blob: de8b94d6c2e9c133872ce3df056a16138982a3a3 [file] [log] [blame]
Chris Lattner2b295a02010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
Eli Friedman911e12f2011-07-20 21:57:23 +000015#include "llvm/Analysis/ConstantFolding.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000016#include "llvm/IR/DataLayout.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000017#include "llvm/IR/PatternMatch.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000018#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner2b295a02010-01-04 07:53:58 +000019using namespace llvm;
20using namespace PatternMatch;
21
Chandler Carruth964daaa2014-04-22 02:55:47 +000022#define DEBUG_TYPE "instcombine"
23
Chris Lattner59d95742010-01-04 07:59:07 +000024/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
25/// expression. If so, decompose it, returning some value X, such that Val is
26/// X*Scale+Offset.
27///
28static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman05a65552010-05-28 04:33:04 +000029 uint64_t &Offset) {
Chris Lattner59d95742010-01-04 07:59:07 +000030 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31 Offset = CI->getZExtValue();
32 Scale = 0;
Dan Gohman05a65552010-05-28 04:33:04 +000033 return ConstantInt::get(Val->getType(), 0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000034 }
Craig Topper3529aa52013-01-24 05:22:40 +000035
Chris Lattneraaccc8d2010-01-05 20:57:30 +000036 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Bob Wilson3c68b622011-07-08 22:09:33 +000037 // Cannot look past anything that might overflow.
38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
Stepan Dyatkovskiycb2a1a32012-05-05 07:09:40 +000039 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
Bob Wilson3c68b622011-07-08 22:09:33 +000040 Scale = 1;
41 Offset = 0;
42 return Val;
43 }
44
Chris Lattner59d95742010-01-04 07:59:07 +000045 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46 if (I->getOpcode() == Instruction::Shl) {
47 // This is a value scaled by '1 << the shift amt'.
Dan Gohman05a65552010-05-28 04:33:04 +000048 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattner59d95742010-01-04 07:59:07 +000049 Offset = 0;
50 return I->getOperand(0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000051 }
Craig Topper3529aa52013-01-24 05:22:40 +000052
Chris Lattneraaccc8d2010-01-05 20:57:30 +000053 if (I->getOpcode() == Instruction::Mul) {
Chris Lattner59d95742010-01-04 07:59:07 +000054 // This value is scaled by 'RHS'.
55 Scale = RHS->getZExtValue();
56 Offset = 0;
57 return I->getOperand(0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000058 }
Craig Topper3529aa52013-01-24 05:22:40 +000059
Chris Lattneraaccc8d2010-01-05 20:57:30 +000060 if (I->getOpcode() == Instruction::Add) {
Craig Topper3529aa52013-01-24 05:22:40 +000061 // We have X+C. Check to see if we really have (X*C2)+C1,
Chris Lattner59d95742010-01-04 07:59:07 +000062 // where C1 is divisible by C2.
63 unsigned SubScale;
Craig Topper3529aa52013-01-24 05:22:40 +000064 Value *SubVal =
Chris Lattner59d95742010-01-04 07:59:07 +000065 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66 Offset += RHS->getZExtValue();
67 Scale = SubScale;
68 return SubVal;
69 }
70 }
71 }
72
73 // Otherwise, we can't look past this.
74 Scale = 1;
75 Offset = 0;
76 return Val;
77}
78
79/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
80/// try to eliminate the cast by moving the type information into the alloc.
81Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82 AllocaInst &AI) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +000083 // This requires DataLayout to get the alloca alignment and size information.
Craig Topperf40110f2014-04-25 05:29:35 +000084 if (!DL) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +000085
Chris Lattner229907c2011-07-18 04:54:35 +000086 PointerType *PTy = cast<PointerType>(CI.getType());
Craig Topper3529aa52013-01-24 05:22:40 +000087
Chris Lattner59d95742010-01-04 07:59:07 +000088 BuilderTy AllocaBuilder(*Builder);
89 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
90
91 // Get the type really allocated and the type casted to.
Chris Lattner229907c2011-07-18 04:54:35 +000092 Type *AllocElTy = AI.getAllocatedType();
93 Type *CastElTy = PTy->getElementType();
Craig Topperf40110f2014-04-25 05:29:35 +000094 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +000095
Rafael Espindola37dc9e12014-02-21 00:06:31 +000096 unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
97 unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +000098 if (CastElTyAlign < AllocElTyAlign) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +000099
100 // If the allocation has multiple uses, only promote it if we are strictly
101 // increasing the alignment of the resultant allocation. If we keep it the
Devang Patelfbb482b2011-03-08 22:12:11 +0000102 // same, we open the door to infinite loops of various kinds.
Craig Topperf40110f2014-04-25 05:29:35 +0000103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000104
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000105 uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
106 uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +0000107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000108
Jim Grosbach95d2eb92013-03-06 05:44:53 +0000109 // If the allocation has multiple uses, only promote it if we're not
110 // shrinking the amount of memory being allocated.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000111 uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
112 uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +0000113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
Jim Grosbach95d2eb92013-03-06 05:44:53 +0000114
Chris Lattner59d95742010-01-04 07:59:07 +0000115 // See if we can satisfy the modulus by pulling a scale out of the array
116 // size argument.
117 unsigned ArraySizeScale;
Dan Gohman05a65552010-05-28 04:33:04 +0000118 uint64_t ArrayOffset;
Chris Lattner59d95742010-01-04 07:59:07 +0000119 Value *NumElements = // See if the array size is a decomposable linear expr.
120 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
Craig Topper3529aa52013-01-24 05:22:40 +0000121
Chris Lattner59d95742010-01-04 07:59:07 +0000122 // If we can now satisfy the modulus, by using a non-1 scale, we really can
123 // do the xform.
124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
Craig Topperf40110f2014-04-25 05:29:35 +0000125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000126
127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
Craig Topperf40110f2014-04-25 05:29:35 +0000128 Value *Amt = nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000129 if (Scale == 1) {
130 Amt = NumElements;
131 } else {
Dan Gohman05a65552010-05-28 04:33:04 +0000132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattner59d95742010-01-04 07:59:07 +0000133 // Insert before the alloca, not before the cast.
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000134 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
Chris Lattner59d95742010-01-04 07:59:07 +0000135 }
Craig Topper3529aa52013-01-24 05:22:40 +0000136
Dan Gohman05a65552010-05-28 04:33:04 +0000137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattner59d95742010-01-04 07:59:07 +0000139 Offset, true);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000140 Amt = AllocaBuilder.CreateAdd(Amt, Off);
Chris Lattner59d95742010-01-04 07:59:07 +0000141 }
Craig Topper3529aa52013-01-24 05:22:40 +0000142
Chris Lattner59d95742010-01-04 07:59:07 +0000143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144 New->setAlignment(AI.getAlignment());
145 New->takeName(&AI);
Craig Topper3529aa52013-01-24 05:22:40 +0000146
Chris Lattner59d95742010-01-04 07:59:07 +0000147 // If the allocation has multiple real uses, insert a cast and change all
148 // things that used it to use the new cast. This will also hack on CI, but it
149 // will die soon.
Devang Patelfbb482b2011-03-08 22:12:11 +0000150 if (!AI.hasOneUse()) {
Chris Lattner59d95742010-01-04 07:59:07 +0000151 // New is the allocation instruction, pointer typed. AI is the original
152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
Eli Friedmanb9ed18f2011-05-18 00:32:01 +0000154 ReplaceInstUsesWith(AI, NewCast);
Chris Lattner59d95742010-01-04 07:59:07 +0000155 }
156 return ReplaceInstUsesWith(CI, New);
157}
158
Craig Topper3529aa52013-01-24 05:22:40 +0000159/// EvaluateInDifferentType - Given an expression that
Chris Lattner10840e92010-01-08 19:19:23 +0000160/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattner98748c02010-01-06 01:56:21 +0000161/// insert the code to evaluate the expression.
Craig Topper3529aa52013-01-24 05:22:40 +0000162Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Chris Lattner92be2ad2010-01-04 07:54:59 +0000163 bool isSigned) {
Chris Lattner9242ae02010-01-08 19:28:47 +0000164 if (Constant *C = dyn_cast<Constant>(V)) {
165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000166 // If we got a constantexpr back, try to simplify it with DL info.
Chris Lattner9242ae02010-01-08 19:28:47 +0000167 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000168 C = ConstantFoldConstantExpression(CE, DL, TLI);
Chris Lattner9242ae02010-01-08 19:28:47 +0000169 return C;
170 }
Chris Lattner92be2ad2010-01-04 07:54:59 +0000171
172 // Otherwise, it must be an instruction.
173 Instruction *I = cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000174 Instruction *Res = nullptr;
Chris Lattner92be2ad2010-01-04 07:54:59 +0000175 unsigned Opc = I->getOpcode();
176 switch (Opc) {
177 case Instruction::Add:
178 case Instruction::Sub:
179 case Instruction::Mul:
180 case Instruction::And:
181 case Instruction::Or:
182 case Instruction::Xor:
183 case Instruction::AShr:
184 case Instruction::LShr:
185 case Instruction::Shl:
186 case Instruction::UDiv:
187 case Instruction::URem: {
188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191 break;
Craig Topper3529aa52013-01-24 05:22:40 +0000192 }
Chris Lattner92be2ad2010-01-04 07:54:59 +0000193 case Instruction::Trunc:
194 case Instruction::ZExt:
195 case Instruction::SExt:
196 // If the source type of the cast is the type we're trying for then we can
197 // just return the source. There's no need to insert it because it is not
198 // new.
199 if (I->getOperand(0)->getType() == Ty)
200 return I->getOperand(0);
Craig Topper3529aa52013-01-24 05:22:40 +0000201
Chris Lattner92be2ad2010-01-04 07:54:59 +0000202 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner39d2daa2010-01-10 20:25:54 +0000203 // This also handles the case of zext(trunc(x)) -> zext(x).
204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205 Opc == Instruction::SExt);
Chris Lattner92be2ad2010-01-04 07:54:59 +0000206 break;
207 case Instruction::Select: {
208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210 Res = SelectInst::Create(I->getOperand(0), True, False);
211 break;
212 }
213 case Instruction::PHI: {
214 PHINode *OPN = cast<PHINode>(I);
Jay Foad52131342011-03-30 11:28:46 +0000215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
Chris Lattner92be2ad2010-01-04 07:54:59 +0000216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218 NPN->addIncoming(V, OPN->getIncomingBlock(i));
219 }
220 Res = NPN;
221 break;
222 }
Craig Topper3529aa52013-01-24 05:22:40 +0000223 default:
Chris Lattner92be2ad2010-01-04 07:54:59 +0000224 // TODO: Can handle more cases here.
225 llvm_unreachable("Unreachable!");
Chris Lattner92be2ad2010-01-04 07:54:59 +0000226 }
Craig Topper3529aa52013-01-24 05:22:40 +0000227
Chris Lattner92be2ad2010-01-04 07:54:59 +0000228 Res->takeName(I);
Eli Friedman35211c62011-05-27 00:19:40 +0000229 return InsertNewInstWith(Res, *I);
Chris Lattner92be2ad2010-01-04 07:54:59 +0000230}
Chris Lattner2b295a02010-01-04 07:53:58 +0000231
232
233/// This function is a wrapper around CastInst::isEliminableCastPair. It
234/// simply extracts arguments and returns what that function returns.
Craig Topper3529aa52013-01-24 05:22:40 +0000235static Instruction::CastOps
Chris Lattner2b295a02010-01-04 07:53:58 +0000236isEliminableCastPair(
237 const CastInst *CI, ///< The first cast instruction
238 unsigned opcode, ///< The opcode of the second cast instruction
Chris Lattner229907c2011-07-18 04:54:35 +0000239 Type *DstTy, ///< The target type for the second cast instruction
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000240 const DataLayout *DL ///< The target data for pointer size
Chris Lattner2b295a02010-01-04 07:53:58 +0000241) {
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
244 Type *MidTy = CI->getType(); // B from above
Chris Lattner2b295a02010-01-04 07:53:58 +0000245
246 // Get the opcodes of the two Cast instructions
247 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
248 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000249 Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
Craig Topperf40110f2014-04-25 05:29:35 +0000250 DL->getIntPtrType(SrcTy) : nullptr;
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000251 Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
Craig Topperf40110f2014-04-25 05:29:35 +0000252 DL->getIntPtrType(MidTy) : nullptr;
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000253 Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
Craig Topperf40110f2014-04-25 05:29:35 +0000254 DL->getIntPtrType(DstTy) : nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000255 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
Duncan Sandse2395dc2012-10-30 16:03:32 +0000256 DstTy, SrcIntPtrTy, MidIntPtrTy,
257 DstIntPtrTy);
Micah Villmow12d91272012-10-24 15:52:52 +0000258
Chris Lattner2b295a02010-01-04 07:53:58 +0000259 // We don't want to form an inttoptr or ptrtoint that converts to an integer
260 // type that differs from the pointer size.
Duncan Sandse2395dc2012-10-30 16:03:32 +0000261 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
262 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
Chris Lattner2b295a02010-01-04 07:53:58 +0000263 Res = 0;
Craig Topper3529aa52013-01-24 05:22:40 +0000264
Chris Lattner2b295a02010-01-04 07:53:58 +0000265 return Instruction::CastOps(Res);
266}
267
Chris Lattner4e8137d2010-02-11 06:26:33 +0000268/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
269/// results in any code being generated and is interesting to optimize out. If
270/// the cast can be eliminated by some other simple transformation, we prefer
271/// to do the simplification first.
272bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Chris Lattner229907c2011-07-18 04:54:35 +0000273 Type *Ty) {
Chris Lattner4e8137d2010-02-11 06:26:33 +0000274 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner2b295a02010-01-04 07:53:58 +0000275 if (V->getType() == Ty || isa<Constant>(V)) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000276
Chris Lattner4e8137d2010-02-11 06:26:33 +0000277 // If this is another cast that can be eliminated, we prefer to have it
278 // eliminated.
Chris Lattner2b295a02010-01-04 07:53:58 +0000279 if (const CastInst *CI = dyn_cast<CastInst>(V))
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000280 if (isEliminableCastPair(CI, opc, Ty, DL))
Chris Lattner2b295a02010-01-04 07:53:58 +0000281 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000282
Chris Lattner4e8137d2010-02-11 06:26:33 +0000283 // If this is a vector sext from a compare, then we don't want to break the
284 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands19d0b472010-02-16 11:11:14 +0000285 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner4e8137d2010-02-11 06:26:33 +0000286 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000287
Chris Lattner2b295a02010-01-04 07:53:58 +0000288 return true;
289}
290
291
292/// @brief Implement the transforms common to all CastInst visitors.
293Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
294 Value *Src = CI.getOperand(0);
295
296 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
297 // eliminate it now.
298 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Craig Topper3529aa52013-01-24 05:22:40 +0000299 if (Instruction::CastOps opc =
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000300 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000301 // The first cast (CSrc) is eliminable so we need to fix up or replace
302 // the second cast (CI). CSrc will then have a good chance of being dead.
303 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
304 }
305 }
306
307 // If we are casting a select then fold the cast into the select
308 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
309 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
310 return NV;
311
312 // If we are casting a PHI then fold the cast into the PHI
313 if (isa<PHINode>(Src)) {
314 // We don't do this if this would create a PHI node with an illegal type if
315 // it is currently legal.
Duncan Sands19d0b472010-02-16 11:11:14 +0000316 if (!Src->getType()->isIntegerTy() ||
317 !CI.getType()->isIntegerTy() ||
Chris Lattner2b295a02010-01-04 07:53:58 +0000318 ShouldChangeType(CI.getType(), Src->getType()))
319 if (Instruction *NV = FoldOpIntoPhi(CI))
320 return NV;
321 }
Craig Topper3529aa52013-01-24 05:22:40 +0000322
Craig Topperf40110f2014-04-25 05:29:35 +0000323 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000324}
325
Chris Lattnerc3aca382010-01-10 00:58:42 +0000326/// CanEvaluateTruncated - Return true if we can evaluate the specified
327/// expression tree as type Ty instead of its larger type, and arrive with the
328/// same value. This is used by code that tries to eliminate truncates.
329///
330/// Ty will always be a type smaller than V. We should return true if trunc(V)
331/// can be computed by computing V in the smaller type. If V is an instruction,
332/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
333/// makes sense if x and y can be efficiently truncated.
334///
Chris Lattner172630a2010-01-11 02:43:35 +0000335/// This function works on both vectors and scalars.
336///
Chris Lattner229907c2011-07-18 04:54:35 +0000337static bool CanEvaluateTruncated(Value *V, Type *Ty) {
Chris Lattnerc3aca382010-01-10 00:58:42 +0000338 // We can always evaluate constants in another type.
339 if (isa<Constant>(V))
340 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000341
Chris Lattnerc3aca382010-01-10 00:58:42 +0000342 Instruction *I = dyn_cast<Instruction>(V);
343 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000344
Chris Lattner229907c2011-07-18 04:54:35 +0000345 Type *OrigTy = V->getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000346
Chris Lattnera6b13562010-01-11 22:45:25 +0000347 // If this is an extension from the dest type, we can eliminate it, even if it
348 // has multiple uses.
Craig Topper3529aa52013-01-24 05:22:40 +0000349 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattnerc3aca382010-01-10 00:58:42 +0000350 I->getOperand(0)->getType() == Ty)
351 return true;
352
353 // We can't extend or shrink something that has multiple uses: doing so would
354 // require duplicating the instruction in general, which isn't profitable.
355 if (!I->hasOneUse()) return false;
356
357 unsigned Opc = I->getOpcode();
358 switch (Opc) {
359 case Instruction::Add:
360 case Instruction::Sub:
361 case Instruction::Mul:
362 case Instruction::And:
363 case Instruction::Or:
364 case Instruction::Xor:
365 // These operators can all arbitrarily be extended or truncated.
366 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
367 CanEvaluateTruncated(I->getOperand(1), Ty);
368
369 case Instruction::UDiv:
370 case Instruction::URem: {
371 // UDiv and URem can be truncated if all the truncated bits are zero.
372 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
373 uint32_t BitWidth = Ty->getScalarSizeInBits();
374 if (BitWidth < OrigBitWidth) {
375 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
376 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
377 MaskedValueIsZero(I->getOperand(1), Mask)) {
378 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
379 CanEvaluateTruncated(I->getOperand(1), Ty);
380 }
381 }
382 break;
383 }
384 case Instruction::Shl:
385 // If we are truncating the result of this SHL, and if it's a shift of a
386 // constant amount, we can always perform a SHL in a smaller type.
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388 uint32_t BitWidth = Ty->getScalarSizeInBits();
389 if (CI->getLimitedValue(BitWidth) < BitWidth)
390 return CanEvaluateTruncated(I->getOperand(0), Ty);
391 }
392 break;
393 case Instruction::LShr:
394 // If this is a truncate of a logical shr, we can truncate it to a smaller
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000395 // lshr iff we know that the bits we would otherwise be shifting in are
Chris Lattnerc3aca382010-01-10 00:58:42 +0000396 // already zeros.
397 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
398 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
399 uint32_t BitWidth = Ty->getScalarSizeInBits();
400 if (MaskedValueIsZero(I->getOperand(0),
401 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
402 CI->getLimitedValue(BitWidth) < BitWidth) {
403 return CanEvaluateTruncated(I->getOperand(0), Ty);
404 }
405 }
406 break;
407 case Instruction::Trunc:
408 // trunc(trunc(x)) -> trunc(x)
409 return true;
Chris Lattner73984342010-08-27 20:32:06 +0000410 case Instruction::ZExt:
411 case Instruction::SExt:
412 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
413 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
414 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000415 case Instruction::Select: {
416 SelectInst *SI = cast<SelectInst>(I);
417 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
418 CanEvaluateTruncated(SI->getFalseValue(), Ty);
419 }
420 case Instruction::PHI: {
421 // We can change a phi if we can change all operands. Note that we never
422 // get into trouble with cyclic PHIs here because we only consider
423 // instructions with a single use.
424 PHINode *PN = cast<PHINode>(I);
425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
426 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
427 return false;
428 return true;
429 }
430 default:
431 // TODO: Can handle more cases here.
432 break;
433 }
Craig Topper3529aa52013-01-24 05:22:40 +0000434
Chris Lattnerc3aca382010-01-10 00:58:42 +0000435 return false;
436}
437
438Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattner883550a2010-01-10 01:00:46 +0000439 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattnerc3aca382010-01-10 00:58:42 +0000440 return Result;
Craig Topper3529aa52013-01-24 05:22:40 +0000441
442 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +0000443 // purpose is to compute bits we don't care about.
444 if (SimplifyDemandedInstructionBits(CI))
445 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +0000446
Chris Lattnerc3aca382010-01-10 00:58:42 +0000447 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +0000448 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000449
Chris Lattnerc3aca382010-01-10 00:58:42 +0000450 // Attempt to truncate the entire input expression tree to the destination
451 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner2b295a02010-01-04 07:53:58 +0000452 // expression tree to something weird like i93 unless the source is also
453 // strange.
Duncan Sands19d0b472010-02-16 11:11:14 +0000454 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattnerc3aca382010-01-10 00:58:42 +0000455 CanEvaluateTruncated(Src, DestTy)) {
Craig Topper3529aa52013-01-24 05:22:40 +0000456
Chris Lattner2b295a02010-01-04 07:53:58 +0000457 // If this cast is a truncate, evaluting in a different type always
Chris Lattner8600dd32010-01-05 23:00:30 +0000458 // eliminates the cast, so it is always a win.
Chris Lattner3057c372010-01-07 23:41:00 +0000459 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohmana4abd032010-05-25 21:50:35 +0000460 " to avoid cast: " << CI << '\n');
Chris Lattner3057c372010-01-07 23:41:00 +0000461 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
462 assert(Res->getType() == DestTy);
463 return ReplaceInstUsesWith(CI, Res);
464 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000465
Chris Lattnera93c63c2010-01-05 22:21:18 +0000466 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
467 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000468 Constant *One = ConstantInt::get(Src->getType(), 1);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000469 Src = Builder->CreateAnd(Src, One);
Chris Lattner2b295a02010-01-04 07:53:58 +0000470 Value *Zero = Constant::getNullValue(Src->getType());
471 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
472 }
Craig Topper3529aa52013-01-24 05:22:40 +0000473
Chris Lattner90cd7462010-08-27 18:31:05 +0000474 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Craig Topperf40110f2014-04-25 05:29:35 +0000475 Value *A = nullptr; ConstantInt *Cst = nullptr;
Chris Lattner9c10d582011-01-15 06:32:33 +0000476 if (Src->hasOneUse() &&
477 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
Chris Lattner90cd7462010-08-27 18:31:05 +0000478 // We have three types to worry about here, the type of A, the source of
479 // the truncate (MidSize), and the destination of the truncate. We know that
480 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
481 // between ASize and ResultSize.
482 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +0000483
Chris Lattner90cd7462010-08-27 18:31:05 +0000484 // If the shift amount is larger than the size of A, then the result is
485 // known to be zero because all the input bits got shifted out.
486 if (Cst->getZExtValue() >= ASize)
487 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
488
489 // Since we're doing an lshr and a zero extend, and know that the shift
490 // amount is smaller than ASize, it is always safe to do the shift in A's
491 // type, then zero extend or truncate to the result.
492 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
493 Shift->takeName(Src);
494 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
495 }
Craig Topper3529aa52013-01-24 05:22:40 +0000496
Chris Lattner9c10d582011-01-15 06:32:33 +0000497 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
498 // type isn't non-native.
499 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
500 ShouldChangeType(Src->getType(), CI.getType()) &&
501 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
502 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
503 return BinaryOperator::CreateAnd(NewTrunc,
504 ConstantExpr::getTrunc(Cst, CI.getType()));
505 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000506
Craig Topperf40110f2014-04-25 05:29:35 +0000507 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000508}
509
510/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
511/// in order to eliminate the icmp.
512Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
513 bool DoXform) {
514 // If we are just checking for a icmp eq of a single bit and zext'ing it
515 // to an integer, then shift the bit to the appropriate place and then
516 // cast to integer to avoid the comparison.
517 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
518 const APInt &Op1CV = Op1C->getValue();
Craig Topper3529aa52013-01-24 05:22:40 +0000519
Chris Lattner2b295a02010-01-04 07:53:58 +0000520 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
521 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
522 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
523 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
524 if (!DoXform) return ICI;
525
526 Value *In = ICI->getOperand(0);
527 Value *Sh = ConstantInt::get(In->getType(),
528 In->getType()->getScalarSizeInBits()-1);
529 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
530 if (In->getType() != CI.getType())
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000531 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner2b295a02010-01-04 07:53:58 +0000532
533 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
534 Constant *One = ConstantInt::get(In->getType(), 1);
535 In = Builder->CreateXor(In, One, In->getName()+".not");
536 }
537
538 return ReplaceInstUsesWith(CI, In);
539 }
Chad Rosier385d9f62011-11-30 01:59:59 +0000540
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000541 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
542 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
543 // zext (X == 1) to i32 --> X iff X has only the low bit set.
544 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
545 // zext (X != 0) to i32 --> X iff X has only the low bit set.
546 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
547 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
548 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
Craig Topper3529aa52013-01-24 05:22:40 +0000549 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
Chris Lattner2b295a02010-01-04 07:53:58 +0000550 // This only works for EQ and NE
551 ICI->isEquality()) {
552 // If Op1C some other power of two, convert:
553 uint32_t BitWidth = Op1C->getType()->getBitWidth();
554 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000555 ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
Craig Topper3529aa52013-01-24 05:22:40 +0000556
Chris Lattner2b295a02010-01-04 07:53:58 +0000557 APInt KnownZeroMask(~KnownZero);
558 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
559 if (!DoXform) return ICI;
560
561 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
562 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
563 // (X&4) == 2 --> false
564 // (X&4) != 2 --> true
565 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
566 isNE);
567 Res = ConstantExpr::getZExt(Res, CI.getType());
568 return ReplaceInstUsesWith(CI, Res);
569 }
Craig Topper3529aa52013-01-24 05:22:40 +0000570
Chris Lattner2b295a02010-01-04 07:53:58 +0000571 uint32_t ShiftAmt = KnownZeroMask.logBase2();
572 Value *In = ICI->getOperand(0);
573 if (ShiftAmt) {
574 // Perform a logical shr by shiftamt.
575 // Insert the shift to put the result in the low bit.
576 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
577 In->getName()+".lobit");
578 }
Craig Topper3529aa52013-01-24 05:22:40 +0000579
Chris Lattner2b295a02010-01-04 07:53:58 +0000580 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
581 Constant *One = ConstantInt::get(In->getType(), 1);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000582 In = Builder->CreateXor(In, One);
Chris Lattner2b295a02010-01-04 07:53:58 +0000583 }
Craig Topper3529aa52013-01-24 05:22:40 +0000584
Chris Lattner2b295a02010-01-04 07:53:58 +0000585 if (CI.getType() == In->getType())
586 return ReplaceInstUsesWith(CI, In);
Chris Lattner18d7fc82010-08-27 22:24:38 +0000587 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner2b295a02010-01-04 07:53:58 +0000588 }
589 }
590 }
591
592 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
593 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
594 // may lead to additional simplifications.
595 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000596 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000597 uint32_t BitWidth = ITy->getBitWidth();
598 Value *LHS = ICI->getOperand(0);
599 Value *RHS = ICI->getOperand(1);
600
601 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
602 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000603 ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
604 ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
Chris Lattner2b295a02010-01-04 07:53:58 +0000605
606 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
607 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
608 APInt UnknownBit = ~KnownBits;
609 if (UnknownBit.countPopulation() == 1) {
610 if (!DoXform) return ICI;
611
612 Value *Result = Builder->CreateXor(LHS, RHS);
613
614 // Mask off any bits that are set and won't be shifted away.
615 if (KnownOneLHS.uge(UnknownBit))
616 Result = Builder->CreateAnd(Result,
617 ConstantInt::get(ITy, UnknownBit));
618
619 // Shift the bit we're testing down to the lsb.
620 Result = Builder->CreateLShr(
621 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
622
623 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
624 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
625 Result->takeName(ICI);
626 return ReplaceInstUsesWith(CI, Result);
627 }
628 }
629 }
630 }
631
Craig Topperf40110f2014-04-25 05:29:35 +0000632 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000633}
634
Chris Lattnerc3aca382010-01-10 00:58:42 +0000635/// CanEvaluateZExtd - Determine if the specified value can be computed in the
Chris Lattner172630a2010-01-11 02:43:35 +0000636/// specified wider type and produce the same low bits. If not, return false.
637///
Chris Lattner12bd8992010-01-11 03:32:00 +0000638/// If this function returns true, it can also return a non-zero number of bits
639/// (in BitsToClear) which indicates that the value it computes is correct for
640/// the zero extend, but that the additional BitsToClear bits need to be zero'd
641/// out. For example, to promote something like:
642///
643/// %B = trunc i64 %A to i32
644/// %C = lshr i32 %B, 8
645/// %E = zext i32 %C to i64
646///
647/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
648/// set to 8 to indicate that the promoted value needs to have bits 24-31
649/// cleared in addition to bits 32-63. Since an 'and' will be generated to
650/// clear the top bits anyway, doing this has no extra cost.
651///
Chris Lattner172630a2010-01-11 02:43:35 +0000652/// This function works on both vectors and scalars.
Chris Lattner229907c2011-07-18 04:54:35 +0000653static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Chris Lattner12bd8992010-01-11 03:32:00 +0000654 BitsToClear = 0;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000655 if (isa<Constant>(V))
656 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000657
Chris Lattnerc3aca382010-01-10 00:58:42 +0000658 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000659 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000660
Chris Lattnerc3aca382010-01-10 00:58:42 +0000661 // If the input is a truncate from the destination type, we can trivially
Jakob Stoklund Olesenc5c4e962012-06-22 16:36:43 +0000662 // eliminate it.
663 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000664 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000665
Chris Lattnerc3aca382010-01-10 00:58:42 +0000666 // We can't extend or shrink something that has multiple uses: doing so would
667 // require duplicating the instruction in general, which isn't profitable.
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000668 if (!I->hasOneUse()) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000669
Chris Lattner12bd8992010-01-11 03:32:00 +0000670 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000671 switch (Opc) {
Chris Lattner39d2daa2010-01-10 20:25:54 +0000672 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
673 case Instruction::SExt: // zext(sext(x)) -> sext(x).
674 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
675 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000676 case Instruction::And:
Chris Lattnerc3aca382010-01-10 00:58:42 +0000677 case Instruction::Or:
678 case Instruction::Xor:
Chris Lattnerc3aca382010-01-10 00:58:42 +0000679 case Instruction::Add:
680 case Instruction::Sub:
681 case Instruction::Mul:
Chris Lattner12bd8992010-01-11 03:32:00 +0000682 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
683 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
684 return false;
685 // These can all be promoted if neither operand has 'bits to clear'.
686 if (BitsToClear == 0 && Tmp == 0)
687 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000688
Chris Lattner0a854202010-01-11 04:05:13 +0000689 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
690 // other side, BitsToClear is ok.
691 if (Tmp == 0 &&
692 (Opc == Instruction::And || Opc == Instruction::Or ||
693 Opc == Instruction::Xor)) {
694 // We use MaskedValueIsZero here for generality, but the case we care
695 // about the most is constant RHS.
696 unsigned VSize = V->getType()->getScalarSizeInBits();
697 if (MaskedValueIsZero(I->getOperand(1),
698 APInt::getHighBitsSet(VSize, BitsToClear)))
699 return true;
700 }
Craig Topper3529aa52013-01-24 05:22:40 +0000701
Chris Lattner0a854202010-01-11 04:05:13 +0000702 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner12bd8992010-01-11 03:32:00 +0000703 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000704
Benjamin Kramer14e915f2013-05-10 16:26:37 +0000705 case Instruction::Shl:
706 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
707 // upper bits we can reduce BitsToClear by the shift amount.
708 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
709 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
710 return false;
711 uint64_t ShiftAmt = Amt->getZExtValue();
712 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
713 return true;
714 }
715 return false;
Chris Lattner12bd8992010-01-11 03:32:00 +0000716 case Instruction::LShr:
717 // We can promote lshr(x, cst) if we can promote x. This requires the
718 // ultimate 'and' to clear out the high zero bits we're clearing out though.
719 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
720 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
721 return false;
722 BitsToClear += Amt->getZExtValue();
723 if (BitsToClear > V->getType()->getScalarSizeInBits())
724 BitsToClear = V->getType()->getScalarSizeInBits();
725 return true;
726 }
727 // Cannot promote variable LSHR.
728 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000729 case Instruction::Select:
Chris Lattner12bd8992010-01-11 03:32:00 +0000730 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
731 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
Chris Lattner0a854202010-01-11 04:05:13 +0000732 // TODO: If important, we could handle the case when the BitsToClear are
733 // known zero in the disagreeing side.
Chris Lattner12bd8992010-01-11 03:32:00 +0000734 Tmp != BitsToClear)
735 return false;
736 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000737
Chris Lattnerc3aca382010-01-10 00:58:42 +0000738 case Instruction::PHI: {
739 // We can change a phi if we can change all operands. Note that we never
740 // get into trouble with cyclic PHIs here because we only consider
741 // instructions with a single use.
742 PHINode *PN = cast<PHINode>(I);
Chris Lattner12bd8992010-01-11 03:32:00 +0000743 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
744 return false;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000745 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner12bd8992010-01-11 03:32:00 +0000746 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
Chris Lattner0a854202010-01-11 04:05:13 +0000747 // TODO: If important, we could handle the case when the BitsToClear
748 // are known zero in the disagreeing input.
Chris Lattner12bd8992010-01-11 03:32:00 +0000749 Tmp != BitsToClear)
750 return false;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000751 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000752 }
753 default:
754 // TODO: Can handle more cases here.
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000755 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000756 }
757}
758
Chris Lattner2b295a02010-01-04 07:53:58 +0000759Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Nick Lewycky80ea0032013-01-14 20:56:10 +0000760 // If this zero extend is only used by a truncate, let the truncate be
Chris Lattner49d2c972010-01-10 02:39:31 +0000761 // eliminated before we try to optimize this zext.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000762 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
Craig Topperf40110f2014-04-25 05:29:35 +0000763 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +0000764
Chris Lattner2b295a02010-01-04 07:53:58 +0000765 // If one of the common conversion will work, do it.
Chris Lattner883550a2010-01-10 01:00:46 +0000766 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner2b295a02010-01-04 07:53:58 +0000767 return Result;
768
Craig Topper3529aa52013-01-24 05:22:40 +0000769 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +0000770 // purpose is to compute bits we don't care about.
771 if (SimplifyDemandedInstructionBits(CI))
772 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +0000773
Chris Lattner883550a2010-01-10 01:00:46 +0000774 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +0000775 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000776
Chris Lattnerc3aca382010-01-10 00:58:42 +0000777 // Attempt to extend the entire input expression tree to the destination
778 // type. Only do this if the dest type is a simple type, don't convert the
779 // expression tree to something weird like i93 unless the source is also
780 // strange.
Chris Lattner12bd8992010-01-11 03:32:00 +0000781 unsigned BitsToClear;
Duncan Sands19d0b472010-02-16 11:11:14 +0000782 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Craig Topper3529aa52013-01-24 05:22:40 +0000783 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
Chris Lattner12bd8992010-01-11 03:32:00 +0000784 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
785 "Unreasonable BitsToClear");
Craig Topper3529aa52013-01-24 05:22:40 +0000786
Chris Lattner49d2c972010-01-10 02:39:31 +0000787 // Okay, we can transform this! Insert the new expression now.
788 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
789 " to avoid zero extend: " << CI);
790 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
791 assert(Res->getType() == DestTy);
Craig Topper3529aa52013-01-24 05:22:40 +0000792
Chris Lattner12bd8992010-01-11 03:32:00 +0000793 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
794 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +0000795
Chris Lattner49d2c972010-01-10 02:39:31 +0000796 // If the high bits are already filled with zeros, just replace this
797 // cast with the result.
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000798 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner12bd8992010-01-11 03:32:00 +0000799 DestBitSize-SrcBitsKept)))
Chris Lattner49d2c972010-01-10 02:39:31 +0000800 return ReplaceInstUsesWith(CI, Res);
Craig Topper3529aa52013-01-24 05:22:40 +0000801
Chris Lattner49d2c972010-01-10 02:39:31 +0000802 // We need to emit an AND to clear the high bits.
Chris Lattner39d2daa2010-01-10 20:25:54 +0000803 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner12bd8992010-01-11 03:32:00 +0000804 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner49d2c972010-01-10 02:39:31 +0000805 return BinaryOperator::CreateAnd(Res, C);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000806 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000807
808 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
809 // types and if the sizes are just right we can convert this into a logical
810 // 'and' which will be much cheaper than the pair of casts.
811 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerd8509422010-01-10 07:08:30 +0000812 // TODO: Subsume this into EvaluateInDifferentType.
Craig Topper3529aa52013-01-24 05:22:40 +0000813
Chris Lattner2b295a02010-01-04 07:53:58 +0000814 // Get the sizes of the types involved. We know that the intermediate type
815 // will be smaller than A or C, but don't know the relation between A and C.
816 Value *A = CSrc->getOperand(0);
817 unsigned SrcSize = A->getType()->getScalarSizeInBits();
818 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
819 unsigned DstSize = CI.getType()->getScalarSizeInBits();
820 // If we're actually extending zero bits, then if
821 // SrcSize < DstSize: zext(a & mask)
822 // SrcSize == DstSize: a & mask
823 // SrcSize > DstSize: trunc(a) & mask
824 if (SrcSize < DstSize) {
825 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
826 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
827 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
828 return new ZExtInst(And, CI.getType());
829 }
Craig Topper3529aa52013-01-24 05:22:40 +0000830
Chris Lattner2b295a02010-01-04 07:53:58 +0000831 if (SrcSize == DstSize) {
832 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
833 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
834 AndValue));
835 }
836 if (SrcSize > DstSize) {
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000837 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
Chris Lattner2b295a02010-01-04 07:53:58 +0000838 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
Craig Topper3529aa52013-01-24 05:22:40 +0000839 return BinaryOperator::CreateAnd(Trunc,
Chris Lattner2b295a02010-01-04 07:53:58 +0000840 ConstantInt::get(Trunc->getType(),
Chris Lattnerd8509422010-01-10 07:08:30 +0000841 AndValue));
Chris Lattner2b295a02010-01-04 07:53:58 +0000842 }
843 }
844
845 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
846 return transformZExtICmp(ICI, CI);
847
848 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
849 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
850 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
851 // of the (zext icmp) will be transformed.
852 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
853 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
854 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
855 (transformZExtICmp(LHS, CI, false) ||
856 transformZExtICmp(RHS, CI, false))) {
857 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
858 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
859 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
860 }
861 }
862
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000863 // zext(trunc(X) & C) -> (X & zext(C)).
864 Constant *C;
865 Value *X;
866 if (SrcI &&
867 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
868 X->getType() == CI.getType())
869 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
Chris Lattner2b295a02010-01-04 07:53:58 +0000870
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000871 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
872 Value *And;
873 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
874 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
875 X->getType() == CI.getType()) {
876 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
877 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
878 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000879
Chris Lattnerfd7e42b2010-01-05 21:04:47 +0000880 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000881 if (SrcI && SrcI->hasOneUse() &&
882 SrcI->getType()->getScalarType()->isIntegerTy(1) &&
883 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
Chris Lattnerfd7e42b2010-01-05 21:04:47 +0000884 Value *New = Builder->CreateZExt(X, CI.getType());
885 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
886 }
Craig Topper3529aa52013-01-24 05:22:40 +0000887
Craig Topperf40110f2014-04-25 05:29:35 +0000888 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000889}
890
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000891/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
892/// in order to eliminate the icmp.
893Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
894 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
895 ICmpInst::Predicate Pred = ICI->getPredicate();
896
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000897 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Benjamin Kramer8b94c292011-04-01 22:29:18 +0000898 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
899 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000900 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000901 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
902
903 Value *Sh = ConstantInt::get(Op0->getType(),
904 Op0->getType()->getScalarSizeInBits()-1);
905 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
906 if (In->getType() != CI.getType())
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000907 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000908
909 if (Pred == ICmpInst::ICMP_SGT)
910 In = Builder->CreateNot(In, In->getName()+".not");
911 return ReplaceInstUsesWith(CI, In);
912 }
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000913 }
Benjamin Kramerd1217652011-04-01 20:09:10 +0000914
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000915 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Benjamin Kramerd1217652011-04-01 20:09:10 +0000916 // If we know that only one bit of the LHS of the icmp can be set and we
917 // have an equality comparison with zero or a power of 2, we can transform
918 // the icmp and sext into bitwise/integer operations.
Benjamin Kramer5cad4532011-04-01 22:22:11 +0000919 if (ICI->hasOneUse() &&
920 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
Benjamin Kramerd1217652011-04-01 20:09:10 +0000921 unsigned BitWidth = Op1C->getType()->getBitWidth();
922 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000923 ComputeMaskedBits(Op0, KnownZero, KnownOne);
Benjamin Kramerd1217652011-04-01 20:09:10 +0000924
Benjamin Kramerac2d5652011-04-01 20:15:16 +0000925 APInt KnownZeroMask(~KnownZero);
926 if (KnownZeroMask.isPowerOf2()) {
Benjamin Kramerd1217652011-04-01 20:09:10 +0000927 Value *In = ICI->getOperand(0);
928
Benjamin Kramer50a281a2011-04-02 18:50:58 +0000929 // If the icmp tests for a known zero bit we can constant fold it.
930 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
931 Value *V = Pred == ICmpInst::ICMP_NE ?
932 ConstantInt::getAllOnesValue(CI.getType()) :
933 ConstantInt::getNullValue(CI.getType());
934 return ReplaceInstUsesWith(CI, V);
935 }
Benjamin Kramer5cad4532011-04-01 22:22:11 +0000936
Benjamin Kramerd1217652011-04-01 20:09:10 +0000937 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
938 // sext ((x & 2^n) == 0) -> (x >> n) - 1
939 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
940 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
941 // Perform a right shift to place the desired bit in the LSB.
942 if (ShiftAmt)
943 In = Builder->CreateLShr(In,
944 ConstantInt::get(In->getType(), ShiftAmt));
945
946 // At this point "In" is either 1 or 0. Subtract 1 to turn
947 // {1, 0} -> {0, -1}.
948 In = Builder->CreateAdd(In,
949 ConstantInt::getAllOnesValue(In->getType()),
950 "sext");
951 } else {
952 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer5cad4532011-04-01 22:22:11 +0000953 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramerd1217652011-04-01 20:09:10 +0000954 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
955 // Perform a left shift to place the desired bit in the MSB.
956 if (ShiftAmt)
957 In = Builder->CreateShl(In,
958 ConstantInt::get(In->getType(), ShiftAmt));
959
960 // Distribute the bit over the whole bit width.
961 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
962 BitWidth - 1), "sext");
963 }
964
965 if (CI.getType() == In->getType())
966 return ReplaceInstUsesWith(CI, In);
967 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
968 }
969 }
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000970 }
971
Craig Topperf40110f2014-04-25 05:29:35 +0000972 return nullptr;
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000973}
974
Chris Lattnerc3aca382010-01-10 00:58:42 +0000975/// CanEvaluateSExtd - Return true if we can take the specified value
976/// and return it as type Ty without inserting any new casts and without
977/// changing the value of the common low bits. This is used by code that tries
978/// to promote integer operations to a wider types will allow us to eliminate
979/// the extension.
980///
Chris Lattner1a05fdd2010-01-10 07:57:20 +0000981/// This function works on both vectors and scalars.
Chris Lattnerc3aca382010-01-10 00:58:42 +0000982///
Chris Lattner229907c2011-07-18 04:54:35 +0000983static bool CanEvaluateSExtd(Value *V, Type *Ty) {
Chris Lattnerc3aca382010-01-10 00:58:42 +0000984 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
985 "Can't sign extend type to a smaller type");
Chris Lattner1a05fdd2010-01-10 07:57:20 +0000986 // If this is a constant, it can be trivially promoted.
987 if (isa<Constant>(V))
988 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000989
Chris Lattnerc3aca382010-01-10 00:58:42 +0000990 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner1a05fdd2010-01-10 07:57:20 +0000991 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000992
Jakob Stoklund Olesenc5c4e962012-06-22 16:36:43 +0000993 // If this is a truncate from the dest type, we can trivially eliminate it.
994 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner1a05fdd2010-01-10 07:57:20 +0000995 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000996
Chris Lattnerc3aca382010-01-10 00:58:42 +0000997 // We can't extend or shrink something that has multiple uses: doing so would
998 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner1a05fdd2010-01-10 07:57:20 +0000999 if (!I->hasOneUse()) return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001000
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001001 switch (I->getOpcode()) {
Chris Lattner7dd540e2010-01-10 20:30:41 +00001002 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1003 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1004 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1005 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001006 case Instruction::And:
1007 case Instruction::Or:
1008 case Instruction::Xor:
Chris Lattnerc3aca382010-01-10 00:58:42 +00001009 case Instruction::Add:
1010 case Instruction::Sub:
Chris Lattnerc3aca382010-01-10 00:58:42 +00001011 case Instruction::Mul:
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001012 // These operators can all arbitrarily be extended if their inputs can.
Chris Lattner172630a2010-01-11 02:43:35 +00001013 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1014 CanEvaluateSExtd(I->getOperand(1), Ty);
Craig Topper3529aa52013-01-24 05:22:40 +00001015
Chris Lattnerc3aca382010-01-10 00:58:42 +00001016 //case Instruction::Shl: TODO
1017 //case Instruction::LShr: TODO
Craig Topper3529aa52013-01-24 05:22:40 +00001018
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001019 case Instruction::Select:
Chris Lattner172630a2010-01-11 02:43:35 +00001020 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1021 CanEvaluateSExtd(I->getOperand(2), Ty);
Craig Topper3529aa52013-01-24 05:22:40 +00001022
Chris Lattnerc3aca382010-01-10 00:58:42 +00001023 case Instruction::PHI: {
1024 // We can change a phi if we can change all operands. Note that we never
1025 // get into trouble with cyclic PHIs here because we only consider
1026 // instructions with a single use.
1027 PHINode *PN = cast<PHINode>(I);
Chris Lattner39d2daa2010-01-10 20:25:54 +00001028 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner172630a2010-01-11 02:43:35 +00001029 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001030 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001031 }
1032 default:
1033 // TODO: Can handle more cases here.
1034 break;
1035 }
Craig Topper3529aa52013-01-24 05:22:40 +00001036
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001037 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001038}
1039
Chris Lattner2b295a02010-01-04 07:53:58 +00001040Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Arnaud A. de Grandmaison2e4df4f2013-02-13 00:19:19 +00001041 // If this sign extend is only used by a truncate, let the truncate be
1042 // eliminated before we try to optimize this sext.
Chandler Carruthcdf47882014-03-09 03:16:01 +00001043 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
Craig Topperf40110f2014-04-25 05:29:35 +00001044 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +00001045
Chris Lattner883550a2010-01-10 01:00:46 +00001046 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner2b295a02010-01-04 07:53:58 +00001047 return I;
Craig Topper3529aa52013-01-24 05:22:40 +00001048
1049 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +00001050 // purpose is to compute bits we don't care about.
1051 if (SimplifyDemandedInstructionBits(CI))
1052 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +00001053
Chris Lattner2b295a02010-01-04 07:53:58 +00001054 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00001055 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattnerc3aca382010-01-10 00:58:42 +00001056
Chris Lattnerc3aca382010-01-10 00:58:42 +00001057 // Attempt to extend the entire input expression tree to the destination
1058 // type. Only do this if the dest type is a simple type, don't convert the
1059 // expression tree to something weird like i93 unless the source is also
1060 // strange.
Duncan Sands19d0b472010-02-16 11:11:14 +00001061 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner172630a2010-01-11 02:43:35 +00001062 CanEvaluateSExtd(Src, DestTy)) {
Chris Lattner2fff10c2010-01-10 07:40:50 +00001063 // Okay, we can transform this! Insert the new expression now.
1064 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1065 " to avoid sign extend: " << CI);
1066 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1067 assert(Res->getType() == DestTy);
1068
Chris Lattnerc3aca382010-01-10 00:58:42 +00001069 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1070 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattner2fff10c2010-01-10 07:40:50 +00001071
1072 // If the high bits are already filled with sign bit, just replace this
1073 // cast with the result.
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001074 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
Chris Lattner2fff10c2010-01-10 07:40:50 +00001075 return ReplaceInstUsesWith(CI, Res);
Craig Topper3529aa52013-01-24 05:22:40 +00001076
Chris Lattner2fff10c2010-01-10 07:40:50 +00001077 // We need to emit a shl + ashr to do the sign extend.
1078 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1079 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1080 ShAmt);
Chris Lattnerc3aca382010-01-10 00:58:42 +00001081 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001082
Chris Lattner43f2fa62010-01-18 22:19:16 +00001083 // If this input is a trunc from our destination, then turn sext(trunc(x))
1084 // into shifts.
1085 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1086 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1087 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1088 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +00001089
Chris Lattner43f2fa62010-01-18 22:19:16 +00001090 // We need to emit a shl + ashr to do the sign extend.
1091 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1092 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1093 return BinaryOperator::CreateAShr(Res, ShAmt);
1094 }
Nate Begeman7aa18bf2010-12-17 23:12:19 +00001095
Benjamin Kramer398b8c52011-04-01 20:09:03 +00001096 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1097 return transformSExtICmp(ICI, CI);
Bill Wendling5e360552010-12-17 23:27:41 +00001098
Chris Lattner2b295a02010-01-04 07:53:58 +00001099 // If the input is a shl/ashr pair of a same constant, then this is a sign
1100 // extension from a smaller value. If we could trust arbitrary bitwidth
1101 // integers, we could turn this into a truncate to the smaller bit and then
1102 // use a sext for the whole extension. Since we don't, look deeper and check
1103 // for a truncate. If the source and dest are the same type, eliminate the
1104 // trunc and extend and just do shifts. For example, turn:
1105 // %a = trunc i32 %i to i8
1106 // %b = shl i8 %a, 6
1107 // %c = ashr i8 %b, 6
1108 // %d = sext i8 %c to i32
1109 // into:
1110 // %a = shl i32 %i, 30
1111 // %d = ashr i32 %a, 30
Craig Topperf40110f2014-04-25 05:29:35 +00001112 Value *A = nullptr;
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001113 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Craig Topperf40110f2014-04-25 05:29:35 +00001114 ConstantInt *BA = nullptr, *CA = nullptr;
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001115 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner2b295a02010-01-04 07:53:58 +00001116 m_ConstantInt(CA))) &&
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001117 BA == CA && A->getType() == CI.getType()) {
1118 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1119 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1120 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1121 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1122 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1123 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner2b295a02010-01-04 07:53:58 +00001124 }
Craig Topper3529aa52013-01-24 05:22:40 +00001125
Craig Topperf40110f2014-04-25 05:29:35 +00001126 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001127}
1128
1129
1130/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1131/// in the specified FP type without changing its value.
1132static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1133 bool losesInfo;
1134 APFloat F = CFP->getValueAPF();
1135 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1136 if (!losesInfo)
1137 return ConstantFP::get(CFP->getContext(), F);
Craig Topperf40110f2014-04-25 05:29:35 +00001138 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001139}
1140
1141/// LookThroughFPExtensions - If this is an fp extension instruction, look
1142/// through it until we get the source value.
1143static Value *LookThroughFPExtensions(Value *V) {
1144 if (Instruction *I = dyn_cast<Instruction>(V))
1145 if (I->getOpcode() == Instruction::FPExt)
1146 return LookThroughFPExtensions(I->getOperand(0));
Craig Topper3529aa52013-01-24 05:22:40 +00001147
Chris Lattner2b295a02010-01-04 07:53:58 +00001148 // If this value is a constant, return the constant in the smallest FP type
1149 // that can accurately represent it. This allows us to turn
1150 // (float)((double)X+2.0) into x+2.0f.
1151 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1152 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1153 return V; // No constant folding of this.
Dan Gohman518cda42011-12-17 00:04:22 +00001154 // See if the value can be truncated to half and then reextended.
1155 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1156 return V;
Chris Lattner2b295a02010-01-04 07:53:58 +00001157 // See if the value can be truncated to float and then reextended.
1158 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1159 return V;
Benjamin Kramerccce8ba2010-01-05 13:12:22 +00001160 if (CFP->getType()->isDoubleTy())
Chris Lattner2b295a02010-01-04 07:53:58 +00001161 return V; // Won't shrink.
1162 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1163 return V;
1164 // Don't try to shrink to various long double types.
1165 }
Craig Topper3529aa52013-01-24 05:22:40 +00001166
Chris Lattner2b295a02010-01-04 07:53:58 +00001167 return V;
1168}
1169
1170Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1171 if (Instruction *I = commonCastTransforms(CI))
1172 return I;
Stephen Canonc4549642013-11-28 21:38:05 +00001173 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1174 // simpilify this expression to avoid one or more of the trunc/extend
1175 // operations if we can do so without changing the numerical results.
1176 //
1177 // The exact manner in which the widths of the operands interact to limit
1178 // what we can and cannot do safely varies from operation to operation, and
1179 // is explained below in the various case statements.
Chris Lattner2b295a02010-01-04 07:53:58 +00001180 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1181 if (OpI && OpI->hasOneUse()) {
Stephen Canonc4549642013-11-28 21:38:05 +00001182 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1183 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1184 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1185 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1186 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1187 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1188 unsigned DstWidth = CI.getType()->getFPMantissaWidth();
Chris Lattner2b295a02010-01-04 07:53:58 +00001189 switch (OpI->getOpcode()) {
Stephen Canonc4549642013-11-28 21:38:05 +00001190 default: break;
1191 case Instruction::FAdd:
1192 case Instruction::FSub:
1193 // For addition and subtraction, the infinitely precise result can
1194 // essentially be arbitrarily wide; proving that double rounding
1195 // will not occur because the result of OpI is exact (as we will for
1196 // FMul, for example) is hopeless. However, we *can* nonetheless
1197 // frequently know that double rounding cannot occur (or that it is
Alp Tokercb402912014-01-24 17:20:08 +00001198 // innocuous) by taking advantage of the specific structure of
Stephen Canonc4549642013-11-28 21:38:05 +00001199 // infinitely-precise results that admit double rounding.
1200 //
Alp Tokercb402912014-01-24 17:20:08 +00001201 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
Stephen Canonc4549642013-11-28 21:38:05 +00001202 // to represent both sources, we can guarantee that the double
1203 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1204 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1205 // for proof of this fact).
1206 //
1207 // Note: Figueroa does not consider the case where DstFormat !=
1208 // SrcFormat. It's possible (likely even!) that this analysis
1209 // could be tightened for those cases, but they are rare (the main
1210 // case of interest here is (float)((double)float + float)).
1211 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1212 if (LHSOrig->getType() != CI.getType())
1213 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1214 if (RHSOrig->getType() != CI.getType())
1215 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001216 Instruction *RI =
1217 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1218 RI->copyFastMathFlags(OpI);
1219 return RI;
Chris Lattner2b295a02010-01-04 07:53:58 +00001220 }
Stephen Canonc4549642013-11-28 21:38:05 +00001221 break;
1222 case Instruction::FMul:
1223 // For multiplication, the infinitely precise result has at most
1224 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1225 // that such a value can be exactly represented, then no double
1226 // rounding can possibly occur; we can safely perform the operation
1227 // in the destination format if it can represent both sources.
1228 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1229 if (LHSOrig->getType() != CI.getType())
1230 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1231 if (RHSOrig->getType() != CI.getType())
1232 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001233 Instruction *RI =
1234 BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1235 RI->copyFastMathFlags(OpI);
1236 return RI;
Stephen Canonc4549642013-11-28 21:38:05 +00001237 }
1238 break;
1239 case Instruction::FDiv:
1240 // For division, we use again use the bound from Figueroa's
1241 // dissertation. I am entirely certain that this bound can be
1242 // tightened in the unbalanced operand case by an analysis based on
1243 // the diophantine rational approximation bound, but the well-known
1244 // condition used here is a good conservative first pass.
1245 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1246 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1247 if (LHSOrig->getType() != CI.getType())
1248 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1249 if (RHSOrig->getType() != CI.getType())
1250 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001251 Instruction *RI =
1252 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1253 RI->copyFastMathFlags(OpI);
1254 return RI;
Stephen Canonc4549642013-11-28 21:38:05 +00001255 }
1256 break;
1257 case Instruction::FRem:
1258 // Remainder is straightforward. Remainder is always exact, so the
1259 // type of OpI doesn't enter into things at all. We simply evaluate
1260 // in whichever source type is larger, then convert to the
1261 // destination type.
1262 if (LHSWidth < SrcWidth)
1263 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1264 else if (RHSWidth <= SrcWidth)
1265 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1266 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
Owen Anderson48b842e2014-01-18 00:48:14 +00001267 if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1268 RI->copyFastMathFlags(OpI);
Stephen Canonc4549642013-11-28 21:38:05 +00001269 return CastInst::CreateFPCast(ExactResult, CI.getType());
Chris Lattner2b295a02010-01-04 07:53:58 +00001270 }
Owen Andersondbf0ca52013-01-10 22:06:52 +00001271
1272 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1273 if (BinaryOperator::isFNeg(OpI)) {
1274 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1275 CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001276 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1277 RI->copyFastMathFlags(OpI);
1278 return RI;
Owen Andersondbf0ca52013-01-10 22:06:52 +00001279 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001280 }
Owen Andersondbf0ca52013-01-10 22:06:52 +00001281
Owen Anderson5797bfd2013-10-03 21:08:05 +00001282 // (fptrunc (select cond, R1, Cst)) -->
1283 // (select cond, (fptrunc R1), (fptrunc Cst))
1284 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1285 if (SI &&
1286 (isa<ConstantFP>(SI->getOperand(1)) ||
1287 isa<ConstantFP>(SI->getOperand(2)))) {
1288 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1289 CI.getType());
1290 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1291 CI.getType());
1292 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1293 }
1294
Owen Andersondbf0ca52013-01-10 22:06:52 +00001295 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1296 if (II) {
1297 switch (II->getIntrinsicID()) {
1298 default: break;
1299 case Intrinsic::fabs: {
1300 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1301 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1302 CI.getType());
1303 Type *IntrinsicType[] = { CI.getType() };
1304 Function *Overload =
1305 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1306 II->getIntrinsicID(), IntrinsicType);
1307
1308 Value *Args[] = { InnerTrunc };
1309 return CallInst::Create(Overload, Args, II->getName());
1310 }
1311 }
1312 }
1313
Owen Anderson32a58342010-07-19 08:09:34 +00001314 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
Hal Finkel12100bf2013-11-16 21:29:08 +00001315 // Note that we restrict this transformation based on
1316 // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
1317 // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
1318 // single-precision intrinsic can be expanded in the backend.
Owen Anderson32a58342010-07-19 08:09:34 +00001319 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
Chad Rosiere6de63d2011-12-01 21:29:16 +00001320 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
Hal Finkel12100bf2013-11-16 21:29:08 +00001321 (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
1322 Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
Evan Chengb94674b2011-07-13 19:08:16 +00001323 Call->getNumArgOperands() == 1 &&
1324 Call->hasOneUse()) {
Owen Anderson32a58342010-07-19 08:09:34 +00001325 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1326 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
Owen Anderson84774ed2010-07-19 19:23:32 +00001327 CI.getType()->isFloatTy() &&
1328 Call->getType()->isDoubleTy() &&
1329 Arg->getType()->isDoubleTy() &&
1330 Arg->getOperand(0)->getType()->isFloatTy()) {
1331 Function *Callee = Call->getCalledFunction();
1332 Module *M = CI.getParent()->getParent()->getParent();
Hal Finkel12100bf2013-11-16 21:29:08 +00001333 Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
1334 Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
1335 M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
1336 Builder->getFloatTy(), Builder->getFloatTy(),
1337 NULL);
Owen Anderson32a58342010-07-19 08:09:34 +00001338 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1339 "sqrtfcall");
Owen Anderson84774ed2010-07-19 19:23:32 +00001340 ret->setAttributes(Callee->getAttributes());
Craig Topper3529aa52013-01-24 05:22:40 +00001341
1342
Chris Lattner6e27b3e2010-09-07 20:01:38 +00001343 // Remove the old Call. With -fmath-errno, it won't get marked readnone.
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00001344 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
Chris Lattner6e27b3e2010-09-07 20:01:38 +00001345 EraseInstFromFunction(*Call);
Owen Anderson32a58342010-07-19 08:09:34 +00001346 return ret;
1347 }
1348 }
Craig Topper3529aa52013-01-24 05:22:40 +00001349
Craig Topperf40110f2014-04-25 05:29:35 +00001350 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001351}
1352
1353Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1354 return commonCastTransforms(CI);
1355}
1356
1357Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1358 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
Craig Topperf40110f2014-04-25 05:29:35 +00001359 if (!OpI)
Chris Lattner2b295a02010-01-04 07:53:58 +00001360 return commonCastTransforms(FI);
1361
1362 // fptoui(uitofp(X)) --> X
1363 // fptoui(sitofp(X)) --> X
1364 // This is safe if the intermediate type has enough bits in its mantissa to
1365 // accurately represent all values of X. For example, do not do this with
1366 // i64->float->i64. This is also safe for sitofp case, because any negative
Craig Topper3529aa52013-01-24 05:22:40 +00001367 // 'X' value would cause an undefined result for the fptoui.
Chris Lattner2b295a02010-01-04 07:53:58 +00001368 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1369 OpI->getOperand(0)->getType() == FI.getType() &&
1370 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1371 OpI->getType()->getFPMantissaWidth())
1372 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1373
1374 return commonCastTransforms(FI);
1375}
1376
1377Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1378 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
Craig Topperf40110f2014-04-25 05:29:35 +00001379 if (!OpI)
Chris Lattner2b295a02010-01-04 07:53:58 +00001380 return commonCastTransforms(FI);
Craig Topper3529aa52013-01-24 05:22:40 +00001381
Chris Lattner2b295a02010-01-04 07:53:58 +00001382 // fptosi(sitofp(X)) --> X
1383 // fptosi(uitofp(X)) --> X
1384 // This is safe if the intermediate type has enough bits in its mantissa to
1385 // accurately represent all values of X. For example, do not do this with
1386 // i64->float->i64. This is also safe for sitofp case, because any negative
Craig Topper3529aa52013-01-24 05:22:40 +00001387 // 'X' value would cause an undefined result for the fptoui.
Chris Lattner2b295a02010-01-04 07:53:58 +00001388 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1389 OpI->getOperand(0)->getType() == FI.getType() &&
1390 (int)FI.getType()->getScalarSizeInBits() <=
1391 OpI->getType()->getFPMantissaWidth())
1392 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Craig Topper3529aa52013-01-24 05:22:40 +00001393
Chris Lattner2b295a02010-01-04 07:53:58 +00001394 return commonCastTransforms(FI);
1395}
1396
1397Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1398 return commonCastTransforms(CI);
1399}
1400
1401Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1402 return commonCastTransforms(CI);
1403}
1404
Chris Lattner2b295a02010-01-04 07:53:58 +00001405Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman949458d2010-02-02 01:44:02 +00001406 // If the source integer type is not the intptr_t type for this target, do a
1407 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1408 // cast to be exposed to other transforms.
Benjamin Kramer944e0ab2013-02-05 20:22:40 +00001409
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001410 if (DL) {
Matt Arsenault745101d2013-08-21 19:53:10 +00001411 unsigned AS = CI.getAddressSpace();
1412 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001413 DL->getPointerSizeInBits(AS)) {
1414 Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
Matt Arsenault745101d2013-08-21 19:53:10 +00001415 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1416 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1417
1418 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1419 return new IntToPtrInst(P, CI.getType());
1420 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001421 }
Craig Topper3529aa52013-01-24 05:22:40 +00001422
Chris Lattner2b295a02010-01-04 07:53:58 +00001423 if (Instruction *I = commonCastTransforms(CI))
1424 return I;
1425
Craig Topperf40110f2014-04-25 05:29:35 +00001426 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001427}
1428
Chris Lattnera93c63c2010-01-05 22:21:18 +00001429/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1430Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1431 Value *Src = CI.getOperand(0);
Craig Topper3529aa52013-01-24 05:22:40 +00001432
Chris Lattnera93c63c2010-01-05 22:21:18 +00001433 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1434 // If casting the result of a getelementptr instruction with no offset, turn
1435 // this into a cast of the original pointer!
1436 if (GEP->hasAllZeroIndices()) {
1437 // Changing the cast operand is usually not a good idea but it is safe
Craig Topper3529aa52013-01-24 05:22:40 +00001438 // here because the pointer operand is being replaced with another
Chris Lattnera93c63c2010-01-05 22:21:18 +00001439 // pointer operand so the opcode doesn't need to change.
1440 Worklist.Add(GEP);
1441 CI.setOperand(0, GEP->getOperand(0));
1442 return &CI;
1443 }
Craig Topper3529aa52013-01-24 05:22:40 +00001444
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001445 if (!DL)
Matt Arsenault94a028a2013-08-19 22:17:18 +00001446 return commonCastTransforms(CI);
1447
Chris Lattnera93c63c2010-01-05 22:21:18 +00001448 // If the GEP has a single use, and the base pointer is a bitcast, and the
1449 // GEP computes a constant offset, see if we can convert these three
1450 // instructions into fewer. This typically happens with unions and other
1451 // non-type-safe code.
Matt Arsenault745101d2013-08-21 19:53:10 +00001452 unsigned AS = GEP->getPointerAddressSpace();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001453 unsigned OffsetBits = DL->getPointerSizeInBits(AS);
Matt Arsenault94a028a2013-08-19 22:17:18 +00001454 APInt Offset(OffsetBits, 0);
1455 BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
1456 if (GEP->hasOneUse() &&
1457 BCI &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001458 GEP->accumulateConstantOffset(*DL, Offset)) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001459 // Get the base pointer input of the bitcast, and the type it points to.
Matt Arsenault94a028a2013-08-19 22:17:18 +00001460 Value *OrigBase = BCI->getOperand(0);
Chris Lattnera93c63c2010-01-05 22:21:18 +00001461 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001462 if (FindElementAtOffset(OrigBase->getType(),
1463 Offset.getSExtValue(),
1464 NewIndices)) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001465 // If we were able to index down into an element, create the GEP
1466 // and bitcast the result. This eliminates one bitcast, potentially
1467 // two.
1468 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Matt Arsenault94a028a2013-08-19 22:17:18 +00001469 Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1470 Builder->CreateGEP(OrigBase, NewIndices);
Chris Lattnera93c63c2010-01-05 22:21:18 +00001471 NGEP->takeName(GEP);
Craig Topper3529aa52013-01-24 05:22:40 +00001472
Chris Lattnera93c63c2010-01-05 22:21:18 +00001473 if (isa<BitCastInst>(CI))
1474 return new BitCastInst(NGEP, CI.getType());
1475 assert(isa<PtrToIntInst>(CI));
1476 return new PtrToIntInst(NGEP, CI.getType());
Craig Topper3529aa52013-01-24 05:22:40 +00001477 }
Chris Lattnera93c63c2010-01-05 22:21:18 +00001478 }
1479 }
Craig Topper3529aa52013-01-24 05:22:40 +00001480
Chris Lattnera93c63c2010-01-05 22:21:18 +00001481 return commonCastTransforms(CI);
1482}
1483
1484Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman949458d2010-02-02 01:44:02 +00001485 // If the destination integer type is not the intptr_t type for this target,
1486 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1487 // to be exposed to other transforms.
Benjamin Kramere4778752013-02-05 19:21:56 +00001488
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001489 if (!DL)
Matt Arsenault745101d2013-08-21 19:53:10 +00001490 return commonPointerCastTransforms(CI);
Craig Topper3529aa52013-01-24 05:22:40 +00001491
Matt Arsenault745101d2013-08-21 19:53:10 +00001492 Type *Ty = CI.getType();
1493 unsigned AS = CI.getPointerAddressSpace();
1494
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001495 if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
Matt Arsenault745101d2013-08-21 19:53:10 +00001496 return commonPointerCastTransforms(CI);
1497
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001498 Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
Matt Arsenault745101d2013-08-21 19:53:10 +00001499 if (Ty->isVectorTy()) // Handle vectors of pointers.
1500 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1501
1502 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1503 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
Chris Lattnera93c63c2010-01-05 22:21:18 +00001504}
1505
Chris Lattner02b0df52010-05-08 21:50:26 +00001506/// OptimizeVectorResize - This input value (which is known to have vector type)
1507/// is being zero extended or truncated to the specified vector type. Try to
1508/// replace it with a shuffle (and vector/vector bitcast) if possible.
1509///
1510/// The source and destination vector types may have different element types.
Chris Lattner229907c2011-07-18 04:54:35 +00001511static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
Chris Lattner02b0df52010-05-08 21:50:26 +00001512 InstCombiner &IC) {
1513 // We can only do this optimization if the output is a multiple of the input
1514 // element size, or the input is a multiple of the output element size.
1515 // Convert the input type to have the same element type as the output.
Chris Lattner229907c2011-07-18 04:54:35 +00001516 VectorType *SrcTy = cast<VectorType>(InVal->getType());
Craig Topper3529aa52013-01-24 05:22:40 +00001517
Chris Lattner02b0df52010-05-08 21:50:26 +00001518 if (SrcTy->getElementType() != DestTy->getElementType()) {
1519 // The input types don't need to be identical, but for now they must be the
1520 // same size. There is no specific reason we couldn't handle things like
1521 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
Craig Topper3529aa52013-01-24 05:22:40 +00001522 // there yet.
Chris Lattner02b0df52010-05-08 21:50:26 +00001523 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1524 DestTy->getElementType()->getPrimitiveSizeInBits())
Craig Topperf40110f2014-04-25 05:29:35 +00001525 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +00001526
Chris Lattner02b0df52010-05-08 21:50:26 +00001527 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1528 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1529 }
Craig Topper3529aa52013-01-24 05:22:40 +00001530
Chris Lattner02b0df52010-05-08 21:50:26 +00001531 // Now that the element types match, get the shuffle mask and RHS of the
1532 // shuffle to use, which depends on whether we're increasing or decreasing the
1533 // size of the input.
Chris Lattner8213c8a2012-02-06 21:56:39 +00001534 SmallVector<uint32_t, 16> ShuffleMask;
Chris Lattner02b0df52010-05-08 21:50:26 +00001535 Value *V2;
Craig Topper3529aa52013-01-24 05:22:40 +00001536
Chris Lattner02b0df52010-05-08 21:50:26 +00001537 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1538 // If we're shrinking the number of elements, just shuffle in the low
1539 // elements from the input and use undef as the second shuffle input.
1540 V2 = UndefValue::get(SrcTy);
1541 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
Chris Lattner8213c8a2012-02-06 21:56:39 +00001542 ShuffleMask.push_back(i);
Craig Topper3529aa52013-01-24 05:22:40 +00001543
Chris Lattner02b0df52010-05-08 21:50:26 +00001544 } else {
1545 // If we're increasing the number of elements, shuffle in all of the
1546 // elements from InVal and fill the rest of the result elements with zeros
1547 // from a constant zero.
1548 V2 = Constant::getNullValue(SrcTy);
1549 unsigned SrcElts = SrcTy->getNumElements();
1550 for (unsigned i = 0, e = SrcElts; i != e; ++i)
Chris Lattner8213c8a2012-02-06 21:56:39 +00001551 ShuffleMask.push_back(i);
Chris Lattner02b0df52010-05-08 21:50:26 +00001552
1553 // The excess elements reference the first element of the zero input.
Chris Lattner8213c8a2012-02-06 21:56:39 +00001554 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1555 ShuffleMask.push_back(SrcElts);
Chris Lattner02b0df52010-05-08 21:50:26 +00001556 }
Craig Topper3529aa52013-01-24 05:22:40 +00001557
Chris Lattner8213c8a2012-02-06 21:56:39 +00001558 return new ShuffleVectorInst(InVal, V2,
1559 ConstantDataVector::get(V2->getContext(),
1560 ShuffleMask));
Chris Lattner02b0df52010-05-08 21:50:26 +00001561}
1562
Chris Lattner229907c2011-07-18 04:54:35 +00001563static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001564 return Value % Ty->getPrimitiveSizeInBits() == 0;
1565}
1566
Chris Lattner229907c2011-07-18 04:54:35 +00001567static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001568 return Value / Ty->getPrimitiveSizeInBits();
1569}
1570
1571/// CollectInsertionElements - V is a value which is inserted into a vector of
1572/// VecEltTy. Look through the value to see if we can decompose it into
1573/// insertions into the vector. See the example in the comment for
1574/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1575/// The type of V is always a non-zero multiple of VecEltTy's size.
Richard Sandifordfeb34712013-08-12 07:26:09 +00001576/// Shift is the number of bits between the lsb of V and the lsb of
1577/// the vector.
Chris Lattnerdd660102010-08-28 01:20:38 +00001578///
1579/// This returns false if the pattern can't be matched or true if it can,
1580/// filling in Elements with the elements found here.
Richard Sandifordfeb34712013-08-12 07:26:09 +00001581static bool CollectInsertionElements(Value *V, unsigned Shift,
Chris Lattnerdd660102010-08-28 01:20:38 +00001582 SmallVectorImpl<Value*> &Elements,
Richard Sandifordfeb34712013-08-12 07:26:09 +00001583 Type *VecEltTy, InstCombiner &IC) {
1584 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1585 "Shift should be a multiple of the element type size");
1586
Chris Lattner50df36a2010-08-28 03:36:51 +00001587 // Undef values never contribute useful bits to the result.
1588 if (isa<UndefValue>(V)) return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001589
Chris Lattnerdd660102010-08-28 01:20:38 +00001590 // If we got down to a value of the right type, we win, try inserting into the
1591 // right element.
1592 if (V->getType() == VecEltTy) {
Chris Lattnerd0214f32010-08-28 01:50:57 +00001593 // Inserting null doesn't actually insert any elements.
1594 if (Constant *C = dyn_cast<Constant>(V))
1595 if (C->isNullValue())
1596 return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001597
Richard Sandifordfeb34712013-08-12 07:26:09 +00001598 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1599 if (IC.getDataLayout()->isBigEndian())
1600 ElementIndex = Elements.size() - ElementIndex - 1;
1601
Chris Lattnerdd660102010-08-28 01:20:38 +00001602 // Fail if multiple elements are inserted into this slot.
Craig Topperf40110f2014-04-25 05:29:35 +00001603 if (Elements[ElementIndex])
Chris Lattnerdd660102010-08-28 01:20:38 +00001604 return false;
Craig Topper3529aa52013-01-24 05:22:40 +00001605
Chris Lattnerdd660102010-08-28 01:20:38 +00001606 Elements[ElementIndex] = V;
1607 return true;
1608 }
Craig Topper3529aa52013-01-24 05:22:40 +00001609
Chris Lattnerd0214f32010-08-28 01:50:57 +00001610 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001611 // Figure out the # elements this provides, and bitcast it or slice it up
1612 // as required.
Chris Lattnerd0214f32010-08-28 01:50:57 +00001613 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1614 VecEltTy);
1615 // If the constant is the size of a vector element, we just need to bitcast
1616 // it to the right type so it gets properly inserted.
1617 if (NumElts == 1)
1618 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
Richard Sandifordfeb34712013-08-12 07:26:09 +00001619 Shift, Elements, VecEltTy, IC);
Craig Topper3529aa52013-01-24 05:22:40 +00001620
Chris Lattnerd0214f32010-08-28 01:50:57 +00001621 // Okay, this is a constant that covers multiple elements. Slice it up into
1622 // pieces and insert each element-sized piece into the vector.
1623 if (!isa<IntegerType>(C->getType()))
1624 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1625 C->getType()->getPrimitiveSizeInBits()));
1626 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Chris Lattner229907c2011-07-18 04:54:35 +00001627 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
Craig Topper3529aa52013-01-24 05:22:40 +00001628
Chris Lattnerd0214f32010-08-28 01:50:57 +00001629 for (unsigned i = 0; i != NumElts; ++i) {
Richard Sandifordfeb34712013-08-12 07:26:09 +00001630 unsigned ShiftI = Shift+i*ElementSize;
Chris Lattnerd0214f32010-08-28 01:50:57 +00001631 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
Richard Sandifordfeb34712013-08-12 07:26:09 +00001632 ShiftI));
Chris Lattnerd0214f32010-08-28 01:50:57 +00001633 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
Richard Sandifordfeb34712013-08-12 07:26:09 +00001634 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
Chris Lattnerd0214f32010-08-28 01:50:57 +00001635 return false;
1636 }
1637 return true;
1638 }
Craig Topper3529aa52013-01-24 05:22:40 +00001639
Chris Lattnerdd660102010-08-28 01:20:38 +00001640 if (!V->hasOneUse()) return false;
Craig Topper3529aa52013-01-24 05:22:40 +00001641
Chris Lattnerdd660102010-08-28 01:20:38 +00001642 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001643 if (!I) return false;
Chris Lattnerdd660102010-08-28 01:20:38 +00001644 switch (I->getOpcode()) {
1645 default: return false; // Unhandled case.
1646 case Instruction::BitCast:
Richard Sandifordfeb34712013-08-12 07:26:09 +00001647 return CollectInsertionElements(I->getOperand(0), Shift,
1648 Elements, VecEltTy, IC);
Chris Lattnerdd660102010-08-28 01:20:38 +00001649 case Instruction::ZExt:
1650 if (!isMultipleOfTypeSize(
1651 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1652 VecEltTy))
1653 return false;
Richard Sandifordfeb34712013-08-12 07:26:09 +00001654 return CollectInsertionElements(I->getOperand(0), Shift,
1655 Elements, VecEltTy, IC);
Chris Lattnerdd660102010-08-28 01:20:38 +00001656 case Instruction::Or:
Richard Sandifordfeb34712013-08-12 07:26:09 +00001657 return CollectInsertionElements(I->getOperand(0), Shift,
1658 Elements, VecEltTy, IC) &&
1659 CollectInsertionElements(I->getOperand(1), Shift,
1660 Elements, VecEltTy, IC);
Chris Lattnerdd660102010-08-28 01:20:38 +00001661 case Instruction::Shl: {
1662 // Must be shifting by a constant that is a multiple of the element size.
1663 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001664 if (!CI) return false;
Richard Sandifordfeb34712013-08-12 07:26:09 +00001665 Shift += CI->getZExtValue();
1666 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1667 return CollectInsertionElements(I->getOperand(0), Shift,
1668 Elements, VecEltTy, IC);
Chris Lattnerdd660102010-08-28 01:20:38 +00001669 }
Craig Topper3529aa52013-01-24 05:22:40 +00001670
Chris Lattnerdd660102010-08-28 01:20:38 +00001671 }
1672}
1673
1674
1675/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1676/// may be doing shifts and ors to assemble the elements of the vector manually.
1677/// Try to rip the code out and replace it with insertelements. This is to
1678/// optimize code like this:
1679///
1680/// %tmp37 = bitcast float %inc to i32
1681/// %tmp38 = zext i32 %tmp37 to i64
1682/// %tmp31 = bitcast float %inc5 to i32
1683/// %tmp32 = zext i32 %tmp31 to i64
1684/// %tmp33 = shl i64 %tmp32, 32
1685/// %ins35 = or i64 %tmp33, %tmp38
1686/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1687///
1688/// Into two insertelements that do "buildvector{%inc, %inc5}".
1689static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1690 InstCombiner &IC) {
Richard Sandifordfeb34712013-08-12 07:26:09 +00001691 // We need to know the target byte order to perform this optimization.
Craig Topperf40110f2014-04-25 05:29:35 +00001692 if (!IC.getDataLayout()) return nullptr;
Richard Sandifordfeb34712013-08-12 07:26:09 +00001693
Chris Lattner229907c2011-07-18 04:54:35 +00001694 VectorType *DestVecTy = cast<VectorType>(CI.getType());
Chris Lattnerdd660102010-08-28 01:20:38 +00001695 Value *IntInput = CI.getOperand(0);
1696
1697 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1698 if (!CollectInsertionElements(IntInput, 0, Elements,
Richard Sandifordfeb34712013-08-12 07:26:09 +00001699 DestVecTy->getElementType(), IC))
Craig Topperf40110f2014-04-25 05:29:35 +00001700 return nullptr;
Chris Lattnerdd660102010-08-28 01:20:38 +00001701
1702 // If we succeeded, we know that all of the element are specified by Elements
1703 // or are zero if Elements has a null entry. Recast this as a set of
1704 // insertions.
1705 Value *Result = Constant::getNullValue(CI.getType());
1706 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +00001707 if (!Elements[i]) continue; // Unset element.
Craig Topper3529aa52013-01-24 05:22:40 +00001708
Chris Lattnerdd660102010-08-28 01:20:38 +00001709 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1710 IC.Builder->getInt32(i));
1711 }
Craig Topper3529aa52013-01-24 05:22:40 +00001712
Chris Lattnerdd660102010-08-28 01:20:38 +00001713 return Result;
1714}
1715
1716
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001717/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1718/// bitcast. The various long double bitcasts can't get in here.
Chris Lattnerbfd22282010-08-26 22:14:59 +00001719static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Ulrich Weigand8a51d8e2013-03-26 15:36:14 +00001720 // We need to know the target byte order to perform this optimization.
Craig Topperf40110f2014-04-25 05:29:35 +00001721 if (!IC.getDataLayout()) return nullptr;
Ulrich Weigand8a51d8e2013-03-26 15:36:14 +00001722
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001723 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00001724 Type *DestTy = CI.getType();
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001725
1726 // If this is a bitcast from int to float, check to see if the int is an
1727 // extraction from a vector.
Craig Topperf40110f2014-04-25 05:29:35 +00001728 Value *VecInput = nullptr;
Chris Lattnerbfd22282010-08-26 22:14:59 +00001729 // bitcast(trunc(bitcast(somevector)))
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001730 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1731 isa<VectorType>(VecInput->getType())) {
Chris Lattner229907c2011-07-18 04:54:35 +00001732 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattnerbfd22282010-08-26 22:14:59 +00001733 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1734
1735 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1736 // If the element type of the vector doesn't match the result type,
1737 // bitcast it to be a vector type we can extract from.
1738 if (VecTy->getElementType() != DestTy) {
1739 VecTy = VectorType::get(DestTy,
1740 VecTy->getPrimitiveSizeInBits() / DestWidth);
1741 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1742 }
Craig Topper3529aa52013-01-24 05:22:40 +00001743
Ulrich Weigand8a51d8e2013-03-26 15:36:14 +00001744 unsigned Elt = 0;
1745 if (IC.getDataLayout()->isBigEndian())
1746 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1747 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
Chris Lattnerbfd22282010-08-26 22:14:59 +00001748 }
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001749 }
Craig Topper3529aa52013-01-24 05:22:40 +00001750
Chris Lattnerbfd22282010-08-26 22:14:59 +00001751 // bitcast(trunc(lshr(bitcast(somevector), cst))
Craig Topperf40110f2014-04-25 05:29:35 +00001752 ConstantInt *ShAmt = nullptr;
Chris Lattnerbfd22282010-08-26 22:14:59 +00001753 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1754 m_ConstantInt(ShAmt)))) &&
1755 isa<VectorType>(VecInput->getType())) {
Chris Lattner229907c2011-07-18 04:54:35 +00001756 VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattnerbfd22282010-08-26 22:14:59 +00001757 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1758 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1759 ShAmt->getZExtValue() % DestWidth == 0) {
1760 // If the element type of the vector doesn't match the result type,
1761 // bitcast it to be a vector type we can extract from.
1762 if (VecTy->getElementType() != DestTy) {
1763 VecTy = VectorType::get(DestTy,
1764 VecTy->getPrimitiveSizeInBits() / DestWidth);
1765 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1766 }
Craig Topper3529aa52013-01-24 05:22:40 +00001767
Chris Lattnerbfd22282010-08-26 22:14:59 +00001768 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
Ulrich Weigand8a51d8e2013-03-26 15:36:14 +00001769 if (IC.getDataLayout()->isBigEndian())
1770 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
Chris Lattnerbfd22282010-08-26 22:14:59 +00001771 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1772 }
1773 }
Craig Topperf40110f2014-04-25 05:29:35 +00001774 return nullptr;
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001775}
Chris Lattner02b0df52010-05-08 21:50:26 +00001776
Chris Lattner2b295a02010-01-04 07:53:58 +00001777Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1778 // If the operands are integer typed then apply the integer transforms,
1779 // otherwise just apply the common ones.
1780 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00001781 Type *SrcTy = Src->getType();
1782 Type *DestTy = CI.getType();
Chris Lattner2b295a02010-01-04 07:53:58 +00001783
Chris Lattner2b295a02010-01-04 07:53:58 +00001784 // Get rid of casts from one type to the same type. These are useless and can
1785 // be replaced by the operand.
1786 if (DestTy == Src->getType())
1787 return ReplaceInstUsesWith(CI, Src);
1788
Chris Lattner229907c2011-07-18 04:54:35 +00001789 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1790 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1791 Type *DstElTy = DstPTy->getElementType();
1792 Type *SrcElTy = SrcPTy->getElementType();
Craig Topper3529aa52013-01-24 05:22:40 +00001793
Chris Lattner2b295a02010-01-04 07:53:58 +00001794 // If we are casting a alloca to a pointer to a type of the same
1795 // size, rewrite the allocation instruction to allocate the "right" type.
1796 // There is no need to modify malloc calls because it is their bitcast that
1797 // needs to be cleaned up.
1798 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1799 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1800 return V;
Craig Topper3529aa52013-01-24 05:22:40 +00001801
Chris Lattner2b295a02010-01-04 07:53:58 +00001802 // If the source and destination are pointers, and this cast is equivalent
1803 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1804 // This can enhance SROA and other transforms that want type-safe pointers.
1805 Constant *ZeroUInt =
1806 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1807 unsigned NumZeros = 0;
Craig Topper3529aa52013-01-24 05:22:40 +00001808 while (SrcElTy != DstElTy &&
Duncan Sands19d0b472010-02-16 11:11:14 +00001809 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner2b295a02010-01-04 07:53:58 +00001810 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1811 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1812 ++NumZeros;
1813 }
1814
1815 // If we found a path from the src to dest, create the getelementptr now.
1816 if (SrcElTy == DstElTy) {
1817 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Jay Foadd1b78492011-07-25 09:48:08 +00001818 return GetElementPtrInst::CreateInBounds(Src, Idxs);
Chris Lattner2b295a02010-01-04 07:53:58 +00001819 }
1820 }
Craig Topper3529aa52013-01-24 05:22:40 +00001821
Chris Lattnerd4ebd6d2010-08-26 21:55:42 +00001822 // Try to optimize int -> float bitcasts.
1823 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1824 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1825 return I;
Chris Lattner2b295a02010-01-04 07:53:58 +00001826
Chris Lattner229907c2011-07-18 04:54:35 +00001827 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands19d0b472010-02-16 11:11:14 +00001828 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001829 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1830 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner2b295a02010-01-04 07:53:58 +00001831 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner2b295a02010-01-04 07:53:58 +00001832 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1833 }
Craig Topper3529aa52013-01-24 05:22:40 +00001834
Chris Lattnerdd660102010-08-28 01:20:38 +00001835 if (isa<IntegerType>(SrcTy)) {
1836 // If this is a cast from an integer to vector, check to see if the input
1837 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1838 // the casts with a shuffle and (potentially) a bitcast.
1839 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1840 CastInst *SrcCast = cast<CastInst>(Src);
1841 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1842 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1843 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
Chris Lattner02b0df52010-05-08 21:50:26 +00001844 cast<VectorType>(DestTy), *this))
Chris Lattnerdd660102010-08-28 01:20:38 +00001845 return I;
1846 }
Craig Topper3529aa52013-01-24 05:22:40 +00001847
Chris Lattnerdd660102010-08-28 01:20:38 +00001848 // If the input is an 'or' instruction, we may be doing shifts and ors to
1849 // assemble the elements of the vector manually. Try to rip the code out
1850 // and replace it with insertelements.
1851 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1852 return ReplaceInstUsesWith(CI, V);
Chris Lattner02b0df52010-05-08 21:50:26 +00001853 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001854 }
1855
Chris Lattner229907c2011-07-18 04:54:35 +00001856 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Michael Ilseman74a6da92013-02-11 21:41:44 +00001857 if (SrcVTy->getNumElements() == 1) {
1858 // If our destination is not a vector, then make this a straight
1859 // scalar-scalar cast.
1860 if (!DestTy->isVectorTy()) {
1861 Value *Elem =
1862 Builder->CreateExtractElement(Src,
1863 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1864 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1865 }
1866
1867 // Otherwise, see if our source is an insert. If so, then use the scalar
1868 // component directly.
1869 if (InsertElementInst *IEI =
1870 dyn_cast<InsertElementInst>(CI.getOperand(0)))
1871 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1872 DestTy);
Chris Lattner2b295a02010-01-04 07:53:58 +00001873 }
1874 }
1875
1876 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001877 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmaneb7111b2010-04-07 23:22:42 +00001878 // a bitcast to a vector with the same # elts.
Craig Topper3529aa52013-01-24 05:22:40 +00001879 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001880 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001881 SVI->getType()->getNumElements() ==
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001882 SVI->getOperand(0)->getType()->getVectorNumElements()) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001883 BitCastInst *Tmp;
1884 // If either of the operands is a cast from CI.getType(), then
1885 // evaluating the shuffle in the casted destination's type will allow
1886 // us to eliminate at least one cast.
Craig Topper3529aa52013-01-24 05:22:40 +00001887 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001888 Tmp->getOperand(0)->getType() == DestTy) ||
Craig Topper3529aa52013-01-24 05:22:40 +00001889 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001890 Tmp->getOperand(0)->getType() == DestTy)) {
1891 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1892 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1893 // Return a new shuffle vector. Use the same element ID's, as we
1894 // know the vector types match #elts.
1895 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner2b295a02010-01-04 07:53:58 +00001896 }
1897 }
1898 }
Craig Topper3529aa52013-01-24 05:22:40 +00001899
Duncan Sands19d0b472010-02-16 11:11:14 +00001900 if (SrcTy->isPointerTy())
Chris Lattnera93c63c2010-01-05 22:21:18 +00001901 return commonPointerCastTransforms(CI);
1902 return commonCastTransforms(CI);
Chris Lattner2b295a02010-01-04 07:53:58 +00001903}
Matt Arsenaulta9e95ab2013-11-15 05:45:08 +00001904
1905Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
Matt Arsenault2d353d12014-01-14 20:00:45 +00001906 return commonPointerCastTransforms(CI);
Matt Arsenaulta9e95ab2013-11-15 05:45:08 +00001907}