| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// |
| 11 | /// Provide a pass which mitigates speculative execution attacks which operate |
| 12 | /// by speculating incorrectly past some predicate (a type check, bounds check, |
| 13 | /// or other condition) to reach a load with invalid inputs and leak the data |
| 14 | /// accessed by that load using a side channel out of the speculative domain. |
| 15 | /// |
| 16 | /// For details on the attacks, see the first variant in both the Project Zero |
| 17 | /// writeup and the Spectre paper: |
| 18 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html |
| 19 | /// https://spectreattack.com/spectre.pdf |
| 20 | /// |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #include "X86.h" |
| 24 | #include "X86InstrBuilder.h" |
| 25 | #include "X86InstrInfo.h" |
| 26 | #include "X86Subtarget.h" |
| 27 | #include "llvm/ADT/ArrayRef.h" |
| 28 | #include "llvm/ADT/DenseMap.h" |
| 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/ADT/ScopeExit.h" |
| 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallSet.h" |
| 33 | #include "llvm/ADT/SmallVector.h" |
| 34 | #include "llvm/ADT/SparseBitVector.h" |
| 35 | #include "llvm/ADT/Statistic.h" |
| 36 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 37 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 38 | #include "llvm/CodeGen/MachineFunction.h" |
| 39 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 40 | #include "llvm/CodeGen/MachineInstr.h" |
| 41 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 42 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 43 | #include "llvm/CodeGen/MachineOperand.h" |
| 44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 45 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
| 46 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 47 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 48 | #include "llvm/CodeGen/TargetSchedule.h" |
| 49 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 50 | #include "llvm/IR/DebugLoc.h" |
| 51 | #include "llvm/MC/MCSchedule.h" |
| 52 | #include "llvm/Pass.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Debug.h" |
| 55 | #include "llvm/Support/raw_ostream.h" |
| 56 | #include <algorithm> |
| 57 | #include <cassert> |
| 58 | #include <iterator> |
| 59 | #include <utility> |
| 60 | |
| 61 | using namespace llvm; |
| 62 | |
| 63 | #define PASS_KEY "x86-speculative-load-hardening" |
| 64 | #define DEBUG_TYPE PASS_KEY |
| 65 | |
| 66 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); |
| 67 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); |
| 68 | STATISTIC(NumAddrRegsHardened, |
| 69 | "Number of address mode used registers hardaned"); |
| 70 | STATISTIC(NumPostLoadRegsHardened, |
| 71 | "Number of post-load register values hardened"); |
| 72 | STATISTIC(NumInstsInserted, "Number of instructions inserted"); |
| 73 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); |
| 74 | |
| 75 | static cl::opt<bool> HardenEdgesWithLFENCE( |
| 76 | PASS_KEY "-lfence", |
| 77 | cl::desc( |
| 78 | "Use LFENCE along each conditional edge to harden against speculative " |
| 79 | "loads rather than conditional movs and poisoned pointers."), |
| 80 | cl::init(false), cl::Hidden); |
| 81 | |
| 82 | static cl::opt<bool> EnablePostLoadHardening( |
| 83 | PASS_KEY "-post-load", |
| 84 | cl::desc("Harden the value loaded *after* it is loaded by " |
| 85 | "flushing the loaded bits to 1. This is hard to do " |
| 86 | "in general but can be done easily for GPRs."), |
| 87 | cl::init(true), cl::Hidden); |
| 88 | |
| 89 | static cl::opt<bool> FenceCallAndRet( |
| 90 | PASS_KEY "-fence-call-and-ret", |
| 91 | cl::desc("Use a full speculation fence to harden both call and ret edges " |
| 92 | "rather than a lighter weight mitigation."), |
| 93 | cl::init(false), cl::Hidden); |
| 94 | |
| 95 | static cl::opt<bool> HardenInterprocedurally( |
| 96 | PASS_KEY "-ip", |
| 97 | cl::desc("Harden interprocedurally by passing our state in and out of " |
| 98 | "functions in the high bits of the stack pointer."), |
| 99 | cl::init(true), cl::Hidden); |
| 100 | |
| 101 | static cl::opt<bool> |
| 102 | HardenLoads(PASS_KEY "-loads", |
| 103 | cl::desc("Sanitize loads from memory. When disable, no " |
| 104 | "significant security is provided."), |
| 105 | cl::init(true), cl::Hidden); |
| 106 | |
| 107 | namespace llvm { |
| 108 | |
| 109 | void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &); |
| 110 | |
| 111 | } // end namespace llvm |
| 112 | |
| 113 | namespace { |
| 114 | |
| 115 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { |
| 116 | public: |
| 117 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { |
| 118 | initializeX86SpeculativeLoadHardeningPassPass( |
| 119 | *PassRegistry::getPassRegistry()); |
| 120 | } |
| 121 | |
| 122 | StringRef getPassName() const override { |
| 123 | return "X86 speculative load hardening"; |
| 124 | } |
| 125 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 126 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 127 | |
| 128 | /// Pass identification, replacement for typeid. |
| 129 | static char ID; |
| 130 | |
| 131 | private: |
| 132 | /// The information about a block's conditional terminators needed to trace |
| 133 | /// our predicate state through the exiting edges. |
| 134 | struct BlockCondInfo { |
| 135 | MachineBasicBlock *MBB; |
| 136 | |
| 137 | // We mostly have one conditional branch, and in extremely rare cases have |
| 138 | // two. Three and more are so rare as to be unimportant for compile time. |
| 139 | SmallVector<MachineInstr *, 2> CondBrs; |
| 140 | |
| 141 | MachineInstr *UncondBr; |
| 142 | }; |
| 143 | |
| 144 | const X86Subtarget *Subtarget; |
| 145 | MachineRegisterInfo *MRI; |
| 146 | const X86InstrInfo *TII; |
| 147 | const TargetRegisterInfo *TRI; |
| 148 | const TargetRegisterClass *PredStateRC; |
| 149 | |
| 150 | void hardenEdgesWithLFENCE(MachineFunction &MF); |
| 151 | |
| 152 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); |
| 153 | |
| 154 | void checkAllLoads(MachineFunction &MF, MachineSSAUpdater &PredStateSSA); |
| 155 | |
| 156 | unsigned saveEFLAGS(MachineBasicBlock &MBB, |
| 157 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); |
| 158 | void restoreEFLAGS(MachineBasicBlock &MBB, |
| 159 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 160 | unsigned OFReg); |
| 161 | |
| 162 | void mergePredStateIntoSP(MachineBasicBlock &MBB, |
| 163 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 164 | unsigned PredStateReg); |
| 165 | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, |
| 166 | MachineBasicBlock::iterator InsertPt, |
| 167 | DebugLoc Loc); |
| 168 | |
| 169 | void |
| 170 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, |
| 171 | MachineOperand &IndexMO, MachineSSAUpdater &PredStateSSA, |
| 172 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); |
| 173 | MachineInstr * |
| 174 | sinkPostLoadHardenedInst(MachineInstr &MI, |
| 175 | SmallPtrSetImpl<MachineInstr *> &HardenedLoads); |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 176 | bool canHardenPostLoad(MachineInstr &MI); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 177 | void hardenPostLoad(MachineInstr &MI, MachineSSAUpdater &PredStateSSA); |
| 178 | void checkReturnInstr(MachineInstr &MI, MachineSSAUpdater &PredStateSSA); |
| 179 | void checkCallInstr(MachineInstr &MI, MachineSSAUpdater &PredStateSSA); |
| 180 | }; |
| 181 | |
| 182 | } // end anonymous namespace |
| 183 | |
| 184 | char X86SpeculativeLoadHardeningPass::ID = 0; |
| 185 | |
| 186 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( |
| 187 | AnalysisUsage &AU) const { |
| 188 | MachineFunctionPass::getAnalysisUsage(AU); |
| 189 | } |
| 190 | |
| 191 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, |
| 192 | MachineBasicBlock &Succ, int SuccCount, |
| 193 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 194 | const X86InstrInfo &TII) { |
| 195 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); |
| 196 | |
| 197 | MachineFunction &MF = *MBB.getParent(); |
| 198 | |
| 199 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| 200 | |
| 201 | // We have to insert the new block immediately after the current one as we |
| 202 | // don't know what layout-successor relationships the successor has and we |
| 203 | // may not be able to (and generally don't want to) try to fix those up. |
| 204 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); |
| 205 | |
| 206 | // Update the branch instruction if necessary. |
| 207 | if (Br) { |
| 208 | assert(Br->getOperand(0).getMBB() == &Succ && |
| 209 | "Didn't start with the right target!"); |
| 210 | Br->getOperand(0).setMBB(&NewMBB); |
| 211 | |
| 212 | // If this successor was reached through a branch rather than fallthrough, |
| 213 | // we might have *broken* fallthrough and so need to inject a new |
| 214 | // unconditional branch. |
| 215 | if (!UncondBr) { |
| 216 | MachineBasicBlock &OldLayoutSucc = |
| 217 | *std::next(MachineFunction::iterator(&NewMBB)); |
| 218 | assert(MBB.isSuccessor(&OldLayoutSucc) && |
| 219 | "Without an unconditional branch, the old layout successor should " |
| 220 | "be an actual successor!"); |
| 221 | auto BrBuilder = |
| 222 | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); |
| 223 | // Update the unconditional branch now that we've added one. |
| 224 | UncondBr = &*BrBuilder; |
| 225 | } |
| 226 | |
| 227 | // Insert unconditional "jump Succ" instruction in the new block if |
| 228 | // necessary. |
| 229 | if (!NewMBB.isLayoutSuccessor(&Succ)) { |
| 230 | SmallVector<MachineOperand, 4> Cond; |
| 231 | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); |
| 232 | } |
| 233 | } else { |
| 234 | assert(!UncondBr && |
| 235 | "Cannot have a branchless successor and an unconditional branch!"); |
| 236 | assert(NewMBB.isLayoutSuccessor(&Succ) && |
| 237 | "A non-branch successor must have been a layout successor before " |
| 238 | "and now is a layout successor of the new block."); |
| 239 | } |
| 240 | |
| 241 | // If this is the only edge to the successor, we can just replace it in the |
| 242 | // CFG. Otherwise we need to add a new entry in the CFG for the new |
| 243 | // successor. |
| 244 | if (SuccCount == 1) { |
| 245 | MBB.replaceSuccessor(&Succ, &NewMBB); |
| 246 | } else { |
| 247 | MBB.splitSuccessor(&Succ, &NewMBB); |
| 248 | } |
| 249 | |
| 250 | // Hook up the edge from the new basic block to the old successor in the CFG. |
| 251 | NewMBB.addSuccessor(&Succ); |
| 252 | |
| 253 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. |
| 254 | for (MachineInstr &MI : Succ) { |
| 255 | if (!MI.isPHI()) |
| 256 | break; |
| 257 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 258 | OpIdx += 2) { |
| 259 | MachineOperand &OpV = MI.getOperand(OpIdx); |
| 260 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); |
| 261 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); |
| 262 | if (OpMBB.getMBB() != &MBB) |
| 263 | continue; |
| 264 | |
| 265 | // If this is the last edge to the succesor, just replace MBB in the PHI |
| 266 | if (SuccCount == 1) { |
| 267 | OpMBB.setMBB(&NewMBB); |
| 268 | break; |
| 269 | } |
| 270 | |
| 271 | // Otherwise, append a new pair of operands for the new incoming edge. |
| 272 | MI.addOperand(MF, OpV); |
| 273 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); |
| 274 | break; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | // Inherit live-ins from the successor |
| 279 | for (auto &LI : Succ.liveins()) |
| 280 | NewMBB.addLiveIn(LI); |
| 281 | |
| 282 | LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" |
| 283 | << Succ.getName() << "'.\n"); |
| 284 | return NewMBB; |
| 285 | } |
| 286 | |
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 287 | /// Removing duplicate PHI operands to leave the PHI in a canonical and |
| 288 | /// predictable form. |
| 289 | /// |
| 290 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR |
| 291 | /// isn't what you might expect. We may have multiple entries in PHI nodes for |
| 292 | /// a single predecessor. This makes CFG-updating extremely complex, so here we |
| 293 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly |
| 294 | /// one entry per predecessor, regardless of how many edges there are. |
| 295 | static void canonicalizePHIOperands(MachineFunction &MF) { |
| 296 | SmallPtrSet<MachineBasicBlock *, 4> Preds; |
| 297 | SmallVector<int, 4> DupIndices; |
| 298 | for (auto &MBB : MF) |
| 299 | for (auto &MI : MBB) { |
| 300 | if (!MI.isPHI()) |
| 301 | break; |
| 302 | |
| 303 | // First we scan the operands of the PHI looking for duplicate entries |
| 304 | // a particular predecessor. We retain the operand index of each duplicate |
| 305 | // entry found. |
| 306 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 307 | OpIdx += 2) |
| 308 | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) |
| 309 | DupIndices.push_back(OpIdx); |
| 310 | |
| 311 | // Now walk the duplicate indices, removing both the block and value. Note |
| 312 | // that these are stored as a vector making this element-wise removal |
| 313 | // :w |
| 314 | // potentially quadratic. |
| 315 | // |
| 316 | // FIXME: It is really frustrating that we have to use a quadratic |
| 317 | // removal algorithm here. There should be a better way, but the use-def |
| 318 | // updates required make that impossible using the public API. |
| 319 | // |
| 320 | // Note that we have to process these backwards so that we don't |
| 321 | // invalidate other indices with each removal. |
| 322 | while (!DupIndices.empty()) { |
| 323 | int OpIdx = DupIndices.pop_back_val(); |
| 324 | // Remove both the block and value operand, again in reverse order to |
| 325 | // preserve indices. |
| 326 | MI.RemoveOperand(OpIdx + 1); |
| 327 | MI.RemoveOperand(OpIdx); |
| 328 | } |
| 329 | |
| 330 | Preds.clear(); |
| 331 | } |
| 332 | } |
| 333 | |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 334 | /// Helper to scan a function for loads vulnerable to misspeculation that we |
| 335 | /// want to harden. |
| 336 | /// |
| 337 | /// We use this to avoid making changes to functions where there is nothing we |
| 338 | /// need to do to harden against misspeculation. |
| 339 | static bool hasVulnerableLoad(MachineFunction &MF) { |
| 340 | for (MachineBasicBlock &MBB : MF) { |
| 341 | for (MachineInstr &MI : MBB) { |
| 342 | // Loads within this basic block after an LFENCE are not at risk of |
| 343 | // speculatively executing with invalid predicates from prior control |
| 344 | // flow. So break out of this block but continue scanning the function. |
| 345 | if (MI.getOpcode() == X86::LFENCE) |
| 346 | break; |
| 347 | |
| 348 | // Looking for loads only. |
| 349 | if (!MI.mayLoad()) |
| 350 | continue; |
| 351 | |
| 352 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. |
| 353 | if (MI.getOpcode() == X86::MFENCE) |
| 354 | continue; |
| 355 | |
| 356 | // We found a load. |
| 357 | return true; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | // No loads found. |
| 362 | return false; |
| 363 | } |
| 364 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 365 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( |
| 366 | MachineFunction &MF) { |
| 367 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| 368 | << " **********\n"); |
| 369 | |
| 370 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| 371 | MRI = &MF.getRegInfo(); |
| 372 | TII = Subtarget->getInstrInfo(); |
| 373 | TRI = Subtarget->getRegisterInfo(); |
| 374 | // FIXME: Support for 32-bit. |
| 375 | PredStateRC = &X86::GR64_NOSPRegClass; |
| 376 | |
| 377 | if (MF.begin() == MF.end()) |
| 378 | // Nothing to do for a degenerate empty function... |
| 379 | return false; |
| 380 | |
| 381 | // We support an alternative hardening technique based on a debug flag. |
| 382 | if (HardenEdgesWithLFENCE) { |
| 383 | hardenEdgesWithLFENCE(MF); |
| 384 | return true; |
| 385 | } |
| 386 | |
| 387 | // Create a dummy debug loc to use for all the generated code here. |
| 388 | DebugLoc Loc; |
| 389 | |
| 390 | MachineBasicBlock &Entry = *MF.begin(); |
| 391 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); |
| 392 | |
| 393 | // Do a quick scan to see if we have any checkable loads. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 394 | bool HasVulnerableLoad = hasVulnerableLoad(MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 395 | |
| 396 | // See if we have any conditional branching blocks that we will need to trace |
| 397 | // predicate state through. |
| 398 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); |
| 399 | |
| 400 | // If we have no interesting conditions or loads, nothing to do here. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 401 | if (!HasVulnerableLoad && Infos.empty()) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 402 | return true; |
| 403 | |
| 404 | unsigned PredStateReg; |
| 405 | unsigned PredStateSizeInBytes = TRI->getRegSizeInBits(*PredStateRC) / 8; |
| 406 | |
| 407 | // The poison value is required to be an all-ones value for many aspects of |
| 408 | // this mitigation. |
| 409 | const int PoisonVal = -1; |
| 410 | unsigned PoisonReg = MRI->createVirtualRegister(PredStateRC); |
| 411 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PoisonReg) |
| 412 | .addImm(PoisonVal); |
| 413 | ++NumInstsInserted; |
| 414 | |
| 415 | // If we have loads being hardened and we've asked for call and ret edges to |
| 416 | // get a full fence-based mitigation, inject that fence. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 417 | if (HasVulnerableLoad && FenceCallAndRet) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 418 | // We need to insert an LFENCE at the start of the function to suspend any |
| 419 | // incoming misspeculation from the caller. This helps two-fold: the caller |
| 420 | // may not have been protected as this code has been, and this code gets to |
| 421 | // not take any specific action to protect across calls. |
| 422 | // FIXME: We could skip this for functions which unconditionally return |
| 423 | // a constant. |
| 424 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); |
| 425 | ++NumInstsInserted; |
| 426 | ++NumLFENCEsInserted; |
| 427 | } |
| 428 | |
| Chandler Carruth | fb503ac | 2018-07-14 09:32:37 +0000 | [diff] [blame] | 429 | // If we guarded the entry with an LFENCE and have no conditionals to protect |
| 430 | // in blocks, then we're done. |
| 431 | if (FenceCallAndRet && Infos.empty()) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 432 | // We may have changed the function's code at this point to insert fences. |
| 433 | return true; |
| 434 | |
| 435 | // For every basic block in the function which can b |
| 436 | if (HardenInterprocedurally && !FenceCallAndRet) { |
| 437 | // Set up the predicate state by extracting it from the incoming stack |
| 438 | // pointer so we pick up any misspeculation in our caller. |
| 439 | PredStateReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); |
| 440 | } else { |
| 441 | // Otherwise, just build the predicate state itself by zeroing a register |
| 442 | // as we don't need any initial state. |
| 443 | PredStateReg = MRI->createVirtualRegister(PredStateRC); |
| 444 | unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| 445 | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), |
| 446 | PredStateSubReg); |
| 447 | ++NumInstsInserted; |
| 448 | MachineOperand *ZeroEFLAGSDefOp = |
| 449 | ZeroI->findRegisterDefOperand(X86::EFLAGS); |
| 450 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && |
| 451 | "Must have an implicit def of EFLAGS!"); |
| 452 | ZeroEFLAGSDefOp->setIsDead(true); |
| 453 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), |
| 454 | PredStateReg) |
| 455 | .addImm(0) |
| 456 | .addReg(PredStateSubReg) |
| 457 | .addImm(X86::sub_32bit); |
| 458 | } |
| 459 | |
| 460 | // We're going to need to trace predicate state throughout the function's |
| 461 | // CFG. Prepare for this by setting up our initial state of PHIs with unique |
| 462 | // predecessor entries and all the initial predicate state. |
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 463 | canonicalizePHIOperands(MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 464 | |
| 465 | // Track the updated values in an SSA updater to rewrite into SSA form at the |
| 466 | // end. |
| 467 | MachineSSAUpdater PredStateSSA(MF); |
| 468 | PredStateSSA.Initialize(PredStateReg); |
| 469 | PredStateSSA.AddAvailableValue(&Entry, PredStateReg); |
| 470 | // Collect the inserted instructions so we can rewrite their uses of the |
| 471 | // predicate state into SSA form. |
| 472 | SmallVector<MachineInstr *, 16> CMovs; |
| 473 | |
| 474 | // Now walk all of the basic blocks looking for ones that end in conditional |
| 475 | // jumps where we need to update this register along each edge. |
| 476 | for (BlockCondInfo &Info : Infos) { |
| 477 | MachineBasicBlock &MBB = *Info.MBB; |
| 478 | SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; |
| 479 | MachineInstr *UncondBr = Info.UncondBr; |
| 480 | |
| 481 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() |
| 482 | << "\n"); |
| 483 | ++NumCondBranchesTraced; |
| 484 | |
| 485 | // Compute the non-conditional successor as either the target of any |
| 486 | // unconditional branch or the layout successor. |
| 487 | MachineBasicBlock *UncondSucc = |
| 488 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 |
| 489 | ? UncondBr->getOperand(0).getMBB() |
| 490 | : nullptr) |
| 491 | : &*std::next(MachineFunction::iterator(&MBB)); |
| 492 | |
| 493 | // Count how many edges there are to any given successor. |
| 494 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; |
| 495 | if (UncondSucc) |
| 496 | ++SuccCounts[UncondSucc]; |
| 497 | for (auto *CondBr : CondBrs) |
| 498 | ++SuccCounts[CondBr->getOperand(0).getMBB()]; |
| 499 | |
| 500 | // A lambda to insert cmov instructions into a block checking all of the |
| 501 | // condition codes in a sequence. |
| 502 | auto BuildCheckingBlockForSuccAndConds = |
| 503 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, |
| 504 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 505 | ArrayRef<X86::CondCode> Conds) { |
| 506 | // First, we split the edge to insert the checking block into a safe |
| 507 | // location. |
| 508 | auto &CheckingMBB = |
| 509 | (SuccCount == 1 && Succ.pred_size() == 1) |
| 510 | ? Succ |
| 511 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); |
| 512 | |
| 513 | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); |
| 514 | if (!LiveEFLAGS) |
| 515 | CheckingMBB.addLiveIn(X86::EFLAGS); |
| 516 | |
| 517 | // Now insert the cmovs to implement the checks. |
| 518 | auto InsertPt = CheckingMBB.begin(); |
| Erich Keane | ac8cb22 | 2018-07-13 14:43:20 +0000 | [diff] [blame] | 519 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && |
| 520 | "Should never have a PHI in the initial checking block as it " |
| 521 | "always has a single predecessor!"); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 522 | |
| 523 | // We will wire each cmov to each other, but need to start with the |
| 524 | // incoming pred state. |
| 525 | unsigned CurStateReg = PredStateReg; |
| 526 | |
| 527 | for (X86::CondCode Cond : Conds) { |
| 528 | auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes); |
| 529 | |
| 530 | unsigned UpdatedStateReg = MRI->createVirtualRegister(PredStateRC); |
| 531 | auto CMovI = BuildMI(CheckingMBB, InsertPt, Loc, TII->get(CMovOp), |
| 532 | UpdatedStateReg) |
| 533 | .addReg(CurStateReg) |
| 534 | .addReg(PoisonReg); |
| 535 | // If this is the last cmov and the EFLAGS weren't originally |
| 536 | // live-in, mark them as killed. |
| 537 | if (!LiveEFLAGS && Cond == Conds.back()) |
| 538 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| 539 | |
| 540 | ++NumInstsInserted; |
| 541 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); |
| 542 | dbgs() << "\n"); |
| 543 | |
| 544 | // The first one of the cmovs will be using the top level |
| 545 | // `PredStateReg` and need to get rewritten into SSA form. |
| 546 | if (CurStateReg == PredStateReg) |
| 547 | CMovs.push_back(&*CMovI); |
| 548 | |
| 549 | // The next cmov should start from this one's def. |
| 550 | CurStateReg = UpdatedStateReg; |
| 551 | } |
| 552 | |
| 553 | // And put the last one into the available values for PredStateSSA. |
| 554 | PredStateSSA.AddAvailableValue(&CheckingMBB, CurStateReg); |
| 555 | }; |
| 556 | |
| 557 | std::vector<X86::CondCode> UncondCodeSeq; |
| 558 | for (auto *CondBr : CondBrs) { |
| 559 | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); |
| 560 | int &SuccCount = SuccCounts[&Succ]; |
| 561 | |
| 562 | X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode()); |
| 563 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); |
| 564 | UncondCodeSeq.push_back(Cond); |
| 565 | |
| 566 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, |
| 567 | {InvCond}); |
| 568 | |
| 569 | // Decrement the successor count now that we've split one of the edges. |
| 570 | // We need to keep the count of edges to the successor accurate in order |
| 571 | // to know above when to *replace* the successor in the CFG vs. just |
| 572 | // adding the new successor. |
| 573 | --SuccCount; |
| 574 | } |
| 575 | |
| 576 | // Since we may have split edges and changed the number of successors, |
| 577 | // normalize the probabilities. This avoids doing it each time we split an |
| 578 | // edge. |
| 579 | MBB.normalizeSuccProbs(); |
| 580 | |
| 581 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we |
| 582 | // need to intersect the other condition codes. We can do this by just |
| 583 | // doing a cmov for each one. |
| 584 | if (!UncondSucc) |
| 585 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) |
| 586 | // just skip this and continue. |
| 587 | continue; |
| 588 | |
| 589 | assert(SuccCounts[UncondSucc] == 1 && |
| 590 | "We should never have more than one edge to the unconditional " |
| 591 | "successor at this point because every other edge must have been " |
| 592 | "split above!"); |
| 593 | |
| 594 | // Sort and unique the codes to minimize them. |
| 595 | llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end()); |
| 596 | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), |
| 597 | UncondCodeSeq.end()); |
| 598 | |
| 599 | // Build a checking version of the successor. |
| 600 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, |
| 601 | UncondBr, UncondBr, UncondCodeSeq); |
| 602 | } |
| 603 | |
| 604 | // We may also enter basic blocks in this function via exception handling |
| 605 | // control flow. Here, if we are hardening interprocedurally, we need to |
| 606 | // re-capture the predicate state from the throwing code. In the Itanium ABI, |
| 607 | // the throw will always look like a call to __cxa_throw and will have the |
| 608 | // predicate state in the stack pointer, so extract fresh predicate state from |
| 609 | // the stack pointer and make it available in SSA. |
| 610 | // FIXME: Handle non-itanium ABI EH models. |
| 611 | if (HardenInterprocedurally) { |
| 612 | for (MachineBasicBlock &MBB : MF) { |
| 613 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); |
| 614 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 615 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 616 | if (!MBB.isEHPad()) |
| 617 | continue; |
| 618 | PredStateSSA.AddAvailableValue( |
| 619 | &MBB, |
| 620 | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | // Now check all of the loads using the predicate state. |
| 625 | checkAllLoads(MF, PredStateSSA); |
| 626 | |
| 627 | // Now rewrite all the uses of the pred state using the SSA updater so that |
| 628 | // we track updates through the CFG. |
| 629 | for (MachineInstr *CMovI : CMovs) |
| 630 | for (MachineOperand &Op : CMovI->operands()) { |
| 631 | if (!Op.isReg() || Op.getReg() != PredStateReg) |
| 632 | continue; |
| 633 | |
| 634 | PredStateSSA.RewriteUse(Op); |
| 635 | } |
| 636 | |
| 637 | // If we are hardening interprocedurally, find each returning block and |
| 638 | // protect the caller from being returned to through misspeculation. |
| 639 | if (HardenInterprocedurally) |
| 640 | for (MachineBasicBlock &MBB : MF) { |
| 641 | if (MBB.empty()) |
| 642 | continue; |
| 643 | |
| 644 | MachineInstr &MI = MBB.back(); |
| 645 | if (!MI.isReturn()) |
| 646 | continue; |
| 647 | |
| 648 | checkReturnInstr(MI, PredStateSSA); |
| 649 | } |
| 650 | |
| 651 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); |
| 652 | dbgs() << "\n"; MF.verify(this)); |
| 653 | return true; |
| 654 | } |
| 655 | |
| 656 | /// Implements the naive hardening approach of putting an LFENCE after every |
| 657 | /// potentially mis-predicted control flow construct. |
| 658 | /// |
| 659 | /// We include this as an alternative mostly for the purpose of comparison. The |
| 660 | /// performance impact of this is expected to be extremely severe and not |
| 661 | /// practical for any real-world users. |
| 662 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( |
| 663 | MachineFunction &MF) { |
| 664 | // First, we scan the function looking for blocks that are reached along edges |
| 665 | // that we might want to harden. |
| 666 | SmallSetVector<MachineBasicBlock *, 8> Blocks; |
| 667 | for (MachineBasicBlock &MBB : MF) { |
| 668 | // If there are no or only one successor, nothing to do here. |
| 669 | if (MBB.succ_size() <= 1) |
| 670 | continue; |
| 671 | |
| 672 | // Skip blocks unless their terminators start with a branch. Other |
| 673 | // terminators don't seem interesting for guarding against misspeculation. |
| 674 | auto TermIt = MBB.getFirstTerminator(); |
| 675 | if (TermIt == MBB.end() || !TermIt->isBranch()) |
| 676 | continue; |
| 677 | |
| 678 | // Add all the non-EH-pad succossors to the blocks we want to harden. We |
| 679 | // skip EH pads because there isn't really a condition of interest on |
| 680 | // entering. |
| 681 | for (MachineBasicBlock *SuccMBB : MBB.successors()) |
| 682 | if (!SuccMBB->isEHPad()) |
| 683 | Blocks.insert(SuccMBB); |
| 684 | } |
| 685 | |
| 686 | for (MachineBasicBlock *MBB : Blocks) { |
| 687 | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); |
| 688 | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); |
| 689 | ++NumInstsInserted; |
| 690 | ++NumLFENCEsInserted; |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> |
| 695 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { |
| 696 | SmallVector<BlockCondInfo, 16> Infos; |
| 697 | |
| 698 | // Walk the function and build up a summary for each block's conditions that |
| 699 | // we need to trace through. |
| 700 | for (MachineBasicBlock &MBB : MF) { |
| 701 | // If there are no or only one successor, nothing to do here. |
| 702 | if (MBB.succ_size() <= 1) |
| 703 | continue; |
| 704 | |
| 705 | // We want to reliably handle any conditional branch terminators in the |
| 706 | // MBB, so we manually analyze the branch. We can handle all of the |
| 707 | // permutations here, including ones that analyze branch cannot. |
| 708 | // |
| 709 | // The approach is to walk backwards across the terminators, resetting at |
| 710 | // any unconditional non-indirect branch, and track all conditional edges |
| 711 | // to basic blocks as well as the fallthrough or unconditional successor |
| 712 | // edge. For each conditional edge, we track the target and the opposite |
| 713 | // condition code in order to inject a "no-op" cmov into that successor |
| 714 | // that will harden the predicate. For the fallthrough/unconditional |
| 715 | // edge, we inject a separate cmov for each conditional branch with |
| 716 | // matching condition codes. This effectively implements an "and" of the |
| 717 | // condition flags, even if there isn't a single condition flag that would |
| 718 | // directly implement that. We don't bother trying to optimize either of |
| 719 | // these cases because if such an optimization is possible, LLVM should |
| 720 | // have optimized the conditional *branches* in that way already to reduce |
| 721 | // instruction count. This late, we simply assume the minimal number of |
| 722 | // branch instructions is being emitted and use that to guide our cmov |
| 723 | // insertion. |
| 724 | |
| 725 | BlockCondInfo Info = {&MBB, {}, nullptr}; |
| 726 | |
| 727 | // Now walk backwards through the terminators and build up successors they |
| 728 | // reach and the conditions. |
| 729 | for (MachineInstr &MI : llvm::reverse(MBB)) { |
| 730 | // Once we've handled all the terminators, we're done. |
| 731 | if (!MI.isTerminator()) |
| 732 | break; |
| 733 | |
| 734 | // If we see a non-branch terminator, we can't handle anything so bail. |
| 735 | if (!MI.isBranch()) { |
| 736 | Info.CondBrs.clear(); |
| 737 | break; |
| 738 | } |
| 739 | |
| 740 | // If we see an unconditional branch, reset our state, clear any |
| 741 | // fallthrough, and set this is the "else" successor. |
| 742 | if (MI.getOpcode() == X86::JMP_1) { |
| 743 | Info.CondBrs.clear(); |
| 744 | Info.UncondBr = &MI; |
| 745 | continue; |
| 746 | } |
| 747 | |
| 748 | // If we get an invalid condition, we have an indirect branch or some |
| 749 | // other unanalyzable "fallthrough" case. We model this as a nullptr for |
| 750 | // the destination so we can still guard any conditional successors. |
| 751 | // Consider code sequences like: |
| 752 | // ``` |
| 753 | // jCC L1 |
| 754 | // jmpq *%rax |
| 755 | // ``` |
| 756 | // We still want to harden the edge to `L1`. |
| 757 | if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) { |
| 758 | Info.CondBrs.clear(); |
| 759 | Info.UncondBr = &MI; |
| 760 | continue; |
| 761 | } |
| 762 | |
| 763 | // We have a vanilla conditional branch, add it to our list. |
| 764 | Info.CondBrs.push_back(&MI); |
| 765 | } |
| 766 | if (Info.CondBrs.empty()) { |
| 767 | ++NumBranchesUntraced; |
| 768 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; |
| 769 | MBB.dump()); |
| 770 | continue; |
| 771 | } |
| 772 | |
| 773 | Infos.push_back(Info); |
| 774 | } |
| 775 | |
| 776 | return Infos; |
| 777 | } |
| 778 | |
| 779 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 780 | /// that is based on the value of any of its register operands |
| 781 | /// |
| 782 | /// A classical example of something that is inherently not data invariant is an |
| 783 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 784 | /// in the jump destination register. |
| 785 | /// |
| 786 | /// FIXME: This should become part of our instruction tables. |
| 787 | static bool isDataInvariant(MachineInstr &MI) { |
| 788 | switch (MI.getOpcode()) { |
| 789 | default: |
| 790 | // By default, assume that the instruction is not data invariant. |
| 791 | return false; |
| 792 | |
| 793 | // FIXME: For now, we just use a very boring, conservative set of unary |
| 794 | // instructions because we're mostly interested in handling simple |
| 795 | // transformations. |
| 796 | case TargetOpcode::COPY: |
| 797 | return true; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 802 | /// that is based on the value loaded from memory or the value of any |
| 803 | /// non-address register operands. |
| 804 | /// |
| 805 | /// For example, if the latency of the instruction is dependent on the |
| 806 | /// particular bits set in any of the registers *or* any of the bits loaded from |
| 807 | /// memory. |
| 808 | /// |
| 809 | /// A classical example of something that is inherently not data invariant is an |
| 810 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 811 | /// in the jump destination register. |
| 812 | /// |
| 813 | /// FIXME: This should become part of our instruction tables. |
| 814 | static bool isDataInvariantLoad(MachineInstr &MI) { |
| 815 | switch (MI.getOpcode()) { |
| 816 | default: |
| 817 | // By default, assume that the load will immediately leak. |
| 818 | return false; |
| 819 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 820 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 821 | // However, they set flags and are perhaps the most surprisingly constant |
| 822 | // time operations so we call them out here separately. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 823 | case X86::IMUL16rm: |
| 824 | case X86::IMUL16rmi8: |
| 825 | case X86::IMUL16rmi: |
| 826 | case X86::IMUL32rm: |
| 827 | case X86::IMUL32rmi8: |
| 828 | case X86::IMUL32rmi: |
| 829 | case X86::IMUL64rm: |
| 830 | case X86::IMUL64rmi32: |
| 831 | case X86::IMUL64rmi8: |
| 832 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 833 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 834 | // constant time as they scan across bits and do other fairly complex |
| 835 | // operations like popcnt, but are believed to be constant time on x86. |
| 836 | // However, these set flags. |
| 837 | case X86::BSF16rm: |
| 838 | case X86::BSF32rm: |
| 839 | case X86::BSF64rm: |
| 840 | case X86::BSR16rm: |
| 841 | case X86::BSR32rm: |
| 842 | case X86::BSR64rm: |
| 843 | case X86::LZCNT16rm: |
| 844 | case X86::LZCNT32rm: |
| 845 | case X86::LZCNT64rm: |
| 846 | case X86::POPCNT16rm: |
| 847 | case X86::POPCNT32rm: |
| 848 | case X86::POPCNT64rm: |
| 849 | case X86::TZCNT16rm: |
| 850 | case X86::TZCNT32rm: |
| 851 | case X86::TZCNT64rm: |
| 852 | |
| 853 | // Bit manipulation instructions are effectively combinations of basic |
| 854 | // arithmetic ops, and should still execute in constant time. These also |
| 855 | // set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 856 | case X86::BLCFILL32rm: |
| 857 | case X86::BLCFILL64rm: |
| 858 | case X86::BLCI32rm: |
| 859 | case X86::BLCI64rm: |
| 860 | case X86::BLCIC32rm: |
| 861 | case X86::BLCIC64rm: |
| 862 | case X86::BLCMSK32rm: |
| 863 | case X86::BLCMSK64rm: |
| 864 | case X86::BLCS32rm: |
| 865 | case X86::BLCS64rm: |
| 866 | case X86::BLSFILL32rm: |
| 867 | case X86::BLSFILL64rm: |
| 868 | case X86::BLSI32rm: |
| 869 | case X86::BLSI64rm: |
| 870 | case X86::BLSIC32rm: |
| 871 | case X86::BLSIC64rm: |
| 872 | case X86::BLSMSK32rm: |
| 873 | case X86::BLSMSK64rm: |
| 874 | case X86::BLSR32rm: |
| 875 | case X86::BLSR64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 876 | case X86::TZMSK32rm: |
| 877 | case X86::TZMSK64rm: |
| 878 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 879 | // Bit extracting and clearing instructions should execute in constant time, |
| 880 | // and set flags. |
| 881 | case X86::BEXTR32rm: |
| 882 | case X86::BEXTR64rm: |
| 883 | case X86::BEXTRI32mi: |
| 884 | case X86::BEXTRI64mi: |
| 885 | case X86::BZHI32rm: |
| 886 | case X86::BZHI64rm: |
| 887 | |
| 888 | // Basic arithmetic is constant time on the input but does set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 889 | case X86::ADC8rm: |
| 890 | case X86::ADC16rm: |
| 891 | case X86::ADC32rm: |
| 892 | case X86::ADC64rm: |
| 893 | case X86::ADCX32rm: |
| 894 | case X86::ADCX64rm: |
| 895 | case X86::ADD8rm: |
| 896 | case X86::ADD16rm: |
| 897 | case X86::ADD32rm: |
| 898 | case X86::ADD64rm: |
| 899 | case X86::ADOX32rm: |
| 900 | case X86::ADOX64rm: |
| 901 | case X86::AND8rm: |
| 902 | case X86::AND16rm: |
| 903 | case X86::AND32rm: |
| 904 | case X86::AND64rm: |
| 905 | case X86::ANDN32rm: |
| 906 | case X86::ANDN64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 907 | case X86::OR8rm: |
| 908 | case X86::OR16rm: |
| 909 | case X86::OR32rm: |
| 910 | case X86::OR64rm: |
| 911 | case X86::SBB8rm: |
| 912 | case X86::SBB16rm: |
| 913 | case X86::SBB32rm: |
| 914 | case X86::SBB64rm: |
| 915 | case X86::SUB8rm: |
| 916 | case X86::SUB16rm: |
| 917 | case X86::SUB32rm: |
| 918 | case X86::SUB64rm: |
| 919 | case X86::XOR8rm: |
| 920 | case X86::XOR16rm: |
| 921 | case X86::XOR32rm: |
| 922 | case X86::XOR64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 923 | // Check whether the EFLAGS implicit-def is dead. We assume that this will |
| 924 | // always find the implicit-def because this code should only be reached |
| 925 | // for instructions that do in fact implicitly def this. |
| 926 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { |
| 927 | // If we would clobber EFLAGS that are used, just bail for now. |
| 928 | LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; |
| 929 | MI.dump(); dbgs() << "\n"); |
| 930 | return false; |
| 931 | } |
| 932 | |
| 933 | // Otherwise, fallthrough to handle these the same as instructions that |
| 934 | // don't set EFLAGS. |
| 935 | LLVM_FALLTHROUGH; |
| 936 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 937 | // Integer multiply w/o affecting flags is still believed to be constant |
| 938 | // time on x86. Called out separately as this is among the most surprising |
| 939 | // instructions to exhibit that behavior. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 940 | case X86::MULX32rm: |
| 941 | case X86::MULX64rm: |
| 942 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 943 | // Arithmetic instructions that are both constant time and don't set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 944 | case X86::RORX32mi: |
| 945 | case X86::RORX64mi: |
| 946 | case X86::SARX32rm: |
| 947 | case X86::SARX64rm: |
| 948 | case X86::SHLX32rm: |
| 949 | case X86::SHLX64rm: |
| 950 | case X86::SHRX32rm: |
| 951 | case X86::SHRX64rm: |
| 952 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 953 | // Conversions are believed to be constant time and don't set flags. |
| Craig Topper | 41fa858 | 2018-07-13 22:41:50 +0000 | [diff] [blame] | 954 | case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: |
| 955 | case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: |
| 956 | case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: |
| 957 | case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: |
| 958 | case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: |
| 959 | case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: |
| 960 | case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: |
| 961 | case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: |
| 962 | case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: |
| 963 | case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: |
| 964 | // AVX512 added unsigned integer conversions. |
| 965 | case X86::VCVTTSD2USI64Zrm: |
| 966 | case X86::VCVTTSD2USIZrm: |
| 967 | case X86::VCVTTSS2USI64Zrm: |
| 968 | case X86::VCVTTSS2USIZrm: |
| 969 | case X86::VCVTUSI2SDZrm: |
| 970 | case X86::VCVTUSI642SDZrm: |
| 971 | case X86::VCVTUSI2SSZrm: |
| 972 | case X86::VCVTUSI642SSZrm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 973 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 974 | // Loads to register don't set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 975 | case X86::MOV8rm: |
| 976 | case X86::MOV8rm_NOREX: |
| 977 | case X86::MOV16rm: |
| 978 | case X86::MOV32rm: |
| 979 | case X86::MOV64rm: |
| 980 | case X86::MOVSX16rm8: |
| 981 | case X86::MOVSX32rm16: |
| 982 | case X86::MOVSX32rm8: |
| 983 | case X86::MOVSX32rm8_NOREX: |
| 984 | case X86::MOVSX64rm16: |
| 985 | case X86::MOVSX64rm32: |
| 986 | case X86::MOVSX64rm8: |
| 987 | case X86::MOVZX16rm8: |
| 988 | case X86::MOVZX32rm16: |
| 989 | case X86::MOVZX32rm8: |
| 990 | case X86::MOVZX32rm8_NOREX: |
| 991 | case X86::MOVZX64rm16: |
| 992 | case X86::MOVZX64rm8: |
| 993 | return true; |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| 998 | const TargetRegisterInfo &TRI) { |
| 999 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1000 | // live-in, and then seeing if that def is in turn used. |
| 1001 | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { |
| 1002 | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { |
| 1003 | // If the def is dead, then EFLAGS is not live. |
| 1004 | if (DefOp->isDead()) |
| 1005 | return false; |
| 1006 | |
| 1007 | // Otherwise we've def'ed it, and it is live. |
| 1008 | return true; |
| 1009 | } |
| 1010 | // While at this instruction, also check if we use and kill EFLAGS |
| 1011 | // which means it isn't live. |
| 1012 | if (MI.killsRegister(X86::EFLAGS, &TRI)) |
| 1013 | return false; |
| 1014 | } |
| 1015 | |
| 1016 | // If we didn't find anything conclusive (neither definitely alive or |
| 1017 | // definitely dead) return whether it lives into the block. |
| 1018 | return MBB.isLiveIn(X86::EFLAGS); |
| 1019 | } |
| 1020 | |
| 1021 | void X86SpeculativeLoadHardeningPass::checkAllLoads( |
| 1022 | MachineFunction &MF, MachineSSAUpdater &PredStateSSA) { |
| 1023 | // If the actual checking of loads is disabled, skip doing anything here. |
| 1024 | if (!HardenLoads) |
| 1025 | return; |
| 1026 | |
| 1027 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; |
| 1028 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; |
| 1029 | |
| 1030 | SmallSet<unsigned, 16> HardenedAddrRegs; |
| 1031 | |
| 1032 | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; |
| 1033 | |
| 1034 | // Track the set of load-dependent registers through the basic block. Because |
| 1035 | // the values of these registers have an existing data dependency on a loaded |
| 1036 | // value which we would have checked, we can omit any checks on them. |
| 1037 | SparseBitVector<> LoadDepRegs; |
| 1038 | |
| 1039 | for (MachineBasicBlock &MBB : MF) { |
| 1040 | // We harden the loads of a basic block in several passes: |
| 1041 | // |
| 1042 | // 1) Collect all the loads which can have their loaded value hardened |
| 1043 | // and all the loads that instead need their address hardened. During |
| 1044 | // this walk we propagate load dependence for address hardened loads and |
| 1045 | // also look for LFENCE to stop hardening wherever possible. When |
| 1046 | // deciding whether or not to harden the loaded value or not, we check |
| 1047 | // to see if any registers used in the address will have been hardened |
| 1048 | // at this point and if so, harden any remaining address registers as |
| 1049 | // that often successfully re-uses hardened addresses and minimizes |
| 1050 | // instructions. FIXME: We should consider an aggressive mode where we |
| 1051 | // continue to keep as many loads value hardened even when some address |
| 1052 | // register hardening would be free (due to reuse). |
| 1053 | for (MachineInstr &MI : MBB) { |
| 1054 | // We naively assume that all def'ed registers of an instruction have |
| 1055 | // a data dependency on all of their operands. |
| 1056 | // FIXME: Do a more careful analysis of x86 to build a conservative model |
| 1057 | // here. |
| 1058 | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { |
| 1059 | return Op.isReg() && LoadDepRegs.test(Op.getReg()); |
| 1060 | })) |
| 1061 | for (MachineOperand &Def : MI.defs()) |
| 1062 | if (Def.isReg()) |
| 1063 | LoadDepRegs.set(Def.getReg()); |
| 1064 | |
| 1065 | // Both Intel and AMD are guiding that they will change the semantics of |
| 1066 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is |
| 1067 | // no more need to guard things in this block. |
| 1068 | if (MI.getOpcode() == X86::LFENCE) |
| 1069 | break; |
| 1070 | |
| 1071 | // If this instruction cannot load, nothing to do. |
| 1072 | if (!MI.mayLoad()) |
| 1073 | continue; |
| 1074 | |
| 1075 | // Some instructions which "load" are trivially safe or unimportant. |
| 1076 | if (MI.getOpcode() == X86::MFENCE) |
| 1077 | continue; |
| 1078 | |
| 1079 | // Extract the memory operand information about this instruction. |
| 1080 | // FIXME: This doesn't handle loading pseudo instructions which we often |
| 1081 | // could handle with similarly generic logic. We probably need to add an |
| 1082 | // MI-layer routine similar to the MC-layer one we use here which maps |
| 1083 | // pseudos much like this maps real instructions. |
| 1084 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1085 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1086 | if (MemRefBeginIdx < 0) { |
| 1087 | LLVM_DEBUG(dbgs() << "WARNING: unable to harden loading instruction: "; |
| 1088 | MI.dump()); |
| 1089 | continue; |
| 1090 | } |
| 1091 | |
| 1092 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1093 | |
| 1094 | MachineOperand &BaseMO = MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1095 | MachineOperand &IndexMO = |
| 1096 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1097 | |
| 1098 | // If we have at least one (non-frame-index, non-RIP) register operand, |
| 1099 | // and neither operand is load-dependent, we need to check the load. |
| 1100 | unsigned BaseReg = 0, IndexReg = 0; |
| 1101 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && |
| 1102 | BaseMO.getReg() != X86::NoRegister) |
| 1103 | BaseReg = BaseMO.getReg(); |
| 1104 | if (IndexMO.getReg() != X86::NoRegister) |
| 1105 | IndexReg = IndexMO.getReg(); |
| 1106 | |
| 1107 | if (!BaseReg && !IndexReg) |
| 1108 | // No register operands! |
| 1109 | continue; |
| 1110 | |
| 1111 | // If any register operand is dependent, this load is dependent and we |
| 1112 | // needn't check it. |
| 1113 | // FIXME: Is this true in the case where we are hardening loads after |
| 1114 | // they complete? Unclear, need to investigate. |
| 1115 | if ((BaseReg && LoadDepRegs.test(BaseReg)) || |
| 1116 | (IndexReg && LoadDepRegs.test(IndexReg))) |
| 1117 | continue; |
| 1118 | |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1119 | // If post-load hardening is enabled, this load is compatible with |
| 1120 | // post-load hardening, and we aren't already going to harden one of the |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1121 | // address registers, queue it up to be hardened post-load. Notably, even |
| 1122 | // once hardened this won't introduce a useful dependency that could prune |
| 1123 | // out subsequent loads. |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1124 | if (EnablePostLoadHardening && canHardenPostLoad(MI) && |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1125 | !HardenedAddrRegs.count(BaseReg) && |
| 1126 | !HardenedAddrRegs.count(IndexReg)) { |
| 1127 | HardenPostLoad.insert(&MI); |
| 1128 | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); |
| 1129 | continue; |
| 1130 | } |
| 1131 | |
| 1132 | // Record this instruction for address hardening and record its register |
| 1133 | // operands as being address-hardened. |
| 1134 | HardenLoadAddr.insert(&MI); |
| 1135 | if (BaseReg) |
| 1136 | HardenedAddrRegs.insert(BaseReg); |
| 1137 | if (IndexReg) |
| 1138 | HardenedAddrRegs.insert(IndexReg); |
| 1139 | |
| 1140 | for (MachineOperand &Def : MI.defs()) |
| 1141 | if (Def.isReg()) |
| 1142 | LoadDepRegs.set(Def.getReg()); |
| 1143 | } |
| 1144 | |
| 1145 | // Now re-walk the instructions in the basic block, and apply whichever |
| 1146 | // hardening strategy we have elected. Note that we do this in a second |
| 1147 | // pass specifically so that we have the complete set of instructions for |
| 1148 | // which we will do post-load hardening and can defer it in certain |
| 1149 | // circumstances. |
| 1150 | // |
| 1151 | // FIXME: This could probably be made even more effective by doing it |
| 1152 | // across the entire function. Rather than just walking the flat list |
| 1153 | // backwards here, we could walk the function in PO and each block bottom |
| 1154 | // up, allowing us to in some cases sink hardening across block blocks. As |
| 1155 | // long as the in-block predicate state is used at the eventual hardening |
| 1156 | // site, this remains safe. |
| 1157 | for (MachineInstr &MI : MBB) { |
| 1158 | // We cannot both require hardening the def of a load and its address. |
| 1159 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && |
| 1160 | "Requested to harden both the address and def of a load!"); |
| 1161 | |
| 1162 | // Check if this is a load whose address needs to be hardened. |
| 1163 | if (HardenLoadAddr.erase(&MI)) { |
| 1164 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1165 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1166 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); |
| 1167 | |
| 1168 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1169 | |
| 1170 | MachineOperand &BaseMO = |
| 1171 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1172 | MachineOperand &IndexMO = |
| 1173 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1174 | hardenLoadAddr(MI, BaseMO, IndexMO, PredStateSSA, AddrRegToHardenedReg); |
| 1175 | continue; |
| 1176 | } |
| 1177 | |
| 1178 | // Test if this instruction is one of our post load instructions (and |
| 1179 | // remove it from the set if so). |
| 1180 | if (HardenPostLoad.erase(&MI)) { |
| 1181 | assert(!MI.isCall() && "Must not try to post-load harden a call!"); |
| 1182 | |
| 1183 | // If this is a data-invariant load, we want to try and sink any |
| 1184 | // hardening as far as possible. |
| 1185 | if (isDataInvariantLoad(MI)) { |
| 1186 | // Sink the instruction we'll need to harden as far as we can down the |
| 1187 | // graph. |
| 1188 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); |
| 1189 | |
| 1190 | // If we managed to sink this instruction, update everything so we |
| 1191 | // harden that instruction when we reach it in the instruction |
| 1192 | // sequence. |
| 1193 | if (SunkMI != &MI) { |
| 1194 | // If in sinking there was no instruction needing to be hardened, |
| 1195 | // we're done. |
| 1196 | if (!SunkMI) |
| 1197 | continue; |
| 1198 | |
| 1199 | // Otherwise, add this to the set of defs we harden. |
| 1200 | HardenPostLoad.insert(SunkMI); |
| 1201 | continue; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | // The register def'ed by this instruction is trivially hardened so map |
| 1206 | // it to itself. |
| 1207 | AddrRegToHardenedReg[MI.getOperand(0).getReg()] = |
| 1208 | MI.getOperand(0).getReg(); |
| 1209 | |
| 1210 | hardenPostLoad(MI, PredStateSSA); |
| 1211 | continue; |
| 1212 | } |
| 1213 | |
| 1214 | // After we finish processing the instruction and doing any hardening |
| 1215 | // necessary for it, we need to handle transferring the predicate state |
| 1216 | // into a call and recovering it after the call returns (if it returns). |
| 1217 | if (!MI.isCall()) |
| 1218 | continue; |
| 1219 | |
| 1220 | // If we're not hardening interprocedurally, we can just skip calls. |
| 1221 | if (!HardenInterprocedurally) |
| 1222 | continue; |
| 1223 | |
| 1224 | auto InsertPt = MI.getIterator(); |
| 1225 | DebugLoc Loc = MI.getDebugLoc(); |
| 1226 | |
| 1227 | // First, we transfer the predicate state into the called function by |
| 1228 | // merging it into the stack pointer. This will kill the current def of |
| 1229 | // the state. |
| 1230 | unsigned StateReg = PredStateSSA.GetValueAtEndOfBlock(&MBB); |
| 1231 | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); |
| 1232 | |
| 1233 | // If this call is also a return (because it is a tail call) we're done. |
| 1234 | if (MI.isReturn()) |
| 1235 | continue; |
| 1236 | |
| 1237 | // Otherwise we need to step past the call and recover the predicate |
| 1238 | // state from SP after the return, and make this new state available. |
| 1239 | ++InsertPt; |
| 1240 | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); |
| 1241 | PredStateSSA.AddAvailableValue(&MBB, NewStateReg); |
| 1242 | } |
| 1243 | |
| 1244 | HardenPostLoad.clear(); |
| 1245 | HardenLoadAddr.clear(); |
| 1246 | HardenedAddrRegs.clear(); |
| 1247 | AddrRegToHardenedReg.clear(); |
| 1248 | |
| 1249 | // Currently, we only track data-dependent loads within a basic block. |
| 1250 | // FIXME: We should see if this is necessary or if we could be more |
| 1251 | // aggressive here without opening up attack avenues. |
| 1252 | LoadDepRegs.clear(); |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | /// Save EFLAGS into the returned GPR. This can in turn be restored with |
| 1257 | /// `restoreEFLAGS`. |
| 1258 | /// |
| 1259 | /// Note that LLVM can only lower very simple patterns of saved and restored |
| 1260 | /// EFLAGS registers. The restore should always be within the same basic block |
| 1261 | /// as the save so that no PHI nodes are inserted. |
| 1262 | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( |
| 1263 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1264 | DebugLoc Loc) { |
| 1265 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches |
| 1266 | // what instruction selection does. |
| 1267 | unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| 1268 | // We directly copy the FLAGS register and rely on later lowering to clean |
| 1269 | // this up into the appropriate setCC instructions. |
| 1270 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); |
| 1271 | ++NumInstsInserted; |
| 1272 | return Reg; |
| 1273 | } |
| 1274 | |
| 1275 | /// Restore EFLAGS from the provided GPR. This should be produced by |
| 1276 | /// `saveEFLAGS`. |
| 1277 | /// |
| 1278 | /// This must be done within the same basic block as the save in order to |
| 1279 | /// reliably lower. |
| 1280 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( |
| 1281 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1282 | unsigned Reg) { |
| 1283 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); |
| 1284 | ++NumInstsInserted; |
| 1285 | } |
| 1286 | |
| 1287 | /// Takes the current predicate state (in a register) and merges it into the |
| 1288 | /// stack pointer. The state is essentially a single bit, but we merge this in |
| 1289 | /// a way that won't form non-canonical pointers and also will be preserved |
| 1290 | /// across normal stack adjustments. |
| 1291 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( |
| 1292 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1293 | unsigned PredStateReg) { |
| 1294 | unsigned TmpReg = MRI->createVirtualRegister(PredStateRC); |
| 1295 | // FIXME: This hard codes a shift distance based on the number of bits needed |
| 1296 | // to stay canonical on 64-bit. We should compute this somehow and support |
| 1297 | // 32-bit as part of that. |
| 1298 | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) |
| 1299 | .addReg(PredStateReg, RegState::Kill) |
| 1300 | .addImm(47); |
| 1301 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1302 | ++NumInstsInserted; |
| 1303 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) |
| 1304 | .addReg(X86::RSP) |
| 1305 | .addReg(TmpReg, RegState::Kill); |
| 1306 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1307 | ++NumInstsInserted; |
| 1308 | } |
| 1309 | |
| 1310 | /// Extracts the predicate state stored in the high bits of the stack pointer. |
| 1311 | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( |
| 1312 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1313 | DebugLoc Loc) { |
| 1314 | unsigned PredStateReg = MRI->createVirtualRegister(PredStateRC); |
| 1315 | unsigned TmpReg = MRI->createVirtualRegister(PredStateRC); |
| 1316 | |
| 1317 | // We know that the stack pointer will have any preserved predicate state in |
| 1318 | // its high bit. We just want to smear this across the other bits. Turns out, |
| 1319 | // this is exactly what an arithmetic right shift does. |
| 1320 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) |
| 1321 | .addReg(X86::RSP); |
| 1322 | auto ShiftI = |
| 1323 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) |
| 1324 | .addReg(TmpReg, RegState::Kill) |
| 1325 | .addImm(TRI->getRegSizeInBits(*PredStateRC) - 1); |
| 1326 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1327 | ++NumInstsInserted; |
| 1328 | |
| 1329 | return PredStateReg; |
| 1330 | } |
| 1331 | |
| 1332 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( |
| 1333 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, |
| 1334 | MachineSSAUpdater &PredStateSSA, |
| 1335 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { |
| 1336 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1337 | DebugLoc Loc = MI.getDebugLoc(); |
| 1338 | |
| 1339 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1340 | // live-in, and then seeing if that def is in turn used. |
| 1341 | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); |
| 1342 | |
| 1343 | SmallVector<MachineOperand *, 2> HardenOpRegs; |
| 1344 | |
| 1345 | if (BaseMO.isFI()) { |
| 1346 | // A frame index is never a dynamically controllable load, so only |
| 1347 | // harden it if we're covering fixed address loads as well. |
| 1348 | LLVM_DEBUG( |
| 1349 | dbgs() << " Skipping hardening base of explicit stack frame load: "; |
| 1350 | MI.dump(); dbgs() << "\n"); |
| 1351 | } else if (BaseMO.getReg() == X86::RIP || |
| 1352 | BaseMO.getReg() == X86::NoRegister) { |
| 1353 | // For both RIP-relative addressed loads or absolute loads, we cannot |
| 1354 | // meaningfully harden them because the address being loaded has no |
| 1355 | // dynamic component. |
| 1356 | // |
| 1357 | // FIXME: When using a segment base (like TLS does) we end up with the |
| 1358 | // dynamic address being the base plus -1 because we can't mutate the |
| 1359 | // segment register here. This allows the signed 32-bit offset to point at |
| 1360 | // valid segment-relative addresses and load them successfully. |
| 1361 | LLVM_DEBUG( |
| 1362 | dbgs() << " Cannot harden base of " |
| 1363 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") |
| 1364 | << " address in a load!"); |
| 1365 | } else { |
| 1366 | assert(BaseMO.isReg() && |
| 1367 | "Only allowed to have a frame index or register base."); |
| 1368 | HardenOpRegs.push_back(&BaseMO); |
| 1369 | } |
| 1370 | |
| 1371 | if (IndexMO.getReg() != X86::NoRegister && |
| 1372 | (HardenOpRegs.empty() || |
| 1373 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) |
| 1374 | HardenOpRegs.push_back(&IndexMO); |
| 1375 | |
| 1376 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && |
| 1377 | "Should have exactly one or two registers to harden!"); |
| 1378 | assert((HardenOpRegs.size() == 1 || |
| 1379 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && |
| 1380 | "Should not have two of the same registers!"); |
| 1381 | |
| 1382 | // Remove any registers that have alreaded been checked. |
| 1383 | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { |
| 1384 | // See if this operand's register has already been checked. |
| 1385 | auto It = AddrRegToHardenedReg.find(Op->getReg()); |
| 1386 | if (It == AddrRegToHardenedReg.end()) |
| 1387 | // Not checked, so retain this one. |
| 1388 | return false; |
| 1389 | |
| 1390 | // Otherwise, we can directly update this operand and remove it. |
| 1391 | Op->setReg(It->second); |
| 1392 | return true; |
| 1393 | }); |
| 1394 | // If there are none left, we're done. |
| 1395 | if (HardenOpRegs.empty()) |
| 1396 | return; |
| 1397 | |
| 1398 | // Compute the current predicate state. |
| 1399 | unsigned StateReg = PredStateSSA.GetValueAtEndOfBlock(&MBB); |
| 1400 | |
| 1401 | auto InsertPt = MI.getIterator(); |
| 1402 | |
| 1403 | // If EFLAGS are live and we don't have access to instructions that avoid |
| 1404 | // clobbering EFLAGS we need to save and restore them. This in turn makes |
| 1405 | // the EFLAGS no longer live. |
| 1406 | unsigned FlagsReg = 0; |
| 1407 | if (EFLAGSLive && !Subtarget->hasBMI2()) { |
| 1408 | EFLAGSLive = false; |
| 1409 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 1410 | } |
| 1411 | |
| 1412 | for (MachineOperand *Op : HardenOpRegs) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1413 | unsigned OpReg = Op->getReg(); |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1414 | auto *OpRC = MRI->getRegClass(OpReg); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1415 | unsigned TmpReg = MRI->createVirtualRegister(OpRC); |
| 1416 | |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1417 | // If this is a vector register, we'll need somewhat custom logic to handle |
| 1418 | // hardening it. |
| 1419 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || |
| 1420 | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { |
| 1421 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); |
| 1422 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); |
| 1423 | |
| 1424 | // Move our state into a vector register. |
| 1425 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 |
| 1426 | // but that doesn't seem likely worth it. |
| 1427 | unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); |
| 1428 | auto MovI = |
| 1429 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) |
| 1430 | .addReg(StateReg); |
| 1431 | (void)MovI; |
| 1432 | ++NumInstsInserted; |
| 1433 | LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); |
| 1434 | |
| 1435 | // Broadcast it across the vector register. |
| 1436 | unsigned VBStateReg = MRI->createVirtualRegister(OpRC); |
| 1437 | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, |
| 1438 | TII->get(Is128Bit ? X86::VPBROADCASTQrr |
| 1439 | : X86::VPBROADCASTQYrr), |
| 1440 | VBStateReg) |
| 1441 | .addReg(VStateReg); |
| 1442 | (void)BroadcastI; |
| 1443 | ++NumInstsInserted; |
| 1444 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 1445 | dbgs() << "\n"); |
| 1446 | |
| 1447 | // Merge our potential poison state into the value with a vector or. |
| 1448 | auto OrI = |
| 1449 | BuildMI(MBB, InsertPt, Loc, |
| 1450 | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) |
| 1451 | .addReg(VBStateReg) |
| 1452 | .addReg(OpReg); |
| 1453 | (void)OrI; |
| 1454 | ++NumInstsInserted; |
| 1455 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1456 | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || |
| 1457 | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || |
| 1458 | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { |
| 1459 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); |
| 1460 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); |
| 1461 | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); |
| 1462 | if (Is128Bit || Is256Bit) |
| 1463 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); |
| 1464 | |
| 1465 | // Broadcast our state into a vector register. |
| 1466 | unsigned VStateReg = MRI->createVirtualRegister(OpRC); |
| 1467 | unsigned BroadcastOp = |
| 1468 | Is128Bit ? X86::VPBROADCASTQrZ128r |
| 1469 | : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; |
| 1470 | auto BroadcastI = |
| 1471 | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) |
| 1472 | .addReg(StateReg); |
| 1473 | (void)BroadcastI; |
| 1474 | ++NumInstsInserted; |
| 1475 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 1476 | dbgs() << "\n"); |
| 1477 | |
| 1478 | // Merge our potential poison state into the value with a vector or. |
| 1479 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr |
| 1480 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; |
| 1481 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) |
| 1482 | .addReg(VStateReg) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1483 | .addReg(OpReg); |
| Chandler Carruth | bc46bca | 2018-07-16 04:42:27 +0000 | [diff] [blame] | 1484 | (void)OrI; |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1485 | ++NumInstsInserted; |
| 1486 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1487 | } else { |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1488 | // FIXME: Need to support GR32 here for 32-bit code. |
| 1489 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && |
| 1490 | "Not a supported register class for address hardening!"); |
| 1491 | |
| 1492 | if (!EFLAGSLive) { |
| 1493 | // Merge our potential poison state into the value with an or. |
| 1494 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) |
| 1495 | .addReg(StateReg) |
| 1496 | .addReg(OpReg); |
| 1497 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1498 | ++NumInstsInserted; |
| 1499 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1500 | } else { |
| 1501 | // We need to avoid touching EFLAGS so shift out all but the least |
| 1502 | // significant bit using the instruction that doesn't update flags. |
| 1503 | auto ShiftI = |
| 1504 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) |
| 1505 | .addReg(OpReg) |
| 1506 | .addReg(StateReg); |
| 1507 | (void)ShiftI; |
| 1508 | ++NumInstsInserted; |
| 1509 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); |
| 1510 | dbgs() << "\n"); |
| 1511 | } |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1512 | } |
| 1513 | |
| 1514 | // Record this register as checked and update the operand. |
| 1515 | assert(!AddrRegToHardenedReg.count(Op->getReg()) && |
| 1516 | "Should not have checked this register yet!"); |
| 1517 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; |
| 1518 | Op->setReg(TmpReg); |
| 1519 | ++NumAddrRegsHardened; |
| 1520 | } |
| 1521 | |
| 1522 | // And restore the flags if needed. |
| 1523 | if (FlagsReg) |
| 1524 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 1525 | } |
| 1526 | |
| 1527 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( |
| 1528 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedLoads) { |
| 1529 | assert(isDataInvariantLoad(InitialMI) && |
| 1530 | "Cannot get here with a non-invariant load!"); |
| 1531 | |
| 1532 | // See if we can sink hardening the loaded value. |
| 1533 | auto SinkCheckToSingleUse = |
| 1534 | [&](MachineInstr &MI) -> Optional<MachineInstr *> { |
| 1535 | unsigned DefReg = MI.getOperand(0).getReg(); |
| 1536 | |
| 1537 | // We need to find a single use which we can sink the check. We can |
| 1538 | // primarily do this because many uses may already end up checked on their |
| 1539 | // own. |
| 1540 | MachineInstr *SingleUseMI = nullptr; |
| 1541 | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { |
| 1542 | // If we're already going to harden this use, it is data invariant and |
| 1543 | // within our block and we just need to check that the use isn't in an |
| 1544 | // address. |
| 1545 | if (HardenedLoads.count(&UseMI)) { |
| 1546 | const MCInstrDesc &Desc = UseMI.getDesc(); |
| 1547 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1548 | assert(MemRefBeginIdx >= 0 && |
| 1549 | "Should always have mem references here!"); |
| 1550 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1551 | |
| 1552 | MachineOperand &BaseMO = |
| 1553 | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1554 | MachineOperand &IndexMO = |
| 1555 | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1556 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || |
| 1557 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) |
| 1558 | // The load uses the register as part of its address making it not |
| 1559 | // invariant. |
| 1560 | return {}; |
| 1561 | |
| 1562 | continue; |
| 1563 | } |
| 1564 | |
| 1565 | if (SingleUseMI) |
| 1566 | // We already have a single use, this would make two. Bail. |
| 1567 | return {}; |
| 1568 | |
| 1569 | // If this single use isn't data invariant, isn't in this block, or has |
| 1570 | // interfering EFLAGS, we can't sink the hardening to it. |
| 1571 | if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) |
| 1572 | return {}; |
| 1573 | |
| 1574 | // If this instruction defines multiple registers bail as we won't harden |
| 1575 | // all of them. |
| 1576 | if (UseMI.getDesc().getNumDefs() > 1) |
| 1577 | return {}; |
| 1578 | |
| 1579 | // If this register isn't a virtual register we can't walk uses of sanely, |
| 1580 | // just bail. Also check that its register class is one of the ones we |
| 1581 | // can harden. |
| 1582 | unsigned UseDefReg = UseMI.getOperand(0).getReg(); |
| 1583 | if (!TRI->isVirtualRegister(UseDefReg) || |
| 1584 | !MRI->getRegClass(UseDefReg)->hasSubClassEq(&X86::GR64RegClass)) |
| 1585 | return {}; |
| 1586 | |
| 1587 | SingleUseMI = &UseMI; |
| 1588 | } |
| 1589 | |
| 1590 | // If SingleUseMI is still null, there is no use that needs its own |
| 1591 | // checking. Otherwise, it is the single use that needs checking. |
| 1592 | return {SingleUseMI}; |
| 1593 | }; |
| 1594 | |
| 1595 | MachineInstr *MI = &InitialMI; |
| 1596 | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { |
| 1597 | // Update which MI we're checking now. |
| 1598 | MI = *SingleUse; |
| 1599 | if (!MI) |
| 1600 | break; |
| 1601 | } |
| 1602 | |
| 1603 | return MI; |
| 1604 | } |
| 1605 | |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1606 | bool X86SpeculativeLoadHardeningPass::canHardenPostLoad(MachineInstr &MI) { |
| 1607 | if (!isDataInvariantLoad(MI)) |
| 1608 | return false; |
| 1609 | |
| 1610 | auto &DefOp = MI.getOperand(0); |
| 1611 | unsigned OldDefReg = DefOp.getReg(); |
| 1612 | |
| 1613 | auto *DefRC = MRI->getRegClass(OldDefReg); |
| 1614 | int DefRegBytes = TRI->getRegSizeInBits(*DefRC) / 8; |
| 1615 | if (DefRegBytes > 8) |
| 1616 | // We don't support post-load hardening of vectors. |
| 1617 | return false; |
| 1618 | |
| 1619 | const TargetRegisterClass *GPRRegClasses[] = { |
| 1620 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, |
| 1621 | &X86::GR64RegClass}; |
| 1622 | return DefRC->hasSuperClassEq(GPRRegClasses[Log2_32(DefRegBytes)]); |
| 1623 | } |
| 1624 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1625 | // We can harden non-leaking loads into register without touching the address |
| 1626 | // by just hiding all of the loaded bits. We use an `or` instruction to do |
| 1627 | // this because having the poison value be all ones allows us to use the same |
| 1628 | // value below. And the goal is just for the loaded bits to not be exposed to |
| 1629 | // execution and coercing them to one is sufficient. |
| 1630 | void X86SpeculativeLoadHardeningPass::hardenPostLoad( |
| 1631 | MachineInstr &MI, MachineSSAUpdater &PredStateSSA) { |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1632 | assert(canHardenPostLoad(MI) && |
| 1633 | "Invalid instruction for post-load hardening!"); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1634 | |
| 1635 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1636 | DebugLoc Loc = MI.getDebugLoc(); |
| 1637 | |
| 1638 | // For all of these, the def'ed register operand is operand zero. |
| 1639 | auto &DefOp = MI.getOperand(0); |
| 1640 | unsigned OldDefReg = DefOp.getReg(); |
| 1641 | |
| 1642 | auto *DefRC = MRI->getRegClass(OldDefReg); |
| 1643 | int DefRegBytes = TRI->getRegSizeInBits(*DefRC) / 8; |
| 1644 | |
| 1645 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; |
| 1646 | unsigned OrOpCode = OrOpCodes[Log2_32(DefRegBytes)]; |
| 1647 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1648 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; |
| 1649 | |
| 1650 | auto GetStateRegInRC = [&](const TargetRegisterClass &RC) { |
| 1651 | unsigned StateReg = PredStateSSA.GetValueAtEndOfBlock(&MBB); |
| 1652 | |
| 1653 | int Bytes = TRI->getRegSizeInBits(RC) / 8; |
| 1654 | // FIXME: Need to teach this about 32-bit mode. |
| 1655 | if (Bytes != 8) { |
| 1656 | unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; |
| 1657 | unsigned NarrowStateReg = MRI->createVirtualRegister(&RC); |
| 1658 | BuildMI(MBB, MI.getIterator(), Loc, TII->get(TargetOpcode::COPY), |
| 1659 | NarrowStateReg) |
| 1660 | .addReg(StateReg, 0, SubRegImm); |
| 1661 | StateReg = NarrowStateReg; |
| 1662 | } |
| 1663 | return StateReg; |
| 1664 | }; |
| 1665 | |
| 1666 | auto InsertPt = std::next(MI.getIterator()); |
| 1667 | unsigned FlagsReg = 0; |
| 1668 | bool EFLAGSLive = isEFLAGSLive(MBB, InsertPt, *TRI); |
| 1669 | if (EFLAGSLive && !Subtarget->hasBMI2()) { |
| 1670 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 1671 | EFLAGSLive = false; |
| 1672 | } |
| 1673 | |
| 1674 | if (!EFLAGSLive) { |
| 1675 | unsigned StateReg = GetStateRegInRC(*DefRC); |
| 1676 | unsigned NewDefReg = MRI->createVirtualRegister(DefRC); |
| 1677 | DefOp.setReg(NewDefReg); |
| 1678 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), OldDefReg) |
| 1679 | .addReg(StateReg) |
| 1680 | .addReg(NewDefReg); |
| 1681 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1682 | ++NumInstsInserted; |
| 1683 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1684 | } else { |
| 1685 | assert(Subtarget->hasBMI2() && |
| 1686 | "Cannot harden loads and preserve EFLAGS without BMI2!"); |
| 1687 | |
| 1688 | unsigned ShiftOpCode = DefRegBytes < 4 ? X86::SHRX32rr : X86::SHRX64rr; |
| 1689 | auto &ShiftRC = |
| 1690 | DefRegBytes < 4 ? X86::GR32_NOSPRegClass : X86::GR64_NOSPRegClass; |
| 1691 | int ShiftRegBytes = TRI->getRegSizeInBits(ShiftRC) / 8; |
| 1692 | unsigned DefSubRegImm = SubRegImms[Log2_32(DefRegBytes)]; |
| 1693 | |
| 1694 | unsigned StateReg = GetStateRegInRC(ShiftRC); |
| 1695 | |
| 1696 | // First have the def instruction def a temporary register. |
| 1697 | unsigned TmpReg = MRI->createVirtualRegister(DefRC); |
| 1698 | DefOp.setReg(TmpReg); |
| 1699 | // Now copy it into a register of the shift RC. |
| 1700 | unsigned ShiftInputReg = TmpReg; |
| 1701 | if (DefRegBytes != ShiftRegBytes) { |
| 1702 | unsigned UndefReg = MRI->createVirtualRegister(&ShiftRC); |
| 1703 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::IMPLICIT_DEF), UndefReg); |
| 1704 | ShiftInputReg = MRI->createVirtualRegister(&ShiftRC); |
| 1705 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::INSERT_SUBREG), ShiftInputReg) |
| 1706 | .addReg(UndefReg) |
| 1707 | .addReg(TmpReg) |
| 1708 | .addImm(DefSubRegImm); |
| 1709 | } |
| 1710 | |
| 1711 | // We shift this once if the shift is wider than the def and thus we can |
| 1712 | // shift *all* of the def'ed bytes out. Otherwise we need to do two shifts. |
| 1713 | |
| 1714 | unsigned ShiftedReg = MRI->createVirtualRegister(&ShiftRC); |
| 1715 | auto Shift1I = |
| 1716 | BuildMI(MBB, InsertPt, Loc, TII->get(ShiftOpCode), ShiftedReg) |
| 1717 | .addReg(ShiftInputReg) |
| 1718 | .addReg(StateReg); |
| 1719 | (void)Shift1I; |
| 1720 | ++NumInstsInserted; |
| 1721 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; Shift1I->dump(); dbgs() << "\n"); |
| 1722 | |
| 1723 | // The only way we have a bit left is if all 8 bytes were defined. Do an |
| 1724 | // extra shift to get the last bit in this case. |
| 1725 | if (DefRegBytes == ShiftRegBytes) { |
| 1726 | // We can just directly def the old def register as its the same size. |
| 1727 | ShiftInputReg = ShiftedReg; |
| 1728 | auto Shift2I = |
| 1729 | BuildMI(MBB, InsertPt, Loc, TII->get(ShiftOpCode), OldDefReg) |
| 1730 | .addReg(ShiftInputReg) |
| 1731 | .addReg(StateReg); |
| 1732 | (void)Shift2I; |
| 1733 | ++NumInstsInserted; |
| 1734 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; Shift2I->dump(); |
| 1735 | dbgs() << "\n"); |
| 1736 | } else { |
| 1737 | // When we have different size shift register we need to fix up the |
| 1738 | // class. We can do that as we copy into the old def register. |
| 1739 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), OldDefReg) |
| 1740 | .addReg(ShiftedReg, 0, DefSubRegImm); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | if (FlagsReg) |
| 1745 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 1746 | |
| 1747 | ++NumPostLoadRegsHardened; |
| 1748 | } |
| 1749 | |
| 1750 | void X86SpeculativeLoadHardeningPass::checkReturnInstr( |
| 1751 | MachineInstr &MI, MachineSSAUpdater &PredStateSSA) { |
| 1752 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1753 | DebugLoc Loc = MI.getDebugLoc(); |
| 1754 | auto InsertPt = MI.getIterator(); |
| 1755 | |
| 1756 | if (FenceCallAndRet) { |
| 1757 | // Simply forcibly block speculation of loads out of the function by using |
| 1758 | // an LFENCE. This is potentially a heavy-weight mitigation strategy, but |
| 1759 | // should be secure, is simple from an ABI perspective, and the cost can be |
| 1760 | // minimized through inlining. |
| 1761 | // |
| 1762 | // FIXME: We should investigate ways to establish a strong data-dependency |
| 1763 | // on the return. However, poisoning the stack pointer is unlikely to work |
| 1764 | // because the return is *predicted* rather than relying on the load of the |
| 1765 | // return address to actually resolve. |
| 1766 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE)); |
| 1767 | ++NumInstsInserted; |
| 1768 | ++NumLFENCEsInserted; |
| 1769 | return; |
| 1770 | } |
| 1771 | |
| 1772 | // Take our predicate state, shift it to the high 17 bits (so that we keep |
| 1773 | // pointers canonical) and merge it into RSP. This will allow the caller to |
| 1774 | // extract it when we return (speculatively). |
| 1775 | mergePredStateIntoSP(MBB, InsertPt, Loc, |
| 1776 | PredStateSSA.GetValueAtEndOfBlock(&MBB)); |
| 1777 | } |
| 1778 | |
| 1779 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, |
| 1780 | "X86 speculative load hardener", false, false) |
| 1781 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, |
| 1782 | "X86 speculative load hardener", false, false) |
| 1783 | |
| 1784 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { |
| 1785 | return new X86SpeculativeLoadHardeningPass(); |
| 1786 | } |