blob: 26c4931c78e097132af106627a0acd4ce94b7967 [file] [log] [blame]
George Burgess IVe1100f52016-02-02 22:46:49 +00001//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------===//
9//
10// This file implements the MemorySSA class.
11//
12//===----------------------------------------------------------------===//
Mehdi Aminib550cb12016-04-18 09:17:29 +000013#include "llvm/Transforms/Utils/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000014#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/DepthFirstIterator.h"
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/CFG.h"
25#include "llvm/Analysis/GlobalsModRef.h"
26#include "llvm/Analysis/IteratedDominanceFrontier.h"
27#include "llvm/Analysis/MemoryLocation.h"
28#include "llvm/Analysis/PHITransAddr.h"
29#include "llvm/IR/AssemblyAnnotationWriter.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/PatternMatch.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/FormattedStream.h"
41#include "llvm/Transforms/Scalar.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000042#include <algorithm>
43
44#define DEBUG_TYPE "memoryssa"
45using namespace llvm;
46STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups");
47STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits");
48STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts");
Geoff Berryb96d3b22016-06-01 21:30:40 +000049
Geoff Berryefb0dd12016-06-14 21:19:40 +000050INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000051 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000052INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
53INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000054INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
55 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000056
57namespace llvm {
58
59/// \brief An assembly annotator class to print Memory SSA information in
60/// comments.
61class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
62 friend class MemorySSA;
63 const MemorySSA *MSSA;
64
65public:
66 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
67
68 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
69 formatted_raw_ostream &OS) {
70 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
71 OS << "; " << *MA << "\n";
72 }
73
74 virtual void emitInstructionAnnot(const Instruction *I,
75 formatted_raw_ostream &OS) {
76 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
77 OS << "; " << *MA << "\n";
78 }
79};
80}
81
82namespace {
83struct RenamePassData {
84 DomTreeNode *DTN;
85 DomTreeNode::const_iterator ChildIt;
86 MemoryAccess *IncomingVal;
87
88 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
89 MemoryAccess *M)
90 : DTN(D), ChildIt(It), IncomingVal(M) {}
91 void swap(RenamePassData &RHS) {
92 std::swap(DTN, RHS.DTN);
93 std::swap(ChildIt, RHS.ChildIt);
94 std::swap(IncomingVal, RHS.IncomingVal);
95 }
96};
97}
98
99namespace llvm {
100/// \brief Rename a single basic block into MemorySSA form.
101/// Uses the standard SSA renaming algorithm.
102/// \returns The new incoming value.
103MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB,
104 MemoryAccess *IncomingVal) {
105 auto It = PerBlockAccesses.find(BB);
106 // Skip most processing if the list is empty.
107 if (It != PerBlockAccesses.end()) {
108 AccessListType *Accesses = It->second.get();
109 for (MemoryAccess &L : *Accesses) {
110 switch (L.getValueID()) {
111 case Value::MemoryUseVal:
112 cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal);
113 break;
114 case Value::MemoryDefVal:
115 // We can't legally optimize defs, because we only allow single
116 // memory phis/uses on operations, and if we optimize these, we can
117 // end up with multiple reaching defs. Uses do not have this
118 // problem, since they do not produce a value
119 cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal);
120 IncomingVal = &L;
121 break;
122 case Value::MemoryPhiVal:
123 IncomingVal = &L;
124 break;
125 }
126 }
127 }
128
129 // Pass through values to our successors
130 for (const BasicBlock *S : successors(BB)) {
131 auto It = PerBlockAccesses.find(S);
132 // Rename the phi nodes in our successor block
133 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
134 continue;
135 AccessListType *Accesses = It->second.get();
136 auto *Phi = cast<MemoryPhi>(&Accesses->front());
137 assert(std::find(succ_begin(BB), succ_end(BB), S) != succ_end(BB) &&
138 "Must be at least one edge from Succ to BB!");
139 Phi->addIncoming(IncomingVal, BB);
140 }
141
142 return IncomingVal;
143}
144
145/// \brief This is the standard SSA renaming algorithm.
146///
147/// We walk the dominator tree in preorder, renaming accesses, and then filling
148/// in phi nodes in our successors.
149void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
150 SmallPtrSet<BasicBlock *, 16> &Visited) {
151 SmallVector<RenamePassData, 32> WorkStack;
152 IncomingVal = renameBlock(Root->getBlock(), IncomingVal);
153 WorkStack.push_back({Root, Root->begin(), IncomingVal});
154 Visited.insert(Root->getBlock());
155
156 while (!WorkStack.empty()) {
157 DomTreeNode *Node = WorkStack.back().DTN;
158 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
159 IncomingVal = WorkStack.back().IncomingVal;
160
161 if (ChildIt == Node->end()) {
162 WorkStack.pop_back();
163 } else {
164 DomTreeNode *Child = *ChildIt;
165 ++WorkStack.back().ChildIt;
166 BasicBlock *BB = Child->getBlock();
167 Visited.insert(BB);
168 IncomingVal = renameBlock(BB, IncomingVal);
169 WorkStack.push_back({Child, Child->begin(), IncomingVal});
170 }
171 }
172}
173
174/// \brief Compute dominator levels, used by the phi insertion algorithm above.
175void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) {
176 for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode());
177 DFI != DFE; ++DFI)
178 DomLevels[*DFI] = DFI.getPathLength() - 1;
179}
180
181/// \brief This handles unreachable block acccesses by deleting phi nodes in
182/// unreachable blocks, and marking all other unreachable MemoryAccess's as
183/// being uses of the live on entry definition.
184void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
185 assert(!DT->isReachableFromEntry(BB) &&
186 "Reachable block found while handling unreachable blocks");
187
188 auto It = PerBlockAccesses.find(BB);
189 if (It == PerBlockAccesses.end())
190 return;
191
192 auto &Accesses = It->second;
193 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
194 auto Next = std::next(AI);
195 // If we have a phi, just remove it. We are going to replace all
196 // users with live on entry.
197 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
198 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
199 else
200 Accesses->erase(AI);
201 AI = Next;
202 }
203}
204
Geoff Berryb96d3b22016-06-01 21:30:40 +0000205MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
206 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
207 NextID(0) {
208 getWalker(); // Ensure MemorySSA has been built.
209}
210
211MemorySSA::MemorySSA(MemorySSA &&MSSA)
212 : AA(MSSA.AA), DT(MSSA.DT), F(MSSA.F),
213 ValueToMemoryAccess(std::move(MSSA.ValueToMemoryAccess)),
214 PerBlockAccesses(std::move(MSSA.PerBlockAccesses)),
215 LiveOnEntryDef(std::move(MSSA.LiveOnEntryDef)),
216 Walker(std::move(MSSA.Walker)), NextID(MSSA.NextID) {
217 // Update the Walker MSSA pointer so it doesn't point to the moved-from MSSA
218 // object any more.
219 Walker->MSSA = this;
220}
George Burgess IVe1100f52016-02-02 22:46:49 +0000221
222MemorySSA::~MemorySSA() {
223 // Drop all our references
224 for (const auto &Pair : PerBlockAccesses)
225 for (MemoryAccess &MA : *Pair.second)
226 MA.dropAllReferences();
227}
228
229MemorySSA::AccessListType *MemorySSA::getOrCreateAccessList(BasicBlock *BB) {
230 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
231
232 if (Res.second)
233 Res.first->second = make_unique<AccessListType>();
234 return Res.first->second.get();
235}
236
Geoff Berryb96d3b22016-06-01 21:30:40 +0000237MemorySSAWalker *MemorySSA::getWalker() {
George Burgess IVe1100f52016-02-02 22:46:49 +0000238 if (Walker)
Geoff Berryb96d3b22016-06-01 21:30:40 +0000239 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000240
Geoff Berryb96d3b22016-06-01 21:30:40 +0000241 Walker = make_unique<CachingMemorySSAWalker>(this, AA, DT);
George Burgess IVe1100f52016-02-02 22:46:49 +0000242
243 // We create an access to represent "live on entry", for things like
244 // arguments or users of globals, where the memory they use is defined before
245 // the beginning of the function. We do not actually insert it into the IR.
246 // We do not define a live on exit for the immediate uses, and thus our
247 // semantics do *not* imply that something with no immediate uses can simply
248 // be removed.
249 BasicBlock &StartingPoint = F.getEntryBlock();
250 LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
251 &StartingPoint, NextID++);
252
253 // We maintain lists of memory accesses per-block, trading memory for time. We
254 // could just look up the memory access for every possible instruction in the
255 // stream.
256 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
Daniel Berlin1b51a292016-02-07 01:52:19 +0000257 SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +0000258 // Go through each block, figure out where defs occur, and chain together all
259 // the accesses.
260 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +0000261 bool InsertIntoDef = false;
George Burgess IVe1100f52016-02-02 22:46:49 +0000262 AccessListType *Accesses = nullptr;
263 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +0000264 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +0000265 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +0000266 continue;
George Burgess IV3887a412016-03-21 21:25:39 +0000267 InsertIntoDef |= isa<MemoryDef>(MUD);
Daniel Berlin1b51a292016-02-07 01:52:19 +0000268
George Burgess IVe1100f52016-02-02 22:46:49 +0000269 if (!Accesses)
270 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +0000271 Accesses->push_back(MUD);
George Burgess IVe1100f52016-02-02 22:46:49 +0000272 }
Daniel Berlin7898ca62016-02-07 01:52:15 +0000273 if (InsertIntoDef)
274 DefiningBlocks.insert(&B);
George Burgess IV3887a412016-03-21 21:25:39 +0000275 if (Accesses)
Daniel Berlin1b51a292016-02-07 01:52:19 +0000276 DefUseBlocks.insert(&B);
277 }
278
279 // Compute live-in.
280 // Live in is normally defined as "all the blocks on the path from each def to
281 // each of it's uses".
282 // MemoryDef's are implicit uses of previous state, so they are also uses.
283 // This means we don't really have def-only instructions. The only
284 // MemoryDef's that are not really uses are those that are of the LiveOnEntry
285 // variable (because LiveOnEntry can reach anywhere, and every def is a
286 // must-kill of LiveOnEntry).
287 // In theory, you could precisely compute live-in by using alias-analysis to
288 // disambiguate defs and uses to see which really pair up with which.
289 // In practice, this would be really expensive and difficult. So we simply
290 // assume all defs are also uses that need to be kept live.
291 // Because of this, the end result of this live-in computation will be "the
292 // entire set of basic blocks that reach any use".
293
294 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
295 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(),
296 DefUseBlocks.end());
297 // Now that we have a set of blocks where a value is live-in, recursively add
298 // predecessors until we find the full region the value is live.
299 while (!LiveInBlockWorklist.empty()) {
300 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
301
302 // The block really is live in here, insert it into the set. If already in
303 // the set, then it has already been processed.
304 if (!LiveInBlocks.insert(BB).second)
305 continue;
306
307 // Since the value is live into BB, it is either defined in a predecessor or
308 // live into it to.
309 LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB));
George Burgess IVe1100f52016-02-02 22:46:49 +0000310 }
311
312 // Determine where our MemoryPhi's should go
Daniel Berlin77fa84e2016-04-19 06:13:28 +0000313 ForwardIDFCalculator IDFs(*DT);
George Burgess IVe1100f52016-02-02 22:46:49 +0000314 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin1b51a292016-02-07 01:52:19 +0000315 IDFs.setLiveInBlocks(LiveInBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +0000316 SmallVector<BasicBlock *, 32> IDFBlocks;
317 IDFs.calculate(IDFBlocks);
318
319 // Now place MemoryPhi nodes.
320 for (auto &BB : IDFBlocks) {
321 // Insert phi node
322 AccessListType *Accesses = getOrCreateAccessList(BB);
323 MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++);
Daniel Berlinf6c9ae92016-02-10 17:41:25 +0000324 ValueToMemoryAccess.insert(std::make_pair(BB, Phi));
George Burgess IVe1100f52016-02-02 22:46:49 +0000325 // Phi's always are placed at the front of the block.
326 Accesses->push_front(Phi);
327 }
328
329 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
330 // filled in with all blocks.
331 SmallPtrSet<BasicBlock *, 16> Visited;
332 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
333
334 // Now optimize the MemoryUse's defining access to point to the nearest
335 // dominating clobbering def.
336 // This ensures that MemoryUse's that are killed by the same store are
337 // immediate users of that store, one of the invariants we guarantee.
338 for (auto DomNode : depth_first(DT)) {
339 BasicBlock *BB = DomNode->getBlock();
340 auto AI = PerBlockAccesses.find(BB);
341 if (AI == PerBlockAccesses.end())
342 continue;
343 AccessListType *Accesses = AI->second.get();
344 for (auto &MA : *Accesses) {
345 if (auto *MU = dyn_cast<MemoryUse>(&MA)) {
346 Instruction *Inst = MU->getMemoryInst();
Daniel Berlin64120022016-03-02 21:16:28 +0000347 MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst));
George Burgess IVe1100f52016-02-02 22:46:49 +0000348 }
349 }
350 }
351
352 // Mark the uses in unreachable blocks as live on entry, so that they go
353 // somewhere.
354 for (auto &BB : F)
355 if (!Visited.count(&BB))
356 markUnreachableAsLiveOnEntry(&BB);
357
Geoff Berryb96d3b22016-06-01 21:30:40 +0000358 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000359}
360
361/// \brief Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +0000362MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +0000363 // The assume intrinsic has a control dependency which we model by claiming
364 // that it writes arbitrarily. Ignore that fake memory dependency here.
365 // FIXME: Replace this special casing with a more accurate modelling of
366 // assume's control dependency.
367 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
368 if (II->getIntrinsicID() == Intrinsic::assume)
369 return nullptr;
370
George Burgess IVe1100f52016-02-02 22:46:49 +0000371 // Find out what affect this instruction has on memory.
372 ModRefInfo ModRef = AA->getModRefInfo(I);
373 bool Def = bool(ModRef & MRI_Mod);
374 bool Use = bool(ModRef & MRI_Ref);
375
376 // It's possible for an instruction to not modify memory at all. During
377 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +0000378 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +0000379 return nullptr;
380
381 assert((Def || Use) &&
382 "Trying to create a memory access with a non-memory instruction");
383
George Burgess IVb42b7622016-03-11 19:34:03 +0000384 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +0000385 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +0000386 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +0000387 else
George Burgess IVb42b7622016-03-11 19:34:03 +0000388 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
389 ValueToMemoryAccess.insert(std::make_pair(I, MUD));
390 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +0000391}
392
393MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock,
394 enum InsertionPlace Where) {
395 // Handle the initial case
396 if (Where == Beginning)
397 // The only thing that could define us at the beginning is a phi node
398 if (MemoryPhi *Phi = getMemoryAccess(UseBlock))
399 return Phi;
400
401 DomTreeNode *CurrNode = DT->getNode(UseBlock);
402 // Need to be defined by our dominator
403 if (Where == Beginning)
404 CurrNode = CurrNode->getIDom();
405 Where = End;
406 while (CurrNode) {
407 auto It = PerBlockAccesses.find(CurrNode->getBlock());
408 if (It != PerBlockAccesses.end()) {
409 auto &Accesses = It->second;
410 for (auto RAI = Accesses->rbegin(), RAE = Accesses->rend(); RAI != RAE;
411 ++RAI) {
412 if (isa<MemoryDef>(*RAI) || isa<MemoryPhi>(*RAI))
413 return &*RAI;
414 }
415 }
416 CurrNode = CurrNode->getIDom();
417 }
418 return LiveOnEntryDef.get();
419}
420
421/// \brief Returns true if \p Replacer dominates \p Replacee .
422bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
423 const MemoryAccess *Replacee) const {
424 if (isa<MemoryUseOrDef>(Replacee))
425 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
426 const auto *MP = cast<MemoryPhi>(Replacee);
427 // For a phi node, the use occurs in the predecessor block of the phi node.
428 // Since we may occur multiple times in the phi node, we have to check each
429 // operand to ensure Replacer dominates each operand where Replacee occurs.
430 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +0000431 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +0000432 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
433 return false;
434 }
435 return true;
436}
437
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000438/// \brief If all arguments of a MemoryPHI are defined by the same incoming
439/// argument, return that argument.
440static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
441 MemoryAccess *MA = nullptr;
442
443 for (auto &Arg : MP->operands()) {
444 if (!MA)
445 MA = cast<MemoryAccess>(Arg);
446 else if (MA != Arg)
447 return nullptr;
448 }
449 return MA;
450}
451
452/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
453///
454/// Because of the way the intrusive list and use lists work, it is important to
455/// do removal in the right order.
456void MemorySSA::removeFromLookups(MemoryAccess *MA) {
457 assert(MA->use_empty() &&
458 "Trying to remove memory access that still has uses");
459 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
460 MUD->setDefiningAccess(nullptr);
461 // Invalidate our walker's cache if necessary
462 if (!isa<MemoryUse>(MA))
463 Walker->invalidateInfo(MA);
464 // The call below to erase will destroy MA, so we can't change the order we
465 // are doing things here
466 Value *MemoryInst;
467 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
468 MemoryInst = MUD->getMemoryInst();
469 } else {
470 MemoryInst = MA->getBlock();
471 }
472 ValueToMemoryAccess.erase(MemoryInst);
473
George Burgess IVe0e6e482016-03-02 02:35:04 +0000474 auto AccessIt = PerBlockAccesses.find(MA->getBlock());
475 std::unique_ptr<AccessListType> &Accesses = AccessIt->second;
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000476 Accesses->erase(MA);
George Burgess IVe0e6e482016-03-02 02:35:04 +0000477 if (Accesses->empty())
478 PerBlockAccesses.erase(AccessIt);
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000479}
480
481void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
482 assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def");
483 // We can only delete phi nodes if they have no uses, or we can replace all
484 // uses with a single definition.
485 MemoryAccess *NewDefTarget = nullptr;
486 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
487 // Note that it is sufficient to know that all edges of the phi node have
488 // the same argument. If they do, by the definition of dominance frontiers
489 // (which we used to place this phi), that argument must dominate this phi,
490 // and thus, must dominate the phi's uses, and so we will not hit the assert
491 // below.
492 NewDefTarget = onlySingleValue(MP);
493 assert((NewDefTarget || MP->use_empty()) &&
494 "We can't delete this memory phi");
495 } else {
496 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
497 }
498
499 // Re-point the uses at our defining access
500 if (!MA->use_empty())
501 MA->replaceAllUsesWith(NewDefTarget);
502
503 // The call below to erase will destroy MA, so we can't change the order we
504 // are doing things here
505 removeFromLookups(MA);
506}
507
George Burgess IVe1100f52016-02-02 22:46:49 +0000508void MemorySSA::print(raw_ostream &OS) const {
509 MemorySSAAnnotatedWriter Writer(this);
510 F.print(OS, &Writer);
511}
512
513void MemorySSA::dump() const {
514 MemorySSAAnnotatedWriter Writer(this);
515 F.print(dbgs(), &Writer);
516}
517
Daniel Berlin932b4cb2016-02-10 17:39:43 +0000518void MemorySSA::verifyMemorySSA() const {
519 verifyDefUses(F);
520 verifyDomination(F);
521}
522
George Burgess IVe1100f52016-02-02 22:46:49 +0000523/// \brief Verify the domination properties of MemorySSA by checking that each
524/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +0000525void MemorySSA::verifyDomination(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +0000526 for (BasicBlock &B : F) {
527 // Phi nodes are attached to basic blocks
528 if (MemoryPhi *MP = getMemoryAccess(&B)) {
529 for (User *U : MP->users()) {
530 BasicBlock *UseBlock;
531 // Phi operands are used on edges, we simulate the right domination by
532 // acting as if the use occurred at the end of the predecessor block.
533 if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) {
534 for (const auto &Arg : P->operands()) {
535 if (Arg == MP) {
536 UseBlock = P->getIncomingBlock(Arg);
537 break;
538 }
539 }
540 } else {
541 UseBlock = cast<MemoryAccess>(U)->getBlock();
542 }
George Burgess IV60adac42016-02-02 23:26:01 +0000543 (void)UseBlock;
George Burgess IVe1100f52016-02-02 22:46:49 +0000544 assert(DT->dominates(MP->getBlock(), UseBlock) &&
545 "Memory PHI does not dominate it's uses");
546 }
547 }
548
549 for (Instruction &I : B) {
550 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
551 if (!MD)
552 continue;
553
Benjamin Kramer451f54c2016-02-22 13:11:58 +0000554 for (User *U : MD->users()) {
Mehdi Amini89038a12016-04-02 05:34:19 +0000555 BasicBlock *UseBlock; (void)UseBlock;
George Burgess IVe1100f52016-02-02 22:46:49 +0000556 // Things are allowed to flow to phi nodes over their predecessor edge.
557 if (auto *P = dyn_cast<MemoryPhi>(U)) {
558 for (const auto &Arg : P->operands()) {
559 if (Arg == MD) {
560 UseBlock = P->getIncomingBlock(Arg);
561 break;
562 }
563 }
564 } else {
565 UseBlock = cast<MemoryAccess>(U)->getBlock();
566 }
567 assert(DT->dominates(MD->getBlock(), UseBlock) &&
568 "Memory Def does not dominate it's uses");
569 }
570 }
571 }
572}
573
574/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
575/// appears in the use list of \p Def.
576///
577/// llvm_unreachable is used instead of asserts because this may be called in
578/// a build without asserts. In that case, we don't want this to turn into a
579/// nop.
Daniel Berlin932b4cb2016-02-10 17:39:43 +0000580void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
George Burgess IVe1100f52016-02-02 22:46:49 +0000581 // The live on entry use may cause us to get a NULL def here
582 if (!Def) {
583 if (!isLiveOnEntryDef(Use))
584 llvm_unreachable("Null def but use not point to live on entry def");
585 } else if (std::find(Def->user_begin(), Def->user_end(), Use) ==
586 Def->user_end()) {
587 llvm_unreachable("Did not find use in def's use list");
588 }
589}
590
591/// \brief Verify the immediate use information, by walking all the memory
592/// accesses and verifying that, for each use, it appears in the
593/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +0000594void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +0000595 for (BasicBlock &B : F) {
596 // Phi nodes are attached to basic blocks
597 if (MemoryPhi *Phi = getMemoryAccess(&B))
598 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
599 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
600
601 for (Instruction &I : B) {
602 if (MemoryAccess *MA = getMemoryAccess(&I)) {
603 assert(isa<MemoryUseOrDef>(MA) &&
604 "Found a phi node not attached to a bb");
605 verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA);
606 }
607 }
608 }
609}
610
611MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const {
Daniel Berlinf6c9ae92016-02-10 17:41:25 +0000612 return ValueToMemoryAccess.lookup(I);
George Burgess IVe1100f52016-02-02 22:46:49 +0000613}
614
615MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
616 return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB));
617}
618
619/// \brief Determine, for two memory accesses in the same block,
620/// whether \p Dominator dominates \p Dominatee.
621/// \returns True if \p Dominator dominates \p Dominatee.
622bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
623 const MemoryAccess *Dominatee) const {
624
625 assert((Dominator->getBlock() == Dominatee->getBlock()) &&
626 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +0000627
628 // A node dominates itself.
629 if (Dominatee == Dominator)
630 return true;
631
632 // When Dominatee is defined on function entry, it is not dominated by another
633 // memory access.
634 if (isLiveOnEntryDef(Dominatee))
635 return false;
636
637 // When Dominator is defined on function entry, it dominates the other memory
638 // access.
639 if (isLiveOnEntryDef(Dominator))
640 return true;
641
George Burgess IVe1100f52016-02-02 22:46:49 +0000642 // Get the access list for the block
643 const AccessListType *AccessList = getBlockAccesses(Dominator->getBlock());
644 AccessListType::const_reverse_iterator It(Dominator->getIterator());
645
646 // If we hit the beginning of the access list before we hit dominatee, we must
647 // dominate it
648 return std::none_of(It, AccessList->rend(),
649 [&](const MemoryAccess &MA) { return &MA == Dominatee; });
650}
651
652const static char LiveOnEntryStr[] = "liveOnEntry";
653
654void MemoryDef::print(raw_ostream &OS) const {
655 MemoryAccess *UO = getDefiningAccess();
656
657 OS << getID() << " = MemoryDef(";
658 if (UO && UO->getID())
659 OS << UO->getID();
660 else
661 OS << LiveOnEntryStr;
662 OS << ')';
663}
664
665void MemoryPhi::print(raw_ostream &OS) const {
666 bool First = true;
667 OS << getID() << " = MemoryPhi(";
668 for (const auto &Op : operands()) {
669 BasicBlock *BB = getIncomingBlock(Op);
670 MemoryAccess *MA = cast<MemoryAccess>(Op);
671 if (!First)
672 OS << ',';
673 else
674 First = false;
675
676 OS << '{';
677 if (BB->hasName())
678 OS << BB->getName();
679 else
680 BB->printAsOperand(OS, false);
681 OS << ',';
682 if (unsigned ID = MA->getID())
683 OS << ID;
684 else
685 OS << LiveOnEntryStr;
686 OS << '}';
687 }
688 OS << ')';
689}
690
691MemoryAccess::~MemoryAccess() {}
692
693void MemoryUse::print(raw_ostream &OS) const {
694 MemoryAccess *UO = getDefiningAccess();
695 OS << "MemoryUse(";
696 if (UO && UO->getID())
697 OS << UO->getID();
698 else
699 OS << LiveOnEntryStr;
700 OS << ')';
701}
702
703void MemoryAccess::dump() const {
704 print(dbgs());
705 dbgs() << "\n";
706}
707
Geoff Berryb96d3b22016-06-01 21:30:40 +0000708char MemorySSAAnalysis::PassID;
George Burgess IVe1100f52016-02-02 22:46:49 +0000709
Geoff Berryb96d3b22016-06-01 21:30:40 +0000710MemorySSA MemorySSAAnalysis::run(Function &F, AnalysisManager<Function> &AM) {
711 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
712 auto &AA = AM.getResult<AAManager>(F);
713 return MemorySSA(F, &AA, &DT);
George Burgess IVe1100f52016-02-02 22:46:49 +0000714}
715
Geoff Berryb96d3b22016-06-01 21:30:40 +0000716PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
717 FunctionAnalysisManager &AM) {
718 OS << "MemorySSA for function: " << F.getName() << "\n";
719 AM.getResult<MemorySSAAnalysis>(F).print(OS);
720
721 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +0000722}
723
Geoff Berryb96d3b22016-06-01 21:30:40 +0000724PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
725 FunctionAnalysisManager &AM) {
726 AM.getResult<MemorySSAAnalysis>(F).verifyMemorySSA();
727
728 return PreservedAnalyses::all();
729}
730
731char MemorySSAWrapperPass::ID = 0;
732
733MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
734 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
735}
736
737void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
738
739void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +0000740 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +0000741 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
742 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +0000743}
744
Geoff Berryb96d3b22016-06-01 21:30:40 +0000745bool MemorySSAWrapperPass::runOnFunction(Function &F) {
746 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
747 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
748 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +0000749 return false;
750}
751
Geoff Berryb96d3b22016-06-01 21:30:40 +0000752void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +0000753
Geoff Berryb96d3b22016-06-01 21:30:40 +0000754void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +0000755 MSSA->print(OS);
756}
757
George Burgess IVe1100f52016-02-02 22:46:49 +0000758MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
759
760CachingMemorySSAWalker::CachingMemorySSAWalker(MemorySSA *M, AliasAnalysis *A,
761 DominatorTree *D)
762 : MemorySSAWalker(M), AA(A), DT(D) {}
763
764CachingMemorySSAWalker::~CachingMemorySSAWalker() {}
765
766struct CachingMemorySSAWalker::UpwardsMemoryQuery {
767 // True if we saw a phi whose predecessor was a backedge
768 bool SawBackedgePhi;
769 // True if our original query started off as a call
770 bool IsCall;
771 // The pointer location we started the query with. This will be empty if
772 // IsCall is true.
773 MemoryLocation StartingLoc;
774 // This is the instruction we were querying about.
775 const Instruction *Inst;
776 // Set of visited Instructions for this query.
777 DenseSet<MemoryAccessPair> Visited;
George Burgess IV49cad7d2016-03-30 03:12:08 +0000778 // Vector of visited call accesses for this query. This is separated out
779 // because you can always cache and lookup the result of call queries (IE when
780 // IsCall == true) for every call in the chain. The calls have no AA location
George Burgess IVe1100f52016-02-02 22:46:49 +0000781 // associated with them with them, and thus, no context dependence.
George Burgess IV49cad7d2016-03-30 03:12:08 +0000782 SmallVector<const MemoryAccess *, 32> VisitedCalls;
George Burgess IVe1100f52016-02-02 22:46:49 +0000783 // The MemoryAccess we actually got called with, used to test local domination
784 const MemoryAccess *OriginalAccess;
785 // The Datalayout for the module we started in
786 const DataLayout *DL;
787
788 UpwardsMemoryQuery()
789 : SawBackedgePhi(false), IsCall(false), Inst(nullptr),
790 OriginalAccess(nullptr), DL(nullptr) {}
791};
792
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000793void CachingMemorySSAWalker::invalidateInfo(MemoryAccess *MA) {
794
795 // TODO: We can do much better cache invalidation with differently stored
796 // caches. For now, for MemoryUses, we simply remove them
797 // from the cache, and kill the entire call/non-call cache for everything
798 // else. The problem is for phis or defs, currently we'd need to follow use
799 // chains down and invalidate anything below us in the chain that currently
800 // terminates at this access.
801
802 // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse
803 // is by definition never a barrier, so nothing in the cache could point to
804 // this use. In that case, we only need invalidate the info for the use
805 // itself.
806
807 if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) {
808 UpwardsMemoryQuery Q;
809 Instruction *I = MU->getMemoryInst();
810 Q.IsCall = bool(ImmutableCallSite(I));
811 Q.Inst = I;
812 if (!Q.IsCall)
813 Q.StartingLoc = MemoryLocation::get(I);
814 doCacheRemove(MA, Q, Q.StartingLoc);
Geoff Berry9fe26e62016-04-22 14:44:10 +0000815 } else {
816 // If it is not a use, the best we can do right now is destroy the cache.
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000817 CachedUpwardsClobberingCall.clear();
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000818 CachedUpwardsClobberingAccess.clear();
Geoff Berry9fe26e62016-04-22 14:44:10 +0000819 }
820
Filipe Cabecinhas0da99372016-04-29 15:22:48 +0000821#ifdef EXPENSIVE_CHECKS
Geoff Berry9fe26e62016-04-22 14:44:10 +0000822 // Run this only when expensive checks are enabled.
823 verifyRemoved(MA);
824#endif
Daniel Berlin83fc77b2016-03-01 18:46:54 +0000825}
826
George Burgess IVe1100f52016-02-02 22:46:49 +0000827void CachingMemorySSAWalker::doCacheRemove(const MemoryAccess *M,
828 const UpwardsMemoryQuery &Q,
829 const MemoryLocation &Loc) {
830 if (Q.IsCall)
831 CachedUpwardsClobberingCall.erase(M);
832 else
833 CachedUpwardsClobberingAccess.erase({M, Loc});
834}
835
836void CachingMemorySSAWalker::doCacheInsert(const MemoryAccess *M,
837 MemoryAccess *Result,
838 const UpwardsMemoryQuery &Q,
839 const MemoryLocation &Loc) {
George Burgess IV1b1fef32016-04-29 18:42:55 +0000840 // This is fine for Phis, since there are times where we can't optimize them.
841 // Making a def its own clobber is never correct, though.
842 assert((Result != M || isa<MemoryPhi>(M)) &&
843 "Something can't clobber itself!");
George Burgess IVe1100f52016-02-02 22:46:49 +0000844 ++NumClobberCacheInserts;
845 if (Q.IsCall)
846 CachedUpwardsClobberingCall[M] = Result;
847 else
848 CachedUpwardsClobberingAccess[{M, Loc}] = Result;
849}
850
851MemoryAccess *CachingMemorySSAWalker::doCacheLookup(const MemoryAccess *M,
852 const UpwardsMemoryQuery &Q,
853 const MemoryLocation &Loc) {
854 ++NumClobberCacheLookups;
855 MemoryAccess *Result = nullptr;
856
857 if (Q.IsCall)
858 Result = CachedUpwardsClobberingCall.lookup(M);
859 else
860 Result = CachedUpwardsClobberingAccess.lookup({M, Loc});
861
862 if (Result)
863 ++NumClobberCacheHits;
864 return Result;
865}
866
867bool CachingMemorySSAWalker::instructionClobbersQuery(
868 const MemoryDef *MD, UpwardsMemoryQuery &Q,
869 const MemoryLocation &Loc) const {
870 Instruction *DefMemoryInst = MD->getMemoryInst();
871 assert(DefMemoryInst && "Defining instruction not actually an instruction");
872
873 if (!Q.IsCall)
874 return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod;
875
876 // If this is a call, mark it for caching
877 if (ImmutableCallSite(DefMemoryInst))
George Burgess IV49cad7d2016-03-30 03:12:08 +0000878 Q.VisitedCalls.push_back(MD);
George Burgess IVe1100f52016-02-02 22:46:49 +0000879 ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst));
880 return I != MRI_NoModRef;
881}
882
883MemoryAccessPair CachingMemorySSAWalker::UpwardsDFSWalk(
884 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
885 UpwardsMemoryQuery &Q, bool FollowingBackedge) {
886 MemoryAccess *ModifyingAccess = nullptr;
887
888 auto DFI = df_begin(StartingAccess);
889 for (auto DFE = df_end(StartingAccess); DFI != DFE;) {
890 MemoryAccess *CurrAccess = *DFI;
891 if (MSSA->isLiveOnEntryDef(CurrAccess))
892 return {CurrAccess, Loc};
George Burgess IV1b1fef32016-04-29 18:42:55 +0000893 // If this is a MemoryDef, check whether it clobbers our current query. This
894 // needs to be done before consulting the cache, because the cache reports
895 // the clobber for CurrAccess. If CurrAccess is a clobber for this query,
896 // and we ask the cache for information first, then we might skip this
897 // clobber, which is bad.
George Burgess IVe1100f52016-02-02 22:46:49 +0000898 if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) {
899 // If we hit the top, stop following this path.
900 // While we can do lookups, we can't sanely do inserts here unless we were
901 // to track everything we saw along the way, since we don't know where we
902 // will stop.
903 if (instructionClobbersQuery(MD, Q, Loc)) {
904 ModifyingAccess = CurrAccess;
905 break;
906 }
907 }
George Burgess IV1b1fef32016-04-29 18:42:55 +0000908 if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc))
909 return {CacheResult, Loc};
George Burgess IVe1100f52016-02-02 22:46:49 +0000910
911 // We need to know whether it is a phi so we can track backedges.
912 // Otherwise, walk all upward defs.
913 if (!isa<MemoryPhi>(CurrAccess)) {
914 ++DFI;
915 continue;
916 }
917
George Burgess IV0e489862016-03-23 18:31:55 +0000918#ifndef NDEBUG
919 // The loop below visits the phi's children for us. Because phis are the
920 // only things with multiple edges, skipping the children should always lead
921 // us to the end of the loop.
922 //
923 // Use a copy of DFI because skipChildren would kill our search stack, which
924 // would make caching anything on the way back impossible.
925 auto DFICopy = DFI;
926 assert(DFICopy.skipChildren() == DFE &&
927 "Skipping phi's children doesn't end the DFS?");
928#endif
929
George Burgess IV82ee9422016-03-30 00:26:26 +0000930 const MemoryAccessPair PHIPair(CurrAccess, Loc);
931
932 // Don't try to optimize this phi again if we've already tried to do so.
933 if (!Q.Visited.insert(PHIPair).second) {
934 ModifyingAccess = CurrAccess;
935 break;
936 }
937
George Burgess IV49cad7d2016-03-30 03:12:08 +0000938 std::size_t InitialVisitedCallSize = Q.VisitedCalls.size();
939
George Burgess IVe1100f52016-02-02 22:46:49 +0000940 // Recurse on PHI nodes, since we need to change locations.
941 // TODO: Allow graphtraits on pairs, which would turn this whole function
942 // into a normal single depth first walk.
943 MemoryAccess *FirstDef = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +0000944 for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end();
945 MPI != MPE; ++MPI) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000946 bool Backedge =
947 !FollowingBackedge &&
948 DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock());
949
950 MemoryAccessPair CurrentPair =
951 UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge);
952 // All the phi arguments should reach the same point if we can bypass
953 // this phi. The alternative is that they hit this phi node, which
954 // means we can skip this argument.
955 if (FirstDef && CurrentPair.first != PHIPair.first &&
956 CurrentPair.first != FirstDef) {
957 ModifyingAccess = CurrAccess;
958 break;
959 }
960
961 if (!FirstDef)
962 FirstDef = CurrentPair.first;
George Burgess IVe1100f52016-02-02 22:46:49 +0000963 }
964
George Burgess IV0e489862016-03-23 18:31:55 +0000965 // If we exited the loop early, go with the result it gave us.
966 if (!ModifyingAccess) {
George Burgess IV82ee9422016-03-30 00:26:26 +0000967 assert(FirstDef && "Found a Phi with no upward defs?");
968 ModifyingAccess = FirstDef;
George Burgess IV49cad7d2016-03-30 03:12:08 +0000969 } else {
970 // If we can't optimize this Phi, then we can't safely cache any of the
971 // calls we visited when trying to optimize it. Wipe them out now.
972 Q.VisitedCalls.resize(InitialVisitedCallSize);
George Burgess IV0e489862016-03-23 18:31:55 +0000973 }
974 break;
George Burgess IVe1100f52016-02-02 22:46:49 +0000975 }
976
977 if (!ModifyingAccess)
978 return {MSSA->getLiveOnEntryDef(), Q.StartingLoc};
979
George Burgess IV0e489862016-03-23 18:31:55 +0000980 const BasicBlock *OriginalBlock = StartingAccess->getBlock();
George Burgess IV1b1fef32016-04-29 18:42:55 +0000981 assert(DFI.getPathLength() > 0 && "We dropped our path?");
George Burgess IVe1100f52016-02-02 22:46:49 +0000982 unsigned N = DFI.getPathLength();
George Burgess IV1b1fef32016-04-29 18:42:55 +0000983 // If we found a clobbering def, the last element in the path will be our
984 // clobber, so we don't want to cache that to itself. OTOH, if we optimized a
985 // phi, we can add the last thing in the path to the cache, since that won't
986 // be the result.
987 if (DFI.getPath(N - 1) == ModifyingAccess)
988 --N;
989 for (; N > 1; --N) {
George Burgess IV0e489862016-03-23 18:31:55 +0000990 MemoryAccess *CacheAccess = DFI.getPath(N - 1);
991 BasicBlock *CurrBlock = CacheAccess->getBlock();
George Burgess IVe1100f52016-02-02 22:46:49 +0000992 if (!FollowingBackedge)
George Burgess IV0e489862016-03-23 18:31:55 +0000993 doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
George Burgess IVe1100f52016-02-02 22:46:49 +0000994 if (DT->dominates(CurrBlock, OriginalBlock) &&
995 (CurrBlock != OriginalBlock || !FollowingBackedge ||
George Burgess IV0e489862016-03-23 18:31:55 +0000996 MSSA->locallyDominates(CacheAccess, StartingAccess)))
George Burgess IVe1100f52016-02-02 22:46:49 +0000997 break;
998 }
999
1000 // Cache everything else on the way back. The caller should cache
George Burgess IV1b1fef32016-04-29 18:42:55 +00001001 // StartingAccess for us.
1002 for (; N > 1; --N) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001003 MemoryAccess *CacheAccess = DFI.getPath(N - 1);
1004 doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
1005 }
1006 assert(Q.Visited.size() < 1000 && "Visited too much");
1007
1008 return {ModifyingAccess, Loc};
1009}
1010
1011/// \brief Walk the use-def chains starting at \p MA and find
1012/// the MemoryAccess that actually clobbers Loc.
1013///
1014/// \returns our clobbering memory access
1015MemoryAccess *
1016CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
1017 UpwardsMemoryQuery &Q) {
1018 return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first;
1019}
1020
1021MemoryAccess *
1022CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
1023 MemoryLocation &Loc) {
1024 if (isa<MemoryPhi>(StartingAccess))
1025 return StartingAccess;
1026
1027 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
1028 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
1029 return StartingUseOrDef;
1030
1031 Instruction *I = StartingUseOrDef->getMemoryInst();
1032
1033 // Conservatively, fences are always clobbers, so don't perform the walk if we
1034 // hit a fence.
1035 if (isa<FenceInst>(I))
1036 return StartingUseOrDef;
1037
1038 UpwardsMemoryQuery Q;
1039 Q.OriginalAccess = StartingUseOrDef;
1040 Q.StartingLoc = Loc;
1041 Q.Inst = StartingUseOrDef->getMemoryInst();
1042 Q.IsCall = false;
1043 Q.DL = &Q.Inst->getModule()->getDataLayout();
1044
1045 if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc))
1046 return CacheResult;
1047
1048 // Unlike the other function, do not walk to the def of a def, because we are
1049 // handed something we already believe is the clobbering access.
1050 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
1051 ? StartingUseOrDef->getDefiningAccess()
1052 : StartingUseOrDef;
1053
1054 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IV1b1fef32016-04-29 18:42:55 +00001055 // Only cache this if it wouldn't make Clobber point to itself.
1056 if (Clobber != StartingAccess)
1057 doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc);
George Burgess IVe1100f52016-02-02 22:46:49 +00001058 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
1059 DEBUG(dbgs() << *StartingUseOrDef << "\n");
1060 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
1061 DEBUG(dbgs() << *Clobber << "\n");
1062 return Clobber;
1063}
1064
1065MemoryAccess *
1066CachingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
1067 // There should be no way to lookup an instruction and get a phi as the
1068 // access, since we only map BB's to PHI's. So, this must be a use or def.
1069 auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I));
1070
1071 // We can't sanely do anything with a FenceInst, they conservatively
1072 // clobber all memory, and have no locations to get pointers from to
1073 // try to disambiguate
1074 if (isa<FenceInst>(I))
1075 return StartingAccess;
1076
1077 UpwardsMemoryQuery Q;
1078 Q.OriginalAccess = StartingAccess;
1079 Q.IsCall = bool(ImmutableCallSite(I));
1080 if (!Q.IsCall)
1081 Q.StartingLoc = MemoryLocation::get(I);
1082 Q.Inst = I;
1083 Q.DL = &Q.Inst->getModule()->getDataLayout();
1084 if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc))
1085 return CacheResult;
1086
1087 // Start with the thing we already think clobbers this location
1088 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
1089
1090 // At this point, DefiningAccess may be the live on entry def.
1091 // If it is, we will not get a better result.
1092 if (MSSA->isLiveOnEntryDef(DefiningAccess))
1093 return DefiningAccess;
1094
1095 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
George Burgess IV1b1fef32016-04-29 18:42:55 +00001096 // DFS won't cache a result for DefiningAccess. So, if DefiningAccess isn't
1097 // our clobber, be sure that it gets a cache entry, too.
1098 if (Result != DefiningAccess)
1099 doCacheInsert(DefiningAccess, Result, Q, Q.StartingLoc);
George Burgess IVe1100f52016-02-02 22:46:49 +00001100 doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc);
1101 // TODO: When this implementation is more mature, we may want to figure out
1102 // what this additional caching buys us. It's most likely A Good Thing.
1103 if (Q.IsCall)
1104 for (const MemoryAccess *MA : Q.VisitedCalls)
George Burgess IV1b1fef32016-04-29 18:42:55 +00001105 if (MA != Result)
1106 doCacheInsert(MA, Result, Q, Q.StartingLoc);
George Burgess IVe1100f52016-02-02 22:46:49 +00001107
1108 DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
1109 DEBUG(dbgs() << *DefiningAccess << "\n");
1110 DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
1111 DEBUG(dbgs() << *Result << "\n");
1112
1113 return Result;
1114}
1115
Geoff Berry9fe26e62016-04-22 14:44:10 +00001116// Verify that MA doesn't exist in any of the caches.
1117void CachingMemorySSAWalker::verifyRemoved(MemoryAccess *MA) {
1118#ifndef NDEBUG
1119 for (auto &P : CachedUpwardsClobberingAccess)
1120 assert(P.first.first != MA && P.second != MA &&
1121 "Found removed MemoryAccess in cache.");
1122 for (auto &P : CachedUpwardsClobberingCall)
1123 assert(P.first != MA && P.second != MA &&
1124 "Found removed MemoryAccess in cache.");
1125#endif // !NDEBUG
1126}
1127
George Burgess IVe1100f52016-02-02 22:46:49 +00001128MemoryAccess *
1129DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
1130 MemoryAccess *MA = MSSA->getMemoryAccess(I);
1131 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
1132 return Use->getDefiningAccess();
1133 return MA;
1134}
1135
1136MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
1137 MemoryAccess *StartingAccess, MemoryLocation &) {
1138 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
1139 return Use->getDefiningAccess();
1140 return StartingAccess;
1141}
1142}