| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 1 | //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// | 
|  | 2 | // | 
|  | 3 | //                     The LLVM Compiler Infrastructure | 
|  | 4 | // | 
|  | 5 | // This file is distributed under the University of Illinois Open Source | 
|  | 6 | // License. See LICENSE.TXT for details. | 
|  | 7 | // | 
|  | 8 | //===----------------------------------------------------------------------===// | 
|  | 9 | // | 
|  | 10 | // This file implements a transformation that attaches !callees metadata to | 
|  | 11 | // indirect call sites. For a given call site, the metadata, if present, | 
|  | 12 | // indicates the set of functions the call site could possibly target at | 
|  | 13 | // run-time. This metadata is added to indirect call sites when the set of | 
|  | 14 | // possible targets can be determined by analysis and is known to be small. The | 
|  | 15 | // analysis driving the transformation is similar to constant propagation and | 
|  | 16 | // makes uses of the generic sparse propagation solver. | 
|  | 17 | // | 
|  | 18 | //===----------------------------------------------------------------------===// | 
|  | 19 |  | 
|  | 20 | #include "llvm/Transforms/IPO/CalledValuePropagation.h" | 
|  | 21 | #include "llvm/Analysis/SparsePropagation.h" | 
|  | 22 | #include "llvm/Analysis/ValueLatticeUtils.h" | 
|  | 23 | #include "llvm/IR/InstVisitor.h" | 
|  | 24 | #include "llvm/IR/MDBuilder.h" | 
|  | 25 | #include "llvm/Transforms/IPO.h" | 
|  | 26 | using namespace llvm; | 
|  | 27 |  | 
|  | 28 | #define DEBUG_TYPE "called-value-propagation" | 
|  | 29 |  | 
|  | 30 | /// The maximum number of functions to track per lattice value. Once the number | 
|  | 31 | /// of functions a call site can possibly target exceeds this threshold, it's | 
|  | 32 | /// lattice value becomes overdefined. The number of possible lattice values is | 
|  | 33 | /// bounded by Ch(F, M), where F is the number of functions in the module and M | 
|  | 34 | /// is MaxFunctionsPerValue. As such, this value should be kept very small. We | 
|  | 35 | /// likely can't do anything useful for call sites with a large number of | 
|  | 36 | /// possible targets, anyway. | 
|  | 37 | static cl::opt<unsigned> MaxFunctionsPerValue( | 
|  | 38 | "cvp-max-functions-per-value", cl::Hidden, cl::init(4), | 
|  | 39 | cl::desc("The maximum number of functions to track per lattice value")); | 
|  | 40 |  | 
|  | 41 | namespace { | 
|  | 42 | /// To enable interprocedural analysis, we assign LLVM values to the following | 
|  | 43 | /// groups. The register group represents SSA registers, the return group | 
|  | 44 | /// represents the return values of functions, and the memory group represents | 
|  | 45 | /// in-memory values. An LLVM Value can technically be in more than one group. | 
|  | 46 | /// It's necessary to distinguish these groups so we can, for example, track a | 
|  | 47 | /// global variable separately from the value stored at its location. | 
|  | 48 | enum class IPOGrouping { Register, Return, Memory }; | 
|  | 49 |  | 
|  | 50 | /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. | 
|  | 51 | using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; | 
|  | 52 |  | 
|  | 53 | /// The lattice value type used by our custom lattice function. It holds the | 
|  | 54 | /// lattice state, and a set of functions. | 
|  | 55 | class CVPLatticeVal { | 
|  | 56 | public: | 
|  | 57 | /// The states of the lattice values. Only the FunctionSet state is | 
|  | 58 | /// interesting. It indicates the set of functions to which an LLVM value may | 
|  | 59 | /// refer. | 
|  | 60 | enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; | 
|  | 61 |  | 
|  | 62 | /// Comparator for sorting the functions set. We want to keep the order | 
|  | 63 | /// deterministic for testing, etc. | 
|  | 64 | struct Compare { | 
|  | 65 | bool operator()(const Function *LHS, const Function *RHS) const { | 
|  | 66 | return LHS->getName() < RHS->getName(); | 
|  | 67 | } | 
|  | 68 | }; | 
|  | 69 |  | 
|  | 70 | CVPLatticeVal() : LatticeState(Undefined) {} | 
|  | 71 | CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} | 
|  | 72 | CVPLatticeVal(std::set<Function *, Compare> &&Functions) | 
|  | 73 | : LatticeState(FunctionSet), Functions(Functions) {} | 
|  | 74 |  | 
|  | 75 | /// Get a reference to the functions held by this lattice value. The number | 
|  | 76 | /// of functions will be zero for states other than FunctionSet. | 
|  | 77 | const std::set<Function *, Compare> &getFunctions() const { | 
|  | 78 | return Functions; | 
|  | 79 | } | 
|  | 80 |  | 
|  | 81 | /// Returns true if the lattice value is in the FunctionSet state. | 
|  | 82 | bool isFunctionSet() const { return LatticeState == FunctionSet; } | 
|  | 83 |  | 
|  | 84 | bool operator==(const CVPLatticeVal &RHS) const { | 
|  | 85 | return LatticeState == RHS.LatticeState && Functions == RHS.Functions; | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | bool operator!=(const CVPLatticeVal &RHS) const { | 
|  | 89 | return LatticeState != RHS.LatticeState || Functions != RHS.Functions; | 
|  | 90 | } | 
|  | 91 |  | 
|  | 92 | private: | 
|  | 93 | /// Holds the state this lattice value is in. | 
|  | 94 | CVPLatticeStateTy LatticeState; | 
|  | 95 |  | 
|  | 96 | /// Holds functions indicating the possible targets of call sites. This set | 
|  | 97 | /// is empty for lattice values in the undefined, overdefined, and untracked | 
|  | 98 | /// states. The maximum size of the set is controlled by | 
|  | 99 | /// MaxFunctionsPerValue. Since most LLVM values are expected to be in | 
|  | 100 | /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be | 
|  | 101 | /// small and efficiently copyable. | 
|  | 102 | std::set<Function *, Compare> Functions; | 
|  | 103 | }; | 
|  | 104 |  | 
|  | 105 | /// The custom lattice function used by the generic sparse propagation solver. | 
|  | 106 | /// It handles merging lattice values and computing new lattice values for | 
|  | 107 | /// constants, arguments, values returned from trackable functions, and values | 
|  | 108 | /// located in trackable global variables. It also computes the lattice values | 
|  | 109 | /// that change as a result of executing instructions. | 
|  | 110 | class CVPLatticeFunc | 
|  | 111 | : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { | 
|  | 112 | public: | 
|  | 113 | CVPLatticeFunc() | 
|  | 114 | : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), | 
|  | 115 | CVPLatticeVal(CVPLatticeVal::Overdefined), | 
|  | 116 | CVPLatticeVal(CVPLatticeVal::Untracked)) {} | 
|  | 117 |  | 
|  | 118 | /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. | 
|  | 119 | CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { | 
|  | 120 | switch (Key.getInt()) { | 
|  | 121 | case IPOGrouping::Register: | 
|  | 122 | if (isa<Instruction>(Key.getPointer())) { | 
|  | 123 | return getUndefVal(); | 
|  | 124 | } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { | 
|  | 125 | if (canTrackArgumentsInterprocedurally(A->getParent())) | 
|  | 126 | return getUndefVal(); | 
|  | 127 | } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { | 
|  | 128 | return computeConstant(C); | 
|  | 129 | } | 
|  | 130 | return getOverdefinedVal(); | 
|  | 131 | case IPOGrouping::Memory: | 
|  | 132 | case IPOGrouping::Return: | 
|  | 133 | if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { | 
|  | 134 | if (canTrackGlobalVariableInterprocedurally(GV)) | 
|  | 135 | return computeConstant(GV->getInitializer()); | 
|  | 136 | } else if (auto *F = cast<Function>(Key.getPointer())) | 
|  | 137 | if (canTrackReturnsInterprocedurally(F)) | 
|  | 138 | return getUndefVal(); | 
|  | 139 | } | 
|  | 140 | return getOverdefinedVal(); | 
|  | 141 | } | 
|  | 142 |  | 
|  | 143 | /// Merge the two given lattice values. The interesting cases are merging two | 
|  | 144 | /// FunctionSet values and a FunctionSet value with an Undefined value. For | 
|  | 145 | /// these cases, we simply union the function sets. If the size of the union | 
|  | 146 | /// is greater than the maximum functions we track, the merged value is | 
|  | 147 | /// overdefined. | 
|  | 148 | CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { | 
|  | 149 | if (X == getOverdefinedVal() || Y == getOverdefinedVal()) | 
|  | 150 | return getOverdefinedVal(); | 
|  | 151 | if (X == getUndefVal() && Y == getUndefVal()) | 
|  | 152 | return getUndefVal(); | 
|  | 153 | std::set<Function *, CVPLatticeVal::Compare> Union; | 
|  | 154 | std::set_union(X.getFunctions().begin(), X.getFunctions().end(), | 
|  | 155 | Y.getFunctions().begin(), Y.getFunctions().end(), | 
| Matthew Simpson | 99f5793 | 2017-10-25 22:46:34 +0000 | [diff] [blame] | 156 | std::inserter(Union, Union.begin()), | 
|  | 157 | CVPLatticeVal::Compare{}); | 
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 158 | if (Union.size() > MaxFunctionsPerValue) | 
|  | 159 | return getOverdefinedVal(); | 
|  | 160 | return CVPLatticeVal(std::move(Union)); | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | /// Compute the lattice values that change as a result of executing the given | 
|  | 164 | /// instruction. The changed values are stored in \p ChangedValues. We handle | 
|  | 165 | /// just a few kinds of instructions since we're only propagating values that | 
|  | 166 | /// can be called. | 
|  | 167 | void ComputeInstructionState( | 
|  | 168 | Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 169 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { | 
|  | 170 | switch (I.getOpcode()) { | 
|  | 171 | case Instruction::Call: | 
|  | 172 | return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); | 
|  | 173 | case Instruction::Invoke: | 
|  | 174 | return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); | 
|  | 175 | case Instruction::Load: | 
|  | 176 | return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); | 
|  | 177 | case Instruction::Ret: | 
|  | 178 | return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); | 
|  | 179 | case Instruction::Select: | 
|  | 180 | return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); | 
|  | 181 | case Instruction::Store: | 
|  | 182 | return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); | 
|  | 183 | default: | 
|  | 184 | return visitInst(I, ChangedValues, SS); | 
|  | 185 | } | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | /// Print the given CVPLatticeVal to the specified stream. | 
|  | 189 | void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { | 
|  | 190 | if (LV == getUndefVal()) | 
|  | 191 | OS << "Undefined  "; | 
|  | 192 | else if (LV == getOverdefinedVal()) | 
|  | 193 | OS << "Overdefined"; | 
|  | 194 | else if (LV == getUntrackedVal()) | 
|  | 195 | OS << "Untracked  "; | 
|  | 196 | else | 
|  | 197 | OS << "FunctionSet"; | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | /// Print the given CVPLatticeKey to the specified stream. | 
|  | 201 | void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { | 
|  | 202 | if (Key.getInt() == IPOGrouping::Register) | 
|  | 203 | OS << "<reg> "; | 
|  | 204 | else if (Key.getInt() == IPOGrouping::Memory) | 
|  | 205 | OS << "<mem> "; | 
|  | 206 | else if (Key.getInt() == IPOGrouping::Return) | 
|  | 207 | OS << "<ret> "; | 
|  | 208 | if (isa<Function>(Key.getPointer())) | 
|  | 209 | OS << Key.getPointer()->getName(); | 
|  | 210 | else | 
|  | 211 | OS << *Key.getPointer(); | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /// We collect a set of indirect calls when visiting call sites. This method | 
|  | 215 | /// returns a reference to that set. | 
|  | 216 | SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } | 
|  | 217 |  | 
|  | 218 | private: | 
|  | 219 | /// Holds the indirect calls we encounter during the analysis. We will attach | 
|  | 220 | /// metadata to these calls after the analysis indicating the functions the | 
|  | 221 | /// calls can possibly target. | 
|  | 222 | SmallPtrSet<Instruction *, 32> IndirectCalls; | 
|  | 223 |  | 
|  | 224 | /// Compute a new lattice value for the given constant. The constant, after | 
|  | 225 | /// stripping any pointer casts, should be a Function. We ignore null | 
|  | 226 | /// pointers as an optimization, since calling these values is undefined | 
|  | 227 | /// behavior. | 
|  | 228 | CVPLatticeVal computeConstant(Constant *C) { | 
|  | 229 | if (isa<ConstantPointerNull>(C)) | 
|  | 230 | return CVPLatticeVal(CVPLatticeVal::FunctionSet); | 
|  | 231 | if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) | 
|  | 232 | return CVPLatticeVal({F}); | 
|  | 233 | return getOverdefinedVal(); | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | /// Handle return instructions. The function's return state is the merge of | 
|  | 237 | /// the returned value state and the function's return state. | 
|  | 238 | void visitReturn(ReturnInst &I, | 
|  | 239 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 240 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 241 | Function *F = I.getParent()->getParent(); | 
|  | 242 | if (F->getReturnType()->isVoidTy()) | 
|  | 243 | return; | 
|  | 244 | auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); | 
|  | 245 | auto RetF = CVPLatticeKey(F, IPOGrouping::Return); | 
|  | 246 | ChangedValues[RetF] = | 
|  | 247 | MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | /// Handle call sites. The state of a called function's formal arguments is | 
|  | 251 | /// the merge of the argument state with the call sites corresponding actual | 
|  | 252 | /// argument state. The call site state is the merge of the call site state | 
|  | 253 | /// with the returned value state of the called function. | 
|  | 254 | void visitCallSite(CallSite CS, | 
|  | 255 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 256 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 257 | Function *F = CS.getCalledFunction(); | 
|  | 258 | Instruction *I = CS.getInstruction(); | 
|  | 259 | auto RegI = CVPLatticeKey(I, IPOGrouping::Register); | 
|  | 260 |  | 
|  | 261 | // If this is an indirect call, save it so we can quickly revisit it when | 
|  | 262 | // attaching metadata. | 
|  | 263 | if (!F) | 
|  | 264 | IndirectCalls.insert(I); | 
|  | 265 |  | 
|  | 266 | // If we can't track the function's return values, there's nothing to do. | 
|  | 267 | if (!F || !canTrackReturnsInterprocedurally(F)) { | 
|  | 268 | ChangedValues[RegI] = getOverdefinedVal(); | 
|  | 269 | return; | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | // Inform the solver that the called function is executable, and perform | 
|  | 273 | // the merges for the arguments and return value. | 
|  | 274 | SS.MarkBlockExecutable(&F->front()); | 
|  | 275 | auto RetF = CVPLatticeKey(F, IPOGrouping::Return); | 
|  | 276 | for (Argument &A : F->args()) { | 
|  | 277 | auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); | 
|  | 278 | auto RegActual = | 
|  | 279 | CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); | 
|  | 280 | ChangedValues[RegFormal] = | 
|  | 281 | MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); | 
|  | 282 | } | 
|  | 283 | ChangedValues[RegI] = | 
|  | 284 | MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | /// Handle select instructions. The select instruction state is the merge the | 
|  | 288 | /// true and false value states. | 
|  | 289 | void visitSelect(SelectInst &I, | 
|  | 290 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 291 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 292 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); | 
|  | 293 | auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); | 
|  | 294 | auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); | 
|  | 295 | ChangedValues[RegI] = | 
|  | 296 | MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | /// Handle load instructions. If the pointer operand of the load is a global | 
|  | 300 | /// variable, we attempt to track the value. The loaded value state is the | 
|  | 301 | /// merge of the loaded value state with the global variable state. | 
|  | 302 | void visitLoad(LoadInst &I, | 
|  | 303 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 304 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 305 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); | 
|  | 306 | if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { | 
|  | 307 | auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); | 
|  | 308 | ChangedValues[RegI] = | 
|  | 309 | MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); | 
|  | 310 | } else { | 
|  | 311 | ChangedValues[RegI] = getOverdefinedVal(); | 
|  | 312 | } | 
|  | 313 | } | 
|  | 314 |  | 
|  | 315 | /// Handle store instructions. If the pointer operand of the store is a | 
|  | 316 | /// global variable, we attempt to track the value. The global variable state | 
|  | 317 | /// is the merge of the stored value state with the global variable state. | 
|  | 318 | void visitStore(StoreInst &I, | 
|  | 319 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 320 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 321 | auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); | 
|  | 322 | if (!GV) | 
|  | 323 | return; | 
|  | 324 | auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); | 
|  | 325 | auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); | 
|  | 326 | ChangedValues[MemGV] = | 
|  | 327 | MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | /// Handle all other instructions. All other instructions are marked | 
|  | 331 | /// overdefined. | 
|  | 332 | void visitInst(Instruction &I, | 
|  | 333 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, | 
|  | 334 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { | 
|  | 335 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); | 
|  | 336 | ChangedValues[RegI] = getOverdefinedVal(); | 
|  | 337 | } | 
|  | 338 | }; | 
|  | 339 | } // namespace | 
|  | 340 |  | 
|  | 341 | namespace llvm { | 
|  | 342 | /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver | 
|  | 343 | /// must translate between LatticeKeys and LLVM Values when adding Values to | 
|  | 344 | /// its work list and inspecting the state of control-flow related values. | 
|  | 345 | template <> struct LatticeKeyInfo<CVPLatticeKey> { | 
|  | 346 | static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { | 
|  | 347 | return Key.getPointer(); | 
|  | 348 | } | 
|  | 349 | static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { | 
|  | 350 | return CVPLatticeKey(V, IPOGrouping::Register); | 
|  | 351 | } | 
|  | 352 | }; | 
|  | 353 | } // namespace llvm | 
|  | 354 |  | 
|  | 355 | static bool runCVP(Module &M) { | 
|  | 356 | // Our custom lattice function and generic sparse propagation solver. | 
|  | 357 | CVPLatticeFunc Lattice; | 
|  | 358 | SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); | 
|  | 359 |  | 
|  | 360 | // For each function in the module, if we can't track its arguments, let the | 
|  | 361 | // generic solver assume it is executable. | 
|  | 362 | for (Function &F : M) | 
|  | 363 | if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) | 
|  | 364 | Solver.MarkBlockExecutable(&F.front()); | 
|  | 365 |  | 
|  | 366 | // Solver our custom lattice. In doing so, we will also build a set of | 
|  | 367 | // indirect call sites. | 
|  | 368 | Solver.Solve(); | 
|  | 369 |  | 
|  | 370 | // Attach metadata to the indirect call sites that were collected indicating | 
|  | 371 | // the set of functions they can possibly target. | 
|  | 372 | bool Changed = false; | 
|  | 373 | MDBuilder MDB(M.getContext()); | 
|  | 374 | for (Instruction *C : Lattice.getIndirectCalls()) { | 
|  | 375 | CallSite CS(C); | 
|  | 376 | auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); | 
|  | 377 | CVPLatticeVal LV = Solver.getExistingValueState(RegI); | 
|  | 378 | if (!LV.isFunctionSet() || LV.getFunctions().empty()) | 
|  | 379 | continue; | 
|  | 380 | MDNode *Callees = MDB.createCallees(SmallVector<Function *, 4>( | 
|  | 381 | LV.getFunctions().begin(), LV.getFunctions().end())); | 
|  | 382 | C->setMetadata(LLVMContext::MD_callees, Callees); | 
|  | 383 | Changed = true; | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | return Changed; | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | PreservedAnalyses CalledValuePropagationPass::run(Module &M, | 
|  | 390 | ModuleAnalysisManager &) { | 
|  | 391 | runCVP(M); | 
|  | 392 | return PreservedAnalyses::all(); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | namespace { | 
|  | 396 | class CalledValuePropagationLegacyPass : public ModulePass { | 
|  | 397 | public: | 
|  | 398 | static char ID; | 
|  | 399 |  | 
|  | 400 | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | 401 | AU.setPreservesAll(); | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 | CalledValuePropagationLegacyPass() : ModulePass(ID) { | 
|  | 405 | initializeCalledValuePropagationLegacyPassPass( | 
|  | 406 | *PassRegistry::getPassRegistry()); | 
|  | 407 | } | 
|  | 408 |  | 
|  | 409 | bool runOnModule(Module &M) override { | 
|  | 410 | if (skipModule(M)) | 
|  | 411 | return false; | 
|  | 412 | return runCVP(M); | 
|  | 413 | } | 
|  | 414 | }; | 
|  | 415 | } // namespace | 
|  | 416 |  | 
|  | 417 | char CalledValuePropagationLegacyPass::ID = 0; | 
|  | 418 | INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", | 
|  | 419 | "Called Value Propagation", false, false) | 
|  | 420 |  | 
|  | 421 | ModulePass *llvm::createCalledValuePropagationPass() { | 
|  | 422 | return new CalledValuePropagationLegacyPass(); | 
|  | 423 | } |