blob: d0d4554d75600c9b5632db0d4ff32fe31aafbf6c [file] [log] [blame]
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +00001//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===//
2//
Chandler Carruth127252b2019-02-11 08:25:19 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +00006//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_OBJCOPY_MACHO_OBJECT_H
10#define LLVM_OBJCOPY_MACHO_OBJECT_H
11
12#include "llvm/ADT/Optional.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/BinaryFormat/MachO.h"
Seiya Nutaf923d9b2019-06-21 00:21:50 +000015#include "llvm/MC/StringTableBuilder.h"
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000016#include "llvm/ObjectYAML/DWARFYAML.h"
Seiya Nuta9e119ad2019-12-16 14:05:06 +090017#include "llvm/Support/StringSaver.h"
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000018#include "llvm/Support/YAMLTraits.h"
19#include <cstdint>
20#include <string>
21#include <vector>
22
23namespace llvm {
24namespace objcopy {
25namespace macho {
26
27struct MachHeader {
28 uint32_t Magic;
29 uint32_t CPUType;
30 uint32_t CPUSubType;
31 uint32_t FileType;
32 uint32_t NCmds;
33 uint32_t SizeOfCmds;
34 uint32_t Flags;
35 uint32_t Reserved = 0;
36};
37
Seiya Nutaf923d9b2019-06-21 00:21:50 +000038struct RelocationInfo;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000039struct Section {
Seiya Nutab728e532019-06-08 01:22:54 +000040 std::string Segname;
Seiya Nuta9e119ad2019-12-16 14:05:06 +090041 std::string Sectname;
Seiya Nuta7f19dd12019-10-28 15:40:37 +090042 // CanonicalName is a string formatted as “<Segname>,<Sectname>".
43 std::string CanonicalName;
Seiya Nuta9e119ad2019-12-16 14:05:06 +090044 uint64_t Addr = 0;
45 uint64_t Size = 0;
46 uint32_t Offset = 0;
47 uint32_t Align = 0;
48 uint32_t RelOff = 0;
49 uint32_t NReloc = 0;
50 uint32_t Flags = 0;
51 uint32_t Reserved1 = 0;
52 uint32_t Reserved2 = 0;
53 uint32_t Reserved3 = 0;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000054 StringRef Content;
Seiya Nutaf923d9b2019-06-21 00:21:50 +000055 std::vector<RelocationInfo> Relocations;
Seiya Nutab728e532019-06-08 01:22:54 +000056
Seiya Nuta9e119ad2019-12-16 14:05:06 +090057 Section(StringRef SegName, StringRef SectName)
Benjamin Krameradcd0262020-01-28 20:23:46 +010058 : Segname(std::string(SegName)), Sectname(std::string(SectName)),
Seiya Nuta9e119ad2019-12-16 14:05:06 +090059 CanonicalName((Twine(SegName) + Twine(',') + SectName).str()) {}
60
61 Section(StringRef SegName, StringRef SectName, StringRef Content)
Benjamin Krameradcd0262020-01-28 20:23:46 +010062 : Segname(std::string(SegName)), Sectname(std::string(SectName)),
Seiya Nuta9e119ad2019-12-16 14:05:06 +090063 CanonicalName((Twine(SegName) + Twine(',') + SectName).str()),
64 Content(Content) {}
65
Seiya Nutab728e532019-06-08 01:22:54 +000066 MachO::SectionType getType() const {
67 return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE);
68 }
69
70 bool isVirtualSection() const {
71 return (getType() == MachO::S_ZEROFILL ||
72 getType() == MachO::S_GB_ZEROFILL ||
73 getType() == MachO::S_THREAD_LOCAL_ZEROFILL);
74 }
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000075};
76
77struct LoadCommand {
78 // The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h
79 // and it is a union of all the structs corresponding to various load
80 // commands.
81 MachO::macho_load_command MachOLoadCommand;
82
83 // The raw content of the payload of the load command (located right after the
84 // corresponding struct). In some cases it is either empty or can be
85 // copied-over without digging into its structure.
Alexander Shaposhnikovc54959c2019-11-19 23:30:52 -080086 std::vector<uint8_t> Payload;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000087
88 // Some load commands can contain (inside the payload) an array of sections,
89 // though the contents of the sections are stored separately. The struct
90 // Section describes only sections' metadata and where to find the
91 // corresponding content inside the binary.
Alexander Shaposhnikovdc046c72020-02-21 13:18:36 -080092 std::vector<std::unique_ptr<Section>> Sections;
Seiya Nuta9e119ad2019-12-16 14:05:06 +090093
94 // Returns the segment name if the load command is a segment command.
95 Optional<StringRef> getSegmentName() const;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000096};
97
Seiya Nutaf923d9b2019-06-21 00:21:50 +000098// A symbol information. Fields which starts with "n_" are same as them in the
99// nlist.
100struct SymbolEntry {
101 std::string Name;
Seiya Nuta9bbf2a12019-10-31 13:51:11 +0900102 bool Referenced = false;
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000103 uint32_t Index;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000104 uint8_t n_type;
105 uint8_t n_sect;
106 uint16_t n_desc;
107 uint64_t n_value;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000108
109 bool isExternalSymbol() const {
110 return n_type & ((MachO::N_EXT | MachO::N_PEXT));
111 }
112
113 bool isLocalSymbol() const { return !isExternalSymbol(); }
114
115 bool isUndefinedSymbol() const {
116 return (n_type & MachO::N_TYPE) == MachO::N_UNDF;
117 }
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000118};
119
120/// The location of the symbol table inside the binary is described by LC_SYMTAB
121/// load command.
122struct SymbolTable {
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000123 std::vector<std::unique_ptr<SymbolEntry>> Symbols;
124
Fangrui Song28a5dc72019-11-13 13:10:15 -0800125 using iterator = pointee_iterator<
126 std::vector<std::unique_ptr<SymbolEntry>>::const_iterator>;
127
128 iterator begin() const { return iterator(Symbols.begin()); }
129 iterator end() const { return iterator(Symbols.end()); }
130
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000131 const SymbolEntry *getSymbolByIndex(uint32_t Index) const;
Seiya Nuta9bbf2a12019-10-31 13:51:11 +0900132 SymbolEntry *getSymbolByIndex(uint32_t Index);
133 void removeSymbols(
134 function_ref<bool(const std::unique_ptr<SymbolEntry> &)> ToRemove);
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000135};
136
Seiya Nuta1e589f62019-10-30 15:12:17 +0900137struct IndirectSymbolEntry {
138 // The original value in an indirect symbol table. Higher bits encode extra
139 // information (INDIRECT_SYMBOL_LOCAL and INDIRECT_SYMBOL_ABS).
140 uint32_t OriginalIndex;
141 /// The Symbol referenced by this entry. It's None if the index is
142 /// INDIRECT_SYMBOL_LOCAL or INDIRECT_SYMBOL_ABS.
Seiya Nuta9bbf2a12019-10-31 13:51:11 +0900143 Optional<SymbolEntry *> Symbol;
Seiya Nuta1e589f62019-10-30 15:12:17 +0900144
Seiya Nuta9bbf2a12019-10-31 13:51:11 +0900145 IndirectSymbolEntry(uint32_t OriginalIndex, Optional<SymbolEntry *> Symbol)
Seiya Nuta1e589f62019-10-30 15:12:17 +0900146 : OriginalIndex(OriginalIndex), Symbol(Symbol) {}
147};
148
Seiya Nuta552bcb82019-08-19 21:05:31 +0000149struct IndirectSymbolTable {
Seiya Nuta1e589f62019-10-30 15:12:17 +0900150 std::vector<IndirectSymbolEntry> Symbols;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000151};
152
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000153/// The location of the string table inside the binary is described by LC_SYMTAB
154/// load command.
155struct StringTable {
156 std::vector<std::string> Strings;
157};
158
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000159struct RelocationInfo {
160 const SymbolEntry *Symbol;
161 // True if Info is a scattered_relocation_info.
162 bool Scattered;
163 MachO::any_relocation_info Info;
Lang Hamescc0ec3f2020-04-16 18:21:41 -0700164
165 unsigned getPlainRelocationSymbolNum(bool IsLittleEndian) {
166 if (IsLittleEndian)
167 return Info.r_word1 & 0xffffff;
168 return Info.r_word1 >> 8;
169 }
170
171 void setPlainRelocationSymbolNum(unsigned SymbolNum, bool IsLittleEndian) {
172 assert(SymbolNum < (1 << 24) && "SymbolNum out of range");
173 if (IsLittleEndian)
174 Info.r_word1 = (Info.r_word1 & ~0x00ffffff) | SymbolNum;
175 else
176 Info.r_word1 = (Info.r_word1 & ~0xffffff00) | (SymbolNum << 8);
177 }
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000178};
179
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000180/// The location of the rebase info inside the binary is described by
181/// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at
182/// an address different from its preferred address. The rebase information is
183/// a stream of byte sized opcodes whose symbolic names start with
184/// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples:
185/// <seg-index, seg-offset, type>
186/// The opcodes are a compressed way to encode the table by only
187/// encoding when a column changes. In addition simple patterns
188/// like "every n'th offset for m times" can be encoded in a few
189/// bytes.
190struct RebaseInfo {
191 // At the moment we do not parse this info (and it is simply copied over),
192 // but the proper support will be added later.
193 ArrayRef<uint8_t> Opcodes;
194};
195
196/// The location of the bind info inside the binary is described by
197/// LC_DYLD_INFO load command. Dyld binds an image during the loading process,
198/// if the image requires any pointers to be initialized to symbols in other
199/// images. The bind information is a stream of byte sized opcodes whose
200/// symbolic names start with BIND_OPCODE_. Conceptually the bind information is
201/// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal,
202/// symbol-name, addend> The opcodes are a compressed way to encode the table by
203/// only encoding when a column changes. In addition simple patterns like for
204/// runs of pointers initialized to the same value can be encoded in a few
205/// bytes.
206struct BindInfo {
207 // At the moment we do not parse this info (and it is simply copied over),
208 // but the proper support will be added later.
209 ArrayRef<uint8_t> Opcodes;
210};
211
212/// The location of the weak bind info inside the binary is described by
213/// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols
214/// so that all images in the process use the same copy of some code/data. This
215/// step is done after binding. The content of the weak_bind info is an opcode
216/// stream like the bind_info. But it is sorted alphabetically by symbol name.
217/// This enable dyld to walk all images with weak binding information in order
218/// and look for collisions. If there are no collisions, dyld does no updating.
219/// That means that some fixups are also encoded in the bind_info. For
220/// instance, all calls to "operator new" are first bound to libstdc++.dylib
221/// using the information in bind_info. Then if some image overrides operator
222/// new that is detected when the weak_bind information is processed and the
223/// call to operator new is then rebound.
224struct WeakBindInfo {
225 // At the moment we do not parse this info (and it is simply copied over),
226 // but the proper support will be added later.
227 ArrayRef<uint8_t> Opcodes;
228};
229
230/// The location of the lazy bind info inside the binary is described by
231/// LC_DYLD_INFO load command. Some uses of external symbols do not need to be
232/// bound immediately. Instead they can be lazily bound on first use. The
233/// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal
234/// use is that dyld ignores the lazy_bind section when loading an image.
235/// Instead the static linker arranged for the lazy pointer to initially point
236/// to a helper function which pushes the offset into the lazy_bind area for the
237/// symbol needing to be bound, then jumps to dyld which simply adds the offset
238/// to lazy_bind_off to get the information on what to bind.
239struct LazyBindInfo {
240 ArrayRef<uint8_t> Opcodes;
241};
242
243/// The location of the export info inside the binary is described by
244/// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a
245/// trie. This is a compact representation that factors out common prefixes. It
246/// also reduces LINKEDIT pages in RAM because it encodes all information (name,
247/// address, flags) in one small, contiguous range. The export area is a stream
248/// of nodes. The first node sequentially is the start node for the trie. Nodes
249/// for a symbol start with a uleb128 that is the length of the exported symbol
250/// information for the string so far. If there is no exported symbol, the node
251/// starts with a zero byte. If there is exported info, it follows the length.
252/// First is a uleb128 containing flags. Normally, it is followed by
253/// a uleb128 encoded offset which is location of the content named
254/// by the symbol from the mach_header for the image. If the flags
255/// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
256/// a uleb128 encoded library ordinal, then a zero terminated
257/// UTF8 string. If the string is zero length, then the symbol
258/// is re-export from the specified dylib with the same name.
259/// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
260/// the flags is two uleb128s: the stub offset and the resolver offset.
261/// The stub is used by non-lazy pointers. The resolver is used
262/// by lazy pointers and must be called to get the actual address to use.
263/// After the optional exported symbol information is a byte of
264/// how many edges (0-255) that this node has leaving it,
265/// followed by each edge.
266/// Each edge is a zero terminated UTF8 of the addition chars
267/// in the symbol, followed by a uleb128 offset for the node that
268/// edge points to.
269struct ExportInfo {
270 ArrayRef<uint8_t> Trie;
271};
272
Seiya Nuta552bcb82019-08-19 21:05:31 +0000273struct LinkData {
274 ArrayRef<uint8_t> Data;
275};
276
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000277struct Object {
278 MachHeader Header;
279 std::vector<LoadCommand> LoadCommands;
280
281 SymbolTable SymTable;
282 StringTable StrTable;
283
284 RebaseInfo Rebases;
285 BindInfo Binds;
286 WeakBindInfo WeakBinds;
287 LazyBindInfo LazyBinds;
288 ExportInfo Exports;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000289 IndirectSymbolTable IndirectSymTable;
290 LinkData DataInCode;
291 LinkData FunctionStarts;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000292
293 /// The index of LC_SYMTAB load command if present.
294 Optional<size_t> SymTabCommandIndex;
295 /// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present.
296 Optional<size_t> DyLdInfoCommandIndex;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000297 /// The index LC_DYSYMTAB load comamnd if present.
298 Optional<size_t> DySymTabCommandIndex;
299 /// The index LC_DATA_IN_CODE load comamnd if present.
300 Optional<size_t> DataInCodeCommandIndex;
301 /// The index LC_FUNCTION_STARTS load comamnd if present.
302 Optional<size_t> FunctionStartsCommandIndex;
Seiya Nuta7f19dd12019-10-28 15:40:37 +0900303
Seiya Nuta9e119ad2019-12-16 14:05:06 +0900304 BumpPtrAllocator Alloc;
305 StringSaver NewSectionsContents;
306
307 Object() : NewSectionsContents(Alloc) {}
308
Alexander Shaposhnikovdc046c72020-02-21 13:18:36 -0800309 void removeSections(function_ref<bool(const std::unique_ptr<Section> &)> ToRemove);
Alexander Shaposhnikovc54959c2019-11-19 23:30:52 -0800310 void addLoadCommand(LoadCommand LC);
Seiya Nuta9e119ad2019-12-16 14:05:06 +0900311
312 /// Creates a new segment load command in the object and returns a reference
313 /// to the newly created load command. The caller should verify that SegName
314 /// is not too long (SegName.size() should be less than or equal to 16).
315 LoadCommand &addSegment(StringRef SegName);
316
317 bool is64Bit() const {
318 return Header.Magic == MachO::MH_MAGIC_64 ||
319 Header.Magic == MachO::MH_CIGAM_64;
320 }
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000321};
322
323} // end namespace macho
324} // end namespace objcopy
325} // end namespace llvm
326
327#endif // LLVM_OBJCOPY_MACHO_OBJECT_H