2086 | return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); |
| 2087 | case SystemZ::ATOMIC_LOAD_SR: |
| 2088 | return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); |
| 2089 | case SystemZ::ATOMIC_LOAD_SGR: |
| 2090 | return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); |
| 2091 | |
| 2092 | case SystemZ::ATOMIC_LOADW_NR: |
| 2093 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); |
| 2094 | case SystemZ::ATOMIC_LOADW_NILH: |
| 2095 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0); |
| 2096 | case SystemZ::ATOMIC_LOAD_NR: |
| 2097 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); |
| 2098 | case SystemZ::ATOMIC_LOAD_NILL32: |
| 2099 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32); |
| 2100 | case SystemZ::ATOMIC_LOAD_NILH32: |
| 2101 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32); |
| 2102 | case SystemZ::ATOMIC_LOAD_NILF32: |
| 2103 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32); |
| 2104 | case SystemZ::ATOMIC_LOAD_NGR: |
| 2105 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); |
| 2106 | case SystemZ::ATOMIC_LOAD_NILL: |
| 2107 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64); |
| 2108 | case SystemZ::ATOMIC_LOAD_NILH: |
| 2109 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64); |
| 2110 | case SystemZ::ATOMIC_LOAD_NIHL: |
| 2111 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64); |
| 2112 | case SystemZ::ATOMIC_LOAD_NIHH: |
| 2113 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64); |
| 2114 | case SystemZ::ATOMIC_LOAD_NILF: |
| 2115 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64); |
| 2116 | case SystemZ::ATOMIC_LOAD_NIHF: |
| 2117 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64); |
| 2118 | |
| 2119 | case SystemZ::ATOMIC_LOADW_OR: |
| 2120 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); |
| 2121 | case SystemZ::ATOMIC_LOADW_OILH: |
| 2122 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0); |
| 2123 | case SystemZ::ATOMIC_LOAD_OR: |
| 2124 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); |
| 2125 | case SystemZ::ATOMIC_LOAD_OILL32: |
| 2126 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32); |
| 2127 | case SystemZ::ATOMIC_LOAD_OILH32: |
| 2128 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32); |
| 2129 | case SystemZ::ATOMIC_LOAD_OILF32: |
| 2130 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32); |
| 2131 | case SystemZ::ATOMIC_LOAD_OGR: |
| 2132 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); |
| 2133 | case SystemZ::ATOMIC_LOAD_OILL: |
| 2134 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64); |
| 2135 | case SystemZ::ATOMIC_LOAD_OILH: |
| 2136 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64); |
| 2137 | case SystemZ::ATOMIC_LOAD_OIHL: |
| 2138 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64); |
| 2139 | case SystemZ::ATOMIC_LOAD_OIHH: |
| 2140 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64); |
| 2141 | case SystemZ::ATOMIC_LOAD_OILF: |
| 2142 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64); |
| 2143 | case SystemZ::ATOMIC_LOAD_OIHF: |
| 2144 | return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64); |
| 2145 | |
| 2146 | case SystemZ::ATOMIC_LOADW_XR: |
| 2147 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); |
| 2148 | case SystemZ::ATOMIC_LOADW_XILF: |
| 2149 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0); |
| 2150 | case SystemZ::ATOMIC_LOAD_XR: |
| 2151 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); |
| 2152 | case SystemZ::ATOMIC_LOAD_XILF32: |
| 2153 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32); |
| 2154 | case SystemZ::ATOMIC_LOAD_XGR: |
| 2155 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); |
| 2156 | case SystemZ::ATOMIC_LOAD_XILF: |
| 2157 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64); |
| 2158 | case SystemZ::ATOMIC_LOAD_XIHF: |
| 2159 | return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64); |
| 2160 | |
| 2161 | case SystemZ::ATOMIC_LOADW_NRi: |
| 2162 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); |
| 2163 | case SystemZ::ATOMIC_LOADW_NILHi: |
| 2164 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true); |
| 2165 | case SystemZ::ATOMIC_LOAD_NRi: |
| 2166 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); |
| 2167 | case SystemZ::ATOMIC_LOAD_NILL32i: |
| 2168 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true); |
| 2169 | case SystemZ::ATOMIC_LOAD_NILH32i: |
| 2170 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true); |
| 2171 | case SystemZ::ATOMIC_LOAD_NILF32i: |
| 2172 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true); |
| 2173 | case SystemZ::ATOMIC_LOAD_NGRi: |
| 2174 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); |
| 2175 | case SystemZ::ATOMIC_LOAD_NILLi: |
| 2176 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true); |
| 2177 | case SystemZ::ATOMIC_LOAD_NILHi: |
| 2178 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true); |
| 2179 | case SystemZ::ATOMIC_LOAD_NIHLi: |
| 2180 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true); |
| 2181 | case SystemZ::ATOMIC_LOAD_NIHHi: |
| 2182 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true); |
| 2183 | case SystemZ::ATOMIC_LOAD_NILFi: |
| 2184 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true); |
| 2185 | case SystemZ::ATOMIC_LOAD_NIHFi: |
| 2186 | return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true); |
| 2187 | |
| 2188 | case SystemZ::ATOMIC_LOADW_MIN: |
| 2189 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| 2190 | SystemZ::CCMASK_CMP_LE, 0); |
| 2191 | case SystemZ::ATOMIC_LOAD_MIN_32: |
| 2192 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| 2193 | SystemZ::CCMASK_CMP_LE, 32); |
| 2194 | case SystemZ::ATOMIC_LOAD_MIN_64: |
| 2195 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, |
| 2196 | SystemZ::CCMASK_CMP_LE, 64); |
| 2197 | |
| 2198 | case SystemZ::ATOMIC_LOADW_MAX: |
| 2199 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| 2200 | SystemZ::CCMASK_CMP_GE, 0); |
| 2201 | case SystemZ::ATOMIC_LOAD_MAX_32: |
| 2202 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| 2203 | SystemZ::CCMASK_CMP_GE, 32); |
| 2204 | case SystemZ::ATOMIC_LOAD_MAX_64: |
| 2205 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, |
| 2206 | SystemZ::CCMASK_CMP_GE, 64); |
| 2207 | |
| 2208 | case SystemZ::ATOMIC_LOADW_UMIN: |
| 2209 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| 2210 | SystemZ::CCMASK_CMP_LE, 0); |
| 2211 | case SystemZ::ATOMIC_LOAD_UMIN_32: |
| 2212 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| 2213 | SystemZ::CCMASK_CMP_LE, 32); |
| 2214 | case SystemZ::ATOMIC_LOAD_UMIN_64: |
| 2215 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, |
| 2216 | SystemZ::CCMASK_CMP_LE, 64); |
| 2217 | |
| 2218 | case SystemZ::ATOMIC_LOADW_UMAX: |
| 2219 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| 2220 | SystemZ::CCMASK_CMP_GE, 0); |
| 2221 | case SystemZ::ATOMIC_LOAD_UMAX_32: |
| 2222 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| 2223 | SystemZ::CCMASK_CMP_GE, 32); |
| 2224 | case SystemZ::ATOMIC_LOAD_UMAX_64: |
| 2225 | return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, |
| 2226 | SystemZ::CCMASK_CMP_GE, 64); |
| 2227 | |
| 2228 | case SystemZ::ATOMIC_CMP_SWAPW: |
| 2229 | return emitAtomicCmpSwapW(MI, MBB); |
| 2230 | default: |
| 2231 | llvm_unreachable("Unexpected instr type to insert"); |
| 2232 | } |
| 2233 | } |