Jan Vesely | 9f71729 | 2017-02-25 02:46:53 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | * THE SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #include <clc/clc.h> |
| 24 | |
| 25 | #include "math.h" |
| 26 | #include "tables.h" |
| 27 | #include "../clcmacro.h" |
| 28 | |
| 29 | _CLC_OVERLOAD _CLC_DEF float sinh(float x) |
| 30 | { |
| 31 | // After dealing with special cases the computation is split into regions as follows. |
| 32 | // abs(x) >= max_sinh_arg: |
| 33 | // sinh(x) = sign(x)*Inf |
| 34 | // abs(x) >= small_threshold: |
| 35 | // sinh(x) = sign(x)*exp(abs(x))/2 computed using the splitexp and scaleDouble functions as for exp_amd(). |
| 36 | // abs(x) < small_threshold: |
| 37 | // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0))) |
| 38 | // sinh(x) is then sign(x)*z. |
| 39 | |
| 40 | const float max_sinh_arg = 0x1.65a9fap+6f; |
| 41 | const float small_threshold = 0x1.0a2b24p+3f; |
| 42 | |
| 43 | uint ux = as_uint(x); |
| 44 | uint aux = ux & EXSIGNBIT_SP32; |
| 45 | uint xs = ux ^ aux; |
| 46 | float y = as_float(aux); |
| 47 | |
| 48 | // We find the integer part y0 of y and the increment dy = y - y0. We then compute |
| 49 | // z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy) |
| 50 | // where sinh(y0) and cosh(y0) are tabulated above. |
| 51 | int ind = (int) y; |
| 52 | ind = (uint)ind > 36U ? 0 : ind; |
| 53 | |
| 54 | float dy = y - ind; |
| 55 | float dy2 = dy * dy; |
| 56 | |
| 57 | float sdy = mad(dy2, |
| 58 | mad(dy2, |
| 59 | mad(dy2, |
| 60 | mad(dy2, |
| 61 | mad(dy2, |
| 62 | mad(dy2, 0.7746188980094184251527126e-12f, 0.160576793121939886190847e-9f), |
| 63 | 0.250521176994133472333666e-7f), |
| 64 | 0.275573191913636406057211e-5f), |
| 65 | 0.198412698413242405162014e-3f), |
| 66 | 0.833333333333329931873097e-2f), |
| 67 | 0.166666666666666667013899e0f); |
| 68 | sdy = mad(sdy, dy*dy2, dy); |
| 69 | |
| 70 | float cdy = mad(dy2, |
| 71 | mad(dy2, |
| 72 | mad(dy2, |
| 73 | mad(dy2, |
| 74 | mad(dy2, |
| 75 | mad(dy2, 0.1163921388172173692062032e-10f, 0.208744349831471353536305e-8f), |
| 76 | 0.275573350756016588011357e-6f), |
| 77 | 0.248015872460622433115785e-4f), |
| 78 | 0.138888888889814854814536e-2f), |
| 79 | 0.416666666666660876512776e-1f), |
| 80 | 0.500000000000000005911074e0f); |
| 81 | cdy = mad(cdy, dy2, 1.0f); |
| 82 | |
| 83 | float2 tv = USE_TABLE(sinhcosh_tbl, ind); |
| 84 | float z = mad(tv.s1, sdy, tv.s0 * cdy); |
| 85 | z = as_float(xs | as_uint(z)); |
| 86 | |
| 87 | // When y is large enough so that the negative exponential is negligible, |
| 88 | // so sinh(y) is approximated by sign(x)*exp(y)/2. |
| 89 | float t = exp(y - 0x1.62e500p-1f); |
| 90 | float zsmall = mad(0x1.a0210ep-18f, t, t); |
| 91 | zsmall = as_float(xs | as_uint(zsmall)); |
| 92 | z = y >= small_threshold ? zsmall : z; |
| 93 | |
| 94 | // Corner cases |
| 95 | float zinf = as_float(PINFBITPATT_SP32 | xs); |
| 96 | z = y >= max_sinh_arg ? zinf : z; |
| 97 | z = aux > PINFBITPATT_SP32 | aux < 0x38800000U ? x : z; |
| 98 | |
| 99 | return z; |
| 100 | } |
| 101 | |
| 102 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, sinh, float); |
| 103 | |
| 104 | #ifdef cl_khr_fp64 |
| 105 | #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| 106 | |
| 107 | _CLC_OVERLOAD _CLC_DEF double sinh(double x) |
| 108 | { |
| 109 | // After dealing with special cases the computation is split into |
| 110 | // regions as follows: |
| 111 | // |
| 112 | // abs(x) >= max_sinh_arg: |
| 113 | // sinh(x) = sign(x)*Inf |
| 114 | // |
| 115 | // abs(x) >= small_threshold: |
| 116 | // sinh(x) = sign(x)*exp(abs(x))/2 computed using the |
| 117 | // splitexp and scaleDouble functions as for exp_amd(). |
| 118 | // |
| 119 | // abs(x) < small_threshold: |
| 120 | // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0))) |
| 121 | // sinh(x) is then sign(x)*z. |
| 122 | |
| 123 | const double max_sinh_arg = 7.10475860073943977113e+02; // 0x408633ce8fb9f87e |
| 124 | |
| 125 | // This is where exp(-x) is insignificant compared to exp(x) = ln(2^27) |
| 126 | const double small_threshold = 0x1.2b708872320e2p+4; |
| 127 | |
| 128 | double y = fabs(x); |
| 129 | |
| 130 | // In this range we find the integer part y0 of y |
| 131 | // and the increment dy = y - y0. We then compute |
| 132 | // z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy) |
| 133 | // where sinh(y0) and cosh(y0) are obtained from tables |
| 134 | |
| 135 | int ind = min((int)y, 36); |
| 136 | double dy = y - ind; |
| 137 | double dy2 = dy * dy; |
| 138 | |
| 139 | double sdy = dy * dy2 * |
| 140 | fma(dy2, |
| 141 | fma(dy2, |
| 142 | fma(dy2, |
| 143 | fma(dy2, |
| 144 | fma(dy2, |
| 145 | fma(dy2, 0.7746188980094184251527126e-12, 0.160576793121939886190847e-9), |
| 146 | 0.250521176994133472333666e-7), |
| 147 | 0.275573191913636406057211e-5), |
| 148 | 0.198412698413242405162014e-3), |
| 149 | 0.833333333333329931873097e-2), |
| 150 | 0.166666666666666667013899e0); |
| 151 | |
| 152 | double cdy = dy2 * fma(dy2, |
| 153 | fma(dy2, |
| 154 | fma(dy2, |
| 155 | fma(dy2, |
| 156 | fma(dy2, |
| 157 | fma(dy2, 0.1163921388172173692062032e-10, 0.208744349831471353536305e-8), |
| 158 | 0.275573350756016588011357e-6), |
| 159 | 0.248015872460622433115785e-4), |
| 160 | 0.138888888889814854814536e-2), |
| 161 | 0.416666666666660876512776e-1), |
| 162 | 0.500000000000000005911074e0); |
| 163 | |
| 164 | // At this point sinh(dy) is approximated by dy + sdy. |
| 165 | // Shift some significant bits from dy to sdy. |
| 166 | double sdy1 = as_double(as_ulong(dy) & 0xfffffffff8000000UL); |
| 167 | double sdy2 = sdy + (dy - sdy1); |
| 168 | |
| 169 | double2 tv = USE_TABLE(cosh_tbl, ind); |
| 170 | double cl = tv.s0; |
| 171 | double ct = tv.s1; |
| 172 | tv = USE_TABLE(sinh_tbl, ind); |
| 173 | double sl = tv.s0; |
| 174 | double st = tv.s1; |
| 175 | |
| 176 | double z = fma(cl, sdy1, fma(sl, cdy, fma(cl, sdy2, fma(ct, sdy1, fma(st, cdy, ct*sdy2)) + st))) + sl; |
| 177 | |
| 178 | // Other cases |
| 179 | z = (y < 0x1.0p-28) | isnan(x) | isinf(x) ? y : z; |
| 180 | |
| 181 | double t = exp(y - 0x1.62e42fefa3800p-1); |
| 182 | t = fma(t, -0x1.ef35793c76641p-45, t); |
| 183 | z = y >= small_threshold ? t : z; |
| 184 | z = y >= max_sinh_arg ? as_double(PINFBITPATT_DP64) : z; |
| 185 | |
| 186 | return copysign(z, x); |
| 187 | } |
| 188 | |
| 189 | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, sinh, double) |
| 190 | |
| 191 | #endif |