| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 1 | //===- PoisonChecking.cpp - -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implements a transform pass which instruments IR such that poison semantics |
| 10 | // are made explicit. That is, it provides a (possibly partial) executable |
| 11 | // semantics for every instruction w.r.t. poison as specified in the LLVM |
| 12 | // LangRef. There are obvious parallels to the sanitizer tools, but this pass |
| 13 | // is focused purely on the semantics of LLVM IR, not any particular source |
| 14 | // language. If you're looking for something to see if your C/C++ contains |
| 15 | // UB, this is not it. |
| 16 | // |
| 17 | // The rewritten semantics of each instruction will include the following |
| 18 | // components: |
| 19 | // |
| 20 | // 1) The original instruction, unmodified. |
| 21 | // 2) A propagation rule which translates dynamic information about the poison |
| 22 | // state of each input to whether the dynamic output of the instruction |
| 23 | // produces poison. |
| 24 | // 3) A flag validation rule which validates any poison producing flags on the |
| 25 | // instruction itself (e.g. checks for overflow on nsw). |
| 26 | // 4) A check rule which traps (to a handler function) if this instruction must |
| 27 | // execute undefined behavior given the poison state of it's inputs. |
| 28 | // |
| 29 | // At the moment, the UB detection is done in a best effort manner; that is, |
| 30 | // the resulting code may produce a false negative result (not report UB when |
| 31 | // it actually exists according to the LangRef spec), but should never produce |
| 32 | // a false positive (report UB where it doesn't exist). The intention is to |
| 33 | // eventually support a "strict" mode which never dynamically reports a false |
| 34 | // negative at the cost of rejecting some valid inputs to translation. |
| 35 | // |
| 36 | // Use cases for this pass include: |
| 37 | // - Understanding (and testing!) the implications of the definition of poison |
| 38 | // from the LangRef. |
| 39 | // - Validating the output of a IR fuzzer to ensure that all programs produced |
| 40 | // are well defined on the specific input used. |
| 41 | // - Finding/confirming poison specific miscompiles by checking the poison |
| 42 | // status of an input/IR pair is the same before and after an optimization |
| 43 | // transform. |
| 44 | // - Checking that a bugpoint reduction does not introduce UB which didn't |
| 45 | // exist in the original program being reduced. |
| 46 | // |
| 47 | // The major sources of inaccuracy are currently: |
| 48 | // - Most validation rules not yet implemented for instructions with poison |
| 49 | // relavant flags. At the moment, only nsw/nuw on add/sub are supported. |
| 50 | // - UB which is control dependent on a branch on poison is not yet |
| 51 | // reported. Currently, only data flow dependence is modeled. |
| 52 | // - Poison which is propagated through memory is not modeled. As such, |
| 53 | // storing poison to memory and then reloading it will cause a false negative |
| 54 | // as we consider the reloaded value to not be poisoned. |
| 55 | // - Poison propagation across function boundaries is not modeled. At the |
| 56 | // moment, all arguments and return values are assumed not to be poison. |
| 57 | // - Undef is not modeled. In particular, the optimizer's freedom to pick |
| 58 | // concrete values for undef bits so as to maximize potential for producing |
| 59 | // poison is not modeled. |
| 60 | // |
| 61 | //===----------------------------------------------------------------------===// |
| 62 | |
| 63 | #include "llvm/Transforms/Instrumentation/PoisonChecking.h" |
| 64 | #include "llvm/ADT/DenseMap.h" |
| 65 | #include "llvm/ADT/Statistic.h" |
| 66 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 67 | #include "llvm/Analysis/ValueTracking.h" |
| 68 | #include "llvm/IR/InstVisitor.h" |
| 69 | #include "llvm/IR/IntrinsicInst.h" |
| 70 | #include "llvm/IR/IRBuilder.h" |
| 71 | #include "llvm/IR/PatternMatch.h" |
| 72 | #include "llvm/Support/Debug.h" |
| 73 | |
| 74 | using namespace llvm; |
| 75 | |
| 76 | #define DEBUG_TYPE "poison-checking" |
| 77 | |
| 78 | static cl::opt<bool> |
| 79 | LocalCheck("poison-checking-function-local", |
| 80 | cl::init(false), |
| 81 | cl::desc("Check that returns are non-poison (for testing)")); |
| 82 | |
| 83 | |
| 84 | static bool isConstantFalse(Value* V) { |
| 85 | assert(V->getType()->isIntegerTy(1)); |
| 86 | if (auto *CI = dyn_cast<ConstantInt>(V)) |
| 87 | return CI->isZero(); |
| 88 | return false; |
| 89 | } |
| 90 | |
| 91 | static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) { |
| 92 | if (Ops.size() == 0) |
| 93 | return B.getFalse(); |
| 94 | unsigned i = 0; |
| 95 | for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {} |
| 96 | if (i == Ops.size()) |
| 97 | return B.getFalse(); |
| 98 | Value *Accum = Ops[i++]; |
| 99 | for (; i < Ops.size(); i++) |
| 100 | if (!isConstantFalse(Ops[i])) |
| 101 | Accum = B.CreateOr(Accum, Ops[i]); |
| 102 | return Accum; |
| 103 | } |
| 104 | |
| 105 | static void generatePoisonChecksForBinOp(Instruction &I, |
| 106 | SmallVector<Value*, 2> &Checks) { |
| 107 | assert(isa<BinaryOperator>(I)); |
| 108 | |
| 109 | IRBuilder<> B(&I); |
| 110 | Value *LHS = I.getOperand(0); |
| 111 | Value *RHS = I.getOperand(1); |
| 112 | switch (I.getOpcode()) { |
| 113 | default: |
| 114 | return; |
| 115 | case Instruction::Add: { |
| 116 | if (I.hasNoSignedWrap()) { |
| 117 | auto *OverflowOp = |
| 118 | B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS); |
| 119 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 120 | } |
| 121 | if (I.hasNoUnsignedWrap()) { |
| 122 | auto *OverflowOp = |
| 123 | B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS); |
| 124 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 125 | } |
| 126 | break; |
| 127 | } |
| 128 | case Instruction::Sub: { |
| 129 | if (I.hasNoSignedWrap()) { |
| 130 | auto *OverflowOp = |
| 131 | B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS); |
| 132 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 133 | } |
| 134 | if (I.hasNoUnsignedWrap()) { |
| 135 | auto *OverflowOp = |
| 136 | B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS); |
| 137 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 138 | } |
| 139 | break; |
| 140 | } |
| 141 | case Instruction::Mul: { |
| 142 | if (I.hasNoSignedWrap()) { |
| 143 | auto *OverflowOp = |
| 144 | B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS); |
| 145 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 146 | } |
| 147 | if (I.hasNoUnsignedWrap()) { |
| 148 | auto *OverflowOp = |
| 149 | B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS); |
| 150 | Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); |
| 151 | } |
| 152 | break; |
| 153 | } |
| Philip Reames | 3b38b92 | 2019-07-09 18:56:41 +0000 | [diff] [blame] | 154 | case Instruction::UDiv: { |
| 155 | if (I.isExact()) { |
| 156 | auto *Check = |
| 157 | B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS), |
| 158 | ConstantInt::get(LHS->getType(), 0)); |
| 159 | Checks.push_back(Check); |
| 160 | } |
| 161 | break; |
| 162 | } |
| 163 | case Instruction::SDiv: { |
| 164 | if (I.isExact()) { |
| 165 | auto *Check = |
| 166 | B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS), |
| 167 | ConstantInt::get(LHS->getType(), 0)); |
| 168 | Checks.push_back(Check); |
| 169 | } |
| 170 | break; |
| 171 | } |
| Philip Reames | 3dbd7e9 | 2019-07-09 19:26:12 +0000 | [diff] [blame] | 172 | case Instruction::AShr: |
| 173 | case Instruction::LShr: |
| 174 | case Instruction::Shl: { |
| 175 | Value *ShiftCheck = |
| 176 | B.CreateICmp(ICmpInst::ICMP_UGE, RHS, |
| 177 | ConstantInt::get(RHS->getType(), |
| 178 | LHS->getType()->getScalarSizeInBits())); |
| 179 | Checks.push_back(ShiftCheck); |
| 180 | break; |
| 181 | } |
| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 182 | }; |
| 183 | } |
| 184 | |
| 185 | static Value* generatePoisonChecks(Instruction &I) { |
| 186 | IRBuilder<> B(&I); |
| 187 | SmallVector<Value*, 2> Checks; |
| Philip Reames | 3dbd7e9 | 2019-07-09 19:26:12 +0000 | [diff] [blame] | 188 | if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy()) |
| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 189 | generatePoisonChecksForBinOp(I, Checks); |
| Philip Reames | 3dbd7e9 | 2019-07-09 19:26:12 +0000 | [diff] [blame] | 190 | |
| 191 | // Handle non-binops seperately |
| 192 | switch (I.getOpcode()) { |
| 193 | default: |
| 194 | break; |
| 195 | case Instruction::ExtractElement: { |
| 196 | Value *Vec = I.getOperand(0); |
| 197 | if (Vec->getType()->getVectorIsScalable()) |
| 198 | break; |
| 199 | Value *Idx = I.getOperand(1); |
| 200 | unsigned NumElts = Vec->getType()->getVectorNumElements(); |
| 201 | Value *Check = |
| 202 | B.CreateICmp(ICmpInst::ICMP_UGE, Idx, |
| 203 | ConstantInt::get(Idx->getType(), NumElts)); |
| 204 | Checks.push_back(Check); |
| 205 | break; |
| 206 | } |
| 207 | case Instruction::InsertElement: { |
| 208 | Value *Vec = I.getOperand(0); |
| 209 | if (Vec->getType()->getVectorIsScalable()) |
| 210 | break; |
| 211 | Value *Idx = I.getOperand(2); |
| 212 | unsigned NumElts = Vec->getType()->getVectorNumElements(); |
| 213 | Value *Check = |
| 214 | B.CreateICmp(ICmpInst::ICMP_UGE, Idx, |
| 215 | ConstantInt::get(Idx->getType(), NumElts)); |
| 216 | Checks.push_back(Check); |
| 217 | break; |
| 218 | } |
| 219 | }; |
| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 220 | return buildOrChain(B, Checks); |
| 221 | } |
| 222 | |
| 223 | static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) { |
| 224 | auto Itr = ValToPoison.find(V); |
| 225 | if (Itr != ValToPoison.end()) |
| 226 | return Itr->second; |
| 227 | if (isa<Constant>(V)) { |
| 228 | return ConstantInt::getFalse(V->getContext()); |
| 229 | } |
| 230 | // Return false for unknwon values - this implements a non-strict mode where |
| 231 | // unhandled IR constructs are simply considered to never produce poison. At |
| 232 | // some point in the future, we probably want a "strict mode" for testing if |
| 233 | // nothing else. |
| 234 | return ConstantInt::getFalse(V->getContext()); |
| 235 | } |
| 236 | |
| 237 | static void CreateAssert(IRBuilder<> &B, Value *Cond) { |
| 238 | assert(Cond->getType()->isIntegerTy(1)); |
| 239 | if (auto *CI = dyn_cast<ConstantInt>(Cond)) |
| 240 | if (CI->isAllOnesValue()) |
| 241 | return; |
| 242 | |
| 243 | Module *M = B.GetInsertBlock()->getModule(); |
| 244 | M->getOrInsertFunction("__poison_checker_assert", |
| 245 | Type::getVoidTy(M->getContext()), |
| 246 | Type::getInt1Ty(M->getContext())); |
| 247 | Function *TrapFunc = M->getFunction("__poison_checker_assert"); |
| 248 | B.CreateCall(TrapFunc, Cond); |
| 249 | } |
| 250 | |
| 251 | static void CreateAssertNot(IRBuilder<> &B, Value *Cond) { |
| 252 | assert(Cond->getType()->isIntegerTy(1)); |
| 253 | CreateAssert(B, B.CreateNot(Cond)); |
| 254 | } |
| 255 | |
| 256 | static bool rewrite(Function &F) { |
| 257 | auto * const Int1Ty = Type::getInt1Ty(F.getContext()); |
| 258 | |
| 259 | DenseMap<Value *, Value *> ValToPoison; |
| 260 | |
| 261 | for (BasicBlock &BB : F) |
| 262 | for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { |
| 263 | auto *OldPHI = cast<PHINode>(&*I); |
| 264 | auto *NewPHI = PHINode::Create(Int1Ty, |
| 265 | OldPHI->getNumIncomingValues()); |
| 266 | for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) |
| 267 | NewPHI->addIncoming(UndefValue::get(Int1Ty), |
| 268 | OldPHI->getIncomingBlock(i)); |
| 269 | NewPHI->insertBefore(OldPHI); |
| 270 | ValToPoison[OldPHI] = NewPHI; |
| 271 | } |
| 272 | |
| 273 | for (BasicBlock &BB : F) |
| 274 | for (Instruction &I : BB) { |
| 275 | if (isa<PHINode>(I)) continue; |
| 276 | |
| 277 | IRBuilder<> B(cast<Instruction>(&I)); |
| Philip Reames | a6548d0 | 2019-07-09 19:59:39 +0000 | [diff] [blame] | 278 | |
| 279 | // Note: There are many more sources of documented UB, but this pass only |
| 280 | // attempts to find UB triggered by propagation of poison. |
| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 281 | if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I))) |
| 282 | CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); |
| 283 | |
| 284 | if (LocalCheck) |
| 285 | if (auto *RI = dyn_cast<ReturnInst>(&I)) |
| 286 | if (RI->getNumOperands() != 0) { |
| 287 | Value *Op = RI->getOperand(0); |
| 288 | CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); |
| 289 | } |
| 290 | |
| 291 | SmallVector<Value*, 4> Checks; |
| 292 | if (propagatesFullPoison(&I)) |
| 293 | for (Value *V : I.operands()) |
| 294 | Checks.push_back(getPoisonFor(ValToPoison, V)); |
| 295 | |
| 296 | if (auto *Check = generatePoisonChecks(I)) |
| 297 | Checks.push_back(Check); |
| 298 | ValToPoison[&I] = buildOrChain(B, Checks); |
| 299 | } |
| 300 | |
| 301 | for (BasicBlock &BB : F) |
| 302 | for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { |
| 303 | auto *OldPHI = cast<PHINode>(&*I); |
| 304 | if (!ValToPoison.count(OldPHI)) |
| 305 | continue; // skip the newly inserted phis |
| 306 | auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]); |
| 307 | for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) { |
| 308 | auto *OldVal = OldPHI->getIncomingValue(i); |
| 309 | NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal)); |
| 310 | } |
| 311 | } |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | |
| 316 | PreservedAnalyses PoisonCheckingPass::run(Module &M, |
| 317 | ModuleAnalysisManager &AM) { |
| 318 | bool Changed = false; |
| 319 | for (auto &F : M) |
| 320 | Changed |= rewrite(F); |
| 321 | |
| 322 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 323 | } |
| 324 | |
| 325 | PreservedAnalyses PoisonCheckingPass::run(Function &F, |
| 326 | FunctionAnalysisManager &AM) { |
| 327 | return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 328 | } |
| 329 | |
| 330 | |
| 331 | /* Major TODO Items: |
| 332 | - Control dependent poison UB |
| 333 | - Strict mode - (i.e. must analyze every operand) |
| 334 | - Poison through memory |
| 335 | - Function ABIs |
| Philip Reames | a6548d0 | 2019-07-09 19:59:39 +0000 | [diff] [blame] | 336 | - Full coverage of intrinsics, etc.. (ouch) |
| 337 | |
| 338 | Instructions w/Unclear Semantics: |
| 339 | - shufflevector - It would seem reasonable for an out of bounds mask element |
| 340 | to produce poison, but the LangRef does not state. |
| 341 | - and/or - It would seem reasonable for poison to propagate from both |
| 342 | arguments, but LangRef doesn't state and propagatesFullPoison doesn't |
| 343 | include these two. |
| 344 | - all binary ops w/vector operands - The likely interpretation would be that |
| 345 | any element overflowing should produce poison for the entire result, but |
| 346 | the LangRef does not state. |
| 347 | - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems |
| 348 | strange that only certian flags should be documented as producing poison. |
| 349 | |
| 350 | Cases of clear poison semantics not yet implemented: |
| 351 | - Exact flags on ashr/lshr produce poison |
| 352 | - NSW/NUW flags on shl produce poison |
| 353 | - Inbounds flag on getelementptr produce poison |
| 354 | - fptosi/fptoui (out of bounds input) produce poison |
| 355 | - Scalable vector types for insertelement/extractelement |
| 356 | - Floating point binary ops w/fmf nnan/noinfs flags produce poison |
| Philip Reames | f47a313 | 2019-07-09 18:49:29 +0000 | [diff] [blame] | 357 | */ |