blob: e3a424ebdeea231d3b9b9151b89b3db6bdcc51c0 [file] [log] [blame]
Chris Lattner7e044912010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carrutha9174582015-01-22 05:25:13 +000015#include "InstCombineInternal.h"
James Molloy2b21a7c2015-05-20 18:41:25 +000016#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Chris Lattner7e044912010-01-04 07:17:19 +000019
20using namespace llvm;
Shuxin Yang63e999e2012-12-04 00:04:54 +000021using namespace llvm::PatternMatch;
Chris Lattner7e044912010-01-04 07:17:19 +000022
Chandler Carruth964daaa2014-04-22 02:55:47 +000023#define DEBUG_TYPE "instcombine"
24
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000025/// Check to see if the specified operand of the specified instruction is a
26/// constant integer. If so, check to see if there are any bits set in the
27/// constant that are not demanded. If so, shrink the constant and return true.
Craig Topper4c947752012-12-22 18:09:02 +000028static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
Chris Lattner7e044912010-01-04 07:17:19 +000029 APInt Demanded) {
30 assert(I && "No instruction?");
31 assert(OpNo < I->getNumOperands() && "Operand index too large");
32
Sanjay Patelae3b43e2017-02-09 21:43:06 +000033 // The operand must be a constant integer or splat integer.
34 Value *Op = I->getOperand(OpNo);
35 const APInt *C;
36 if (!match(Op, m_APInt(C)))
37 return false;
Chris Lattner7e044912010-01-04 07:17:19 +000038
39 // If there are no bits set that aren't demanded, nothing to do.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000040 Demanded = Demanded.zextOrTrunc(C->getBitWidth());
Craig Toppera8129a12017-04-20 16:17:13 +000041 if (C->isSubsetOf(Demanded))
Chris Lattner7e044912010-01-04 07:17:19 +000042 return false;
43
44 // This instruction is producing bits that are not demanded. Shrink the RHS.
Sanjay Patelae3b43e2017-02-09 21:43:06 +000045 Demanded &= *C;
46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
David Majnemer42b83a52014-08-22 07:56:32 +000047
Chris Lattner7e044912010-01-04 07:17:19 +000048 return true;
49}
50
51
52
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000053/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54/// the instruction has any properties that allow us to simplify its operands.
Chris Lattner7e044912010-01-04 07:17:19 +000055bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
Craig Topper4c947752012-12-22 18:09:02 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61 0, &Inst);
Craig Topperf40110f2014-04-25 05:29:35 +000062 if (!V) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000063 if (V == &Inst) return true;
Sanjay Patel4b198802016-02-01 22:23:39 +000064 replaceInstUsesWith(Inst, V);
Chris Lattner7e044912010-01-04 07:17:19 +000065 return true;
66}
67
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000068/// This form of SimplifyDemandedBits simplifies the specified instruction
69/// operand if possible, updating it in place. It returns true if it made any
70/// change and false otherwise.
Craig Topper47596dd2017-03-25 06:52:52 +000071bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72 const APInt &DemandedMask,
Chris Lattner7e044912010-01-04 07:17:19 +000073 APInt &KnownZero, APInt &KnownOne,
74 unsigned Depth) {
Craig Topper47596dd2017-03-25 06:52:52 +000075 Use &U = I->getOperandUse(OpNo);
David Majnemerfe58d132015-04-22 20:59:28 +000076 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
Craig Topper47596dd2017-03-25 06:52:52 +000077 KnownOne, Depth, I);
Craig Topperf40110f2014-04-25 05:29:35 +000078 if (!NewVal) return false;
Chris Lattner7e044912010-01-04 07:17:19 +000079 U = NewVal;
80 return true;
81}
82
83
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +000084/// This function attempts to replace V with a simpler value based on the
85/// demanded bits. When this function is called, it is known that only the bits
86/// set in DemandedMask of the result of V are ever used downstream.
87/// Consequently, depending on the mask and V, it may be possible to replace V
88/// with a constant or one of its operands. In such cases, this function does
89/// the replacement and returns true. In all other cases, it returns false after
90/// analyzing the expression and setting KnownOne and known to be one in the
91/// expression. KnownZero contains all the bits that are known to be zero in the
92/// expression. These are provided to potentially allow the caller (which might
93/// recursively be SimplifyDemandedBits itself) to simplify the expression.
94/// KnownOne and KnownZero always follow the invariant that:
95/// KnownOne & KnownZero == 0.
96/// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
97/// KnownZero may only be accurate for those bits set in DemandedMask. Note also
98/// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
99/// same.
Chris Lattner7e044912010-01-04 07:17:19 +0000100///
101/// This returns null if it did not change anything and it permits no
102/// simplification. This returns V itself if it did some simplification of V's
103/// operands based on the information about what bits are demanded. This returns
104/// some other non-null value if it found out that V is equal to another value
105/// in the context where the specified bits are demanded, but not for all users.
106Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
107 APInt &KnownZero, APInt &KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +0000108 unsigned Depth,
109 Instruction *CxtI) {
Craig Toppere73658d2014-04-28 04:05:08 +0000110 assert(V != nullptr && "Null pointer of Value???");
Chris Lattner7e044912010-01-04 07:17:19 +0000111 assert(Depth <= 6 && "Limit Search Depth");
112 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattner229907c2011-07-18 04:54:35 +0000113 Type *VTy = V->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000114 assert(
115 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
116 KnownZero.getBitWidth() == BitWidth &&
117 KnownOne.getBitWidth() == BitWidth &&
118 "Value *V, DemandedMask, KnownZero and KnownOne "
119 "must have same BitWidth");
Craig Topper83dc1c62017-04-20 16:14:58 +0000120
121 if (isa<Constant>(V)) {
122 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000123 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000124 }
125
Jay Foad25a5e4c2010-12-01 08:53:58 +0000126 KnownZero.clearAllBits();
127 KnownOne.clearAllBits();
Craig Topper83dc1c62017-04-20 16:14:58 +0000128 if (DemandedMask == 0) // Not demanding any bits from V.
Chris Lattner7e044912010-01-04 07:17:19 +0000129 return UndefValue::get(VTy);
Craig Topper4c947752012-12-22 18:09:02 +0000130
Chris Lattner7e044912010-01-04 07:17:19 +0000131 if (Depth == 6) // Limit search depth.
Craig Topperf40110f2014-04-25 05:29:35 +0000132 return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000133
Chris Lattner7e044912010-01-04 07:17:19 +0000134 Instruction *I = dyn_cast<Instruction>(V);
135 if (!I) {
Hal Finkel60db0582014-09-07 18:57:58 +0000136 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Craig Topperf40110f2014-04-25 05:29:35 +0000137 return nullptr; // Only analyze instructions.
Chris Lattner7e044912010-01-04 07:17:19 +0000138 }
139
140 // If there are multiple uses of this value and we aren't at the root, then
141 // we can't do any simplifications of the operands, because DemandedMask
142 // only reflects the bits demanded by *one* of the users.
143 if (Depth != 0 && !I->hasOneUse()) {
Craig Topperb0076fe2017-04-12 18:05:21 +0000144 return SimplifyMultipleUseDemandedBits(I, DemandedMask, KnownZero, KnownOne,
145 Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000146 }
Craig Topper4c947752012-12-22 18:09:02 +0000147
Craig Topperb0076fe2017-04-12 18:05:21 +0000148 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
149 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
150
Chris Lattner7e044912010-01-04 07:17:19 +0000151 // If this is the root being simplified, allow it to have multiple uses,
152 // just set the DemandedMask to all bits so that we can try to simplify the
153 // operands. This allows visitTruncInst (for example) to simplify the
154 // operand of a trunc without duplicating all the logic below.
155 if (Depth == 0 && !V->hasOneUse())
Craig Toppere06b6bc2017-04-04 05:03:02 +0000156 DemandedMask.setAllBits();
Craig Topper4c947752012-12-22 18:09:02 +0000157
Chris Lattner7e044912010-01-04 07:17:19 +0000158 switch (I->getOpcode()) {
159 default:
Hal Finkel60db0582014-09-07 18:57:58 +0000160 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000161 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000162 case Instruction::And: {
Chris Lattner7e044912010-01-04 07:17:19 +0000163 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topper47596dd2017-03-25 06:52:52 +0000164 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
165 Depth + 1) ||
166 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnownZero, LHSKnownZero,
167 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000168 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000169 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
170 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000171
Craig Topper9a458cd2017-04-14 22:34:14 +0000172 // Output known-0 are known to be clear if zero in either the LHS | RHS.
173 APInt IKnownZero = RHSKnownZero | LHSKnownZero;
174 // Output known-1 bits are only known if set in both the LHS & RHS.
175 APInt IKnownOne = RHSKnownOne & LHSKnownOne;
176
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000177 // If the client is only demanding bits that we know, return the known
178 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000179 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000180 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000181
Chris Lattner7e044912010-01-04 07:17:19 +0000182 // If all of the demanded bits are known 1 on one side, return the other.
183 // These bits cannot contribute to the result of the 'and'.
Craig Topper17f37ba2017-04-20 20:47:35 +0000184 if (DemandedMask.isSubsetOf(LHSKnownZero | RHSKnownOne))
Chris Lattner7e044912010-01-04 07:17:19 +0000185 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000186 if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownOne))
Chris Lattner7e044912010-01-04 07:17:19 +0000187 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000188
Chris Lattner7e044912010-01-04 07:17:19 +0000189 // If the RHS is a constant, see if we can simplify it.
190 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
191 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000192
Craig Topper9a458cd2017-04-14 22:34:14 +0000193 KnownZero = std::move(IKnownZero);
194 KnownOne = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000195 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000196 }
197 case Instruction::Or: {
Chris Lattner7e044912010-01-04 07:17:19 +0000198 // If either the LHS or the RHS are One, the result is One.
Craig Topper47596dd2017-03-25 06:52:52 +0000199 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
200 Depth + 1) ||
201 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnownOne, LHSKnownZero,
202 LHSKnownOne, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000203 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000204 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
205 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
206
Craig Topper9a458cd2017-04-14 22:34:14 +0000207 // Output known-0 bits are only known if clear in both the LHS & RHS.
208 APInt IKnownZero = RHSKnownZero & LHSKnownZero;
209 // Output known-1 are known to be set if set in either the LHS | RHS.
210 APInt IKnownOne = RHSKnownOne | LHSKnownOne;
211
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000212 // If the client is only demanding bits that we know, return the known
213 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000214 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000215 return Constant::getIntegerValue(VTy, IKnownOne);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000216
Chris Lattner7e044912010-01-04 07:17:19 +0000217 // If all of the demanded bits are known zero on one side, return the other.
218 // These bits cannot contribute to the result of the 'or'.
Craig Topper17f37ba2017-04-20 20:47:35 +0000219 if (DemandedMask.isSubsetOf(LHSKnownOne | RHSKnownZero))
Chris Lattner7e044912010-01-04 07:17:19 +0000220 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000221 if (DemandedMask.isSubsetOf(RHSKnownOne | LHSKnownZero))
Chris Lattner7e044912010-01-04 07:17:19 +0000222 return I->getOperand(1);
223
Chris Lattner7e044912010-01-04 07:17:19 +0000224 // If the RHS is a constant, see if we can simplify it.
225 if (ShrinkDemandedConstant(I, 1, DemandedMask))
226 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000227
Craig Topper9a458cd2017-04-14 22:34:14 +0000228 KnownZero = std::move(IKnownZero);
229 KnownOne = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000230 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000231 }
Chris Lattner7e044912010-01-04 07:17:19 +0000232 case Instruction::Xor: {
Craig Topper47596dd2017-03-25 06:52:52 +0000233 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnownZero, RHSKnownOne,
234 Depth + 1) ||
235 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnownZero, LHSKnownOne,
236 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000237 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000238 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
239 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
240
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000241 // Output known-0 bits are known if clear or set in both the LHS & RHS.
242 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
243 (RHSKnownOne & LHSKnownOne);
244 // Output known-1 are known to be set if set in only one of the LHS, RHS.
245 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
246 (RHSKnownOne & LHSKnownZero);
247
248 // If the client is only demanding bits that we know, return the known
249 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000250 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000251 return Constant::getIntegerValue(VTy, IKnownOne);
252
Chris Lattner7e044912010-01-04 07:17:19 +0000253 // If all of the demanded bits are known zero on one side, return the other.
254 // These bits cannot contribute to the result of the 'xor'.
Craig Topper17f37ba2017-04-20 20:47:35 +0000255 if (DemandedMask.isSubsetOf(RHSKnownZero))
Chris Lattner7e044912010-01-04 07:17:19 +0000256 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000257 if (DemandedMask.isSubsetOf(LHSKnownZero))
Chris Lattner7e044912010-01-04 07:17:19 +0000258 return I->getOperand(1);
Craig Topper4c947752012-12-22 18:09:02 +0000259
Chris Lattner7e044912010-01-04 07:17:19 +0000260 // If all of the demanded bits are known to be zero on one side or the
261 // other, turn this into an *inclusive* or.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000262 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Craig Topper17f37ba2017-04-20 20:47:35 +0000263 if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownZero)) {
Craig Topper4c947752012-12-22 18:09:02 +0000264 Instruction *Or =
Chris Lattner7e044912010-01-04 07:17:19 +0000265 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
266 I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000267 return InsertNewInstWith(Or, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000268 }
Craig Topper4c947752012-12-22 18:09:02 +0000269
Chris Lattner7e044912010-01-04 07:17:19 +0000270 // If all of the demanded bits on one side are known, and all of the set
271 // bits on that side are also known to be set on the other side, turn this
272 // into an AND, as we know the bits will be cleared.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000273 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
Craig Topper17f37ba2017-04-20 20:47:35 +0000274 if (DemandedMask.isSubsetOf(RHSKnownZero|RHSKnownOne) &&
275 RHSKnownOne.isSubsetOf(LHSKnownOne)) {
276 Constant *AndC = Constant::getIntegerValue(VTy,
277 ~RHSKnownOne & DemandedMask);
278 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
279 return InsertNewInstWith(And, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000280 }
Craig Topper4c947752012-12-22 18:09:02 +0000281
Chris Lattner7e044912010-01-04 07:17:19 +0000282 // If the RHS is a constant, see if we can simplify it.
283 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
284 if (ShrinkDemandedConstant(I, 1, DemandedMask))
285 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000286
Chris Lattner7e044912010-01-04 07:17:19 +0000287 // If our LHS is an 'and' and if it has one use, and if any of the bits we
288 // are flipping are known to be set, then the xor is just resetting those
289 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
290 // simplifying both of them.
291 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
292 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
293 isa<ConstantInt>(I->getOperand(1)) &&
294 isa<ConstantInt>(LHSInst->getOperand(1)) &&
295 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
296 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
297 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
298 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
Craig Topper4c947752012-12-22 18:09:02 +0000299
Chris Lattner7e044912010-01-04 07:17:19 +0000300 Constant *AndC =
301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000303 InsertNewInstWith(NewAnd, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000304
Chris Lattner7e044912010-01-04 07:17:19 +0000305 Constant *XorC =
306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000308 return InsertNewInstWith(NewXor, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000309 }
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000310
311 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topper9a458cd2017-04-14 22:34:14 +0000312 KnownZero = std::move(IKnownZero);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000313 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topper9a458cd2017-04-14 22:34:14 +0000314 KnownOne = std::move(IKnownOne);
Chris Lattner7e044912010-01-04 07:17:19 +0000315 break;
316 }
317 case Instruction::Select:
James Molloy2b21a7c2015-05-20 18:41:25 +0000318 // If this is a select as part of a min/max pattern, don't simplify any
319 // further in case we break the structure.
320 Value *LHS, *RHS;
James Molloy134bec22015-08-11 09:12:57 +0000321 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000322 return nullptr;
Simon Pilgrim61116dd2015-09-17 20:32:45 +0000323
Craig Topper47596dd2017-03-25 06:52:52 +0000324 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnownZero, RHSKnownOne,
325 Depth + 1) ||
326 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnownZero, LHSKnownOne,
327 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000328 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000329 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
330 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
331
Chris Lattner7e044912010-01-04 07:17:19 +0000332 // If the operands are constants, see if we can simplify them.
333 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
334 ShrinkDemandedConstant(I, 2, DemandedMask))
335 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000336
Chris Lattner7e044912010-01-04 07:17:19 +0000337 // Only known if known in both the LHS and RHS.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000338 KnownOne = RHSKnownOne & LHSKnownOne;
339 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattner7e044912010-01-04 07:17:19 +0000340 break;
341 case Instruction::Trunc: {
342 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
Jay Foad583abbc2010-12-07 08:25:19 +0000343 DemandedMask = DemandedMask.zext(truncBf);
344 KnownZero = KnownZero.zext(truncBf);
345 KnownOne = KnownOne.zext(truncBf);
Craig Topper47596dd2017-03-25 06:52:52 +0000346 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
347 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000348 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000349 DemandedMask = DemandedMask.trunc(BitWidth);
350 KnownZero = KnownZero.trunc(BitWidth);
351 KnownOne = KnownOne.trunc(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000352 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000353 break;
354 }
355 case Instruction::BitCast:
Duncan Sands9dff9be2010-02-15 16:12:20 +0000356 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Craig Topperf40110f2014-04-25 05:29:35 +0000357 return nullptr; // vector->int or fp->int?
Chris Lattner7e044912010-01-04 07:17:19 +0000358
Chris Lattner229907c2011-07-18 04:54:35 +0000359 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
360 if (VectorType *SrcVTy =
Chris Lattner7e044912010-01-04 07:17:19 +0000361 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
362 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
363 // Don't touch a bitcast between vectors of different element counts.
Craig Topperf40110f2014-04-25 05:29:35 +0000364 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000365 } else
366 // Don't touch a scalar-to-vector bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000367 return nullptr;
Duncan Sands19d0b472010-02-16 11:11:14 +0000368 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattner7e044912010-01-04 07:17:19 +0000369 // Don't touch a vector-to-scalar bitcast.
Craig Topperf40110f2014-04-25 05:29:35 +0000370 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000371
Craig Topper47596dd2017-03-25 06:52:52 +0000372 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
373 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000374 return I;
Craig Topper4c947752012-12-22 18:09:02 +0000375 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000376 break;
377 case Instruction::ZExt: {
378 // Compute the bits in the result that are not present in the input.
379 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000380
Jay Foad583abbc2010-12-07 08:25:19 +0000381 DemandedMask = DemandedMask.trunc(SrcBitWidth);
382 KnownZero = KnownZero.trunc(SrcBitWidth);
383 KnownOne = KnownOne.trunc(SrcBitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000384 if (SimplifyDemandedBits(I, 0, DemandedMask, KnownZero, KnownOne,
385 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000386 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000387 DemandedMask = DemandedMask.zext(BitWidth);
388 KnownZero = KnownZero.zext(BitWidth);
389 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000390 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000391 // The top bits are known to be zero.
Craig Topper3a86a042017-03-19 05:49:16 +0000392 KnownZero.setBitsFrom(SrcBitWidth);
Chris Lattner7e044912010-01-04 07:17:19 +0000393 break;
394 }
395 case Instruction::SExt: {
396 // Compute the bits in the result that are not present in the input.
397 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper4c947752012-12-22 18:09:02 +0000398
399 APInt InputDemandedBits = DemandedMask &
Chris Lattner7e044912010-01-04 07:17:19 +0000400 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
401
Craig Topper3a86a042017-03-19 05:49:16 +0000402 APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000403 // If any of the sign extended bits are demanded, we know that the sign
404 // bit is demanded.
405 if ((NewBits & DemandedMask) != 0)
Jay Foad25a5e4c2010-12-01 08:53:58 +0000406 InputDemandedBits.setBit(SrcBitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000407
Jay Foad583abbc2010-12-07 08:25:19 +0000408 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
409 KnownZero = KnownZero.trunc(SrcBitWidth);
410 KnownOne = KnownOne.trunc(SrcBitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000411 if (SimplifyDemandedBits(I, 0, InputDemandedBits, KnownZero, KnownOne,
412 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000413 return I;
Jay Foad583abbc2010-12-07 08:25:19 +0000414 InputDemandedBits = InputDemandedBits.zext(BitWidth);
415 KnownZero = KnownZero.zext(BitWidth);
416 KnownOne = KnownOne.zext(BitWidth);
Craig Topper4c947752012-12-22 18:09:02 +0000417 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
418
Chris Lattner7e044912010-01-04 07:17:19 +0000419 // If the sign bit of the input is known set or clear, then we know the
420 // top bits of the result.
421
422 // If the input sign bit is known zero, or if the NewBits are not demanded
423 // convert this into a zero extension.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000424 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner7e044912010-01-04 07:17:19 +0000425 // Convert to ZExt cast
426 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000427 return InsertNewInstWith(NewCast, *I);
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000428 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
429 KnownOne |= NewBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000430 }
431 break;
432 }
Matthias Braune48484c2015-04-30 22:05:30 +0000433 case Instruction::Add:
434 case Instruction::Sub: {
435 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
436 /// about the high bits of the operands.
Chris Lattner7e044912010-01-04 07:17:19 +0000437 unsigned NLZ = DemandedMask.countLeadingZeros();
Matthias Braune48484c2015-04-30 22:05:30 +0000438 if (NLZ > 0) {
439 // Right fill the mask of bits for this ADD/SUB to demand the most
Chris Lattner7e044912010-01-04 07:17:19 +0000440 // significant bit and all those below it.
Chris Lattner7e044912010-01-04 07:17:19 +0000441 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
Craig Topper07f29152017-03-22 04:03:53 +0000442 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
Craig Topper47596dd2017-03-25 06:52:52 +0000443 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnownZero, LHSKnownOne,
444 Depth + 1) ||
Matthias Braune48484c2015-04-30 22:05:30 +0000445 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
Craig Topper845033a2017-04-12 16:49:59 +0000446 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnownZero, RHSKnownOne,
Craig Topper47596dd2017-03-25 06:52:52 +0000447 Depth + 1)) {
Matthias Braune48484c2015-04-30 22:05:30 +0000448 // Disable the nsw and nuw flags here: We can no longer guarantee that
449 // we won't wrap after simplification. Removing the nsw/nuw flags is
450 // legal here because the top bit is not demanded.
451 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
452 BinOP.setHasNoSignedWrap(false);
453 BinOP.setHasNoUnsignedWrap(false);
Chris Lattner7e044912010-01-04 07:17:19 +0000454 return I;
David Majnemer7d0e99c2015-04-22 22:42:05 +0000455 }
Craig Topper845033a2017-04-12 16:49:59 +0000456
457 // If we are known to be adding/subtracting zeros to every bit below
458 // the highest demanded bit, we just return the other side.
459 if ((DemandedFromOps & RHSKnownZero) == DemandedFromOps)
460 return I->getOperand(0);
461 // We can't do this with the LHS for subtraction.
462 if (I->getOpcode() == Instruction::Add &&
463 (DemandedFromOps & LHSKnownZero) == DemandedFromOps)
464 return I->getOperand(1);
Chris Lattner7e044912010-01-04 07:17:19 +0000465 }
Benjamin Kramer010337c2011-12-24 17:31:38 +0000466
Craig Topper8fbb74b2017-03-24 22:12:10 +0000467 // Otherwise just hand the add/sub off to computeKnownBits to fill in
468 // the known zeros and ones.
469 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000470 break;
Matthias Braune48484c2015-04-30 22:05:30 +0000471 }
Chris Lattner7e044912010-01-04 07:17:19 +0000472 case Instruction::Shl:
473 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000474 {
475 Value *VarX; ConstantInt *C1;
476 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
477 Instruction *Shr = cast<Instruction>(I->getOperand(0));
478 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
479 KnownZero, KnownOne);
480 if (R)
481 return R;
482 }
483 }
484
Chris Lattner768003c2011-02-10 05:09:34 +0000485 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner7e044912010-01-04 07:17:19 +0000486 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000487
Chris Lattner768003c2011-02-10 05:09:34 +0000488 // If the shift is NUW/NSW, then it does demand the high bits.
489 ShlOperator *IOp = cast<ShlOperator>(I);
490 if (IOp->hasNoSignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000491 DemandedMaskIn.setHighBits(ShiftAmt+1);
Chris Lattner768003c2011-02-10 05:09:34 +0000492 else if (IOp->hasNoUnsignedWrap())
Craig Topper3a86a042017-03-19 05:49:16 +0000493 DemandedMaskIn.setHighBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000494
Craig Topper47596dd2017-03-25 06:52:52 +0000495 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
496 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000497 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000498 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
499 KnownZero <<= ShiftAmt;
500 KnownOne <<= ShiftAmt;
Chris Lattner7e044912010-01-04 07:17:19 +0000501 // low bits known zero.
502 if (ShiftAmt)
Craig Topper3a86a042017-03-19 05:49:16 +0000503 KnownZero.setLowBits(ShiftAmt);
Chris Lattner7e044912010-01-04 07:17:19 +0000504 }
505 break;
506 case Instruction::LShr:
507 // For a logical shift right
508 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000509 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000510
Chris Lattner7e044912010-01-04 07:17:19 +0000511 // Unsigned shift right.
512 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Craig Topper4c947752012-12-22 18:09:02 +0000513
Chris Lattner768003c2011-02-10 05:09:34 +0000514 // If the shift is exact, then it does demand the low bits (and knows that
515 // they are zero).
516 if (cast<LShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000517 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000518
Craig Topper47596dd2017-03-25 06:52:52 +0000519 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
520 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000521 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000522 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Craig Topperfc947bc2017-04-18 17:14:21 +0000523 KnownZero.lshrInPlace(ShiftAmt);
524 KnownOne.lshrInPlace(ShiftAmt);
Craig Topper3a86a042017-03-19 05:49:16 +0000525 if (ShiftAmt)
526 KnownZero.setHighBits(ShiftAmt); // high bits known zero.
Chris Lattner7e044912010-01-04 07:17:19 +0000527 }
528 break;
529 case Instruction::AShr:
530 // If this is an arithmetic shift right and only the low-bit is set, we can
531 // always convert this into a logical shr, even if the shift amount is
532 // variable. The low bit of the shift cannot be an input sign bit unless
533 // the shift amount is >= the size of the datatype, which is undefined.
534 if (DemandedMask == 1) {
535 // Perform the logical shift right.
536 Instruction *NewVal = BinaryOperator::CreateLShr(
537 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000538 return InsertNewInstWith(NewVal, *I);
Craig Topper4c947752012-12-22 18:09:02 +0000539 }
Chris Lattner7e044912010-01-04 07:17:19 +0000540
541 // If the sign bit is the only bit demanded by this ashr, then there is no
542 // need to do it, the shift doesn't change the high bit.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000543 if (DemandedMask.isSignMask())
Chris Lattner7e044912010-01-04 07:17:19 +0000544 return I->getOperand(0);
Craig Topper4c947752012-12-22 18:09:02 +0000545
Chris Lattner7e044912010-01-04 07:17:19 +0000546 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner768003c2011-02-10 05:09:34 +0000547 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper4c947752012-12-22 18:09:02 +0000548
Chris Lattner7e044912010-01-04 07:17:19 +0000549 // Signed shift right.
550 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
551 // If any of the "high bits" are demanded, we should set the sign bit as
552 // demanded.
553 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Craig Topperc9a4fc02017-04-14 05:09:04 +0000554 DemandedMaskIn.setSignBit();
Craig Topper4c947752012-12-22 18:09:02 +0000555
Chris Lattner768003c2011-02-10 05:09:34 +0000556 // If the shift is exact, then it does demand the low bits (and knows that
557 // they are zero).
558 if (cast<AShrOperator>(I)->isExact())
Craig Topper3a86a042017-03-19 05:49:16 +0000559 DemandedMaskIn.setLowBits(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000560
Craig Topper47596dd2017-03-25 06:52:52 +0000561 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, KnownZero, KnownOne,
562 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000563 return I;
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000564 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattner7e044912010-01-04 07:17:19 +0000565 // Compute the new bits that are at the top now.
566 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Craig Topperfc947bc2017-04-18 17:14:21 +0000567 KnownZero.lshrInPlace(ShiftAmt);
568 KnownOne.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000569
Chris Lattner7e044912010-01-04 07:17:19 +0000570 // Handle the sign bits.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000571 APInt SignMask(APInt::getSignMask(BitWidth));
Chris Lattner7e044912010-01-04 07:17:19 +0000572 // Adjust to where it is now in the mask.
Craig Topperbcfd2d12017-04-20 16:56:25 +0000573 SignMask.lshrInPlace(ShiftAmt);
Craig Topper4c947752012-12-22 18:09:02 +0000574
Chris Lattner7e044912010-01-04 07:17:19 +0000575 // If the input sign bit is known to be zero, or if none of the top bits
576 // are demanded, turn this into an unsigned shift right.
Craig Topper4c947752012-12-22 18:09:02 +0000577 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
Chris Lattner7e044912010-01-04 07:17:19 +0000578 (HighBits & ~DemandedMask) == HighBits) {
579 // Perform the logical shift right.
Nick Lewycky0c48afa2012-01-04 09:28:29 +0000580 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
581 SA, I->getName());
582 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
Eli Friedman6efb64e2011-05-19 01:20:42 +0000583 return InsertNewInstWith(NewVal, *I);
Craig Topperbcfd2d12017-04-20 16:56:25 +0000584 } else if ((KnownOne & SignMask) != 0) { // New bits are known one.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000585 KnownOne |= HighBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000586 }
587 }
588 break;
589 case Instruction::SRem:
590 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmana81a82d2011-03-09 01:28:35 +0000591 // X % -1 demands all the bits because we don't want to introduce
592 // INT_MIN % -1 (== undef) by accident.
593 if (Rem->isAllOnesValue())
594 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000595 APInt RA = Rem->getValue().abs();
596 if (RA.isPowerOf2()) {
597 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
598 return I->getOperand(0);
599
600 APInt LowBits = RA - 1;
Craig Topperbcfd2d12017-04-20 16:56:25 +0000601 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000602 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnownZero, LHSKnownOne,
603 Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000604 return I;
605
Duncan Sands3a48b872010-01-28 17:22:42 +0000606 // The low bits of LHS are unchanged by the srem.
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000607 KnownZero = LHSKnownZero & LowBits;
608 KnownOne = LHSKnownOne & LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000609
Duncan Sands3a48b872010-01-28 17:22:42 +0000610 // If LHS is non-negative or has all low bits zero, then the upper bits
611 // are all zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000612 if (LHSKnownZero.isSignBitSet() || ((LHSKnownZero & LowBits) == LowBits))
Duncan Sands3a48b872010-01-28 17:22:42 +0000613 KnownZero |= ~LowBits;
614
615 // If LHS is negative and not all low bits are zero, then the upper bits
616 // are all one.
Craig Topperd23004c2017-04-17 16:38:20 +0000617 if (LHSKnownOne.isSignBitSet() && ((LHSKnownOne & LowBits) != 0))
Duncan Sands3a48b872010-01-28 17:22:42 +0000618 KnownOne |= ~LowBits;
Chris Lattner7e044912010-01-04 07:17:19 +0000619
Craig Topper4c947752012-12-22 18:09:02 +0000620 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +0000621 break;
Chris Lattner7e044912010-01-04 07:17:19 +0000622 }
623 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000624
625 // The sign bit is the LHS's sign bit, except when the result of the
626 // remainder is zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000627 if (DemandedMask.isSignBitSet()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000628 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
Hal Finkel60db0582014-09-07 18:57:58 +0000629 CxtI);
Nick Lewyckye4679792011-03-07 01:50:10 +0000630 // If it's known zero, our sign bit is also zero.
Craig Topperd23004c2017-04-17 16:38:20 +0000631 if (LHSKnownZero.isSignBitSet())
Craig Topper3a86a042017-03-19 05:49:16 +0000632 KnownZero.setSignBit();
Nick Lewyckye4679792011-03-07 01:50:10 +0000633 }
Chris Lattner7e044912010-01-04 07:17:19 +0000634 break;
635 case Instruction::URem: {
636 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
637 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Craig Topper47596dd2017-03-25 06:52:52 +0000638 if (SimplifyDemandedBits(I, 0, AllOnes, KnownZero2, KnownOne2, Depth + 1) ||
639 SimplifyDemandedBits(I, 1, AllOnes, KnownZero2, KnownOne2, Depth + 1))
Chris Lattner7e044912010-01-04 07:17:19 +0000640 return I;
641
642 unsigned Leaders = KnownZero2.countLeadingOnes();
Chris Lattner7e044912010-01-04 07:17:19 +0000643 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
644 break;
645 }
646 case Instruction::Call:
647 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
648 switch (II->getIntrinsicID()) {
649 default: break;
650 case Intrinsic::bswap: {
651 // If the only bits demanded come from one byte of the bswap result,
652 // just shift the input byte into position to eliminate the bswap.
653 unsigned NLZ = DemandedMask.countLeadingZeros();
654 unsigned NTZ = DemandedMask.countTrailingZeros();
Craig Topper4c947752012-12-22 18:09:02 +0000655
Chris Lattner7e044912010-01-04 07:17:19 +0000656 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
657 // we need all the bits down to bit 8. Likewise, round NLZ. If we
658 // have 14 leading zeros, round to 8.
659 NLZ &= ~7;
660 NTZ &= ~7;
661 // If we need exactly one byte, we can do this transformation.
662 if (BitWidth-NLZ-NTZ == 8) {
663 unsigned ResultBit = NTZ;
664 unsigned InputBit = BitWidth-NTZ-8;
Craig Topper4c947752012-12-22 18:09:02 +0000665
Chris Lattner7e044912010-01-04 07:17:19 +0000666 // Replace this with either a left or right shift to get the byte into
667 // the right place.
668 Instruction *NewVal;
669 if (InputBit > ResultBit)
Gabor Greif79430172010-06-24 12:35:13 +0000670 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000671 ConstantInt::get(I->getType(), InputBit-ResultBit));
672 else
Gabor Greif79430172010-06-24 12:35:13 +0000673 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattner7e044912010-01-04 07:17:19 +0000674 ConstantInt::get(I->getType(), ResultBit-InputBit));
675 NewVal->takeName(I);
Eli Friedman6efb64e2011-05-19 01:20:42 +0000676 return InsertNewInstWith(NewVal, *I);
Chris Lattner7e044912010-01-04 07:17:19 +0000677 }
Craig Topper4c947752012-12-22 18:09:02 +0000678
Chris Lattner7e044912010-01-04 07:17:19 +0000679 // TODO: Could compute known zero/one bits based on the input.
680 break;
681 }
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000682 case Intrinsic::x86_mmx_pmovmskb:
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000683 case Intrinsic::x86_sse_movmsk_ps:
684 case Intrinsic::x86_sse2_movmsk_pd:
685 case Intrinsic::x86_sse2_pmovmskb_128:
686 case Intrinsic::x86_avx_movmsk_ps_256:
687 case Intrinsic::x86_avx_movmsk_pd_256:
688 case Intrinsic::x86_avx2_pmovmskb: {
689 // MOVMSK copies the vector elements' sign bits to the low bits
690 // and zeros the high bits.
Simon Pilgrimfda22d62016-06-04 13:42:46 +0000691 unsigned ArgWidth;
692 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
693 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
694 } else {
695 auto Arg = II->getArgOperand(0);
696 auto ArgType = cast<VectorType>(Arg->getType());
697 ArgWidth = ArgType->getNumElements();
698 }
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000699
700 // If we don't need any of low bits then return zero,
701 // we know that DemandedMask is non-zero already.
702 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
703 if (DemandedElts == 0)
704 return ConstantInt::getNullValue(VTy);
705
Ahmed Bougacha17482a52016-04-28 14:36:07 +0000706 // We know that the upper bits are set to zero.
Craig Topper3a86a042017-03-19 05:49:16 +0000707 KnownZero.setBitsFrom(ArgWidth);
Simon Pilgrimbd4a3be2016-04-28 12:22:53 +0000708 return nullptr;
709 }
Chad Rosierb3628842011-05-26 23:13:19 +0000710 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topper3a86a042017-03-19 05:49:16 +0000711 KnownZero.setBitsFrom(32);
Craig Topperf40110f2014-04-25 05:29:35 +0000712 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000713 }
714 }
Hal Finkel60db0582014-09-07 18:57:58 +0000715 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
Chris Lattner7e044912010-01-04 07:17:19 +0000716 break;
717 }
Craig Topper4c947752012-12-22 18:09:02 +0000718
Chris Lattner7e044912010-01-04 07:17:19 +0000719 // If the client is only demanding bits that we know, return the known
720 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000721 if (DemandedMask.isSubsetOf(KnownZero|KnownOne))
Duncan Sandsc8a3e562010-01-29 06:18:46 +0000722 return Constant::getIntegerValue(VTy, KnownOne);
Craig Topperf40110f2014-04-25 05:29:35 +0000723 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +0000724}
725
Craig Topperb0076fe2017-04-12 18:05:21 +0000726/// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
727/// bits. It also tries to handle simplifications that can be done based on
728/// DemandedMask, but without modifying the Instruction.
729Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
730 const APInt &DemandedMask,
731 APInt &KnownZero,
732 APInt &KnownOne,
733 unsigned Depth,
734 Instruction *CxtI) {
735 unsigned BitWidth = DemandedMask.getBitWidth();
736 Type *ITy = I->getType();
737
738 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
739 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
740
741 // Despite the fact that we can't simplify this instruction in all User's
742 // context, we can at least compute the knownzero/knownone bits, and we can
743 // do simplifications that apply to *just* the one user if we know that
744 // this instruction has a simpler value in that context.
Craig Topperf35a7f72017-04-12 18:25:25 +0000745 switch (I->getOpcode()) {
Craig Topper9a458cd2017-04-14 22:34:14 +0000746 case Instruction::And: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000747 // If either the LHS or the RHS are Zero, the result is zero.
748 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
749 CxtI);
750 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
751 CxtI);
752
Craig Topper9a458cd2017-04-14 22:34:14 +0000753 // Output known-0 are known to be clear if zero in either the LHS | RHS.
754 APInt IKnownZero = RHSKnownZero | LHSKnownZero;
755 // Output known-1 bits are only known if set in both the LHS & RHS.
756 APInt IKnownOne = RHSKnownOne & LHSKnownOne;
757
Craig Topperc75f94b2017-04-12 19:32:47 +0000758 // If the client is only demanding bits that we know, return the known
759 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000760 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000761 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000762
Craig Topperb0076fe2017-04-12 18:05:21 +0000763 // If all of the demanded bits are known 1 on one side, return the other.
764 // These bits cannot contribute to the result of the 'and' in this
765 // context.
Craig Topper17f37ba2017-04-20 20:47:35 +0000766 if (DemandedMask.isSubsetOf(LHSKnownZero | RHSKnownOne))
Craig Topperb0076fe2017-04-12 18:05:21 +0000767 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000768 if (DemandedMask.isSubsetOf(RHSKnownZero | LHSKnownOne))
Craig Topperb0076fe2017-04-12 18:05:21 +0000769 return I->getOperand(1);
770
Craig Topper9a458cd2017-04-14 22:34:14 +0000771 KnownZero = std::move(IKnownZero);
772 KnownOne = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000773 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000774 }
775 case Instruction::Or: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000776 // We can simplify (X|Y) -> X or Y in the user's context if we know that
777 // only bits from X or Y are demanded.
778
779 // If either the LHS or the RHS are One, the result is One.
780 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
781 CxtI);
782 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
783 CxtI);
784
Craig Topper9a458cd2017-04-14 22:34:14 +0000785 // Output known-0 bits are only known if clear in both the LHS & RHS.
786 APInt IKnownZero = RHSKnownZero & LHSKnownZero;
787 // Output known-1 are known to be set if set in either the LHS | RHS.
788 APInt IKnownOne = RHSKnownOne | LHSKnownOne;
789
Craig Topperc75f94b2017-04-12 19:32:47 +0000790 // If the client is only demanding bits that we know, return the known
791 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000792 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topper9a458cd2017-04-14 22:34:14 +0000793 return Constant::getIntegerValue(ITy, IKnownOne);
Craig Topperc75f94b2017-04-12 19:32:47 +0000794
Craig Topperb0076fe2017-04-12 18:05:21 +0000795 // If all of the demanded bits are known zero on one side, return the
796 // other. These bits cannot contribute to the result of the 'or' in this
797 // context.
Craig Topper17f37ba2017-04-20 20:47:35 +0000798 if (DemandedMask.isSubsetOf(LHSKnownOne | RHSKnownZero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000799 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000800 if (DemandedMask.isSubsetOf(RHSKnownOne | LHSKnownZero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000801 return I->getOperand(1);
802
Craig Topper9a458cd2017-04-14 22:34:14 +0000803 KnownZero = std::move(IKnownZero);
804 KnownOne = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000805 break;
Craig Topper9a458cd2017-04-14 22:34:14 +0000806 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000807 case Instruction::Xor: {
Craig Topperb0076fe2017-04-12 18:05:21 +0000808 // We can simplify (X^Y) -> X or Y in the user's context if we know that
809 // only bits from X or Y are demanded.
810
811 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
812 CxtI);
813 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
814 CxtI);
815
Craig Topperc75f94b2017-04-12 19:32:47 +0000816 // Output known-0 bits are known if clear or set in both the LHS & RHS.
817 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
818 (RHSKnownOne & LHSKnownOne);
819 // Output known-1 are known to be set if set in only one of the LHS, RHS.
820 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
821 (RHSKnownOne & LHSKnownZero);
822
823 // If the client is only demanding bits that we know, return the known
824 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000825 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
Craig Topperc75f94b2017-04-12 19:32:47 +0000826 return Constant::getIntegerValue(ITy, IKnownOne);
827
Craig Topperb0076fe2017-04-12 18:05:21 +0000828 // If all of the demanded bits are known zero on one side, return the
829 // other.
Craig Topper17f37ba2017-04-20 20:47:35 +0000830 if (DemandedMask.isSubsetOf(RHSKnownZero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000831 return I->getOperand(0);
Craig Topper17f37ba2017-04-20 20:47:35 +0000832 if (DemandedMask.isSubsetOf(LHSKnownZero))
Craig Topperb0076fe2017-04-12 18:05:21 +0000833 return I->getOperand(1);
Craig Topperf35a7f72017-04-12 18:25:25 +0000834
Craig Topperc75f94b2017-04-12 19:32:47 +0000835 // Output known-0 bits are known if clear or set in both the LHS & RHS.
836 KnownZero = std::move(IKnownZero);
837 // Output known-1 are known to be set if set in only one of the LHS, RHS.
838 KnownOne = std::move(IKnownOne);
Craig Topperf35a7f72017-04-12 18:25:25 +0000839 break;
Craig Topperb0076fe2017-04-12 18:05:21 +0000840 }
Craig Topperc75f94b2017-04-12 19:32:47 +0000841 default:
842 // Compute the KnownZero/KnownOne bits to simplify things downstream.
843 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
Craig Topperb0076fe2017-04-12 18:05:21 +0000844
Craig Topperc75f94b2017-04-12 19:32:47 +0000845 // If this user is only demanding bits that we know, return the known
846 // constant.
Craig Topper17f37ba2017-04-20 20:47:35 +0000847 if (DemandedMask.isSubsetOf(KnownZero|KnownOne))
Craig Topperc75f94b2017-04-12 19:32:47 +0000848 return Constant::getIntegerValue(ITy, KnownOne);
Craig Topper9a51c7f2017-04-12 18:17:46 +0000849
Craig Topperc75f94b2017-04-12 19:32:47 +0000850 break;
851 }
Craig Topper9a51c7f2017-04-12 18:17:46 +0000852
Craig Topperb0076fe2017-04-12 18:05:21 +0000853 return nullptr;
854}
855
856
Shuxin Yang63e999e2012-12-04 00:04:54 +0000857/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
858/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
859/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
860/// of "C2-C1".
861///
862/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
863/// ..., bn}, without considering the specific value X is holding.
864/// This transformation is legal iff one of following conditions is hold:
865/// 1) All the bit in S are 0, in this case E1 == E2.
866/// 2) We don't care those bits in S, per the input DemandedMask.
867/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
868/// rest bits.
869///
870/// Currently we only test condition 2).
871///
872/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
873/// not successful.
874Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
Benjamin Kramerc321e532016-06-08 19:09:22 +0000875 Instruction *Shl,
876 const APInt &DemandedMask,
877 APInt &KnownZero,
878 APInt &KnownOne) {
Shuxin Yang63e999e2012-12-04 00:04:54 +0000879
Benjamin Kramer010f1082013-08-30 14:35:35 +0000880 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
881 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
882 if (!ShlOp1 || !ShrOp1)
Craig Topperf40110f2014-04-25 05:29:35 +0000883 return nullptr; // Noop.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000884
885 Value *VarX = Shr->getOperand(0);
886 Type *Ty = VarX->getType();
887 unsigned BitWidth = Ty->getIntegerBitWidth();
888 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
Craig Topperf40110f2014-04-25 05:29:35 +0000889 return nullptr; // Undef.
Benjamin Kramer010f1082013-08-30 14:35:35 +0000890
891 unsigned ShlAmt = ShlOp1.getZExtValue();
892 unsigned ShrAmt = ShrOp1.getZExtValue();
Shuxin Yang63e999e2012-12-04 00:04:54 +0000893
894 KnownOne.clearAllBits();
Craig Topper3a86a042017-03-19 05:49:16 +0000895 KnownZero.setLowBits(ShlAmt - 1);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000896 KnownZero &= DemandedMask;
897
Benjamin Kramer010f1082013-08-30 14:35:35 +0000898 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
899 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
Shuxin Yang63e999e2012-12-04 00:04:54 +0000900
901 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
902 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
903 (BitMask1.ashr(ShrAmt) << ShlAmt);
904
905 if (ShrAmt <= ShlAmt) {
906 BitMask2 <<= (ShlAmt - ShrAmt);
907 } else {
908 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
909 BitMask2.ashr(ShrAmt - ShlAmt);
910 }
911
912 // Check if condition-2 (see the comment to this function) is satified.
913 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
914 if (ShrAmt == ShlAmt)
915 return VarX;
916
917 if (!Shr->hasOneUse())
Craig Topperf40110f2014-04-25 05:29:35 +0000918 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000919
920 BinaryOperator *New;
921 if (ShrAmt < ShlAmt) {
922 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
923 New = BinaryOperator::CreateShl(VarX, Amt);
924 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
925 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
926 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
927 } else {
928 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
Shuxin Yang86c0e232012-12-04 03:28:32 +0000929 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
930 BinaryOperator::CreateAShr(VarX, Amt);
Shuxin Yang81b36782012-12-12 00:29:03 +0000931 if (cast<BinaryOperator>(Shr)->isExact())
932 New->setIsExact(true);
Shuxin Yang63e999e2012-12-04 00:04:54 +0000933 }
934
935 return InsertNewInstWith(New, *Shl);
936 }
937
Craig Topperf40110f2014-04-25 05:29:35 +0000938 return nullptr;
Shuxin Yang63e999e2012-12-04 00:04:54 +0000939}
Chris Lattner7e044912010-01-04 07:17:19 +0000940
Sanjay Patelbbbb3ce2016-07-14 20:54:43 +0000941/// The specified value produces a vector with any number of elements.
942/// DemandedElts contains the set of elements that are actually used by the
943/// caller. This method analyzes which elements of the operand are undef and
944/// returns that information in UndefElts.
Chris Lattner7e044912010-01-04 07:17:19 +0000945///
946/// If the information about demanded elements can be used to simplify the
947/// operation, the operation is simplified, then the resultant value is
948/// returned. This returns null if no change was made.
949Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattnerb22423c2010-02-08 23:56:03 +0000950 APInt &UndefElts,
Chris Lattner7e044912010-01-04 07:17:19 +0000951 unsigned Depth) {
Sanjay Patel9190b4a2016-04-29 20:54:56 +0000952 unsigned VWidth = V->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +0000953 APInt EltMask(APInt::getAllOnesValue(VWidth));
954 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
955
956 if (isa<UndefValue>(V)) {
957 // If the entire vector is undefined, just return this info.
958 UndefElts = EltMask;
Craig Topperf40110f2014-04-25 05:29:35 +0000959 return nullptr;
Chris Lattnerb22423c2010-02-08 23:56:03 +0000960 }
Craig Topper4c947752012-12-22 18:09:02 +0000961
Chris Lattnerb22423c2010-02-08 23:56:03 +0000962 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000963 UndefElts = EltMask;
964 return UndefValue::get(V->getType());
965 }
966
967 UndefElts = 0;
Craig Topper4c947752012-12-22 18:09:02 +0000968
Chris Lattner67058832012-01-25 06:48:06 +0000969 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
970 if (Constant *C = dyn_cast<Constant>(V)) {
971 // Check if this is identity. If so, return 0 since we are not simplifying
972 // anything.
973 if (DemandedElts.isAllOnesValue())
Craig Topperf40110f2014-04-25 05:29:35 +0000974 return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +0000975
Chris Lattner229907c2011-07-18 04:54:35 +0000976 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner7e044912010-01-04 07:17:19 +0000977 Constant *Undef = UndefValue::get(EltTy);
Craig Topper4c947752012-12-22 18:09:02 +0000978
Chris Lattner67058832012-01-25 06:48:06 +0000979 SmallVector<Constant*, 16> Elts;
980 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7e044912010-01-04 07:17:19 +0000981 if (!DemandedElts[i]) { // If not demanded, set to undef.
982 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000983 UndefElts.setBit(i);
Chris Lattner67058832012-01-25 06:48:06 +0000984 continue;
985 }
Craig Topper4c947752012-12-22 18:09:02 +0000986
Chris Lattner67058832012-01-25 06:48:06 +0000987 Constant *Elt = C->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000988 if (!Elt) return nullptr;
Craig Topper4c947752012-12-22 18:09:02 +0000989
Chris Lattner67058832012-01-25 06:48:06 +0000990 if (isa<UndefValue>(Elt)) { // Already undef.
Chris Lattner7e044912010-01-04 07:17:19 +0000991 Elts.push_back(Undef);
Jay Foad25a5e4c2010-12-01 08:53:58 +0000992 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +0000993 } else { // Otherwise, defined.
Chris Lattner67058832012-01-25 06:48:06 +0000994 Elts.push_back(Elt);
Chris Lattner7e044912010-01-04 07:17:19 +0000995 }
Chris Lattner67058832012-01-25 06:48:06 +0000996 }
Craig Topper4c947752012-12-22 18:09:02 +0000997
Chris Lattner7e044912010-01-04 07:17:19 +0000998 // If we changed the constant, return it.
Chris Lattner47a86bd2012-01-25 06:02:56 +0000999 Constant *NewCV = ConstantVector::get(Elts);
Craig Topperf40110f2014-04-25 05:29:35 +00001000 return NewCV != C ? NewCV : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001001 }
Craig Topper4c947752012-12-22 18:09:02 +00001002
Chris Lattner7e044912010-01-04 07:17:19 +00001003 // Limit search depth.
1004 if (Depth == 10)
Craig Topperf40110f2014-04-25 05:29:35 +00001005 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001006
Stuart Hastings5bd18b62011-05-17 22:13:31 +00001007 // If multiple users are using the root value, proceed with
Chris Lattner7e044912010-01-04 07:17:19 +00001008 // simplification conservatively assuming that all elements
1009 // are needed.
1010 if (!V->hasOneUse()) {
1011 // Quit if we find multiple users of a non-root value though.
1012 // They'll be handled when it's their turn to be visited by
1013 // the main instcombine process.
1014 if (Depth != 0)
1015 // TODO: Just compute the UndefElts information recursively.
Craig Topperf40110f2014-04-25 05:29:35 +00001016 return nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001017
1018 // Conservatively assume that all elements are needed.
1019 DemandedElts = EltMask;
1020 }
Craig Topper4c947752012-12-22 18:09:02 +00001021
Chris Lattner7e044912010-01-04 07:17:19 +00001022 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001023 if (!I) return nullptr; // Only analyze instructions.
Craig Topper4c947752012-12-22 18:09:02 +00001024
Chris Lattner7e044912010-01-04 07:17:19 +00001025 bool MadeChange = false;
1026 APInt UndefElts2(VWidth, 0);
Craig Topper23ebd952016-12-11 08:54:52 +00001027 APInt UndefElts3(VWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001028 Value *TmpV;
1029 switch (I->getOpcode()) {
1030 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001031
Chris Lattner7e044912010-01-04 07:17:19 +00001032 case Instruction::InsertElement: {
1033 // If this is a variable index, we don't know which element it overwrites.
1034 // demand exactly the same input as we produce.
1035 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Craig Topperf40110f2014-04-25 05:29:35 +00001036 if (!Idx) {
Chris Lattner7e044912010-01-04 07:17:19 +00001037 // Note that we can't propagate undef elt info, because we don't know
1038 // which elt is getting updated.
1039 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001040 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001041 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1042 break;
1043 }
Craig Topper4c947752012-12-22 18:09:02 +00001044
Chris Lattner7e044912010-01-04 07:17:19 +00001045 // If this is inserting an element that isn't demanded, remove this
1046 // insertelement.
1047 unsigned IdxNo = Idx->getZExtValue();
1048 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1049 Worklist.Add(I);
1050 return I->getOperand(0);
1051 }
Craig Topper4c947752012-12-22 18:09:02 +00001052
Chris Lattner7e044912010-01-04 07:17:19 +00001053 // Otherwise, the element inserted overwrites whatever was there, so the
1054 // input demanded set is simpler than the output set.
1055 APInt DemandedElts2 = DemandedElts;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001056 DemandedElts2.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001057 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001058 UndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001059 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1060
1061 // The inserted element is defined.
Jay Foad25a5e4c2010-12-01 08:53:58 +00001062 UndefElts.clearBit(IdxNo);
Chris Lattner7e044912010-01-04 07:17:19 +00001063 break;
1064 }
1065 case Instruction::ShuffleVector: {
1066 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Craig Topper2e18bcf2016-12-29 04:24:32 +00001067 unsigned LHSVWidth =
1068 Shuffle->getOperand(0)->getType()->getVectorNumElements();
Chris Lattner7e044912010-01-04 07:17:19 +00001069 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1070 for (unsigned i = 0; i < VWidth; i++) {
1071 if (DemandedElts[i]) {
1072 unsigned MaskVal = Shuffle->getMaskValue(i);
1073 if (MaskVal != -1u) {
1074 assert(MaskVal < LHSVWidth * 2 &&
1075 "shufflevector mask index out of range!");
1076 if (MaskVal < LHSVWidth)
Jay Foad25a5e4c2010-12-01 08:53:58 +00001077 LeftDemanded.setBit(MaskVal);
Chris Lattner7e044912010-01-04 07:17:19 +00001078 else
Jay Foad25a5e4c2010-12-01 08:53:58 +00001079 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattner7e044912010-01-04 07:17:19 +00001080 }
1081 }
1082 }
1083
Alexey Bataevfee90782016-09-23 09:14:08 +00001084 APInt LHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001085 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001086 LHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001087 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1088
Alexey Bataevfee90782016-09-23 09:14:08 +00001089 APInt RHSUndefElts(LHSVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001090 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
Alexey Bataevfee90782016-09-23 09:14:08 +00001091 RHSUndefElts, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001092 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1093
1094 bool NewUndefElts = false;
Alexey Bataev793c9462016-09-26 13:18:59 +00001095 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1096 unsigned RHSIdx = -1u, RHSValIdx = -1u;
Alexey Bataevfee90782016-09-23 09:14:08 +00001097 bool LHSUniform = true;
1098 bool RHSUniform = true;
Chris Lattner7e044912010-01-04 07:17:19 +00001099 for (unsigned i = 0; i < VWidth; i++) {
1100 unsigned MaskVal = Shuffle->getMaskValue(i);
1101 if (MaskVal == -1u) {
Jay Foad25a5e4c2010-12-01 08:53:58 +00001102 UndefElts.setBit(i);
Eli Friedman888bea02011-09-15 01:14:29 +00001103 } else if (!DemandedElts[i]) {
1104 NewUndefElts = true;
1105 UndefElts.setBit(i);
Chris Lattner7e044912010-01-04 07:17:19 +00001106 } else if (MaskVal < LHSVWidth) {
Alexey Bataevfee90782016-09-23 09:14:08 +00001107 if (LHSUndefElts[MaskVal]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001108 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001109 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001110 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001111 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1112 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001113 LHSUniform = LHSUniform && (MaskVal == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001114 }
1115 } else {
Alexey Bataevfee90782016-09-23 09:14:08 +00001116 if (RHSUndefElts[MaskVal - LHSVWidth]) {
Chris Lattner7e044912010-01-04 07:17:19 +00001117 NewUndefElts = true;
Jay Foad25a5e4c2010-12-01 08:53:58 +00001118 UndefElts.setBit(i);
Alexey Bataevfee90782016-09-23 09:14:08 +00001119 } else {
Alexey Bataev793c9462016-09-26 13:18:59 +00001120 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1121 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
Alexey Bataevfee90782016-09-23 09:14:08 +00001122 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
Chris Lattner7e044912010-01-04 07:17:19 +00001123 }
1124 }
1125 }
1126
Alexey Bataevfee90782016-09-23 09:14:08 +00001127 // Try to transform shuffle with constant vector and single element from
1128 // this constant vector to single insertelement instruction.
1129 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1130 // insertelement V, C[ci], ci-n
1131 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1132 Value *Op = nullptr;
1133 Constant *Value = nullptr;
1134 unsigned Idx = -1u;
1135
Craig Topper62f06e22016-12-29 05:38:31 +00001136 // Find constant vector with the single element in shuffle (LHS or RHS).
Alexey Bataevfee90782016-09-23 09:14:08 +00001137 if (LHSIdx < LHSVWidth && RHSUniform) {
1138 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1139 Op = Shuffle->getOperand(1);
Alexey Bataev793c9462016-09-26 13:18:59 +00001140 Value = CV->getOperand(LHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001141 Idx = LHSIdx;
1142 }
1143 }
1144 if (RHSIdx < LHSVWidth && LHSUniform) {
1145 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1146 Op = Shuffle->getOperand(0);
Alexey Bataev793c9462016-09-26 13:18:59 +00001147 Value = CV->getOperand(RHSValIdx);
Alexey Bataevfee90782016-09-23 09:14:08 +00001148 Idx = RHSIdx;
1149 }
1150 }
1151 // Found constant vector with single element - convert to insertelement.
1152 if (Op && Value) {
1153 Instruction *New = InsertElementInst::Create(
1154 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1155 Shuffle->getName());
1156 InsertNewInstWith(New, *Shuffle);
1157 return New;
1158 }
1159 }
Chris Lattner7e044912010-01-04 07:17:19 +00001160 if (NewUndefElts) {
1161 // Add additional discovered undefs.
Chris Lattner0256be92012-01-27 03:08:05 +00001162 SmallVector<Constant*, 16> Elts;
Chris Lattner7e044912010-01-04 07:17:19 +00001163 for (unsigned i = 0; i < VWidth; ++i) {
1164 if (UndefElts[i])
1165 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1166 else
1167 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1168 Shuffle->getMaskValue(i)));
1169 }
1170 I->setOperand(2, ConstantVector::get(Elts));
1171 MadeChange = true;
1172 }
1173 break;
1174 }
Pete Cooperabc13af2012-07-26 23:10:24 +00001175 case Instruction::Select: {
1176 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1177 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1178 for (unsigned i = 0; i < VWidth; i++) {
Andrea Di Biagio40f59e42015-10-06 10:34:53 +00001179 Constant *CElt = CV->getAggregateElement(i);
1180 // Method isNullValue always returns false when called on a
1181 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1182 // to avoid propagating incorrect information.
1183 if (isa<ConstantExpr>(CElt))
1184 continue;
1185 if (CElt->isNullValue())
Pete Cooperabc13af2012-07-26 23:10:24 +00001186 LeftDemanded.clearBit(i);
1187 else
1188 RightDemanded.clearBit(i);
1189 }
1190 }
1191
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001192 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1193 Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001194 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1195
1196 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001197 UndefElts2, Depth + 1);
Pete Cooperabc13af2012-07-26 23:10:24 +00001198 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001199
Pete Cooperabc13af2012-07-26 23:10:24 +00001200 // Output elements are undefined if both are undefined.
1201 UndefElts &= UndefElts2;
1202 break;
1203 }
Chris Lattner7e044912010-01-04 07:17:19 +00001204 case Instruction::BitCast: {
1205 // Vector->vector casts only.
Chris Lattner229907c2011-07-18 04:54:35 +00001206 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattner7e044912010-01-04 07:17:19 +00001207 if (!VTy) break;
1208 unsigned InVWidth = VTy->getNumElements();
1209 APInt InputDemandedElts(InVWidth, 0);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001210 UndefElts2 = APInt(InVWidth, 0);
Chris Lattner7e044912010-01-04 07:17:19 +00001211 unsigned Ratio;
1212
1213 if (VWidth == InVWidth) {
1214 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1215 // elements as are demanded of us.
1216 Ratio = 1;
1217 InputDemandedElts = DemandedElts;
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001218 } else if ((VWidth % InVWidth) == 0) {
1219 // If the number of elements in the output is a multiple of the number of
1220 // elements in the input then an input element is live if any of the
1221 // corresponding output elements are live.
1222 Ratio = VWidth / InVWidth;
1223 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Chris Lattner7e044912010-01-04 07:17:19 +00001224 if (DemandedElts[OutIdx])
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001225 InputDemandedElts.setBit(OutIdx / Ratio);
1226 } else if ((InVWidth % VWidth) == 0) {
1227 // If the number of elements in the input is a multiple of the number of
1228 // elements in the output then an input element is live if the
1229 // corresponding output element is live.
1230 Ratio = InVWidth / VWidth;
Chris Lattner7e044912010-01-04 07:17:19 +00001231 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001232 if (DemandedElts[InIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001233 InputDemandedElts.setBit(InIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001234 } else {
1235 // Unsupported so far.
1236 break;
Chris Lattner7e044912010-01-04 07:17:19 +00001237 }
Craig Topper4c947752012-12-22 18:09:02 +00001238
Chris Lattner7e044912010-01-04 07:17:19 +00001239 // div/rem demand all inputs, because they don't want divide by zero.
1240 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001241 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001242 if (TmpV) {
1243 I->setOperand(0, TmpV);
1244 MadeChange = true;
1245 }
Craig Topper4c947752012-12-22 18:09:02 +00001246
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001247 if (VWidth == InVWidth) {
1248 UndefElts = UndefElts2;
1249 } else if ((VWidth % InVWidth) == 0) {
1250 // If the number of elements in the output is a multiple of the number of
1251 // elements in the input then an output element is undef if the
1252 // corresponding input element is undef.
Chris Lattner7e044912010-01-04 07:17:19 +00001253 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001254 if (UndefElts2[OutIdx / Ratio])
Jay Foad25a5e4c2010-12-01 08:53:58 +00001255 UndefElts.setBit(OutIdx);
Simon Pilgrim43f5e082015-09-29 08:19:11 +00001256 } else if ((InVWidth % VWidth) == 0) {
1257 // If the number of elements in the input is a multiple of the number of
1258 // elements in the output then an output element is undef if all of the
1259 // corresponding input elements are undef.
1260 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1261 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1262 if (SubUndef.countPopulation() == Ratio)
1263 UndefElts.setBit(OutIdx);
1264 }
1265 } else {
Chris Lattner7e044912010-01-04 07:17:19 +00001266 llvm_unreachable("Unimp");
Chris Lattner7e044912010-01-04 07:17:19 +00001267 }
1268 break;
1269 }
1270 case Instruction::And:
1271 case Instruction::Or:
1272 case Instruction::Xor:
1273 case Instruction::Add:
1274 case Instruction::Sub:
1275 case Instruction::Mul:
1276 // div/rem demand all inputs, because they don't want divide by zero.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001277 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1278 Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001279 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1280 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001281 UndefElts2, Depth + 1);
Chris Lattner7e044912010-01-04 07:17:19 +00001282 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
Craig Topper4c947752012-12-22 18:09:02 +00001283
Chris Lattner7e044912010-01-04 07:17:19 +00001284 // Output elements are undefined if both are undefined. Consider things
1285 // like undef&0. The result is known zero, not undef.
1286 UndefElts &= UndefElts2;
1287 break;
Pete Coopere807e452012-07-26 22:37:04 +00001288 case Instruction::FPTrunc:
1289 case Instruction::FPExt:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001290 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1291 Depth + 1);
Pete Coopere807e452012-07-26 22:37:04 +00001292 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1293 break;
Craig Topper4c947752012-12-22 18:09:02 +00001294
Chris Lattner7e044912010-01-04 07:17:19 +00001295 case Instruction::Call: {
1296 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1297 if (!II) break;
1298 switch (II->getIntrinsicID()) {
1299 default: break;
Craig Topper4c947752012-12-22 18:09:02 +00001300
Craig Topper7fc6d342016-12-11 22:32:38 +00001301 case Intrinsic::x86_xop_vfrcz_ss:
1302 case Intrinsic::x86_xop_vfrcz_sd:
1303 // The instructions for these intrinsics are speced to zero upper bits not
1304 // pass them through like other scalar intrinsics. So we shouldn't just
1305 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1306 // Instead we should return a zero vector.
Craig Topper1a8a3372016-12-29 03:30:17 +00001307 if (!DemandedElts[0]) {
1308 Worklist.Add(II);
Craig Topper7fc6d342016-12-11 22:32:38 +00001309 return ConstantAggregateZero::get(II->getType());
Craig Topper1a8a3372016-12-29 03:30:17 +00001310 }
Craig Topper7fc6d342016-12-11 22:32:38 +00001311
Craig Topperac75bca2016-12-13 07:45:45 +00001312 // Only the lower element is used.
1313 DemandedElts = 1;
Craig Topper7fc6d342016-12-11 22:32:38 +00001314 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1315 UndefElts, Depth + 1);
1316 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperac75bca2016-12-13 07:45:45 +00001317
1318 // Only the lower element is undefined. The high elements are zero.
1319 UndefElts = UndefElts[0];
Craig Topper7fc6d342016-12-11 22:32:38 +00001320 break;
1321
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001322 // Unary scalar-as-vector operations that work column-wise.
Simon Pilgrim83020942016-04-24 18:23:14 +00001323 case Intrinsic::x86_sse_rcp_ss:
1324 case Intrinsic::x86_sse_rsqrt_ss:
1325 case Intrinsic::x86_sse_sqrt_ss:
1326 case Intrinsic::x86_sse2_sqrt_sd:
Simon Pilgrim83020942016-04-24 18:23:14 +00001327 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1328 UndefElts, Depth + 1);
1329 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1330
1331 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001332 if (!DemandedElts[0]) {
1333 Worklist.Add(II);
Simon Pilgrim83020942016-04-24 18:23:14 +00001334 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001335 }
Simon Pilgrim4c564ad2016-04-24 19:31:56 +00001336 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1337 // checks).
Simon Pilgrim83020942016-04-24 18:23:14 +00001338 break;
1339
Craig Toppera0372de2016-12-14 03:17:27 +00001340 // Binary scalar-as-vector operations that work column-wise. The high
1341 // elements come from operand 0. The low element is a function of both
1342 // operands.
Chris Lattner7e044912010-01-04 07:17:19 +00001343 case Intrinsic::x86_sse_min_ss:
1344 case Intrinsic::x86_sse_max_ss:
Simon Pilgrim83020942016-04-24 18:23:14 +00001345 case Intrinsic::x86_sse_cmp_ss:
Chris Lattner7e044912010-01-04 07:17:19 +00001346 case Intrinsic::x86_sse2_min_sd:
1347 case Intrinsic::x86_sse2_max_sd:
Craig Toppera0372de2016-12-14 03:17:27 +00001348 case Intrinsic::x86_sse2_cmp_sd: {
1349 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1350 UndefElts, Depth + 1);
1351 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1352
1353 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001354 if (!DemandedElts[0]) {
1355 Worklist.Add(II);
Craig Toppera0372de2016-12-14 03:17:27 +00001356 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001357 }
Craig Toppera0372de2016-12-14 03:17:27 +00001358
1359 // Only lower element is used for operand 1.
1360 DemandedElts = 1;
1361 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1362 UndefElts2, Depth + 1);
1363 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1364
1365 // Lower element is undefined if both lower elements are undefined.
1366 // Consider things like undef&0. The result is known zero, not undef.
1367 if (!UndefElts2[0])
1368 UndefElts.clearBit(0);
1369
1370 break;
1371 }
1372
Craig Toppereb6a20e2016-12-14 03:17:30 +00001373 // Binary scalar-as-vector operations that work column-wise. The high
1374 // elements come from operand 0 and the low element comes from operand 1.
Simon Pilgrim83020942016-04-24 18:23:14 +00001375 case Intrinsic::x86_sse41_round_ss:
Craig Toppereb6a20e2016-12-14 03:17:30 +00001376 case Intrinsic::x86_sse41_round_sd: {
1377 // Don't use the low element of operand 0.
1378 APInt DemandedElts2 = DemandedElts;
1379 DemandedElts2.clearBit(0);
1380 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001381 UndefElts, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001382 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001383
1384 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001385 if (!DemandedElts[0]) {
1386 Worklist.Add(II);
Craig Toppereb6a20e2016-12-14 03:17:30 +00001387 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001388 }
Craig Toppereb6a20e2016-12-14 03:17:30 +00001389
1390 // Only lower element is used for operand 1.
1391 DemandedElts = 1;
Gabor Greife23efee2010-06-28 16:45:00 +00001392 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001393 UndefElts2, Depth + 1);
Gabor Greife23efee2010-06-28 16:45:00 +00001394 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattner7e044912010-01-04 07:17:19 +00001395
Craig Toppereb6a20e2016-12-14 03:17:30 +00001396 // Take the high undef elements from operand 0 and take the lower element
1397 // from operand 1.
1398 UndefElts.clearBit(0);
1399 UndefElts |= UndefElts2[0];
Chris Lattner7e044912010-01-04 07:17:19 +00001400 break;
Craig Toppereb6a20e2016-12-14 03:17:30 +00001401 }
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001402
Craig Topperdfd268d2016-12-14 05:43:05 +00001403 // Three input scalar-as-vector operations that work column-wise. The high
1404 // elements come from operand 0 and the low element is a function of all
1405 // three inputs.
Craig Topper268b3ab2016-12-14 06:06:58 +00001406 case Intrinsic::x86_avx512_mask_add_ss_round:
1407 case Intrinsic::x86_avx512_mask_div_ss_round:
1408 case Intrinsic::x86_avx512_mask_mul_ss_round:
1409 case Intrinsic::x86_avx512_mask_sub_ss_round:
1410 case Intrinsic::x86_avx512_mask_max_ss_round:
1411 case Intrinsic::x86_avx512_mask_min_ss_round:
1412 case Intrinsic::x86_avx512_mask_add_sd_round:
1413 case Intrinsic::x86_avx512_mask_div_sd_round:
1414 case Intrinsic::x86_avx512_mask_mul_sd_round:
1415 case Intrinsic::x86_avx512_mask_sub_sd_round:
1416 case Intrinsic::x86_avx512_mask_max_sd_round:
1417 case Intrinsic::x86_avx512_mask_min_sd_round:
Craig Topper23ebd952016-12-11 08:54:52 +00001418 case Intrinsic::x86_fma_vfmadd_ss:
1419 case Intrinsic::x86_fma_vfmsub_ss:
1420 case Intrinsic::x86_fma_vfnmadd_ss:
1421 case Intrinsic::x86_fma_vfnmsub_ss:
1422 case Intrinsic::x86_fma_vfmadd_sd:
1423 case Intrinsic::x86_fma_vfmsub_sd:
1424 case Intrinsic::x86_fma_vfnmadd_sd:
1425 case Intrinsic::x86_fma_vfnmsub_sd:
Craig Topperab5f3552016-12-15 03:49:45 +00001426 case Intrinsic::x86_avx512_mask_vfmadd_ss:
1427 case Intrinsic::x86_avx512_mask_vfmadd_sd:
1428 case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1429 case Intrinsic::x86_avx512_maskz_vfmadd_sd:
Craig Topper23ebd952016-12-11 08:54:52 +00001430 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1431 UndefElts, Depth + 1);
1432 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
Craig Topperdfd268d2016-12-14 05:43:05 +00001433
1434 // If lowest element of a scalar op isn't used then use Arg0.
Craig Topper1a8a3372016-12-29 03:30:17 +00001435 if (!DemandedElts[0]) {
1436 Worklist.Add(II);
Craig Topperdfd268d2016-12-14 05:43:05 +00001437 return II->getArgOperand(0);
Craig Topper1a8a3372016-12-29 03:30:17 +00001438 }
Craig Topperdfd268d2016-12-14 05:43:05 +00001439
1440 // Only lower element is used for operand 1 and 2.
1441 DemandedElts = 1;
Craig Topper23ebd952016-12-11 08:54:52 +00001442 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1443 UndefElts2, Depth + 1);
1444 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1445 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1446 UndefElts3, Depth + 1);
1447 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1448
Craig Topperdfd268d2016-12-14 05:43:05 +00001449 // Lower element is undefined if all three lower elements are undefined.
1450 // Consider things like undef&0. The result is known zero, not undef.
1451 if (!UndefElts2[0] || !UndefElts3[0])
1452 UndefElts.clearBit(0);
Craig Topper23ebd952016-12-11 08:54:52 +00001453
Craig Topper23ebd952016-12-11 08:54:52 +00001454 break;
1455
Craig Topperab5f3552016-12-15 03:49:45 +00001456 case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1457 case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1458 case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1459 case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1460 case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1461 case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1462 // These intrinsics get the passthru bits from operand 2.
1463 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1464 UndefElts, Depth + 1);
1465 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1466
1467 // If lowest element of a scalar op isn't used then use Arg2.
Craig Topper1a8a3372016-12-29 03:30:17 +00001468 if (!DemandedElts[0]) {
1469 Worklist.Add(II);
Craig Topperab5f3552016-12-15 03:49:45 +00001470 return II->getArgOperand(2);
Craig Topper1a8a3372016-12-29 03:30:17 +00001471 }
Craig Topperab5f3552016-12-15 03:49:45 +00001472
1473 // Only lower element is used for operand 0 and 1.
1474 DemandedElts = 1;
1475 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1476 UndefElts2, Depth + 1);
1477 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1478 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1479 UndefElts3, Depth + 1);
1480 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1481
1482 // Lower element is undefined if all three lower elements are undefined.
1483 // Consider things like undef&0. The result is known zero, not undef.
1484 if (!UndefElts2[0] || !UndefElts3[0])
1485 UndefElts.clearBit(0);
1486
1487 break;
1488
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001489 case Intrinsic::x86_sse2_pmulu_dq:
1490 case Intrinsic::x86_sse41_pmuldq:
1491 case Intrinsic::x86_avx2_pmul_dq:
Craig Topper72f2d4e2016-12-27 05:30:09 +00001492 case Intrinsic::x86_avx2_pmulu_dq:
1493 case Intrinsic::x86_avx512_pmul_dq_512:
1494 case Intrinsic::x86_avx512_pmulu_dq_512: {
Simon Pilgrimc9cf7fc2016-12-26 23:28:17 +00001495 Value *Op0 = II->getArgOperand(0);
1496 Value *Op1 = II->getArgOperand(1);
1497 unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1498 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1499
1500 APInt InnerDemandedElts(InnerVWidth, 0);
1501 for (unsigned i = 0; i != VWidth; ++i)
1502 if (DemandedElts[i])
1503 InnerDemandedElts.setBit(i * 2);
1504
1505 UndefElts2 = APInt(InnerVWidth, 0);
1506 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1507 Depth + 1);
1508 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1509
1510 UndefElts3 = APInt(InnerVWidth, 0);
1511 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1512 Depth + 1);
1513 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1514
1515 break;
1516 }
1517
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001518 case Intrinsic::x86_sse2_packssdw_128:
1519 case Intrinsic::x86_sse2_packsswb_128:
1520 case Intrinsic::x86_sse2_packuswb_128:
1521 case Intrinsic::x86_sse41_packusdw:
1522 case Intrinsic::x86_avx2_packssdw:
1523 case Intrinsic::x86_avx2_packsswb:
1524 case Intrinsic::x86_avx2_packusdw:
Craig Topper3731f4d2017-02-16 07:35:23 +00001525 case Intrinsic::x86_avx2_packuswb:
1526 case Intrinsic::x86_avx512_packssdw_512:
1527 case Intrinsic::x86_avx512_packsswb_512:
1528 case Intrinsic::x86_avx512_packusdw_512:
1529 case Intrinsic::x86_avx512_packuswb_512: {
Simon Pilgrim51b3b982017-01-20 09:28:21 +00001530 auto *Ty0 = II->getArgOperand(0)->getType();
1531 unsigned InnerVWidth = Ty0->getVectorNumElements();
1532 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1533
1534 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1535 unsigned VWidthPerLane = VWidth / NumLanes;
1536 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1537
1538 // Per lane, pack the elements of the first input and then the second.
1539 // e.g.
1540 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1541 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1542 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1543 APInt OpDemandedElts(InnerVWidth, 0);
1544 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1545 unsigned LaneIdx = Lane * VWidthPerLane;
1546 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1547 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1548 if (DemandedElts[Idx])
1549 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1550 }
1551 }
1552
1553 // Demand elements from the operand.
1554 auto *Op = II->getArgOperand(OpNum);
1555 APInt OpUndefElts(InnerVWidth, 0);
1556 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1557 Depth + 1);
1558 if (TmpV) {
1559 II->setArgOperand(OpNum, TmpV);
1560 MadeChange = true;
1561 }
1562
1563 // Pack the operand's UNDEF elements, one lane at a time.
1564 OpUndefElts = OpUndefElts.zext(VWidth);
1565 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1566 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1567 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1568 LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
1569 UndefElts |= LaneElts;
1570 }
1571 }
1572 break;
1573 }
1574
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001575 // PSHUFB
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001576 case Intrinsic::x86_ssse3_pshuf_b_128:
1577 case Intrinsic::x86_avx2_pshuf_b:
Simon Pilgrimd4eb8002017-01-17 11:35:03 +00001578 case Intrinsic::x86_avx512_pshuf_b_512:
1579 // PERMILVAR
1580 case Intrinsic::x86_avx_vpermilvar_ps:
1581 case Intrinsic::x86_avx_vpermilvar_ps_256:
1582 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1583 case Intrinsic::x86_avx_vpermilvar_pd:
1584 case Intrinsic::x86_avx_vpermilvar_pd_256:
Simon Pilgrimfe2c0ed2017-01-18 14:47:49 +00001585 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1586 // PERMV
1587 case Intrinsic::x86_avx2_permd:
1588 case Intrinsic::x86_avx2_permps: {
Simon Pilgrim73a68c22017-01-16 11:30:41 +00001589 Value *Op1 = II->getArgOperand(1);
1590 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1591 Depth + 1);
1592 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1593 break;
1594 }
1595
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001596 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1597 // in an undefined state.
1598 case Intrinsic::x86_sse4a_extrq:
1599 case Intrinsic::x86_sse4a_extrqi:
1600 case Intrinsic::x86_sse4a_insertq:
1601 case Intrinsic::x86_sse4a_insertqi:
Craig Topper3a86a042017-03-19 05:49:16 +00001602 UndefElts.setHighBits(VWidth / 2);
Simon Pilgrim61116dd2015-09-17 20:32:45 +00001603 break;
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001604 case Intrinsic::amdgcn_buffer_load:
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001605 case Intrinsic::amdgcn_buffer_load_format:
1606 case Intrinsic::amdgcn_image_sample:
1607 case Intrinsic::amdgcn_image_sample_cl:
1608 case Intrinsic::amdgcn_image_sample_d:
1609 case Intrinsic::amdgcn_image_sample_d_cl:
1610 case Intrinsic::amdgcn_image_sample_l:
1611 case Intrinsic::amdgcn_image_sample_b:
1612 case Intrinsic::amdgcn_image_sample_b_cl:
1613 case Intrinsic::amdgcn_image_sample_lz:
1614 case Intrinsic::amdgcn_image_sample_cd:
1615 case Intrinsic::amdgcn_image_sample_cd_cl:
1616
1617 case Intrinsic::amdgcn_image_sample_c:
1618 case Intrinsic::amdgcn_image_sample_c_cl:
1619 case Intrinsic::amdgcn_image_sample_c_d:
1620 case Intrinsic::amdgcn_image_sample_c_d_cl:
1621 case Intrinsic::amdgcn_image_sample_c_l:
1622 case Intrinsic::amdgcn_image_sample_c_b:
1623 case Intrinsic::amdgcn_image_sample_c_b_cl:
1624 case Intrinsic::amdgcn_image_sample_c_lz:
1625 case Intrinsic::amdgcn_image_sample_c_cd:
1626 case Intrinsic::amdgcn_image_sample_c_cd_cl:
1627
1628 case Intrinsic::amdgcn_image_sample_o:
1629 case Intrinsic::amdgcn_image_sample_cl_o:
1630 case Intrinsic::amdgcn_image_sample_d_o:
1631 case Intrinsic::amdgcn_image_sample_d_cl_o:
1632 case Intrinsic::amdgcn_image_sample_l_o:
1633 case Intrinsic::amdgcn_image_sample_b_o:
1634 case Intrinsic::amdgcn_image_sample_b_cl_o:
1635 case Intrinsic::amdgcn_image_sample_lz_o:
1636 case Intrinsic::amdgcn_image_sample_cd_o:
1637 case Intrinsic::amdgcn_image_sample_cd_cl_o:
1638
1639 case Intrinsic::amdgcn_image_sample_c_o:
1640 case Intrinsic::amdgcn_image_sample_c_cl_o:
1641 case Intrinsic::amdgcn_image_sample_c_d_o:
1642 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1643 case Intrinsic::amdgcn_image_sample_c_l_o:
1644 case Intrinsic::amdgcn_image_sample_c_b_o:
1645 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1646 case Intrinsic::amdgcn_image_sample_c_lz_o:
1647 case Intrinsic::amdgcn_image_sample_c_cd_o:
1648 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1649
1650 case Intrinsic::amdgcn_image_getlod: {
Craig Topperd33ee1b2017-04-03 16:34:59 +00001651 if (VWidth == 1 || !DemandedElts.isMask())
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001652 return nullptr;
1653
1654 // TODO: Handle 3 vectors when supported in code gen.
1655 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1656 if (NewNumElts == VWidth)
1657 return nullptr;
1658
1659 Module *M = II->getParent()->getParent()->getParent();
1660 Type *EltTy = V->getType()->getVectorElementType();
1661
1662 Type *NewTy = (NewNumElts == 1) ? EltTy :
1663 VectorType::get(EltTy, NewNumElts);
1664
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001665 auto IID = II->getIntrinsicID();
1666
1667 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1668 IID == Intrinsic::amdgcn_buffer_load_format;
1669
1670 Function *NewIntrin = IsBuffer ?
1671 Intrinsic::getDeclaration(M, IID, NewTy) :
1672 // Samplers have 3 mangled types.
1673 Intrinsic::getDeclaration(M, IID,
1674 { NewTy, II->getArgOperand(0)->getType(),
1675 II->getArgOperand(1)->getType()});
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001676
1677 SmallVector<Value *, 5> Args;
1678 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1679 Args.push_back(II->getArgOperand(I));
1680
Matt Arsenaulta3bdd8f2017-03-10 05:25:49 +00001681 IRBuilderBase::InsertPointGuard Guard(*Builder);
1682 Builder->SetInsertPoint(II);
1683
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001684 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args);
1685 NewCall->takeName(II);
1686 NewCall->copyMetadata(*II);
Matt Arsenault7205f3c2017-04-17 15:12:44 +00001687
1688 if (!IsBuffer) {
1689 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1690 if (DMask) {
1691 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1692
1693 unsigned PopCnt = 0;
1694 unsigned NewDMask = 0;
1695 for (unsigned I = 0; I < 4; ++I) {
1696 const unsigned Bit = 1 << I;
1697 if (!!(DMaskVal & Bit)) {
1698 if (++PopCnt > NewNumElts)
1699 break;
1700
1701 NewDMask |= Bit;
1702 }
1703 }
1704
1705 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1706 }
1707 }
1708
1709
Matt Arsenaultefe949c2017-03-09 20:34:27 +00001710 if (NewNumElts == 1) {
1711 return Builder->CreateInsertElement(UndefValue::get(V->getType()),
1712 NewCall, static_cast<uint64_t>(0));
1713 }
1714
1715 SmallVector<uint32_t, 8> EltMask;
1716 for (unsigned I = 0; I < VWidth; ++I)
1717 EltMask.push_back(I);
1718
1719 Value *Shuffle = Builder->CreateShuffleVector(
1720 NewCall, UndefValue::get(NewTy), EltMask);
1721
1722 MadeChange = true;
1723 return Shuffle;
1724 }
Chris Lattner7e044912010-01-04 07:17:19 +00001725 }
1726 break;
1727 }
1728 }
Craig Topperf40110f2014-04-25 05:29:35 +00001729 return MadeChange ? I : nullptr;
Chris Lattner7e044912010-01-04 07:17:19 +00001730}