Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 1 | //===--- RDFLiveness.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Computation of the liveness information from the data-flow graph. |
| 11 | // |
| 12 | // The main functionality of this code is to compute block live-in |
| 13 | // information. With the live-in information in place, the placement |
| 14 | // of kill flags can also be recalculated. |
| 15 | // |
| 16 | // The block live-in calculation is based on the ideas from the following |
| 17 | // publication: |
| 18 | // |
| 19 | // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
| 20 | // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
| 21 | // ACM Transactions on Architecture and Code Optimization, Association for |
| 22 | // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
| 23 | // and Embedded Architectures and Compilers", 8 (4), |
| 24 | // <10.1145/2086696.2086706>. <hal-00647369> |
| 25 | // |
| 26 | #include "RDFGraph.h" |
| 27 | #include "RDFLiveness.h" |
| 28 | #include "llvm/ADT/SetVector.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
| 31 | #include "llvm/CodeGen/MachineDominators.h" |
| 32 | #include "llvm/CodeGen/MachineFunction.h" |
| 33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 34 | #include "llvm/Target/TargetRegisterInfo.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | using namespace rdf; |
| 38 | |
Benjamin Kramer | 922efd7 | 2016-05-27 10:06:40 +0000 | [diff] [blame] | 39 | namespace llvm { |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 40 | namespace rdf { |
| 41 | template<> |
| 42 | raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
| 43 | OS << '{'; |
| 44 | for (auto I : P.Obj) { |
| 45 | OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{'; |
| 46 | for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { |
| 47 | OS << Print<NodeId>(*J, P.G); |
| 48 | if (++J != E) |
| 49 | OS << ','; |
| 50 | } |
| 51 | OS << '}'; |
| 52 | } |
| 53 | OS << " }"; |
| 54 | return OS; |
| 55 | } |
Benjamin Kramer | 922efd7 | 2016-05-27 10:06:40 +0000 | [diff] [blame] | 56 | } // namespace rdf |
| 57 | } // namespace llvm |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 58 | |
| 59 | // The order in the returned sequence is the order of reaching defs in the |
| 60 | // upward traversal: the first def is the closest to the given reference RefA, |
| 61 | // the next one is further up, and so on. |
| 62 | // The list ends at a reaching phi def, or when the reference from RefA is |
| 63 | // covered by the defs in the list (see FullChain). |
| 64 | // This function provides two modes of operation: |
| 65 | // (1) Returning the sequence of reaching defs for a particular reference |
| 66 | // node. This sequence will terminate at the first phi node [1]. |
| 67 | // (2) Returning a partial sequence of reaching defs, where the final goal |
| 68 | // is to traverse past phi nodes to the actual defs arising from the code |
| 69 | // itself. |
| 70 | // In mode (2), the register reference for which the search was started |
| 71 | // may be different from the reference node RefA, for which this call was |
| 72 | // made, hence the argument RefRR, which holds the original register. |
| 73 | // Also, some definitions may have already been encountered in a previous |
| 74 | // call that will influence register covering. The register references |
| 75 | // already defined are passed in through DefRRs. |
| 76 | // In mode (1), the "continuation" considerations do not apply, and the |
| 77 | // RefRR is the same as the register in RefA, and the set DefRRs is empty. |
| 78 | // |
| 79 | // [1] It is possible for multiple phi nodes to be included in the returned |
| 80 | // sequence: |
| 81 | // SubA = phi ... |
| 82 | // SubB = phi ... |
| 83 | // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
| 84 | // However, these phi nodes are independent from one another in terms of |
| 85 | // the data-flow. |
| 86 | |
| 87 | NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
| 88 | NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) { |
| 89 | SetVector<NodeId> DefQ; |
| 90 | SetVector<NodeId> Owners; |
| 91 | |
| 92 | // The initial queue should not have reaching defs for shadows. The |
| 93 | // whole point of a shadow is that it will have a reaching def that |
| 94 | // is not aliased to the reaching defs of the related shadows. |
| 95 | NodeId Start = RefA.Id; |
| 96 | auto SNA = DFG.addr<RefNode*>(Start); |
| 97 | if (NodeId RD = SNA.Addr->getReachingDef()) |
| 98 | DefQ.insert(RD); |
| 99 | |
| 100 | // Collect all the reaching defs, going up until a phi node is encountered, |
| 101 | // or there are no more reaching defs. From this set, the actual set of |
| 102 | // reaching defs will be selected. |
| 103 | // The traversal upwards must go on until a covering def is encountered. |
| 104 | // It is possible that a collection of non-covering (individually) defs |
| 105 | // will be sufficient, but keep going until a covering one is found. |
| 106 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 107 | auto TA = DFG.addr<DefNode*>(DefQ[i]); |
| 108 | if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
| 109 | continue; |
| 110 | // Stop at the covering/overwriting def of the initial register reference. |
| 111 | RegisterRef RR = TA.Addr->getRegRef(); |
| 112 | if (RAI.covers(RR, RefRR)) { |
| 113 | uint16_t Flags = TA.Addr->getFlags(); |
| 114 | if (!(Flags & NodeAttrs::Preserving)) |
| 115 | continue; |
| 116 | } |
| 117 | // Get the next level of reaching defs. This will include multiple |
| 118 | // reaching defs for shadows. |
| 119 | for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) |
| 120 | if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
| 121 | DefQ.insert(RD); |
| 122 | } |
| 123 | |
| 124 | // Remove all non-phi defs that are not aliased to RefRR, and collect |
| 125 | // the owners of the remaining defs. |
| 126 | SetVector<NodeId> Defs; |
| 127 | for (auto N : DefQ) { |
| 128 | auto TA = DFG.addr<DefNode*>(N); |
| 129 | bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
| 130 | if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) |
| 131 | continue; |
| 132 | Defs.insert(TA.Id); |
| 133 | Owners.insert(TA.Addr->getOwner(DFG).Id); |
| 134 | } |
| 135 | |
| 136 | // Return the MachineBasicBlock containing a given instruction. |
| 137 | auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { |
| 138 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
| 139 | return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); |
| 140 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
| 141 | NodeAddr<PhiNode*> PA = IA; |
| 142 | NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); |
| 143 | return BA.Addr->getCode(); |
| 144 | }; |
| 145 | // Less(A,B) iff instruction A is further down in the dominator tree than B. |
| 146 | auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { |
| 147 | if (A == B) |
| 148 | return false; |
| 149 | auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); |
| 150 | MachineBasicBlock *BA = Block(OA), *BB = Block(OB); |
| 151 | if (BA != BB) |
| 152 | return MDT.dominates(BB, BA); |
| 153 | // They are in the same block. |
| 154 | bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
| 155 | bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
| 156 | if (StmtA) { |
| 157 | if (!StmtB) // OB is a phi and phis dominate statements. |
| 158 | return true; |
| 159 | auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); |
| 160 | auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); |
| 161 | // The order must be linear, so tie-break such equalities. |
| 162 | if (CA == CB) |
| 163 | return A < B; |
| 164 | return MDT.dominates(CB, CA); |
| 165 | } else { |
| 166 | // OA is a phi. |
| 167 | if (StmtB) |
| 168 | return false; |
| 169 | // Both are phis. There is no ordering between phis (in terms of |
| 170 | // the data-flow), so tie-break this via node id comparison. |
| 171 | return A < B; |
| 172 | } |
| 173 | }; |
| 174 | |
| 175 | std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); |
| 176 | std::sort(Tmp.begin(), Tmp.end(), Less); |
| 177 | |
| 178 | // The vector is a list of instructions, so that defs coming from |
| 179 | // the same instruction don't need to be artificially ordered. |
| 180 | // Then, when computing the initial segment, and iterating over an |
| 181 | // instruction, pick the defs that contribute to the covering (i.e. is |
| 182 | // not covered by previously added defs). Check the defs individually, |
| 183 | // i.e. first check each def if is covered or not (without adding them |
| 184 | // to the tracking set), and then add all the selected ones. |
| 185 | |
| 186 | // The reason for this is this example: |
| 187 | // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
| 188 | // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
| 189 | // covered if we added A first, and A would be covered |
| 190 | // if we added B first. |
| 191 | |
| 192 | NodeList RDefs; |
| 193 | RegisterSet RRs = DefRRs; |
| 194 | |
| 195 | auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { |
| 196 | return TA.Addr->getKind() == NodeAttrs::Def && |
| 197 | Defs.count(TA.Id); |
| 198 | }; |
| 199 | for (auto T : Tmp) { |
| 200 | if (!FullChain && RAI.covers(RRs, RefRR)) |
| 201 | break; |
| 202 | auto TA = DFG.addr<InstrNode*>(T); |
| 203 | bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); |
| 204 | NodeList Ds; |
| 205 | for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { |
| 206 | auto QR = DA.Addr->getRegRef(); |
| 207 | // Add phi defs even if they are covered by subsequent defs. This is |
| 208 | // for cases where the reached use is not covered by any of the defs |
| 209 | // encountered so far: the phi def is needed to expose the liveness |
| 210 | // of that use to the entry of the block. |
| 211 | // Example: |
| 212 | // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
| 213 | // d2<R3>(d1,,u3), ... |
| 214 | // ..., u3<D1>(d2) This use needs to be live on entry. |
| 215 | if (FullChain || IsPhi || !RAI.covers(RRs, QR)) |
| 216 | Ds.push_back(DA); |
| 217 | } |
| 218 | RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); |
| 219 | for (NodeAddr<DefNode*> DA : Ds) { |
| 220 | // When collecting a full chain of definitions, do not consider phi |
| 221 | // defs to actually define a register. |
| 222 | uint16_t Flags = DA.Addr->getFlags(); |
| 223 | if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
| 224 | if (!(Flags & NodeAttrs::Preserving)) |
| 225 | RRs.insert(DA.Addr->getRegRef()); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | return RDefs; |
| 230 | } |
| 231 | |
| 232 | |
| 233 | static const RegisterSet NoRegs; |
| 234 | |
| 235 | NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) { |
| 236 | return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); |
| 237 | } |
| 238 | |
| 239 | |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 240 | NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR, |
| 241 | NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs) { |
| 242 | // Collect all defined registers. Do not consider phis to be defining |
| 243 | // anything, only collect "real" definitions. |
| 244 | RegisterSet DefRRs; |
| 245 | for (const auto D : Defs) { |
| 246 | const auto DA = DFG.addr<const DefNode*>(D); |
| 247 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 248 | DefRRs.insert(DA.Addr->getRegRef()); |
| 249 | } |
| 250 | |
| 251 | auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs); |
| 252 | if (RDs.empty()) |
| 253 | return Defs; |
| 254 | |
| 255 | // Make a copy of the preexisting definitions and add the newly found ones. |
| 256 | NodeSet TmpDefs = Defs; |
| 257 | for (auto R : RDs) |
| 258 | TmpDefs.insert(R.Id); |
| 259 | |
| 260 | NodeSet Result = Defs; |
| 261 | |
| 262 | for (NodeAddr<DefNode*> DA : RDs) { |
| 263 | Result.insert(DA.Id); |
| 264 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 265 | continue; |
| 266 | NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG); |
| 267 | if (Visited.count(PA.Id)) |
| 268 | continue; |
| 269 | Visited.insert(PA.Id); |
| 270 | // Go over all phi uses and get the reaching defs for each use. |
| 271 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 272 | const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs); |
| 273 | Result.insert(T.begin(), T.end()); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | return Result; |
| 278 | } |
| 279 | |
| 280 | |
| 281 | NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, |
| 282 | NodeAddr<DefNode*> DefA, const RegisterSet &DefRRs) { |
| 283 | NodeSet Uses; |
| 284 | |
| 285 | // If the original register is already covered by all the intervening |
| 286 | // defs, no more uses can be reached. |
| 287 | if (RAI.covers(DefRRs, RefRR)) |
| 288 | return Uses; |
| 289 | |
| 290 | // Add all directly reached uses. |
| 291 | NodeId U = DefA.Addr->getReachedUse(); |
| 292 | while (U != 0) { |
| 293 | auto UA = DFG.addr<UseNode*>(U); |
| 294 | auto UR = UA.Addr->getRegRef(); |
| 295 | if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR)) |
| 296 | Uses.insert(U); |
| 297 | U = UA.Addr->getSibling(); |
| 298 | } |
| 299 | |
| 300 | // Traverse all reached defs. |
| 301 | for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { |
| 302 | auto DA = DFG.addr<DefNode*>(D); |
| 303 | NextD = DA.Addr->getSibling(); |
| 304 | auto DR = DA.Addr->getRegRef(); |
| 305 | // If this def is already covered, it cannot reach anything new. |
| 306 | // Similarly, skip it if it is not aliased to the interesting register. |
| 307 | if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR)) |
| 308 | continue; |
| 309 | NodeSet T; |
| 310 | if (DA.Addr->getFlags() & NodeAttrs::Preserving) { |
| 311 | // If it is a preserving def, do not update the set of intervening defs. |
| 312 | T = getAllReachedUses(RefRR, DA, DefRRs); |
| 313 | } else { |
| 314 | RegisterSet NewDefRRs = DefRRs; |
| 315 | NewDefRRs.insert(DR); |
| 316 | T = getAllReachedUses(RefRR, DA, NewDefRRs); |
| 317 | } |
| 318 | Uses.insert(T.begin(), T.end()); |
| 319 | } |
| 320 | return Uses; |
| 321 | } |
| 322 | |
| 323 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 324 | void Liveness::computePhiInfo() { |
Krzysztof Parzyszek | f5cbac9 | 2016-04-29 15:49:13 +0000 | [diff] [blame] | 325 | RealUseMap.clear(); |
| 326 | |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 327 | NodeList Phis; |
| 328 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 329 | auto Blocks = FA.Addr->members(DFG); |
| 330 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 331 | auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 332 | Phis.insert(Phis.end(), Ps.begin(), Ps.end()); |
| 333 | } |
| 334 | |
| 335 | // phi use -> (map: reaching phi -> set of registers defined in between) |
| 336 | std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp; |
| 337 | std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
| 338 | |
| 339 | // Go over all phis. |
| 340 | for (NodeAddr<PhiNode*> PhiA : Phis) { |
| 341 | // Go over all defs and collect the reached uses that are non-phi uses |
| 342 | // (i.e. the "real uses"). |
| 343 | auto &RealUses = RealUseMap[PhiA.Id]; |
| 344 | auto PhiRefs = PhiA.Addr->members(DFG); |
| 345 | |
| 346 | // Have a work queue of defs whose reached uses need to be found. |
| 347 | // For each def, add to the queue all reached (non-phi) defs. |
| 348 | SetVector<NodeId> DefQ; |
| 349 | NodeSet PhiDefs; |
| 350 | for (auto R : PhiRefs) { |
| 351 | if (!DFG.IsRef<NodeAttrs::Def>(R)) |
| 352 | continue; |
| 353 | DefQ.insert(R.Id); |
| 354 | PhiDefs.insert(R.Id); |
| 355 | } |
| 356 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
| 357 | NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); |
| 358 | NodeId UN = DA.Addr->getReachedUse(); |
| 359 | while (UN != 0) { |
| 360 | NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); |
| 361 | if (!(A.Addr->getFlags() & NodeAttrs::PhiRef)) |
| 362 | RealUses[getRestrictedRegRef(A)].insert(A.Id); |
| 363 | UN = A.Addr->getSibling(); |
| 364 | } |
| 365 | NodeId DN = DA.Addr->getReachedDef(); |
| 366 | while (DN != 0) { |
| 367 | NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); |
| 368 | for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { |
| 369 | uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); |
| 370 | // Must traverse the reached-def chain. Consider: |
| 371 | // def(D0) -> def(R0) -> def(R0) -> use(D0) |
| 372 | // The reachable use of D0 passes through a def of R0. |
| 373 | if (!(Flags & NodeAttrs::PhiRef)) |
| 374 | DefQ.insert(T.Id); |
| 375 | } |
| 376 | DN = A.Addr->getSibling(); |
| 377 | } |
| 378 | } |
| 379 | // Filter out these uses that appear to be reachable, but really |
| 380 | // are not. For example: |
| 381 | // |
| 382 | // R1:0 = d1 |
| 383 | // = R1:0 u2 Reached by d1. |
| 384 | // R0 = d3 |
| 385 | // = R1:0 u4 Still reached by d1: indirectly through |
| 386 | // the def d3. |
| 387 | // R1 = d5 |
| 388 | // = R1:0 u6 Not reached by d1 (covered collectively |
| 389 | // by d3 and d5), but following reached |
| 390 | // defs and uses from d1 will lead here. |
| 391 | auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { |
| 392 | return PhiDefs.count(DA.Id); |
| 393 | }; |
| 394 | for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { |
| 395 | // For each reached register UI->first, there is a set UI->second, of |
| 396 | // uses of it. For each such use, check if it is reached by this phi, |
| 397 | // i.e. check if the set of its reaching uses intersects the set of |
| 398 | // this phi's defs. |
| 399 | auto &Uses = UI->second; |
| 400 | for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { |
| 401 | auto UA = DFG.addr<UseNode*>(*I); |
| 402 | NodeList RDs = getAllReachingDefs(UI->first, UA); |
| 403 | if (std::any_of(RDs.begin(), RDs.end(), HasDef)) |
| 404 | ++I; |
| 405 | else |
| 406 | I = Uses.erase(I); |
| 407 | } |
| 408 | if (Uses.empty()) |
| 409 | UI = RealUses.erase(UI); |
| 410 | else |
| 411 | ++UI; |
| 412 | } |
| 413 | |
| 414 | // If this phi reaches some "real" uses, add it to the queue for upward |
| 415 | // propagation. |
| 416 | if (!RealUses.empty()) |
| 417 | PhiUQ.push_back(PhiA.Id); |
| 418 | |
| 419 | // Go over all phi uses and check if the reaching def is another phi. |
| 420 | // Collect the phis that are among the reaching defs of these uses. |
| 421 | // While traversing the list of reaching defs for each phi use, collect |
| 422 | // the set of registers defined between this phi (Phi) and the owner phi |
| 423 | // of the reaching def. |
| 424 | for (auto I : PhiRefs) { |
| 425 | if (!DFG.IsRef<NodeAttrs::Use>(I)) |
| 426 | continue; |
| 427 | NodeAddr<UseNode*> UA = I; |
| 428 | auto &UpMap = PhiUp[UA.Id]; |
| 429 | RegisterSet DefRRs; |
| 430 | for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) { |
| 431 | if (DA.Addr->getFlags() & NodeAttrs::PhiRef) |
| 432 | UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs; |
| 433 | else |
| 434 | DefRRs.insert(DA.Addr->getRegRef()); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | if (Trace) { |
| 440 | dbgs() << "Phi-up-to-phi map:\n"; |
| 441 | for (auto I : PhiUp) { |
| 442 | dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; |
| 443 | for (auto R : I.second) |
| 444 | dbgs() << ' ' << Print<NodeId>(R.first, DFG) |
| 445 | << Print<RegisterSet>(R.second, DFG); |
| 446 | dbgs() << " }\n"; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | // Propagate the reached registers up in the phi chain. |
| 451 | // |
| 452 | // The following type of situation needs careful handling: |
| 453 | // |
| 454 | // phi d1<R1:0> (1) |
| 455 | // | |
| 456 | // ... d2<R1> |
| 457 | // | |
| 458 | // phi u3<R1:0> (2) |
| 459 | // | |
| 460 | // ... u4<R1> |
| 461 | // |
| 462 | // The phi node (2) defines a register pair R1:0, and reaches a "real" |
| 463 | // use u4 of just R1. The same phi node is also known to reach (upwards) |
| 464 | // the phi node (1). However, the use u4 is not reached by phi (1), |
| 465 | // because of the intervening definition d2 of R1. The data flow between |
| 466 | // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
| 467 | // |
| 468 | // When propagating uses up the phi chains, get the all reaching defs |
| 469 | // for a given phi use, and traverse the list until the propagated ref |
| 470 | // is covered, or until or until reaching the final phi. Only assume |
| 471 | // that the reference reaches the phi in the latter case. |
| 472 | |
| 473 | for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
| 474 | auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); |
| 475 | auto &RealUses = RealUseMap[PA.Id]; |
| 476 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 477 | NodeAddr<UseNode*> UA = U; |
| 478 | auto &UpPhis = PhiUp[UA.Id]; |
| 479 | for (auto UP : UpPhis) { |
| 480 | bool Changed = false; |
| 481 | auto &MidDefs = UP.second; |
| 482 | // Collect the set UpReached of uses that are reached by the current |
| 483 | // phi PA, and are not covered by any intervening def between PA and |
| 484 | // the upward phi UP. |
| 485 | RegisterSet UpReached; |
| 486 | for (auto T : RealUses) { |
| 487 | if (!isRestricted(PA, UA, T.first)) |
| 488 | continue; |
| 489 | if (!RAI.covers(MidDefs, T.first)) |
| 490 | UpReached.insert(T.first); |
| 491 | } |
| 492 | if (UpReached.empty()) |
| 493 | continue; |
| 494 | // Update the set PRUs of real uses reached by the upward phi UP with |
| 495 | // the actual set of uses (UpReached) that the UP phi reaches. |
| 496 | auto &PRUs = RealUseMap[UP.first]; |
| 497 | for (auto R : UpReached) { |
| 498 | unsigned Z = PRUs[R].size(); |
| 499 | PRUs[R].insert(RealUses[R].begin(), RealUses[R].end()); |
| 500 | Changed |= (PRUs[R].size() != Z); |
| 501 | } |
| 502 | if (Changed) |
| 503 | PhiUQ.push_back(UP.first); |
| 504 | } |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | if (Trace) { |
| 509 | dbgs() << "Real use map:\n"; |
| 510 | for (auto I : RealUseMap) { |
| 511 | dbgs() << "phi " << Print<NodeId>(I.first, DFG); |
| 512 | NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); |
| 513 | NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); |
| 514 | if (!Ds.empty()) { |
| 515 | RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(); |
| 516 | dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; |
| 517 | } else { |
| 518 | dbgs() << "<noreg>"; |
| 519 | } |
| 520 | dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | |
| 526 | void Liveness::computeLiveIns() { |
| 527 | // Populate the node-to-block map. This speeds up the calculations |
| 528 | // significantly. |
| 529 | NBMap.clear(); |
| 530 | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
| 531 | MachineBasicBlock *BB = BA.Addr->getCode(); |
| 532 | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
| 533 | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
| 534 | NBMap.insert(std::make_pair(RA.Id, BB)); |
| 535 | NBMap.insert(std::make_pair(IA.Id, BB)); |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | MachineFunction &MF = DFG.getMF(); |
| 540 | |
| 541 | // Compute IDF first, then the inverse. |
| 542 | decltype(IIDF) IDF; |
| 543 | for (auto &B : MF) { |
| 544 | auto F1 = MDF.find(&B); |
| 545 | if (F1 == MDF.end()) |
| 546 | continue; |
| 547 | SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); |
| 548 | for (unsigned i = 0; i < IDFB.size(); ++i) { |
| 549 | auto F2 = MDF.find(IDFB[i]); |
| 550 | if (F2 != MDF.end()) |
| 551 | IDFB.insert(F2->second.begin(), F2->second.end()); |
| 552 | } |
| 553 | // Add B to the IDF(B). This will put B in the IIDF(B). |
| 554 | IDFB.insert(&B); |
| 555 | IDF[&B].insert(IDFB.begin(), IDFB.end()); |
| 556 | } |
| 557 | |
| 558 | for (auto I : IDF) |
| 559 | for (auto S : I.second) |
| 560 | IIDF[S].insert(I.first); |
| 561 | |
| 562 | computePhiInfo(); |
| 563 | |
| 564 | NodeAddr<FuncNode*> FA = DFG.getFunc(); |
| 565 | auto Blocks = FA.Addr->members(DFG); |
| 566 | |
| 567 | // Build the phi live-on-entry map. |
| 568 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 569 | MachineBasicBlock *MB = BA.Addr->getCode(); |
| 570 | auto &LON = PhiLON[MB]; |
| 571 | for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) |
| 572 | for (auto S : RealUseMap[P.Id]) |
| 573 | LON[S.first].insert(S.second.begin(), S.second.end()); |
| 574 | } |
| 575 | |
| 576 | if (Trace) { |
| 577 | dbgs() << "Phi live-on-entry map:\n"; |
| 578 | for (auto I : PhiLON) |
| 579 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 580 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 581 | } |
| 582 | |
| 583 | // Build the phi live-on-exit map. Each phi node has some set of reached |
| 584 | // "real" uses. Propagate this set backwards into the block predecessors |
| 585 | // through the reaching defs of the corresponding phi uses. |
| 586 | for (NodeAddr<BlockNode*> BA : Blocks) { |
| 587 | auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
| 588 | for (NodeAddr<PhiNode*> PA : Phis) { |
| 589 | auto &RUs = RealUseMap[PA.Id]; |
| 590 | if (RUs.empty()) |
| 591 | continue; |
| 592 | |
| 593 | for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
| 594 | NodeAddr<PhiUseNode*> UA = U; |
| 595 | if (UA.Addr->getReachingDef() == 0) |
| 596 | continue; |
| 597 | |
| 598 | // Mark all reached "real" uses of P as live on exit in the |
| 599 | // predecessor. |
| 600 | // Remap all the RUs so that they have a correct reaching def. |
| 601 | auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor()); |
| 602 | auto &LOX = PhiLOX[PrA.Addr->getCode()]; |
| 603 | for (auto R : RUs) { |
| 604 | RegisterRef RR = R.first; |
| 605 | if (!isRestricted(PA, UA, RR)) |
| 606 | RR = getRestrictedRegRef(UA); |
| 607 | // The restricted ref may be different from the ref that was |
| 608 | // accessed in the "real use". This means that this phi use |
| 609 | // is not the one that carries this reference, so skip it. |
| 610 | if (!RAI.alias(R.first, RR)) |
| 611 | continue; |
| 612 | for (auto D : getAllReachingDefs(RR, UA)) |
| 613 | LOX[RR].insert(D.Id); |
| 614 | } |
| 615 | } // for U : phi uses |
| 616 | } // for P : Phis |
| 617 | } // for B : Blocks |
| 618 | |
| 619 | if (Trace) { |
| 620 | dbgs() << "Phi live-on-exit map:\n"; |
| 621 | for (auto I : PhiLOX) |
| 622 | dbgs() << "block #" << I.first->getNumber() << " -> " |
| 623 | << Print<RefMap>(I.second, DFG) << '\n'; |
| 624 | } |
| 625 | |
| 626 | RefMap LiveIn; |
| 627 | traverse(&MF.front(), LiveIn); |
| 628 | |
| 629 | // Add function live-ins to the live-in set of the function entry block. |
| 630 | auto &EntryIn = LiveMap[&MF.front()]; |
| 631 | for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) |
| 632 | EntryIn.insert({I->first,0}); |
| 633 | |
| 634 | if (Trace) { |
| 635 | // Dump the liveness map |
| 636 | for (auto &B : MF) { |
| 637 | BitVector LV(TRI.getNumRegs()); |
| 638 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 639 | LV.set(I->PhysReg); |
| 640 | dbgs() << "BB#" << B.getNumber() << "\t rec = {"; |
| 641 | for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) |
| 642 | dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG); |
| 643 | dbgs() << " }\n"; |
| 644 | dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n'; |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | |
| 650 | void Liveness::resetLiveIns() { |
| 651 | for (auto &B : DFG.getMF()) { |
| 652 | // Remove all live-ins. |
| 653 | std::vector<unsigned> T; |
| 654 | for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
| 655 | T.push_back(I->PhysReg); |
| 656 | for (auto I : T) |
| 657 | B.removeLiveIn(I); |
| 658 | // Add the newly computed live-ins. |
| 659 | auto &LiveIns = LiveMap[&B]; |
| 660 | for (auto I : LiveIns) { |
| 661 | assert(I.Sub == 0); |
| 662 | B.addLiveIn(I.Reg); |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | |
| 668 | void Liveness::resetKills() { |
| 669 | for (auto &B : DFG.getMF()) |
| 670 | resetKills(&B); |
| 671 | } |
| 672 | |
| 673 | |
| 674 | void Liveness::resetKills(MachineBasicBlock *B) { |
| 675 | auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { |
| 676 | for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) |
| 677 | LV.set(I->PhysReg); |
| 678 | }; |
| 679 | |
| 680 | BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
| 681 | CopyLiveIns(B, LiveIn); |
| 682 | for (auto SI : B->successors()) |
| 683 | CopyLiveIns(SI, Live); |
| 684 | |
| 685 | for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { |
| 686 | MachineInstr *MI = &*I; |
| 687 | if (MI->isDebugValue()) |
| 688 | continue; |
| 689 | |
| 690 | MI->clearKillInfo(); |
| 691 | for (auto &Op : MI->operands()) { |
Krzysztof Parzyszek | f69ff71 | 2016-06-02 14:30:09 +0000 | [diff] [blame^] | 692 | // An implicit def of a super-register may not necessarily start a |
| 693 | // live range of it, since an implicit use could be used to keep parts |
| 694 | // of it live. Instead of analyzing the implicit operands, ignore |
| 695 | // implicit defs. |
| 696 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 697 | continue; |
| 698 | unsigned R = Op.getReg(); |
| 699 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 700 | continue; |
| 701 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 702 | Live.reset(*SR); |
| 703 | } |
| 704 | for (auto &Op : MI->operands()) { |
| 705 | if (!Op.isReg() || !Op.isUse()) |
| 706 | continue; |
| 707 | unsigned R = Op.getReg(); |
| 708 | if (!TargetRegisterInfo::isPhysicalRegister(R)) |
| 709 | continue; |
| 710 | bool IsLive = false; |
Krzysztof Parzyszek | 16331f0 | 2016-04-20 14:33:23 +0000 | [diff] [blame] | 711 | for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { |
| 712 | if (!Live[*AR]) |
Krzysztof Parzyszek | acdff46 | 2016-01-12 15:56:33 +0000 | [diff] [blame] | 713 | continue; |
| 714 | IsLive = true; |
| 715 | break; |
| 716 | } |
| 717 | if (IsLive) |
| 718 | continue; |
| 719 | Op.setIsKill(true); |
| 720 | for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
| 721 | Live.set(*SR); |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | |
| 727 | // For shadows, determine if RR is aliased to a reaching def of any other |
| 728 | // shadow associated with RA. If it is not, then RR is "restricted" to RA, |
| 729 | // and so it can be considered a value specific to RA. This is important |
| 730 | // for accurately determining values associated with phi uses. |
| 731 | // For non-shadows, this function returns "true". |
| 732 | bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
| 733 | RegisterRef RR) const { |
| 734 | NodeId Start = RA.Id; |
| 735 | for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA); |
| 736 | TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { |
| 737 | NodeId RD = TA.Addr->getReachingDef(); |
| 738 | if (RD == 0) |
| 739 | continue; |
| 740 | if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef())) |
| 741 | return false; |
| 742 | } |
| 743 | return true; |
| 744 | } |
| 745 | |
| 746 | |
| 747 | RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const { |
| 748 | assert(DFG.IsRef<NodeAttrs::Use>(RA)); |
| 749 | if (RA.Addr->getFlags() & NodeAttrs::Shadow) { |
| 750 | NodeId RD = RA.Addr->getReachingDef(); |
| 751 | assert(RD); |
| 752 | RA = DFG.addr<DefNode*>(RD); |
| 753 | } |
| 754 | return RA.Addr->getRegRef(); |
| 755 | } |
| 756 | |
| 757 | |
| 758 | unsigned Liveness::getPhysReg(RegisterRef RR) const { |
| 759 | if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) |
| 760 | return 0; |
| 761 | return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; |
| 762 | } |
| 763 | |
| 764 | |
| 765 | // Helper function to obtain the basic block containing the reaching def |
| 766 | // of the given use. |
| 767 | MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
| 768 | auto F = NBMap.find(RN); |
| 769 | if (F != NBMap.end()) |
| 770 | return F->second; |
| 771 | llvm_unreachable("Node id not in map"); |
| 772 | } |
| 773 | |
| 774 | |
| 775 | void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
| 776 | // The LiveIn map, for each (physical) register, contains the set of live |
| 777 | // reaching defs of that register that are live on entry to the associated |
| 778 | // block. |
| 779 | |
| 780 | // The summary of the traversal algorithm: |
| 781 | // |
| 782 | // R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
| 783 | // and (U \in IDF(B) or B dom U). |
| 784 | // |
| 785 | // for (C : children) { |
| 786 | // LU = {} |
| 787 | // traverse(C, LU) |
| 788 | // LiveUses += LU |
| 789 | // } |
| 790 | // |
| 791 | // LiveUses -= Defs(B); |
| 792 | // LiveUses += UpwardExposedUses(B); |
| 793 | // for (C : IIDF[B]) |
| 794 | // for (U : LiveUses) |
| 795 | // if (Rdef(U) dom C) |
| 796 | // C.addLiveIn(U) |
| 797 | // |
| 798 | |
| 799 | // Go up the dominator tree (depth-first). |
| 800 | MachineDomTreeNode *N = MDT.getNode(B); |
| 801 | for (auto I : *N) { |
| 802 | RefMap L; |
| 803 | MachineBasicBlock *SB = I->getBlock(); |
| 804 | traverse(SB, L); |
| 805 | |
| 806 | for (auto S : L) |
| 807 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 808 | } |
| 809 | |
| 810 | if (Trace) { |
| 811 | dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() |
| 812 | << " after recursion into"; |
| 813 | for (auto I : *N) |
| 814 | dbgs() << ' ' << I->getBlock()->getNumber(); |
| 815 | dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG); |
| 816 | dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 817 | } |
| 818 | |
| 819 | // Add phi uses that are live on exit from this block. |
| 820 | RefMap &PUs = PhiLOX[B]; |
| 821 | for (auto S : PUs) |
| 822 | LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
| 823 | |
| 824 | if (Trace) { |
| 825 | dbgs() << "after LOX\n"; |
| 826 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 827 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 828 | } |
| 829 | |
| 830 | // Stop tracking all uses defined in this block: erase those records |
| 831 | // where the reaching def is located in B and which cover all reached |
| 832 | // uses. |
| 833 | auto Copy = LiveIn; |
| 834 | LiveIn.clear(); |
| 835 | |
| 836 | for (auto I : Copy) { |
| 837 | auto &Defs = LiveIn[I.first]; |
| 838 | NodeSet Rest; |
| 839 | for (auto R : I.second) { |
| 840 | auto DA = DFG.addr<DefNode*>(R); |
| 841 | RegisterRef DDR = DA.Addr->getRegRef(); |
| 842 | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
| 843 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 844 | // Defs from a different block need to be preserved. Defs from this |
| 845 | // block will need to be processed further, except for phi defs, the |
| 846 | // liveness of which is handled through the PhiLON/PhiLOX maps. |
| 847 | if (B != BA.Addr->getCode()) |
| 848 | Defs.insert(R); |
| 849 | else { |
| 850 | bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving; |
| 851 | if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { |
| 852 | bool Covering = RAI.covers(DDR, I.first); |
| 853 | NodeId U = DA.Addr->getReachedUse(); |
| 854 | while (U && Covering) { |
| 855 | auto DUA = DFG.addr<UseNode*>(U); |
| 856 | RegisterRef Q = DUA.Addr->getRegRef(); |
| 857 | Covering = RAI.covers(DA.Addr->getRegRef(), Q); |
| 858 | U = DUA.Addr->getSibling(); |
| 859 | } |
| 860 | if (!Covering) |
| 861 | Rest.insert(R); |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | // Non-covering defs from B. |
| 867 | for (auto R : Rest) { |
| 868 | auto DA = DFG.addr<DefNode*>(R); |
| 869 | RegisterRef DRR = DA.Addr->getRegRef(); |
| 870 | RegisterSet RRs; |
| 871 | for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { |
| 872 | NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); |
| 873 | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
| 874 | // Preserving defs do not count towards covering. |
| 875 | if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
| 876 | RRs.insert(TA.Addr->getRegRef()); |
| 877 | if (BA.Addr->getCode() == B) |
| 878 | continue; |
| 879 | if (RAI.covers(RRs, DRR)) |
| 880 | break; |
| 881 | Defs.insert(TA.Id); |
| 882 | } |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | emptify(LiveIn); |
| 887 | |
| 888 | if (Trace) { |
| 889 | dbgs() << "after defs in block\n"; |
| 890 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 891 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 892 | } |
| 893 | |
| 894 | // Scan the block for upward-exposed uses and add them to the tracking set. |
| 895 | for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { |
| 896 | NodeAddr<InstrNode*> IA = I; |
| 897 | if (IA.Addr->getKind() != NodeAttrs::Stmt) |
| 898 | continue; |
| 899 | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
| 900 | RegisterRef RR = UA.Addr->getRegRef(); |
| 901 | for (auto D : getAllReachingDefs(UA)) |
| 902 | if (getBlockWithRef(D.Id) != B) |
| 903 | LiveIn[RR].insert(D.Id); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | if (Trace) { |
| 908 | dbgs() << "after uses in block\n"; |
| 909 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 910 | dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
| 911 | } |
| 912 | |
| 913 | // Phi uses should not be propagated up the dominator tree, since they |
| 914 | // are not dominated by their corresponding reaching defs. |
| 915 | auto &Local = LiveMap[B]; |
| 916 | auto &LON = PhiLON[B]; |
| 917 | for (auto R : LON) |
| 918 | Local.insert(R.first); |
| 919 | |
| 920 | if (Trace) { |
| 921 | dbgs() << "after phi uses in block\n"; |
| 922 | dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
| 923 | dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n'; |
| 924 | } |
| 925 | |
| 926 | for (auto C : IIDF[B]) { |
| 927 | auto &LiveC = LiveMap[C]; |
| 928 | for (auto S : LiveIn) |
| 929 | for (auto R : S.second) |
| 930 | if (MDT.properlyDominates(getBlockWithRef(R), C)) |
| 931 | LiveC.insert(S.first); |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | |
| 936 | void Liveness::emptify(RefMap &M) { |
| 937 | for (auto I = M.begin(), E = M.end(); I != E; ) |
| 938 | I = I->second.empty() ? M.erase(I) : std::next(I); |
| 939 | } |
| 940 | |