Justin Bogner | 7d449d3 | 2017-08-21 22:57:06 +0000 | [diff] [blame] | 1 | //===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===// |
| 2 | // |
Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Justin Bogner | 7d449d3 | 2017-08-21 22:57:06 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/FuzzMutate/Random.h" |
| 10 | #include "gtest/gtest.h" |
| 11 | #include <random> |
| 12 | |
| 13 | using namespace llvm; |
| 14 | |
| 15 | TEST(ReservoirSamplerTest, OneItem) { |
| 16 | std::mt19937 Rand; |
| 17 | auto Sampler = makeSampler(Rand, 7, 1); |
| 18 | ASSERT_FALSE(Sampler.isEmpty()); |
| 19 | ASSERT_EQ(7, Sampler.getSelection()); |
| 20 | } |
| 21 | |
| 22 | TEST(ReservoirSamplerTest, NoWeight) { |
| 23 | std::mt19937 Rand; |
| 24 | auto Sampler = makeSampler(Rand, 7, 0); |
| 25 | ASSERT_TRUE(Sampler.isEmpty()); |
| 26 | } |
| 27 | |
| 28 | TEST(ReservoirSamplerTest, Uniform) { |
| 29 | std::mt19937 Rand; |
| 30 | |
| 31 | // Run three chi-squared tests to check that the distribution is reasonably |
| 32 | // uniform. |
| 33 | std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| 34 | |
| 35 | int Failures = 0; |
| 36 | for (int Run = 0; Run < 3; ++Run) { |
| 37 | std::vector<int> Counts(Items.size(), 0); |
| 38 | |
| 39 | // We need $np_s > 5$ at minimum, but we're better off going a couple of |
| 40 | // orders of magnitude larger. |
| 41 | int N = Items.size() * 5 * 100; |
| 42 | for (int I = 0; I < N; ++I) { |
| 43 | auto Sampler = makeSampler(Rand, Items); |
| 44 | Counts[Sampler.getSelection()] += 1; |
| 45 | } |
| 46 | |
| 47 | // Knuth. TAOCP Vol. 2, 3.3.1 (8): |
| 48 | // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$ |
| 49 | double Ps = 1.0 / Items.size(); |
| 50 | double Sum = 0.0; |
| 51 | for (int Ys : Counts) |
| 52 | Sum += Ys * Ys / Ps; |
| 53 | double V = (Sum / N) - N; |
| 54 | |
| 55 | assert(Items.size() == 10 && "Our chi-squared values assume 10 items"); |
| 56 | // Since we have 10 items, there are 9 degrees of freedom and the table of |
| 57 | // chi-squared values is as follows: |
| 58 | // |
| 59 | // | p=1% | 5% | 25% | 50% | 75% | 95% | 99% | |
| 60 | // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 | |
| 61 | // |
| 62 | // Check that we're in the likely range of results. |
| 63 | //if (V < 2.088 || V > 21.67) |
| 64 | if (V < 2.088 || V > 21.67) |
| 65 | ++Failures; |
| 66 | } |
| 67 | EXPECT_LT(Failures, 3) << "Non-uniform distribution?"; |
| 68 | } |