blob: 37c273c7fbe3d3f1d492c4686779c44935d7ff99 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/ADT/SetOperations.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/InstIterator.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Statepoint.h"
31#include "llvm/IR/Value.h"
32#include "llvm/IR/Verifier.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40
41#define DEBUG_TYPE "rewrite-statepoints-for-gc"
42
43using namespace llvm;
44
45// Print tracing output
46static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
47 cl::init(false));
48
49// Print the liveset found at the insert location
50static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
51 cl::init(false));
52static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size",
53 cl::Hidden, cl::init(false));
54// Print out the base pointers for debugging
55static cl::opt<bool> PrintBasePointers("spp-print-base-pointers",
56 cl::Hidden, cl::init(false));
57
Benjamin Kramer6f665452015-02-20 14:00:58 +000058namespace {
Philip Reamesd16a9b12015-02-20 01:06:44 +000059struct RewriteStatepointsForGC : public FunctionPass {
60 static char ID; // Pass identification, replacement for typeid
61
62 RewriteStatepointsForGC() : FunctionPass(ID) {
63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
64 }
65 bool runOnFunction(Function &F) override;
66
67 void getAnalysisUsage(AnalysisUsage &AU) const override {
68 // We add and rewrite a bunch of instructions, but don't really do much
69 // else. We could in theory preserve a lot more analyses here.
70 AU.addRequired<DominatorTreeWrapperPass>();
71 }
72};
Benjamin Kramer6f665452015-02-20 14:00:58 +000073} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +000074
75char RewriteStatepointsForGC::ID = 0;
76
77FunctionPass *llvm::createRewriteStatepointsForGCPass() {
78 return new RewriteStatepointsForGC();
79}
80
81INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
82 "Make relocations explicit at statepoints", false, false)
83INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
84INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
85 "Make relocations explicit at statepoints", false, false)
86
87namespace {
88// The type of the internal cache used inside the findBasePointers family
89// of functions. From the callers perspective, this is an opaque type and
90// should not be inspected.
91//
92// In the actual implementation this caches two relations:
93// - The base relation itself (i.e. this pointer is based on that one)
94// - The base defining value relation (i.e. before base_phi insertion)
95// Generally, after the execution of a full findBasePointer call, only the
96// base relation will remain. Internally, we add a mixture of the two
97// types, then update all the second type to the first type
Philip Reamese9c3b9b2015-02-20 22:48:20 +000098typedef DenseMap<Value *, Value *> DefiningValueMapTy;
Philip Reames1f017542015-02-20 23:16:52 +000099typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100
Philip Reamesd16a9b12015-02-20 01:06:44 +0000101struct PartiallyConstructedSafepointRecord {
102 /// The set of values known to be live accross this safepoint
Philip Reames860660e2015-02-20 22:05:18 +0000103 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000104
105 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000107
108 /// Any new values which were added to the IR during base pointer analysis
109 /// for this safepoint
Philip Reamesf2041322015-02-20 19:26:04 +0000110 DenseSet<llvm::Value *> NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000111
Philip Reames0a3240f2015-02-20 21:34:11 +0000112 /// The *new* gc.statepoint instruction itself. This produces the token
113 /// that normal path gc.relocates and the gc.result are tied to.
114 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000115
Philip Reamesf2041322015-02-20 19:26:04 +0000116 /// Instruction to which exceptional gc relocates are attached
117 /// Makes it easier to iterate through them during relocationViaAlloca.
118 Instruction *UnwindToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000119};
120}
121
122// TODO: Once we can get to the GCStrategy, this becomes
123// Optional<bool> isGCManagedPointer(const Value *V) const override {
124
125static bool isGCPointerType(const Type *T) {
126 if (const PointerType *PT = dyn_cast<PointerType>(T))
127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
128 // GC managed heap. We know that a pointer into this heap needs to be
129 // updated and that no other pointer does.
130 return (1 == PT->getAddressSpace());
131 return false;
132}
133
134/// Return true if the Value is a gc reference type which is potentially used
135/// after the instruction 'loc'. This is only used with the edge reachability
136/// liveness code. Note: It is assumed the V dominates loc.
137static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT,
138 LoopInfo *LI) {
139 if (!isGCPointerType(V.getType()))
140 return false;
141
142 if (V.use_empty())
143 return false;
144
145 // Given assumption that V dominates loc, this may be live
146 return true;
147}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000148
149#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +0000150static bool isAggWhichContainsGCPtrType(Type *Ty) {
151 if (VectorType *VT = dyn_cast<VectorType>(Ty))
152 return isGCPointerType(VT->getScalarType());
David Blaikie82ad7872015-02-20 23:44:24 +0000153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
Philip Reamesd16a9b12015-02-20 01:06:44 +0000154 return isGCPointerType(AT->getElementType()) ||
155 isAggWhichContainsGCPtrType(AT->getElementType());
David Blaikie82ad7872015-02-20 23:44:24 +0000156 if (StructType *ST = dyn_cast<StructType>(Ty))
157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
158 [](Type *SubType) {
159 return isGCPointerType(SubType) ||
160 isAggWhichContainsGCPtrType(SubType);
161 });
162 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000163}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000164#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000165
166// Conservatively identifies any definitions which might be live at the
167// given instruction. The analysis is performed immediately before the
168// given instruction. Values defined by that instruction are not considered
169// live. Values used by that instruction are considered live.
170//
171// preconditions: valid IR graph, term is either a terminator instruction or
172// a call instruction, pred is the basic block of term, DT, LI are valid
173//
174// side effects: none, does not mutate IR
175//
176// postconditions: populates liveValues as discussed above
177static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred,
178 DominatorTree &DT, LoopInfo *LI,
Philip Reames1f017542015-02-20 23:16:52 +0000179 StatepointLiveSetTy &liveValues) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000180 liveValues.clear();
181
182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator());
183
184 Function *F = pred->getParent();
185
186 auto is_live_gc_reference =
187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); };
188
189 // Are there any gc pointer arguments live over this point? This needs to be
190 // special cased since arguments aren't defined in basic blocks.
191 for (Argument &arg : F->args()) {
192 assert(!isAggWhichContainsGCPtrType(arg.getType()) &&
193 "support for FCA unimplemented");
194
195 if (is_live_gc_reference(arg)) {
196 liveValues.insert(&arg);
197 }
198 }
199
200 // Walk through all dominating blocks - the ones which can contain
201 // definitions used in this block - and check to see if any of the values
202 // they define are used in locations potentially reachable from the
203 // interesting instruction.
204 BasicBlock *BBI = pred;
205 while (true) {
206 if (TraceLSP) {
207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n";
208 }
209 assert(DT.dominates(BBI, pred));
210 assert(isPotentiallyReachable(BBI, pred, &DT) &&
211 "dominated block must be reachable");
212
213 // Walk through the instructions in dominating blocks and keep any
214 // that have a use potentially reachable from the block we're
215 // considering putting the safepoint in
216 for (Instruction &inst : *BBI) {
217 if (TraceLSP) {
218 errs() << "[LSP] Looking at instruction ";
219 inst.dump();
220 }
221
222 if (pred == BBI && (&inst) == term) {
223 if (TraceLSP) {
224 errs() << "[LSP] stopped because we encountered the safepoint "
225 "instruction.\n";
226 }
227
228 // If we're in the block which defines the interesting instruction,
229 // we don't want to include any values as live which are defined
230 // _after_ the interesting line or as part of the line itself
231 // i.e. "term" is the call instruction for a call safepoint, the
232 // results of the call should not be considered live in that stackmap
233 break;
234 }
235
236 assert(!isAggWhichContainsGCPtrType(inst.getType()) &&
237 "support for FCA unimplemented");
238
239 if (is_live_gc_reference(inst)) {
240 if (TraceLSP) {
241 errs() << "[LSP] found live value for this safepoint ";
242 inst.dump();
243 term->dump();
244 }
245 liveValues.insert(&inst);
246 }
247 }
248 if (!DT.getNode(BBI)->getIDom()) {
249 assert(BBI == &F->getEntryBlock() &&
250 "failed to find a dominator for something other than "
251 "the entry block");
252 break;
253 }
254 BBI = DT.getNode(BBI)->getIDom()->getBlock();
255 }
256}
257
258static bool order_by_name(llvm::Value *a, llvm::Value *b) {
259 if (a->hasName() && b->hasName()) {
260 return -1 == a->getName().compare(b->getName());
261 } else if (a->hasName() && !b->hasName()) {
262 return true;
263 } else if (!a->hasName() && b->hasName()) {
264 return false;
265 } else {
266 // Better than nothing, but not stable
267 return a < b;
268 }
269}
270
271/// Find the initial live set. Note that due to base pointer
272/// insertion, the live set may be incomplete.
273static void
274analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS,
275 PartiallyConstructedSafepointRecord &result) {
276 Instruction *inst = CS.getInstruction();
277
278 BasicBlock *BB = inst->getParent();
Philip Reames1f017542015-02-20 23:16:52 +0000279 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset);
281
282 if (PrintLiveSet) {
283 // Note: This output is used by several of the test cases
284 // The order of elemtns in a set is not stable, put them in a vec and sort
285 // by name
Philip Reames860660e2015-02-20 22:05:18 +0000286 SmallVector<Value *, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000287 temp.insert(temp.end(), liveset.begin(), liveset.end());
288 std::sort(temp.begin(), temp.end(), order_by_name);
289 errs() << "Live Variables:\n";
290 for (Value *V : temp) {
291 errs() << " " << V->getName(); // no newline
292 V->dump();
293 }
294 }
295 if (PrintLiveSetSize) {
296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
297 errs() << "Number live values: " << liveset.size() << "\n";
298 }
299 result.liveset = liveset;
300}
301
302/// True iff this value is the null pointer constant (of any pointer type)
NAKAMURA Takumif7d08f62015-02-22 09:58:19 +0000303static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000304 return isa<Constant>(V) && isa<PointerType>(V->getType()) &&
305 cast<Constant>(V)->isNullValue();
306}
307
308/// Helper function for findBasePointer - Will return a value which either a)
309/// defines the base pointer for the input or b) blocks the simple search
310/// (i.e. a PHI or Select of two derived pointers)
311static Value *findBaseDefiningValue(Value *I) {
312 assert(I->getType()->isPointerTy() &&
313 "Illegal to ask for the base pointer of a non-pointer type");
314
315 // There are instructions which can never return gc pointer values. Sanity
316 // check
317 // that this is actually true.
318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers");
320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) ||
321 !cast<Instruction>(I)->isTerminator()) &&
322 "With the exception of invoke terminators don't define values");
323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) &&
324 "Can't be definitions to start with");
325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) &&
326 "Comparisons don't give ops");
327 // There's a bunch of instructions which just don't make sense to apply to
328 // a pointer. The only valid reason for this would be pointer bit
329 // twiddling which we're just not going to support.
330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) &&
331 "Binary ops on pointer values are meaningless. Unless your "
332 "bit-twiddling which we don't support");
333
334 if (Argument *Arg = dyn_cast<Argument>(I)) {
335 // An incoming argument to the function is a base pointer
336 // We should have never reached here if this argument isn't an gc value
337 assert(Arg->getType()->isPointerTy() &&
338 "Base for pointer must be another pointer");
339 return Arg;
340 }
341
342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) {
343 // base case
344 assert(global->getType()->isPointerTy() &&
345 "Base for pointer must be another pointer");
346 return global;
347 }
348
349 // inlining could possibly introduce phi node that contains
350 // undef if callee has multiple returns
351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) {
352 assert(undef->getType()->isPointerTy() &&
353 "Base for pointer must be another pointer");
354 return undef; // utterly meaningless, but useful for dealing with
355 // partially optimized code.
356 }
357
358 // Due to inheritance, this must be _after_ the global variable and undef
359 // checks
360 if (Constant *con = dyn_cast<Constant>(I)) {
361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
362 "order of checks wrong!");
363 // Note: Finding a constant base for something marked for relocation
364 // doesn't really make sense. The most likely case is either a) some
365 // screwed up the address space usage or b) your validating against
366 // compiled C++ code w/o the proper separation. The only real exception
367 // is a null pointer. You could have generic code written to index of
368 // off a potentially null value and have proven it null. We also use
369 // null pointers in dead paths of relocation phis (which we might later
370 // want to find a base pointer for).
371 assert(con->getType()->isPointerTy() &&
372 "Base for pointer must be another pointer");
373 assert(con->isNullValue() && "null is the only case which makes sense");
374 return con;
375 }
376
377 if (CastInst *CI = dyn_cast<CastInst>(I)) {
378 Value *def = CI->stripPointerCasts();
379 assert(def->getType()->isPointerTy() &&
380 "Base for pointer must be another pointer");
David Blaikie82ad7872015-02-20 23:44:24 +0000381 // If we find a cast instruction here, it means we've found a cast which is
382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
383 // handle int->ptr conversion.
Philip Reamesd16a9b12015-02-20 01:06:44 +0000384 assert(!isa<CastInst>(def) && "shouldn't find another cast here");
385 return findBaseDefiningValue(def);
386 }
387
388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
389 if (LI->getType()->isPointerTy()) {
390 Value *Op = LI->getOperand(0);
Nick Lewyckyeb3231e2015-02-20 07:14:02 +0000391 (void)Op;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000392 // Has to be a pointer to an gc object, or possibly an array of such?
393 assert(Op->getType()->isPointerTy());
394 return LI; // The value loaded is an gc base itself
395 }
396 }
397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
398 Value *Op = GEP->getOperand(0);
399 if (Op->getType()->isPointerTy()) {
400 return findBaseDefiningValue(Op); // The base of this GEP is the base
401 }
402 }
403
404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) {
405 // An alloca represents a conceptual stack slot. It's the slot itself
406 // that the GC needs to know about, not the value in the slot.
407 assert(alloc->getType()->isPointerTy() &&
408 "Base for pointer must be another pointer");
409 return alloc;
410 }
411
412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
413 switch (II->getIntrinsicID()) {
414 default:
415 // fall through to general call handling
416 break;
417 case Intrinsic::experimental_gc_statepoint:
418 case Intrinsic::experimental_gc_result_float:
419 case Intrinsic::experimental_gc_result_int:
420 llvm_unreachable("these don't produce pointers");
421 case Intrinsic::experimental_gc_result_ptr:
422 // This is just a special case of the CallInst check below to handle a
423 // statepoint with deopt args which hasn't been rewritten for GC yet.
424 // TODO: Assert that the statepoint isn't rewritten yet.
425 return II;
426 case Intrinsic::experimental_gc_relocate: {
427 // Rerunning safepoint insertion after safepoints are already
428 // inserted is not supported. It could probably be made to work,
429 // but why are you doing this? There's no good reason.
430 llvm_unreachable("repeat safepoint insertion is not supported");
431 }
432 case Intrinsic::gcroot:
433 // Currently, this mechanism hasn't been extended to work with gcroot.
434 // There's no reason it couldn't be, but I haven't thought about the
435 // implications much.
436 llvm_unreachable(
437 "interaction with the gcroot mechanism is not supported");
438 }
439 }
440 // We assume that functions in the source language only return base
441 // pointers. This should probably be generalized via attributes to support
442 // both source language and internal functions.
443 if (CallInst *call = dyn_cast<CallInst>(I)) {
444 assert(call->getType()->isPointerTy() &&
445 "Base for pointer must be another pointer");
446 return call;
447 }
448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
449 assert(invoke->getType()->isPointerTy() &&
450 "Base for pointer must be another pointer");
451 return invoke;
452 }
453
454 // I have absolutely no idea how to implement this part yet. It's not
455 // neccessarily hard, I just haven't really looked at it yet.
456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
457
458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) {
459 // A CAS is effectively a atomic store and load combined under a
460 // predicate. From the perspective of base pointers, we just treat it
461 // like a load. We loaded a pointer from a address in memory, that value
462 // had better be a valid base pointer.
463 return cas->getPointerOperand();
464 }
465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) {
466 assert(AtomicRMWInst::Xchg == atomic->getOperation() &&
467 "All others are binary ops which don't apply to base pointers");
468 // semantically, a load, store pair. Treat it the same as a standard load
469 return atomic->getPointerOperand();
470 }
471
472 // The aggregate ops. Aggregates can either be in the heap or on the
473 // stack, but in either case, this is simply a field load. As a result,
474 // this is a defining definition of the base just like a load is.
475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) {
476 return ev;
477 }
478
479 // We should never see an insert vector since that would require we be
480 // tracing back a struct value not a pointer value.
481 assert(!isa<InsertValueInst>(I) &&
482 "Base pointer for a struct is meaningless");
483
484 // The last two cases here don't return a base pointer. Instead, they
485 // return a value which dynamically selects from amoung several base
486 // derived pointers (each with it's own base potentially). It's the job of
487 // the caller to resolve these.
488 if (SelectInst *select = dyn_cast<SelectInst>(I)) {
489 return select;
490 }
Philip Reamesd16a9b12015-02-20 01:06:44 +0000491
David Blaikie82ad7872015-02-20 23:44:24 +0000492 return cast<PHINode>(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000493}
494
495/// Returns the base defining value for this value.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000496static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) {
497 Value *&Cached = cache[I];
498 if (!Cached) {
499 Cached = findBaseDefiningValue(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000500 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000501 assert(cache[I] != nullptr);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000502
503 if (TraceLSP) {
Benjamin Kramer6f665452015-02-20 14:00:58 +0000504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
Philip Reamesd16a9b12015-02-20 01:06:44 +0000505 << "\n";
506 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000507 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000508}
509
510/// Return a base pointer for this value if known. Otherwise, return it's
511/// base defining value.
512static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) {
513 Value *def = findBaseDefiningValueCached(I, cache);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000514 auto Found = cache.find(def);
515 if (Found != cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000516 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000517 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000518 }
519 // Only a BDV available
520 return def;
521}
522
523/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
524/// is it known to be a base pointer? Or do we need to continue searching.
525static bool isKnownBaseResult(Value *v) {
526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) {
527 // no recursion possible
528 return true;
529 }
530 if (cast<Instruction>(v)->getMetadata("is_base_value")) {
531 // This is a previously inserted base phi or select. We know
532 // that this is a base value.
533 return true;
534 }
535
536 // We need to keep searching
537 return false;
538}
539
540// TODO: find a better name for this
541namespace {
542class PhiState {
543public:
544 enum Status { Unknown, Base, Conflict };
545
546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
547 assert(status != Base || b);
548 }
549 PhiState(Value *b) : status(Base), base(b) {}
550 PhiState() : status(Unknown), base(nullptr) {}
551 PhiState(const PhiState &other) : status(other.status), base(other.base) {
552 assert(status != Base || base);
553 }
554
555 Status getStatus() const { return status; }
556 Value *getBase() const { return base; }
557
558 bool isBase() const { return getStatus() == Base; }
559 bool isUnknown() const { return getStatus() == Unknown; }
560 bool isConflict() const { return getStatus() == Conflict; }
561
562 bool operator==(const PhiState &other) const {
563 return base == other.base && status == other.status;
564 }
565
566 bool operator!=(const PhiState &other) const { return !(*this == other); }
567
568 void dump() {
569 errs() << status << " (" << base << " - "
570 << (base ? base->getName() : "nullptr") << "): ";
571 }
572
573private:
574 Status status;
575 Value *base; // non null only if status == base
576};
577
Philip Reamese9c3b9b2015-02-20 22:48:20 +0000578typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000579// Values of type PhiState form a lattice, and this is a helper
580// class that implementes the meet operation. The meat of the meet
581// operation is implemented in MeetPhiStates::pureMeet
582class MeetPhiStates {
583public:
584 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
Philip Reames860660e2015-02-20 22:05:18 +0000585 explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
Philip Reamesd16a9b12015-02-20 01:06:44 +0000586 : phiStates(phiStates) {}
587
588 // Destructively meet the current result with the base V. V can
589 // either be a merge instruction (SelectInst / PHINode), in which
590 // case its status is looked up in the phiStates map; or a regular
591 // SSA value, in which case it is assumed to be a base.
592 void meetWith(Value *V) {
593 PhiState otherState = getStateForBDV(V);
594 assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
595 MeetPhiStates::pureMeet(currentResult, otherState)) &&
596 "math is wrong: meet does not commute!");
597 currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
598 }
599
600 PhiState getResult() const { return currentResult; }
601
602private:
Philip Reames860660e2015-02-20 22:05:18 +0000603 const ConflictStateMapTy &phiStates;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000604 PhiState currentResult;
605
606 /// Return a phi state for a base defining value. We'll generate a new
607 /// base state for known bases and expect to find a cached state otherwise
608 PhiState getStateForBDV(Value *baseValue) {
609 if (isKnownBaseResult(baseValue)) {
610 return PhiState(baseValue);
611 } else {
612 return lookupFromMap(baseValue);
613 }
614 }
615
616 PhiState lookupFromMap(Value *V) {
617 auto I = phiStates.find(V);
618 assert(I != phiStates.end() && "lookup failed!");
619 return I->second;
620 }
621
622 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
623 switch (stateA.getStatus()) {
624 case PhiState::Unknown:
625 return stateB;
626
627 case PhiState::Base:
628 assert(stateA.getBase() && "can't be null");
David Blaikie82ad7872015-02-20 23:44:24 +0000629 if (stateB.isUnknown())
Philip Reamesd16a9b12015-02-20 01:06:44 +0000630 return stateA;
David Blaikie82ad7872015-02-20 23:44:24 +0000631
632 if (stateB.isBase()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000633 if (stateA.getBase() == stateB.getBase()) {
634 assert(stateA == stateB && "equality broken!");
635 return stateA;
636 }
637 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000638 }
David Blaikie82ad7872015-02-20 23:44:24 +0000639 assert(stateB.isConflict() && "only three states!");
640 return PhiState(PhiState::Conflict);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000641
642 case PhiState::Conflict:
643 return stateA;
644 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000645 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000646 }
647};
648}
649/// For a given value or instruction, figure out what base ptr it's derived
650/// from. For gc objects, this is simply itself. On success, returns a value
651/// which is the base pointer. (This is reliable and can be used for
652/// relocation.) On failure, returns nullptr.
653static Value *findBasePointer(Value *I, DefiningValueMapTy &cache,
Philip Reamesf2041322015-02-20 19:26:04 +0000654 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000655 Value *def = findBaseOrBDV(I, cache);
656
657 if (isKnownBaseResult(def)) {
658 return def;
659 }
660
661 // Here's the rough algorithm:
662 // - For every SSA value, construct a mapping to either an actual base
663 // pointer or a PHI which obscures the base pointer.
664 // - Construct a mapping from PHI to unknown TOP state. Use an
665 // optimistic algorithm to propagate base pointer information. Lattice
666 // looks like:
667 // UNKNOWN
668 // b1 b2 b3 b4
669 // CONFLICT
670 // When algorithm terminates, all PHIs will either have a single concrete
671 // base or be in a conflict state.
672 // - For every conflict, insert a dummy PHI node without arguments. Add
673 // these to the base[Instruction] = BasePtr mapping. For every
674 // non-conflict, add the actual base.
675 // - For every conflict, add arguments for the base[a] of each input
676 // arguments.
677 //
678 // Note: A simpler form of this would be to add the conflict form of all
679 // PHIs without running the optimistic algorithm. This would be
680 // analougous to pessimistic data flow and would likely lead to an
681 // overall worse solution.
682
Philip Reames860660e2015-02-20 22:05:18 +0000683 ConflictStateMapTy states;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000684 states[def] = PhiState();
685 // Recursively fill in all phis & selects reachable from the initial one
686 // for which we don't already know a definite base value for
Philip Reamesa226e612015-02-28 00:47:50 +0000687 // TODO: This should be rewritten with a worklist
Philip Reamesd16a9b12015-02-20 01:06:44 +0000688 bool done = false;
689 while (!done) {
690 done = true;
Philip Reamesa226e612015-02-28 00:47:50 +0000691 // Since we're adding elements to 'states' as we run, we can't keep
692 // iterators into the set.
693 SmallVector<Value*, 16> Keys;
694 Keys.reserve(states.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +0000695 for (auto Pair : states) {
Philip Reamesa226e612015-02-28 00:47:50 +0000696 Value *V = Pair.first;
697 Keys.push_back(V);
698 }
699 for (Value *v : Keys) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000700 assert(!isKnownBaseResult(v) && "why did it get added?");
701 if (PHINode *phi = dyn_cast<PHINode>(v)) {
David Blaikie82ad7872015-02-20 23:44:24 +0000702 assert(phi->getNumIncomingValues() > 0 &&
703 "zero input phis are illegal");
704 for (Value *InVal : phi->incoming_values()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000705 Value *local = findBaseOrBDV(InVal, cache);
706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
707 states[local] = PhiState();
708 done = false;
709 }
710 }
711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
714 states[local] = PhiState();
715 done = false;
716 }
717 local = findBaseOrBDV(sel->getFalseValue(), cache);
718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
719 states[local] = PhiState();
720 done = false;
721 }
722 }
723 }
724 }
725
726 if (TraceLSP) {
727 errs() << "States after initialization:\n";
728 for (auto Pair : states) {
729 Instruction *v = cast<Instruction>(Pair.first);
730 PhiState state = Pair.second;
731 state.dump();
732 v->dump();
733 }
734 }
735
736 // TODO: come back and revisit the state transitions around inputs which
737 // have reached conflict state. The current version seems too conservative.
738
739 bool progress = true;
740 size_t oldSize = 0;
741 while (progress) {
742 oldSize = states.size();
743 progress = false;
Philip Reamesa226e612015-02-28 00:47:50 +0000744 // We're only changing keys in this loop, thus safe to keep iterators
Philip Reamesd16a9b12015-02-20 01:06:44 +0000745 for (auto Pair : states) {
746 MeetPhiStates calculateMeet(states);
747 Value *v = Pair.first;
748 assert(!isKnownBaseResult(v) && "why did it get added?");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000749 if (SelectInst *select = dyn_cast<SelectInst>(v)) {
750 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
751 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
David Blaikie82ad7872015-02-20 23:44:24 +0000752 } else
753 for (Value *Val : cast<PHINode>(v)->incoming_values())
754 calculateMeet.meetWith(findBaseOrBDV(Val, cache));
Philip Reamesd16a9b12015-02-20 01:06:44 +0000755
756 PhiState oldState = states[v];
757 PhiState newState = calculateMeet.getResult();
758 if (oldState != newState) {
759 progress = true;
760 states[v] = newState;
761 }
762 }
763
764 assert(oldSize <= states.size());
765 assert(oldSize == states.size() || progress);
766 }
767
768 if (TraceLSP) {
769 errs() << "States after meet iteration:\n";
770 for (auto Pair : states) {
771 Instruction *v = cast<Instruction>(Pair.first);
772 PhiState state = Pair.second;
773 state.dump();
774 v->dump();
775 }
776 }
777
778 // Insert Phis for all conflicts
Philip Reamesa226e612015-02-28 00:47:50 +0000779 // Only changing keys in 'states', thus safe to keep iterators
Philip Reamesd16a9b12015-02-20 01:06:44 +0000780 for (auto Pair : states) {
781 Instruction *v = cast<Instruction>(Pair.first);
782 PhiState state = Pair.second;
783 assert(!isKnownBaseResult(v) && "why did it get added?");
784 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
785 if (state.isConflict()) {
786 if (isa<PHINode>(v)) {
787 int num_preds =
788 std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
789 assert(num_preds > 0 && "how did we reach here");
790 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
Philip Reamesf2041322015-02-20 19:26:04 +0000791 NewInsertedDefs.insert(phi);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000792 // Add metadata marking this as a base value
793 auto *const_1 = ConstantInt::get(
794 Type::getInt32Ty(
795 v->getParent()->getParent()->getParent()->getContext()),
796 1);
797 auto MDConst = ConstantAsMetadata::get(const_1);
798 MDNode *md = MDNode::get(
799 v->getParent()->getParent()->getParent()->getContext(), MDConst);
800 phi->setMetadata("is_base_value", md);
801 states[v] = PhiState(PhiState::Conflict, phi);
802 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
803 // The undef will be replaced later
804 UndefValue *undef = UndefValue::get(sel->getType());
805 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
806 undef, "base_select", sel);
Philip Reamesf2041322015-02-20 19:26:04 +0000807 NewInsertedDefs.insert(basesel);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000808 // Add metadata marking this as a base value
809 auto *const_1 = ConstantInt::get(
810 Type::getInt32Ty(
811 v->getParent()->getParent()->getParent()->getContext()),
812 1);
813 auto MDConst = ConstantAsMetadata::get(const_1);
814 MDNode *md = MDNode::get(
815 v->getParent()->getParent()->getParent()->getContext(), MDConst);
816 basesel->setMetadata("is_base_value", md);
817 states[v] = PhiState(PhiState::Conflict, basesel);
Philip Reames860660e2015-02-20 22:05:18 +0000818 } else
819 llvm_unreachable("unknown conflict type");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000820 }
821 }
822
823 // Fixup all the inputs of the new PHIs
824 for (auto Pair : states) {
825 Instruction *v = cast<Instruction>(Pair.first);
826 PhiState state = Pair.second;
827
828 assert(!isKnownBaseResult(v) && "why did it get added?");
829 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
830 if (state.isConflict()) {
831 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
832 PHINode *phi = cast<PHINode>(v);
833 unsigned NumPHIValues = phi->getNumIncomingValues();
834 for (unsigned i = 0; i < NumPHIValues; i++) {
835 Value *InVal = phi->getIncomingValue(i);
836 BasicBlock *InBB = phi->getIncomingBlock(i);
837
838 // If we've already seen InBB, add the same incoming value
839 // we added for it earlier. The IR verifier requires phi
840 // nodes with multiple entries from the same basic block
841 // to have the same incoming value for each of those
842 // entries. If we don't do this check here and basephi
843 // has a different type than base, we'll end up adding two
844 // bitcasts (and hence two distinct values) as incoming
845 // values for the same basic block.
846
847 int blockIndex = basephi->getBasicBlockIndex(InBB);
848 if (blockIndex != -1) {
849 Value *oldBase = basephi->getIncomingValue(blockIndex);
850 basephi->addIncoming(oldBase, InBB);
851#ifndef NDEBUG
852 Value *base = findBaseOrBDV(InVal, cache);
853 if (!isKnownBaseResult(base)) {
854 // Either conflict or base.
855 assert(states.count(base));
856 base = states[base].getBase();
857 assert(base != nullptr && "unknown PhiState!");
Philip Reamesf2041322015-02-20 19:26:04 +0000858 assert(NewInsertedDefs.count(base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +0000859 "should have already added this in a prev. iteration!");
860 }
861
862 // In essense this assert states: the only way two
863 // values incoming from the same basic block may be
864 // different is by being different bitcasts of the same
865 // value. A cleanup that remains TODO is changing
866 // findBaseOrBDV to return an llvm::Value of the correct
867 // type (and still remain pure). This will remove the
868 // need to add bitcasts.
869 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
870 "sanity -- findBaseOrBDV should be pure!");
871#endif
872 continue;
873 }
874
875 // Find either the defining value for the PHI or the normal base for
876 // a non-phi node
877 Value *base = findBaseOrBDV(InVal, cache);
878 if (!isKnownBaseResult(base)) {
879 // Either conflict or base.
880 assert(states.count(base));
881 base = states[base].getBase();
882 assert(base != nullptr && "unknown PhiState!");
883 }
884 assert(base && "can't be null");
885 // Must use original input BB since base may not be Instruction
886 // The cast is needed since base traversal may strip away bitcasts
887 if (base->getType() != basephi->getType()) {
888 base = new BitCastInst(base, basephi->getType(), "cast",
889 InBB->getTerminator());
Philip Reamesf2041322015-02-20 19:26:04 +0000890 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000891 }
892 basephi->addIncoming(base, InBB);
893 }
894 assert(basephi->getNumIncomingValues() == NumPHIValues);
895 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) {
896 SelectInst *sel = cast<SelectInst>(v);
897 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
898 // something more safe and less hacky.
899 for (int i = 1; i <= 2; i++) {
900 Value *InVal = sel->getOperand(i);
901 // Find either the defining value for the PHI or the normal base for
902 // a non-phi node
903 Value *base = findBaseOrBDV(InVal, cache);
904 if (!isKnownBaseResult(base)) {
905 // Either conflict or base.
906 assert(states.count(base));
907 base = states[base].getBase();
908 assert(base != nullptr && "unknown PhiState!");
909 }
910 assert(base && "can't be null");
911 // Must use original input BB since base may not be Instruction
912 // The cast is needed since base traversal may strip away bitcasts
913 if (base->getType() != basesel->getType()) {
914 base = new BitCastInst(base, basesel->getType(), "cast", basesel);
Philip Reamesf2041322015-02-20 19:26:04 +0000915 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000916 }
917 basesel->setOperand(i, base);
918 }
Philip Reames860660e2015-02-20 22:05:18 +0000919 } else
920 llvm_unreachable("unexpected conflict type");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000921 }
922 }
923
924 // Cache all of our results so we can cheaply reuse them
925 // NOTE: This is actually two caches: one of the base defining value
926 // relation and one of the base pointer relation! FIXME
927 for (auto item : states) {
928 Value *v = item.first;
929 Value *base = item.second.getBase();
930 assert(v && base);
931 assert(!isKnownBaseResult(v) && "why did it get added?");
932
933 if (TraceLSP) {
934 std::string fromstr =
935 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
936 : "none";
937 errs() << "Updating base value cache"
938 << " for: " << (v->hasName() ? v->getName() : "")
939 << " from: " << fromstr
940 << " to: " << (base->hasName() ? base->getName() : "") << "\n";
941 }
942
943 assert(isKnownBaseResult(base) &&
944 "must be something we 'know' is a base pointer");
945 if (cache.count(v)) {
946 // Once we transition from the BDV relation being store in the cache to
947 // the base relation being stored, it must be stable
948 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
949 "base relation should be stable");
950 }
951 cache[v] = base;
952 }
953 assert(cache.find(def) != cache.end());
954 return cache[def];
955}
956
957// For a set of live pointers (base and/or derived), identify the base
958// pointer of the object which they are derived from. This routine will
959// mutate the IR graph as needed to make the 'base' pointer live at the
960// definition site of 'derived'. This ensures that any use of 'derived' can
961// also use 'base'. This may involve the insertion of a number of
962// additional PHI nodes.
963//
964// preconditions: live is a set of pointer type Values
965//
966// side effects: may insert PHI nodes into the existing CFG, will preserve
967// CFG, will not remove or mutate any existing nodes
968//
Philip Reamesf2041322015-02-20 19:26:04 +0000969// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +0000970// pointer in live. Note that derived can be equal to base if the original
971// pointer was a base pointer.
Philip Reames1f017542015-02-20 23:16:52 +0000972static void findBasePointers(const StatepointLiveSetTy &live,
Philip Reamesf2041322015-02-20 19:26:04 +0000973 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesd16a9b12015-02-20 01:06:44 +0000974 DominatorTree *DT, DefiningValueMapTy &DVCache,
Philip Reamesf2041322015-02-20 19:26:04 +0000975 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000976 for (Value *ptr : live) {
Philip Reamesf2041322015-02-20 19:26:04 +0000977 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000978 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +0000979 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000980 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
981 DT->dominates(cast<Instruction>(base)->getParent(),
982 cast<Instruction>(ptr)->getParent())) &&
983 "The base we found better dominate the derived pointer");
984
David Blaikie82ad7872015-02-20 23:44:24 +0000985 // If you see this trip and like to live really dangerously, the code should
986 // be correct, just with idioms the verifier can't handle. You can try
987 // disabling the verifier at your own substaintial risk.
988 assert(!isNullConstant(base) && "the relocation code needs adjustment to "
989 "handle the relocation of a null pointer "
990 "constant without causing false positives "
991 "in the safepoint ir verifier.");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000992 }
993}
994
995/// Find the required based pointers (and adjust the live set) for the given
996/// parse point.
997static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
998 const CallSite &CS,
999 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001000 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
1001 DenseSet<llvm::Value *> NewInsertedDefs;
1002 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001003
1004 if (PrintBasePointers) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001005 // Note: Need to print these in a stable order since this is checked in
1006 // some tests.
Philip Reamesd16a9b12015-02-20 01:06:44 +00001007 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001008 SmallVector<Value*, 64> Temp;
1009 Temp.reserve(PointerToBase.size());
Philip Reamesf2041322015-02-20 19:26:04 +00001010 for (auto Pair : PointerToBase) {
Philip Reamesa5aeaf42015-02-28 00:20:48 +00001011 Temp.push_back(Pair.first);
1012 }
1013 std::sort(Temp.begin(), Temp.end(), order_by_name);
1014 for (Value *Ptr : Temp) {
1015 Value *Base = PointerToBase[Ptr];
1016 errs() << " derived %" << Ptr->getName() << " base %"
1017 << Base->getName() << "\n";
Philip Reamesd16a9b12015-02-20 01:06:44 +00001018 }
1019 }
1020
Philip Reamesf2041322015-02-20 19:26:04 +00001021 result.PointerToBase = PointerToBase;
1022 result.NewInsertedDefs = NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001023}
1024
1025/// Check for liveness of items in the insert defs and add them to the live
1026/// and base pointer sets
1027static void fixupLiveness(DominatorTree &DT, const CallSite &CS,
Philip Reames1f017542015-02-20 23:16:52 +00001028 const DenseSet<Value *> &allInsertedDefs,
Philip Reamesd16a9b12015-02-20 01:06:44 +00001029 PartiallyConstructedSafepointRecord &result) {
1030 Instruction *inst = CS.getInstruction();
1031
Philip Reamesf2041322015-02-20 19:26:04 +00001032 auto liveset = result.liveset;
1033 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001034
1035 auto is_live_gc_reference =
1036 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); };
1037
1038 // For each new definition, check to see if a) the definition dominates the
1039 // instruction we're interested in, and b) one of the uses of that definition
1040 // is edge-reachable from the instruction we're interested in. This is the
1041 // same definition of liveness we used in the intial liveness analysis
1042 for (Value *newDef : allInsertedDefs) {
1043 if (liveset.count(newDef)) {
1044 // already live, no action needed
1045 continue;
1046 }
1047
1048 // PERF: Use DT to check instruction domination might not be good for
1049 // compilation time, and we could change to optimal solution if this
1050 // turn to be a issue
1051 if (!DT.dominates(cast<Instruction>(newDef), inst)) {
1052 // can't possibly be live at inst
1053 continue;
1054 }
1055
1056 if (is_live_gc_reference(*newDef)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001057 // Add the live new defs into liveset and PointerToBase
Philip Reamesd16a9b12015-02-20 01:06:44 +00001058 liveset.insert(newDef);
Philip Reamesf2041322015-02-20 19:26:04 +00001059 PointerToBase[newDef] = newDef;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001060 }
1061 }
1062
1063 result.liveset = liveset;
Philip Reamesf2041322015-02-20 19:26:04 +00001064 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001065}
1066
1067static void fixupLiveReferences(
1068 Function &F, DominatorTree &DT, Pass *P,
Philip Reames1f017542015-02-20 23:16:52 +00001069 const DenseSet<llvm::Value *> &allInsertedDefs,
Philip Reamesd2b66462015-02-20 22:39:41 +00001070 ArrayRef<CallSite> toUpdate,
1071 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001072 for (size_t i = 0; i < records.size(); i++) {
1073 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001074 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001075 fixupLiveness(DT, CS, allInsertedDefs, info);
1076 }
1077}
1078
1079// Normalize basic block to make it ready to be target of invoke statepoint.
1080// It means spliting it to have single predecessor. Return newly created BB
1081// ready to be successor of invoke statepoint.
1082static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
1083 BasicBlock *InvokeParent,
1084 Pass *P) {
1085 BasicBlock *ret = BB;
1086
1087 if (!BB->getUniquePredecessor()) {
1088 ret = SplitBlockPredecessors(BB, InvokeParent, "");
1089 }
1090
1091 // Another requirement for such basic blocks is to not have any phi nodes.
1092 // Since we just ensured that new BB will have single predecessor,
1093 // all phi nodes in it will have one value. Here it would be naturall place
1094 // to
1095 // remove them all. But we can not do this because we are risking to remove
1096 // one of the values stored in liveset of another statepoint. We will do it
1097 // later after placing all safepoints.
1098
1099 return ret;
1100}
1101
Philip Reamesd2b66462015-02-20 22:39:41 +00001102static int find_index(ArrayRef<Value *> livevec, Value *val) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001103 auto itr = std::find(livevec.begin(), livevec.end(), val);
1104 assert(livevec.end() != itr);
1105 size_t index = std::distance(livevec.begin(), itr);
1106 assert(index < livevec.size());
1107 return index;
1108}
1109
1110// Create new attribute set containing only attributes which can be transfered
1111// from original call to the safepoint.
1112static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1113 AttributeSet ret;
1114
1115 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1116 unsigned index = AS.getSlotIndex(Slot);
1117
1118 if (index == AttributeSet::ReturnIndex ||
1119 index == AttributeSet::FunctionIndex) {
1120
1121 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1122 ++it) {
1123 Attribute attr = *it;
1124
1125 // Do not allow certain attributes - just skip them
1126 // Safepoint can not be read only or read none.
1127 if (attr.hasAttribute(Attribute::ReadNone) ||
1128 attr.hasAttribute(Attribute::ReadOnly))
1129 continue;
1130
1131 ret = ret.addAttributes(
1132 AS.getContext(), index,
1133 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1134 }
1135 }
1136
1137 // Just skip parameter attributes for now
1138 }
1139
1140 return ret;
1141}
1142
1143/// Helper function to place all gc relocates necessary for the given
1144/// statepoint.
1145/// Inputs:
1146/// liveVariables - list of variables to be relocated.
1147/// liveStart - index of the first live variable.
1148/// basePtrs - base pointers.
1149/// statepointToken - statepoint instruction to which relocates should be
1150/// bound.
1151/// Builder - Llvm IR builder to be used to construct new calls.
Philip Reamesd2b66462015-02-20 22:39:41 +00001152void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
1153 const int liveStart,
1154 ArrayRef<llvm::Value *> basePtrs,
1155 Instruction *statepointToken, IRBuilder<> Builder) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001156
Philip Reamesd2b66462015-02-20 22:39:41 +00001157 SmallVector<Instruction *, 64> NewDefs;
1158 NewDefs.reserve(liveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001159
1160 Module *M = statepointToken->getParent()->getParent()->getParent();
1161
1162 for (unsigned i = 0; i < liveVariables.size(); i++) {
1163 // We generate a (potentially) unique declaration for every pointer type
1164 // combination. This results is some blow up the function declarations in
1165 // the IR, but removes the need for argument bitcasts which shrinks the IR
1166 // greatly and makes it much more readable.
Philip Reamesd2b66462015-02-20 22:39:41 +00001167 SmallVector<Type *, 1> types; // one per 'any' type
Philip Reamesd16a9b12015-02-20 01:06:44 +00001168 types.push_back(liveVariables[i]->getType()); // result type
1169 Value *gc_relocate_decl = Intrinsic::getDeclaration(
1170 M, Intrinsic::experimental_gc_relocate, types);
1171
1172 // Generate the gc.relocate call and save the result
1173 Value *baseIdx =
1174 ConstantInt::get(Type::getInt32Ty(M->getContext()),
1175 liveStart + find_index(liveVariables, basePtrs[i]));
1176 Value *liveIdx = ConstantInt::get(
1177 Type::getInt32Ty(M->getContext()),
1178 liveStart + find_index(liveVariables, liveVariables[i]));
1179
1180 // only specify a debug name if we can give a useful one
1181 Value *reloc = Builder.CreateCall3(
1182 gc_relocate_decl, statepointToken, baseIdx, liveIdx,
1183 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
1184 : "");
1185 // Trick CodeGen into thinking there are lots of free registers at this
1186 // fake call.
1187 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
1188
Philip Reamesd2b66462015-02-20 22:39:41 +00001189 NewDefs.push_back(cast<Instruction>(reloc));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001190 }
Philip Reamesd2b66462015-02-20 22:39:41 +00001191 assert(NewDefs.size() == liveVariables.size() &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001192 "missing or extra redefinition at safepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001193}
1194
1195static void
1196makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1197 const SmallVectorImpl<llvm::Value *> &basePtrs,
1198 const SmallVectorImpl<llvm::Value *> &liveVariables,
1199 Pass *P,
1200 PartiallyConstructedSafepointRecord &result) {
1201 assert(basePtrs.size() == liveVariables.size());
1202 assert(isStatepoint(CS) &&
1203 "This method expects to be rewriting a statepoint");
1204
1205 BasicBlock *BB = CS.getInstruction()->getParent();
1206 assert(BB);
1207 Function *F = BB->getParent();
1208 assert(F && "must be set");
1209 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001210 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001211 assert(M && "must be set");
1212
1213 // We're not changing the function signature of the statepoint since the gc
1214 // arguments go into the var args section.
1215 Function *gc_statepoint_decl = CS.getCalledFunction();
1216
1217 // Then go ahead and use the builder do actually do the inserts. We insert
1218 // immediately before the previous instruction under the assumption that all
1219 // arguments will be available here. We can't insert afterwards since we may
1220 // be replacing a terminator.
1221 Instruction *insertBefore = CS.getInstruction();
1222 IRBuilder<> Builder(insertBefore);
1223 // Copy all of the arguments from the original statepoint - this includes the
1224 // target, call args, and deopt args
Philip Reamesd2b66462015-02-20 22:39:41 +00001225 SmallVector<llvm::Value *, 64> args;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001226 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1227 // TODO: Clear the 'needs rewrite' flag
1228
1229 // add all the pointers to be relocated (gc arguments)
1230 // Capture the start of the live variable list for use in the gc_relocates
1231 const int live_start = args.size();
1232 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1233
1234 // Create the statepoint given all the arguments
1235 Instruction *token = nullptr;
1236 AttributeSet return_attributes;
1237 if (CS.isCall()) {
1238 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1239 CallInst *call =
1240 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1241 call->setTailCall(toReplace->isTailCall());
1242 call->setCallingConv(toReplace->getCallingConv());
1243
1244 // Currently we will fail on parameter attributes and on certain
1245 // function attributes.
1246 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1247 // In case if we can handle this set of sttributes - set up function attrs
1248 // directly on statepoint and return attrs later for gc_result intrinsic.
1249 call->setAttributes(new_attrs.getFnAttributes());
1250 return_attributes = new_attrs.getRetAttributes();
1251
1252 token = call;
1253
1254 // Put the following gc_result and gc_relocate calls immediately after the
1255 // the old call (which we're about to delete)
1256 BasicBlock::iterator next(toReplace);
1257 assert(BB->end() != next && "not a terminator, must have next");
1258 next++;
1259 Instruction *IP = &*(next);
1260 Builder.SetInsertPoint(IP);
1261 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1262
David Blaikie82ad7872015-02-20 23:44:24 +00001263 } else {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001264 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1265
1266 // Insert the new invoke into the old block. We'll remove the old one in a
1267 // moment at which point this will become the new terminator for the
1268 // original block.
1269 InvokeInst *invoke = InvokeInst::Create(
1270 gc_statepoint_decl, toReplace->getNormalDest(),
1271 toReplace->getUnwindDest(), args, "", toReplace->getParent());
1272 invoke->setCallingConv(toReplace->getCallingConv());
1273
1274 // Currently we will fail on parameter attributes and on certain
1275 // function attributes.
1276 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1277 // In case if we can handle this set of sttributes - set up function attrs
1278 // directly on statepoint and return attrs later for gc_result intrinsic.
1279 invoke->setAttributes(new_attrs.getFnAttributes());
1280 return_attributes = new_attrs.getRetAttributes();
1281
1282 token = invoke;
1283
1284 // Generate gc relocates in exceptional path
1285 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint(
1286 toReplace->getUnwindDest(), invoke->getParent(), P);
1287
1288 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1289 Builder.SetInsertPoint(IP);
1290 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1291
1292 // Extract second element from landingpad return value. We will attach
1293 // exceptional gc relocates to it.
1294 const unsigned idx = 1;
1295 Instruction *exceptional_token =
1296 cast<Instruction>(Builder.CreateExtractValue(
1297 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001298 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001299
1300 // Just throw away return value. We will use the one we got for normal
1301 // block.
1302 (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1303 exceptional_token, Builder);
1304
1305 // Generate gc relocates and returns for normal block
1306 BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
1307 toReplace->getNormalDest(), invoke->getParent(), P);
1308
1309 IP = &*(normalDest->getFirstInsertionPt());
1310 Builder.SetInsertPoint(IP);
1311
1312 // gc relocates will be generated later as if it were regular call
1313 // statepoint
Philip Reamesd16a9b12015-02-20 01:06:44 +00001314 }
1315 assert(token);
1316
1317 // Take the name of the original value call if it had one.
1318 token->takeName(CS.getInstruction());
1319
1320 // The GCResult is already inserted, we just need to find it
David Blaikie5e5d7842015-02-22 20:58:38 +00001321#ifndef NDEBUG
1322 Instruction *toReplace = CS.getInstruction();
1323 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1324 "only valid use before rewrite is gc.result");
1325 assert(!toReplace->hasOneUse() ||
1326 isGCResult(cast<Instruction>(*toReplace->user_begin())));
1327#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001328
1329 // Update the gc.result of the original statepoint (if any) to use the newly
1330 // inserted statepoint. This is safe to do here since the token can't be
1331 // considered a live reference.
1332 CS.getInstruction()->replaceAllUsesWith(token);
1333
Philip Reames0a3240f2015-02-20 21:34:11 +00001334 result.StatepointToken = token;
1335
Philip Reamesd16a9b12015-02-20 01:06:44 +00001336 // Second, create a gc.relocate for every live variable
Philip Reames0a3240f2015-02-20 21:34:11 +00001337 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001338
Philip Reamesd16a9b12015-02-20 01:06:44 +00001339}
1340
1341namespace {
1342struct name_ordering {
1343 Value *base;
1344 Value *derived;
1345 bool operator()(name_ordering const &a, name_ordering const &b) {
1346 return -1 == a.derived->getName().compare(b.derived->getName());
1347 }
1348};
1349}
1350static void stablize_order(SmallVectorImpl<Value *> &basevec,
1351 SmallVectorImpl<Value *> &livevec) {
1352 assert(basevec.size() == livevec.size());
1353
Philip Reames860660e2015-02-20 22:05:18 +00001354 SmallVector<name_ordering, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001355 for (size_t i = 0; i < basevec.size(); i++) {
1356 name_ordering v;
1357 v.base = basevec[i];
1358 v.derived = livevec[i];
1359 temp.push_back(v);
1360 }
1361 std::sort(temp.begin(), temp.end(), name_ordering());
1362 for (size_t i = 0; i < basevec.size(); i++) {
1363 basevec[i] = temp[i].base;
1364 livevec[i] = temp[i].derived;
1365 }
1366}
1367
1368// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1369// which make the relocations happening at this safepoint explicit.
1370//
1371// WARNING: Does not do any fixup to adjust users of the original live
1372// values. That's the callers responsibility.
1373static void
1374makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1375 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001376 auto liveset = result.liveset;
1377 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001378
1379 // Convert to vector for efficient cross referencing.
1380 SmallVector<Value *, 64> basevec, livevec;
1381 livevec.reserve(liveset.size());
1382 basevec.reserve(liveset.size());
1383 for (Value *L : liveset) {
1384 livevec.push_back(L);
1385
Philip Reamesf2041322015-02-20 19:26:04 +00001386 assert(PointerToBase.find(L) != PointerToBase.end());
1387 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001388 basevec.push_back(base);
1389 }
1390 assert(livevec.size() == basevec.size());
1391
1392 // To make the output IR slightly more stable (for use in diffs), ensure a
1393 // fixed order of the values in the safepoint (by sorting the value name).
1394 // The order is otherwise meaningless.
1395 stablize_order(basevec, livevec);
1396
1397 // Do the actual rewriting and delete the old statepoint
1398 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1399 CS.getInstruction()->eraseFromParent();
1400}
1401
1402// Helper function for the relocationViaAlloca.
1403// It receives iterator to the statepoint gc relocates and emits store to the
1404// assigned
1405// location (via allocaMap) for the each one of them.
1406// Add visited values into the visitedLiveValues set we will later use them
1407// for sanity check.
1408static void
1409insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
1410 DenseMap<Value *, Value *> &allocaMap,
1411 DenseSet<Value *> &visitedLiveValues) {
1412
1413 for (User *U : gcRelocs) {
1414 if (!isa<IntrinsicInst>(U))
1415 continue;
1416
1417 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
1418
1419 // We only care about relocates
1420 if (relocatedValue->getIntrinsicID() !=
1421 Intrinsic::experimental_gc_relocate) {
1422 continue;
1423 }
1424
1425 GCRelocateOperands relocateOperands(relocatedValue);
1426 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
1427 assert(allocaMap.count(originalValue));
1428 Value *alloca = allocaMap[originalValue];
1429
1430 // Emit store into the related alloca
1431 StoreInst *store = new StoreInst(relocatedValue, alloca);
1432 store->insertAfter(relocatedValue);
1433
1434#ifndef NDEBUG
1435 visitedLiveValues.insert(originalValue);
1436#endif
1437 }
1438}
1439
1440/// do all the relocation update via allocas and mem2reg
1441static void relocationViaAlloca(
Philip Reamesd2b66462015-02-20 22:39:41 +00001442 Function &F, DominatorTree &DT, ArrayRef<Value *> live,
1443 ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001444#ifndef NDEBUG
1445 int initialAllocaNum = 0;
1446
1447 // record initial number of allocas
1448 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1449 itr++) {
1450 if (isa<AllocaInst>(*itr))
1451 initialAllocaNum++;
1452 }
1453#endif
1454
1455 // TODO-PERF: change data structures, reserve
1456 DenseMap<Value *, Value *> allocaMap;
1457 SmallVector<AllocaInst *, 200> PromotableAllocas;
1458 PromotableAllocas.reserve(live.size());
1459
1460 // emit alloca for each live gc pointer
1461 for (unsigned i = 0; i < live.size(); i++) {
1462 Value *liveValue = live[i];
1463 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
1464 F.getEntryBlock().getFirstNonPHI());
1465 allocaMap[liveValue] = alloca;
1466 PromotableAllocas.push_back(alloca);
1467 }
1468
1469 // The next two loops are part of the same conceptual operation. We need to
1470 // insert a store to the alloca after the original def and at each
1471 // redefinition. We need to insert a load before each use. These are split
1472 // into distinct loops for performance reasons.
1473
1474 // update gc pointer after each statepoint
1475 // either store a relocated value or null (if no relocated value found for
1476 // this gc pointer and it is not a gc_result)
1477 // this must happen before we update the statepoint with load of alloca
1478 // otherwise we lose the link between statepoint and old def
1479 for (size_t i = 0; i < records.size(); i++) {
1480 const struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reames0a3240f2015-02-20 21:34:11 +00001481 Value *Statepoint = info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001482
1483 // This will be used for consistency check
1484 DenseSet<Value *> visitedLiveValues;
1485
1486 // Insert stores for normal statepoint gc relocates
Philip Reames0a3240f2015-02-20 21:34:11 +00001487 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001488
1489 // In case if it was invoke statepoint
1490 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001491 if (isa<InvokeInst>(Statepoint)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001492 insertRelocationStores(info.UnwindToken->users(),
Philip Reamesd16a9b12015-02-20 01:06:44 +00001493 allocaMap, visitedLiveValues);
1494 }
1495
1496#ifndef NDEBUG
Philip Reamesf2041322015-02-20 19:26:04 +00001497 // As a debuging aid, pretend that an unrelocated pointer becomes null at
1498 // the gc.statepoint. This will turn some subtle GC problems into slightly
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001499 // easier to debug SEGVs
1500 SmallVector<AllocaInst *, 64> ToClobber;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001501 for (auto Pair : allocaMap) {
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001502 Value *Def = Pair.first;
1503 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001504
1505 // This value was relocated
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001506 if (visitedLiveValues.count(Def)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001507 continue;
1508 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001509 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001510 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001511
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001512 auto InsertClobbersAt = [&](Instruction *IP) {
1513 for (auto *AI : ToClobber) {
1514 auto AIType = cast<PointerType>(AI->getType());
1515 auto PT = cast<PointerType>(AIType->getElementType());
1516 Constant *CPN = ConstantPointerNull::get(PT);
1517 StoreInst *store = new StoreInst(CPN, AI);
1518 store->insertBefore(IP);
1519 }
1520 };
1521
1522 // Insert the clobbering stores. These may get intermixed with the
1523 // gc.results and gc.relocates, but that's fine.
1524 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1525 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1526 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
David Blaikie82ad7872015-02-20 23:44:24 +00001527 } else {
1528 BasicBlock::iterator Next(cast<CallInst>(Statepoint));
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001529 Next++;
1530 InsertClobbersAt(Next);
David Blaikie82ad7872015-02-20 23:44:24 +00001531 }
Philip Reamesd16a9b12015-02-20 01:06:44 +00001532#endif
1533 }
1534 // update use with load allocas and add store for gc_relocated
1535 for (auto Pair : allocaMap) {
1536 Value *def = Pair.first;
1537 Value *alloca = Pair.second;
1538
1539 // we pre-record the uses of allocas so that we dont have to worry about
1540 // later update
1541 // that change the user information.
1542 SmallVector<Instruction *, 20> uses;
1543 // PERF: trade a linear scan for repeated reallocation
1544 uses.reserve(std::distance(def->user_begin(), def->user_end()));
1545 for (User *U : def->users()) {
1546 if (!isa<ConstantExpr>(U)) {
1547 // If the def has a ConstantExpr use, then the def is either a
1548 // ConstantExpr use itself or null. In either case
1549 // (recursively in the first, directly in the second), the oop
1550 // it is ultimately dependent on is null and this particular
1551 // use does not need to be fixed up.
1552 uses.push_back(cast<Instruction>(U));
1553 }
1554 }
1555
1556 std::sort(uses.begin(), uses.end());
1557 auto last = std::unique(uses.begin(), uses.end());
1558 uses.erase(last, uses.end());
1559
1560 for (Instruction *use : uses) {
1561 if (isa<PHINode>(use)) {
1562 PHINode *phi = cast<PHINode>(use);
1563 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
1564 if (def == phi->getIncomingValue(i)) {
1565 LoadInst *load = new LoadInst(
1566 alloca, "", phi->getIncomingBlock(i)->getTerminator());
1567 phi->setIncomingValue(i, load);
1568 }
1569 }
1570 } else {
1571 LoadInst *load = new LoadInst(alloca, "", use);
1572 use->replaceUsesOfWith(def, load);
1573 }
1574 }
1575
1576 // emit store for the initial gc value
1577 // store must be inserted after load, otherwise store will be in alloca's
1578 // use list and an extra load will be inserted before it
1579 StoreInst *store = new StoreInst(def, alloca);
1580 if (isa<Instruction>(def)) {
1581 store->insertAfter(cast<Instruction>(def));
1582 } else {
1583 assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
1584 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) &&
1585 "Must be argument or global");
1586 store->insertAfter(cast<Instruction>(alloca));
1587 }
1588 }
1589
1590 assert(PromotableAllocas.size() == live.size() &&
1591 "we must have the same allocas with lives");
1592 if (!PromotableAllocas.empty()) {
1593 // apply mem2reg to promote alloca to SSA
1594 PromoteMemToReg(PromotableAllocas, DT);
1595 }
1596
1597#ifndef NDEBUG
1598 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1599 itr++) {
1600 if (isa<AllocaInst>(*itr))
1601 initialAllocaNum--;
1602 }
1603 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas");
1604#endif
1605}
1606
1607/// Implement a unique function which doesn't require we sort the input
1608/// vector. Doing so has the effect of changing the output of a couple of
1609/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001610template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1611 DenseSet<T> Seen;
1612 SmallVector<T, 128> TempVec;
1613 TempVec.reserve(Vec.size());
1614 for (auto Element : Vec)
1615 TempVec.push_back(Element);
1616 Vec.clear();
1617 for (auto V : TempVec) {
1618 if (Seen.insert(V).second) {
1619 Vec.push_back(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001620 }
1621 }
1622}
1623
1624static Function *getUseHolder(Module &M) {
1625 FunctionType *ftype =
1626 FunctionType::get(Type::getVoidTy(M.getContext()), true);
1627 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype));
1628 return Func;
1629}
1630
1631/// Insert holders so that each Value is obviously live through the entire
1632/// liftetime of the call.
1633static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesd2b66462015-02-20 22:39:41 +00001634 SmallVectorImpl<CallInst *> &holders) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001635 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1636 Function *Func = getUseHolder(*M);
1637 if (CS.isCall()) {
1638 // For call safepoints insert dummy calls right after safepoint
1639 BasicBlock::iterator next(CS.getInstruction());
1640 next++;
1641 CallInst *base_holder = CallInst::Create(Func, Values, "", next);
1642 holders.push_back(base_holder);
1643 } else if (CS.isInvoke()) {
1644 // For invoke safepooints insert dummy calls both in normal and
1645 // exceptional destination blocks
1646 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
1647 CallInst *normal_holder = CallInst::Create(
1648 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt());
1649 CallInst *unwind_holder = CallInst::Create(
1650 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt());
1651 holders.push_back(normal_holder);
1652 holders.push_back(unwind_holder);
Philip Reames860660e2015-02-20 22:05:18 +00001653 } else
1654 llvm_unreachable("unsupported call type");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001655}
1656
1657static void findLiveReferences(
Philip Reamesd2b66462015-02-20 22:39:41 +00001658 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1659 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001660 for (size_t i = 0; i < records.size(); i++) {
1661 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001662 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001663 analyzeParsePointLiveness(DT, CS, info);
1664 }
1665}
1666
Philip Reames1f017542015-02-20 23:16:52 +00001667static void addBasesAsLiveValues(StatepointLiveSetTy &liveset,
Philip Reamesf2041322015-02-20 19:26:04 +00001668 DenseMap<Value *, Value *> &PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001669 // Identify any base pointers which are used in this safepoint, but not
1670 // themselves relocated. We need to relocate them so that later inserted
1671 // safepoints can get the properly relocated base register.
1672 DenseSet<Value *> missing;
1673 for (Value *L : liveset) {
Philip Reamesf2041322015-02-20 19:26:04 +00001674 assert(PointerToBase.find(L) != PointerToBase.end());
1675 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001676 assert(base);
1677 if (liveset.find(base) == liveset.end()) {
Philip Reamesf2041322015-02-20 19:26:04 +00001678 assert(PointerToBase.find(base) == PointerToBase.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001679 // uniqued by set insert
1680 missing.insert(base);
1681 }
1682 }
1683
1684 // Note that we want these at the end of the list, otherwise
1685 // register placement gets screwed up once we lower to STATEPOINT
1686 // instructions. This is an utter hack, but there doesn't seem to be a
1687 // better one.
1688 for (Value *base : missing) {
1689 assert(base);
1690 liveset.insert(base);
Philip Reamesf2041322015-02-20 19:26:04 +00001691 PointerToBase[base] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001692 }
Philip Reamesf2041322015-02-20 19:26:04 +00001693 assert(liveset.size() == PointerToBase.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001694}
1695
1696static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
Philip Reamesd2b66462015-02-20 22:39:41 +00001697 SmallVectorImpl<CallSite> &toUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001698#ifndef NDEBUG
1699 // sanity check the input
1700 std::set<CallSite> uniqued;
1701 uniqued.insert(toUpdate.begin(), toUpdate.end());
1702 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
1703
1704 for (size_t i = 0; i < toUpdate.size(); i++) {
1705 CallSite &CS = toUpdate[i];
1706 assert(CS.getInstruction()->getParent()->getParent() == &F);
1707 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
1708 }
1709#endif
1710
1711 // A list of dummy calls added to the IR to keep various values obviously
1712 // live in the IR. We'll remove all of these when done.
Philip Reamesd2b66462015-02-20 22:39:41 +00001713 SmallVector<CallInst *, 64> holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001714
1715 // Insert a dummy call with all of the arguments to the vm_state we'll need
1716 // for the actual safepoint insertion. This ensures reference arguments in
1717 // the deopt argument list are considered live through the safepoint (and
1718 // thus makes sure they get relocated.)
1719 for (size_t i = 0; i < toUpdate.size(); i++) {
1720 CallSite &CS = toUpdate[i];
1721 Statepoint StatepointCS(CS);
1722
1723 SmallVector<Value *, 64> DeoptValues;
1724 for (Use &U : StatepointCS.vm_state_args()) {
1725 Value *Arg = cast<Value>(&U);
1726 if (isGCPointerType(Arg->getType()))
1727 DeoptValues.push_back(Arg);
1728 }
1729 insertUseHolderAfter(CS, DeoptValues, holders);
1730 }
1731
Philip Reamesd2b66462015-02-20 22:39:41 +00001732 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001733 records.reserve(toUpdate.size());
1734 for (size_t i = 0; i < toUpdate.size(); i++) {
1735 struct PartiallyConstructedSafepointRecord info;
1736 records.push_back(info);
1737 }
1738 assert(records.size() == toUpdate.size());
1739
1740 // A) Identify all gc pointers which are staticly live at the given call
1741 // site.
1742 findLiveReferences(F, DT, P, toUpdate, records);
1743
1744 // B) Find the base pointers for each live pointer
1745 /* scope for caching */ {
1746 // Cache the 'defining value' relation used in the computation and
1747 // insertion of base phis and selects. This ensures that we don't insert
1748 // large numbers of duplicate base_phis.
1749 DefiningValueMapTy DVCache;
1750
1751 for (size_t i = 0; i < records.size(); i++) {
1752 struct PartiallyConstructedSafepointRecord &info = records[i];
1753 CallSite &CS = toUpdate[i];
1754 findBasePointers(DT, DVCache, CS, info);
1755 }
1756 } // end of cache scope
1757
1758 // The base phi insertion logic (for any safepoint) may have inserted new
1759 // instructions which are now live at some safepoint. The simplest such
1760 // example is:
1761 // loop:
1762 // phi a <-- will be a new base_phi here
1763 // safepoint 1 <-- that needs to be live here
1764 // gep a + 1
1765 // safepoint 2
1766 // br loop
Philip Reames1f017542015-02-20 23:16:52 +00001767 DenseSet<llvm::Value *> allInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001768 for (size_t i = 0; i < records.size(); i++) {
1769 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001770 allInsertedDefs.insert(info.NewInsertedDefs.begin(),
1771 info.NewInsertedDefs.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001772 }
1773
1774 // We insert some dummy calls after each safepoint to definitely hold live
1775 // the base pointers which were identified for that safepoint. We'll then
1776 // ask liveness for _every_ base inserted to see what is now live. Then we
1777 // remove the dummy calls.
1778 holders.reserve(holders.size() + records.size());
1779 for (size_t i = 0; i < records.size(); i++) {
1780 struct PartiallyConstructedSafepointRecord &info = records[i];
1781 CallSite &CS = toUpdate[i];
1782
1783 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00001784 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001785 Bases.push_back(Pair.second);
1786 }
1787 insertUseHolderAfter(CS, Bases, holders);
1788 }
1789
1790 // Add the bases explicitly to the live vector set. This may result in a few
1791 // extra relocations, but the base has to be available whenever a pointer
1792 // derived from it is used. Thus, we need it to be part of the statepoint's
1793 // gc arguments list. TODO: Introduce an explicit notion (in the following
1794 // code) of the GC argument list as seperate from the live Values at a
1795 // given statepoint.
1796 for (size_t i = 0; i < records.size(); i++) {
1797 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001798 addBasesAsLiveValues(info.liveset, info.PointerToBase);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001799 }
1800
1801 // If we inserted any new values, we need to adjust our notion of what is
1802 // live at a particular safepoint.
1803 if (!allInsertedDefs.empty()) {
1804 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records);
1805 }
1806 if (PrintBasePointers) {
1807 for (size_t i = 0; i < records.size(); i++) {
1808 struct PartiallyConstructedSafepointRecord &info = records[i];
1809 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001810 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001811 errs() << " derived %" << Pair.first->getName() << " base %"
1812 << Pair.second->getName() << "\n";
1813 }
1814 }
1815 }
1816 for (size_t i = 0; i < holders.size(); i++) {
1817 holders[i]->eraseFromParent();
1818 holders[i] = nullptr;
1819 }
1820 holders.clear();
1821
1822 // Now run through and replace the existing statepoints with new ones with
1823 // the live variables listed. We do not yet update uses of the values being
1824 // relocated. We have references to live variables that need to
1825 // survive to the last iteration of this loop. (By construction, the
1826 // previous statepoint can not be a live variable, thus we can and remove
1827 // the old statepoint calls as we go.)
1828 for (size_t i = 0; i < records.size(); i++) {
1829 struct PartiallyConstructedSafepointRecord &info = records[i];
1830 CallSite &CS = toUpdate[i];
1831 makeStatepointExplicit(DT, CS, P, info);
1832 }
1833 toUpdate.clear(); // prevent accident use of invalid CallSites
1834
1835 // In case if we inserted relocates in a different basic block than the
1836 // original safepoint (this can happen for invokes). We need to be sure that
1837 // original values were not used in any of the phi nodes at the
1838 // beginning of basic block containing them. Because we know that all such
1839 // blocks will have single predecessor we can safely assume that all phi
1840 // nodes have single entry (because of normalizeBBForInvokeSafepoint).
1841 // Just remove them all here.
1842 for (size_t i = 0; i < records.size(); i++) {
Philip Reames0a3240f2015-02-20 21:34:11 +00001843 Instruction *I = records[i].StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001844
1845 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
1846 FoldSingleEntryPHINodes(invoke->getNormalDest());
1847 assert(!isa<PHINode>(invoke->getNormalDest()->begin()));
1848
1849 FoldSingleEntryPHINodes(invoke->getUnwindDest());
1850 assert(!isa<PHINode>(invoke->getUnwindDest()->begin()));
1851 }
1852 }
1853
1854 // Do all the fixups of the original live variables to their relocated selves
Philip Reamesd2b66462015-02-20 22:39:41 +00001855 SmallVector<Value *, 128> live;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001856 for (size_t i = 0; i < records.size(); i++) {
1857 struct PartiallyConstructedSafepointRecord &info = records[i];
1858 // We can't simply save the live set from the original insertion. One of
1859 // the live values might be the result of a call which needs a safepoint.
1860 // That Value* no longer exists and we need to use the new gc_result.
1861 // Thankfully, the liveset is embedded in the statepoint (and updated), so
1862 // we just grab that.
Philip Reames0a3240f2015-02-20 21:34:11 +00001863 Statepoint statepoint(info.StatepointToken);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001864 live.insert(live.end(), statepoint.gc_args_begin(),
1865 statepoint.gc_args_end());
1866 }
1867 unique_unsorted(live);
1868
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001869#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00001870 // sanity check
1871 for (auto ptr : live) {
1872 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
1873 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001874#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001875
1876 relocationViaAlloca(F, DT, live, records);
1877 return !records.empty();
1878}
1879
1880/// Returns true if this function should be rewritten by this pass. The main
1881/// point of this function is as an extension point for custom logic.
1882static bool shouldRewriteStatepointsIn(Function &F) {
1883 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00001884 if (F.hasGC()) {
1885 const std::string StatepointExampleName("statepoint-example");
1886 return StatepointExampleName == F.getGC();
1887 } else
1888 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001889}
1890
1891bool RewriteStatepointsForGC::runOnFunction(Function &F) {
1892 // Nothing to do for declarations.
1893 if (F.isDeclaration() || F.empty())
1894 return false;
1895
1896 // Policy choice says not to rewrite - the most common reason is that we're
1897 // compiling code without a GCStrategy.
1898 if (!shouldRewriteStatepointsIn(F))
1899 return false;
1900
1901 // Gather all the statepoints which need rewritten.
Philip Reamesd2b66462015-02-20 22:39:41 +00001902 SmallVector<CallSite, 64> ParsePointNeeded;
1903 for (Instruction &I : inst_range(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001904 // TODO: only the ones with the flag set!
Philip Reamesd2b66462015-02-20 22:39:41 +00001905 if (isStatepoint(I))
1906 ParsePointNeeded.push_back(CallSite(&I));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001907 }
1908
1909 // Return early if no work to do.
1910 if (ParsePointNeeded.empty())
1911 return false;
1912
1913 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1914 return insertParsePoints(F, DT, this, ParsePointNeeded);
1915}