blob: c3391d087b75923b583b29c0ba2eff6e2ed8f6d8 [file] [log] [blame]
Samuel Antao45bfe4c2016-02-08 15:59:20 +00001//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides a class for OpenMP runtime code generation specialized to NVPTX
11// targets.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGOpenMPRuntimeNVPTX.h"
Alexey Bataevc5b1d322016-03-04 09:22:22 +000016#include "clang/AST/DeclOpenMP.h"
Carlo Bertollic6872252016-04-04 15:55:02 +000017#include "CodeGenFunction.h"
18#include "clang/AST/StmtOpenMP.h"
Samuel Antao45bfe4c2016-02-08 15:59:20 +000019
20using namespace clang;
21using namespace CodeGen;
22
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +000023namespace {
24enum OpenMPRTLFunctionNVPTX {
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +000025 /// \brief Call to void __kmpc_kernel_init(kmp_int32 thread_limit);
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +000026 OMPRTL_NVPTX__kmpc_kernel_init,
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +000027 /// \brief Call to void __kmpc_kernel_deinit();
28 OMPRTL_NVPTX__kmpc_kernel_deinit,
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +000029 /// \brief Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
30 /// short RequiresOMPRuntime, short RequiresDataSharing);
31 OMPRTL_NVPTX__kmpc_spmd_kernel_init,
32 /// \brief Call to void __kmpc_spmd_kernel_deinit();
33 OMPRTL_NVPTX__kmpc_spmd_kernel_deinit,
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +000034 /// \brief Call to void __kmpc_kernel_prepare_parallel(void
35 /// *outlined_function);
36 OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
37 /// \brief Call to bool __kmpc_kernel_parallel(void **outlined_function);
38 OMPRTL_NVPTX__kmpc_kernel_parallel,
39 /// \brief Call to void __kmpc_kernel_end_parallel();
40 OMPRTL_NVPTX__kmpc_kernel_end_parallel,
41 /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
42 /// global_tid);
43 OMPRTL_NVPTX__kmpc_serialized_parallel,
44 /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
45 /// global_tid);
46 OMPRTL_NVPTX__kmpc_end_serialized_parallel,
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +000047 /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element,
48 /// int16_t lane_offset, int16_t warp_size);
49 OMPRTL_NVPTX__kmpc_shuffle_int32,
50 /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element,
51 /// int16_t lane_offset, int16_t warp_size);
52 OMPRTL_NVPTX__kmpc_shuffle_int64,
53 /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32
54 /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
55 /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
56 /// lane_offset, int16_t shortCircuit),
57 /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
58 OMPRTL_NVPTX__kmpc_parallel_reduce_nowait,
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +000059 /// \brief Call to __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
60 /// int32_t num_vars, size_t reduce_size, void *reduce_data,
61 /// void (*kmp_ShuffleReductFctPtr)(void *rhs, int16_t lane_id, int16_t
62 /// lane_offset, int16_t shortCircuit),
63 /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
64 /// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
65 /// int32_t index, int32_t width),
66 /// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, int32_t
67 /// index, int32_t width, int32_t reduce))
68 OMPRTL_NVPTX__kmpc_teams_reduce_nowait,
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +000069 /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
70 OMPRTL_NVPTX__kmpc_end_reduce_nowait
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +000071};
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +000072
73/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
74class NVPTXActionTy final : public PrePostActionTy {
75 llvm::Value *EnterCallee;
76 ArrayRef<llvm::Value *> EnterArgs;
77 llvm::Value *ExitCallee;
78 ArrayRef<llvm::Value *> ExitArgs;
79 bool Conditional;
80 llvm::BasicBlock *ContBlock = nullptr;
81
82public:
83 NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
84 llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
85 bool Conditional = false)
86 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
87 ExitArgs(ExitArgs), Conditional(Conditional) {}
88 void Enter(CodeGenFunction &CGF) override {
89 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
90 if (Conditional) {
91 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
92 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
93 ContBlock = CGF.createBasicBlock("omp_if.end");
94 // Generate the branch (If-stmt)
95 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
96 CGF.EmitBlock(ThenBlock);
97 }
98 }
99 void Done(CodeGenFunction &CGF) {
100 // Emit the rest of blocks/branches
101 CGF.EmitBranch(ContBlock);
102 CGF.EmitBlock(ContBlock, true);
103 }
104 void Exit(CodeGenFunction &CGF) override {
105 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
106 }
107};
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000108
109// A class to track the execution mode when codegening directives within
110// a target region. The appropriate mode (generic/spmd) is set on entry
111// to the target region and used by containing directives such as 'parallel'
112// to emit optimized code.
113class ExecutionModeRAII {
114private:
115 CGOpenMPRuntimeNVPTX::ExecutionMode SavedMode;
116 CGOpenMPRuntimeNVPTX::ExecutionMode &Mode;
117
118public:
119 ExecutionModeRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &Mode,
120 CGOpenMPRuntimeNVPTX::ExecutionMode NewMode)
121 : Mode(Mode) {
122 SavedMode = Mode;
123 Mode = NewMode;
124 }
125 ~ExecutionModeRAII() { Mode = SavedMode; }
126};
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000127
128/// GPU Configuration: This information can be derived from cuda registers,
129/// however, providing compile time constants helps generate more efficient
130/// code. For all practical purposes this is fine because the configuration
131/// is the same for all known NVPTX architectures.
132enum MachineConfiguration : unsigned {
133 WarpSize = 32,
134 /// Number of bits required to represent a lane identifier, which is
135 /// computed as log_2(WarpSize).
136 LaneIDBits = 5,
137 LaneIDMask = WarpSize - 1,
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +0000138
139 /// Global memory alignment for performance.
140 GlobalMemoryAlignment = 256,
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000141};
142
143enum NamedBarrier : unsigned {
144 /// Synchronize on this barrier #ID using a named barrier primitive.
145 /// Only the subset of active threads in a parallel region arrive at the
146 /// barrier.
147 NB_Parallel = 1,
148};
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000149} // anonymous namespace
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000150
151/// Get the GPU warp size.
152static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000153 CGBuilderTy &Bld = CGF.Builder;
154 return Bld.CreateCall(
155 llvm::Intrinsic::getDeclaration(
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000156 &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000157 llvm::None, "nvptx_warp_size");
158}
159
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000160/// Get the id of the current thread on the GPU.
161static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000162 CGBuilderTy &Bld = CGF.Builder;
163 return Bld.CreateCall(
164 llvm::Intrinsic::getDeclaration(
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000165 &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000166 llvm::None, "nvptx_tid");
167}
168
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000169/// Get the id of the warp in the block.
170/// We assume that the warp size is 32, which is always the case
171/// on the NVPTX device, to generate more efficient code.
172static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
173 CGBuilderTy &Bld = CGF.Builder;
174 return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
175}
176
177/// Get the id of the current lane in the Warp.
178/// We assume that the warp size is 32, which is always the case
179/// on the NVPTX device, to generate more efficient code.
180static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
181 CGBuilderTy &Bld = CGF.Builder;
182 return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
183 "nvptx_lane_id");
184}
185
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000186/// Get the maximum number of threads in a block of the GPU.
187static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000188 CGBuilderTy &Bld = CGF.Builder;
189 return Bld.CreateCall(
190 llvm::Intrinsic::getDeclaration(
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000191 &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000192 llvm::None, "nvptx_num_threads");
193}
194
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000195/// Get barrier to synchronize all threads in a block.
196static void getNVPTXCTABarrier(CodeGenFunction &CGF) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000197 CGBuilderTy &Bld = CGF.Builder;
198 Bld.CreateCall(llvm::Intrinsic::getDeclaration(
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000199 &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0));
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000200}
201
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000202/// Get barrier #ID to synchronize selected (multiple of warp size) threads in
203/// a CTA.
204static void getNVPTXBarrier(CodeGenFunction &CGF, int ID,
205 llvm::Value *NumThreads) {
206 CGBuilderTy &Bld = CGF.Builder;
207 llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads};
208 Bld.CreateCall(llvm::Intrinsic::getDeclaration(&CGF.CGM.getModule(),
209 llvm::Intrinsic::nvvm_barrier),
210 Args);
211}
212
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000213/// Synchronize all GPU threads in a block.
214static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); }
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000215
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000216/// Synchronize worker threads in a parallel region.
217static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) {
218 return getNVPTXBarrier(CGF, NB_Parallel, NumThreads);
219}
220
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000221/// Get the value of the thread_limit clause in the teams directive.
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000222/// For the 'generic' execution mode, the runtime encodes thread_limit in
223/// the launch parameters, always starting thread_limit+warpSize threads per
224/// CTA. The threads in the last warp are reserved for master execution.
225/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
226static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
227 bool IsInSpmdExecutionMode = false) {
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000228 CGBuilderTy &Bld = CGF.Builder;
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000229 return IsInSpmdExecutionMode
230 ? getNVPTXNumThreads(CGF)
231 : Bld.CreateSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
232 "thread_limit");
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000233}
234
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000235/// Get the thread id of the OMP master thread.
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000236/// The master thread id is the first thread (lane) of the last warp in the
237/// GPU block. Warp size is assumed to be some power of 2.
238/// Thread id is 0 indexed.
239/// E.g: If NumThreads is 33, master id is 32.
240/// If NumThreads is 64, master id is 32.
241/// If NumThreads is 1024, master id is 992.
Arpith Chacko Jacobccf2f732017-01-03 20:19:56 +0000242static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000243 CGBuilderTy &Bld = CGF.Builder;
244 llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
245
246 // We assume that the warp size is a power of 2.
247 llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
248
249 return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)),
250 Bld.CreateNot(Mask), "master_tid");
251}
252
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000253CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
254 CodeGenModule &CGM)
255 : WorkerFn(nullptr), CGFI(nullptr) {
256 createWorkerFunction(CGM);
Vasileios Kalintirise5c09592016-03-22 10:41:20 +0000257}
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000258
259void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
260 CodeGenModule &CGM) {
261 // Create an worker function with no arguments.
262 CGFI = &CGM.getTypes().arrangeNullaryFunction();
263
264 WorkerFn = llvm::Function::Create(
265 CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage,
266 /* placeholder */ "_worker", &CGM.getModule());
267 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI);
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000268}
269
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000270bool CGOpenMPRuntimeNVPTX::isInSpmdExecutionMode() const {
271 return CurrentExecutionMode == CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
272}
273
274static CGOpenMPRuntimeNVPTX::ExecutionMode
275getExecutionModeForDirective(CodeGenModule &CGM,
276 const OMPExecutableDirective &D) {
277 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
278 switch (DirectiveKind) {
279 case OMPD_target:
Arpith Chacko Jacobcca61a32017-01-26 15:43:27 +0000280 case OMPD_target_teams:
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000281 return CGOpenMPRuntimeNVPTX::ExecutionMode::Generic;
282 case OMPD_target_parallel:
283 return CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
284 default:
285 llvm_unreachable("Unsupported directive on NVPTX device.");
286 }
287 llvm_unreachable("Unsupported directive on NVPTX device.");
288}
289
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000290void CGOpenMPRuntimeNVPTX::emitGenericKernel(const OMPExecutableDirective &D,
291 StringRef ParentName,
292 llvm::Function *&OutlinedFn,
293 llvm::Constant *&OutlinedFnID,
294 bool IsOffloadEntry,
295 const RegionCodeGenTy &CodeGen) {
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000296 ExecutionModeRAII ModeRAII(CurrentExecutionMode,
297 CGOpenMPRuntimeNVPTX::ExecutionMode::Generic);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000298 EntryFunctionState EST;
299 WorkerFunctionState WST(CGM);
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000300 Work.clear();
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000301
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000302 // Emit target region as a standalone region.
303 class NVPTXPrePostActionTy : public PrePostActionTy {
304 CGOpenMPRuntimeNVPTX &RT;
305 CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
306 CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000307
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000308 public:
309 NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
310 CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
311 CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
312 : RT(RT), EST(EST), WST(WST) {}
313 void Enter(CodeGenFunction &CGF) override {
314 RT.emitGenericEntryHeader(CGF, EST, WST);
315 }
316 void Exit(CodeGenFunction &CGF) override {
317 RT.emitGenericEntryFooter(CGF, EST);
318 }
319 } Action(*this, EST, WST);
320 CodeGen.setAction(Action);
321 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
322 IsOffloadEntry, CodeGen);
323
324 // Create the worker function
325 emitWorkerFunction(WST);
326
327 // Now change the name of the worker function to correspond to this target
328 // region's entry function.
329 WST.WorkerFn->setName(OutlinedFn->getName() + "_worker");
330}
331
332// Setup NVPTX threads for master-worker OpenMP scheme.
333void CGOpenMPRuntimeNVPTX::emitGenericEntryHeader(CodeGenFunction &CGF,
334 EntryFunctionState &EST,
335 WorkerFunctionState &WST) {
336 CGBuilderTy &Bld = CGF.Builder;
337
338 llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
339 llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
340 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
341 EST.ExitBB = CGF.createBasicBlock(".exit");
342
343 auto *IsWorker =
344 Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
345 Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
346
347 CGF.EmitBlock(WorkerBB);
348 CGF.EmitCallOrInvoke(WST.WorkerFn, llvm::None);
349 CGF.EmitBranch(EST.ExitBB);
350
351 CGF.EmitBlock(MasterCheckBB);
352 auto *IsMaster =
353 Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
354 Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
355
356 CGF.EmitBlock(MasterBB);
357 // First action in sequential region:
358 // Initialize the state of the OpenMP runtime library on the GPU.
359 llvm::Value *Args[] = {getThreadLimit(CGF)};
360 CGF.EmitRuntimeCall(
361 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
362}
363
364void CGOpenMPRuntimeNVPTX::emitGenericEntryFooter(CodeGenFunction &CGF,
365 EntryFunctionState &EST) {
366 if (!EST.ExitBB)
367 EST.ExitBB = CGF.createBasicBlock(".exit");
368
369 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
370 CGF.EmitBranch(TerminateBB);
371
372 CGF.EmitBlock(TerminateBB);
373 // Signal termination condition.
374 CGF.EmitRuntimeCall(
375 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), None);
376 // Barrier to terminate worker threads.
377 syncCTAThreads(CGF);
378 // Master thread jumps to exit point.
379 CGF.EmitBranch(EST.ExitBB);
380
381 CGF.EmitBlock(EST.ExitBB);
382 EST.ExitBB = nullptr;
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000383}
384
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000385void CGOpenMPRuntimeNVPTX::emitSpmdKernel(const OMPExecutableDirective &D,
386 StringRef ParentName,
387 llvm::Function *&OutlinedFn,
388 llvm::Constant *&OutlinedFnID,
389 bool IsOffloadEntry,
390 const RegionCodeGenTy &CodeGen) {
391 ExecutionModeRAII ModeRAII(CurrentExecutionMode,
392 CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd);
393 EntryFunctionState EST;
394
395 // Emit target region as a standalone region.
396 class NVPTXPrePostActionTy : public PrePostActionTy {
397 CGOpenMPRuntimeNVPTX &RT;
398 CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
399 const OMPExecutableDirective &D;
400
401 public:
402 NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
403 CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
404 const OMPExecutableDirective &D)
405 : RT(RT), EST(EST), D(D) {}
406 void Enter(CodeGenFunction &CGF) override {
407 RT.emitSpmdEntryHeader(CGF, EST, D);
408 }
409 void Exit(CodeGenFunction &CGF) override {
410 RT.emitSpmdEntryFooter(CGF, EST);
411 }
412 } Action(*this, EST, D);
413 CodeGen.setAction(Action);
414 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
415 IsOffloadEntry, CodeGen);
416 return;
417}
418
419void CGOpenMPRuntimeNVPTX::emitSpmdEntryHeader(
420 CodeGenFunction &CGF, EntryFunctionState &EST,
421 const OMPExecutableDirective &D) {
422 auto &Bld = CGF.Builder;
423
424 // Setup BBs in entry function.
425 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
426 EST.ExitBB = CGF.createBasicBlock(".exit");
427
428 // Initialize the OMP state in the runtime; called by all active threads.
429 // TODO: Set RequiresOMPRuntime and RequiresDataSharing parameters
430 // based on code analysis of the target region.
431 llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSpmdExecutionMode=*/true),
432 /*RequiresOMPRuntime=*/Bld.getInt16(1),
433 /*RequiresDataSharing=*/Bld.getInt16(1)};
434 CGF.EmitRuntimeCall(
435 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
436 CGF.EmitBranch(ExecuteBB);
437
438 CGF.EmitBlock(ExecuteBB);
439}
440
441void CGOpenMPRuntimeNVPTX::emitSpmdEntryFooter(CodeGenFunction &CGF,
442 EntryFunctionState &EST) {
443 if (!EST.ExitBB)
444 EST.ExitBB = CGF.createBasicBlock(".exit");
445
446 llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
447 CGF.EmitBranch(OMPDeInitBB);
448
449 CGF.EmitBlock(OMPDeInitBB);
450 // DeInitialize the OMP state in the runtime; called by all active threads.
451 CGF.EmitRuntimeCall(
452 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_deinit), None);
453 CGF.EmitBranch(EST.ExitBB);
454
455 CGF.EmitBlock(EST.ExitBB);
456 EST.ExitBB = nullptr;
457}
458
459// Create a unique global variable to indicate the execution mode of this target
460// region. The execution mode is either 'generic', or 'spmd' depending on the
461// target directive. This variable is picked up by the offload library to setup
462// the device appropriately before kernel launch. If the execution mode is
463// 'generic', the runtime reserves one warp for the master, otherwise, all
464// warps participate in parallel work.
465static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
466 CGOpenMPRuntimeNVPTX::ExecutionMode Mode) {
467 (void)new llvm::GlobalVariable(
468 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
469 llvm::GlobalValue::WeakAnyLinkage,
470 llvm::ConstantInt::get(CGM.Int8Ty, Mode), Name + Twine("_exec_mode"));
471}
472
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000473void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
474 auto &Ctx = CGM.getContext();
475
476 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000477 CGF.disableDebugInfo();
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000478 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {});
479 emitWorkerLoop(CGF, WST);
480 CGF.FinishFunction();
481}
482
483void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
484 WorkerFunctionState &WST) {
485 //
486 // The workers enter this loop and wait for parallel work from the master.
487 // When the master encounters a parallel region it sets up the work + variable
488 // arguments, and wakes up the workers. The workers first check to see if
489 // they are required for the parallel region, i.e., within the # of requested
490 // parallel threads. The activated workers load the variable arguments and
491 // execute the parallel work.
492 //
493
494 CGBuilderTy &Bld = CGF.Builder;
495
496 llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
497 llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
498 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
499 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
500 llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
501 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
502
503 CGF.EmitBranch(AwaitBB);
504
505 // Workers wait for work from master.
506 CGF.EmitBlock(AwaitBB);
507 // Wait for parallel work
508 syncCTAThreads(CGF);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000509
510 Address WorkFn =
511 CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
512 Address ExecStatus =
513 CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
514 CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
515 CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
516
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000517 llvm::Value *Args[] = {WorkFn.getPointer()};
518 llvm::Value *Ret = CGF.EmitRuntimeCall(
519 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
520 Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000521
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000522 // On termination condition (workid == 0), exit loop.
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000523 llvm::Value *ShouldTerminate =
524 Bld.CreateIsNull(Bld.CreateLoad(WorkFn), "should_terminate");
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000525 Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
526
527 // Activate requested workers.
528 CGF.EmitBlock(SelectWorkersBB);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000529 llvm::Value *IsActive =
530 Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
531 Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000532
533 // Signal start of parallel region.
534 CGF.EmitBlock(ExecuteBB);
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000535
536 // Process work items: outlined parallel functions.
537 for (auto *W : Work) {
538 // Try to match this outlined function.
539 auto *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
540
541 llvm::Value *WorkFnMatch =
542 Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
543
544 llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
545 llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
546 Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
547
548 // Execute this outlined function.
549 CGF.EmitBlock(ExecuteFNBB);
550
551 // Insert call to work function.
552 // FIXME: Pass arguments to outlined function from master thread.
553 auto *Fn = cast<llvm::Function>(W);
554 Address ZeroAddr =
555 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".zero.addr");
556 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C=*/0));
557 llvm::Value *FnArgs[] = {ZeroAddr.getPointer(), ZeroAddr.getPointer()};
558 CGF.EmitCallOrInvoke(Fn, FnArgs);
559
560 // Go to end of parallel region.
561 CGF.EmitBranch(TerminateBB);
562
563 CGF.EmitBlock(CheckNextBB);
564 }
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000565
566 // Signal end of parallel region.
567 CGF.EmitBlock(TerminateBB);
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000568 CGF.EmitRuntimeCall(
569 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
570 llvm::None);
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000571 CGF.EmitBranch(BarrierBB);
572
573 // All active and inactive workers wait at a barrier after parallel region.
574 CGF.EmitBlock(BarrierBB);
575 // Barrier after parallel region.
576 syncCTAThreads(CGF);
577 CGF.EmitBranch(AwaitBB);
578
579 // Exit target region.
580 CGF.EmitBlock(ExitBB);
581}
582
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000583/// \brief Returns specified OpenMP runtime function for the current OpenMP
584/// implementation. Specialized for the NVPTX device.
585/// \param Function OpenMP runtime function.
586/// \return Specified function.
587llvm::Constant *
588CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
589 llvm::Constant *RTLFn = nullptr;
590 switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
591 case OMPRTL_NVPTX__kmpc_kernel_init: {
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000592 // Build void __kmpc_kernel_init(kmp_int32 thread_limit);
593 llvm::Type *TypeParams[] = {CGM.Int32Ty};
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000594 llvm::FunctionType *FnTy =
595 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
596 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
597 break;
598 }
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000599 case OMPRTL_NVPTX__kmpc_kernel_deinit: {
600 // Build void __kmpc_kernel_deinit();
601 llvm::FunctionType *FnTy =
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000602 llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
Arpith Chacko Jacob406acdb2017-01-05 15:24:05 +0000603 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
604 break;
605 }
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000606 case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
607 // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
608 // short RequiresOMPRuntime, short RequiresDataSharing);
609 llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
610 llvm::FunctionType *FnTy =
611 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
612 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
613 break;
614 }
615 case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit: {
616 // Build void __kmpc_spmd_kernel_deinit();
617 llvm::FunctionType *FnTy =
618 llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
619 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit");
620 break;
621 }
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000622 case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
623 /// Build void __kmpc_kernel_prepare_parallel(
624 /// void *outlined_function);
625 llvm::Type *TypeParams[] = {CGM.Int8PtrTy};
626 llvm::FunctionType *FnTy =
627 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
628 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
629 break;
630 }
631 case OMPRTL_NVPTX__kmpc_kernel_parallel: {
632 /// Build bool __kmpc_kernel_parallel(void **outlined_function);
633 llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy};
634 llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
635 llvm::FunctionType *FnTy =
636 llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
637 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
638 break;
639 }
640 case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
641 /// Build void __kmpc_kernel_end_parallel();
642 llvm::FunctionType *FnTy =
643 llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
644 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
645 break;
646 }
647 case OMPRTL_NVPTX__kmpc_serialized_parallel: {
648 // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
649 // global_tid);
650 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
651 llvm::FunctionType *FnTy =
652 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
653 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
654 break;
655 }
656 case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
657 // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
658 // global_tid);
659 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
660 llvm::FunctionType *FnTy =
661 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
662 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
663 break;
664 }
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000665 case OMPRTL_NVPTX__kmpc_shuffle_int32: {
666 // Build int32_t __kmpc_shuffle_int32(int32_t element,
667 // int16_t lane_offset, int16_t warp_size);
668 llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
669 llvm::FunctionType *FnTy =
670 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
671 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
672 break;
673 }
674 case OMPRTL_NVPTX__kmpc_shuffle_int64: {
675 // Build int64_t __kmpc_shuffle_int64(int64_t element,
676 // int16_t lane_offset, int16_t warp_size);
677 llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
678 llvm::FunctionType *FnTy =
679 llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
680 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
681 break;
682 }
683 case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: {
684 // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid,
685 // kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
686 // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
687 // lane_offset, int16_t Algorithm Version),
688 // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
689 llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
690 CGM.Int16Ty, CGM.Int16Ty};
691 auto *ShuffleReduceFnTy =
692 llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
693 /*isVarArg=*/false);
694 llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
695 auto *InterWarpCopyFnTy =
696 llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
697 /*isVarArg=*/false);
698 llvm::Type *TypeParams[] = {CGM.Int32Ty,
699 CGM.Int32Ty,
700 CGM.SizeTy,
701 CGM.VoidPtrTy,
702 ShuffleReduceFnTy->getPointerTo(),
703 InterWarpCopyFnTy->getPointerTo()};
704 llvm::FunctionType *FnTy =
705 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
706 RTLFn = CGM.CreateRuntimeFunction(
707 FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait");
708 break;
709 }
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +0000710 case OMPRTL_NVPTX__kmpc_teams_reduce_nowait: {
711 // Build int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
712 // int32_t num_vars, size_t reduce_size, void *reduce_data,
713 // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
714 // lane_offset, int16_t shortCircuit),
715 // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
716 // void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
717 // int32_t index, int32_t width),
718 // void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad,
719 // int32_t index, int32_t width, int32_t reduce))
720 llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
721 CGM.Int16Ty, CGM.Int16Ty};
722 auto *ShuffleReduceFnTy =
723 llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
724 /*isVarArg=*/false);
725 llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
726 auto *InterWarpCopyFnTy =
727 llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
728 /*isVarArg=*/false);
729 llvm::Type *CopyToScratchpadTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy,
730 CGM.Int32Ty, CGM.Int32Ty};
731 auto *CopyToScratchpadFnTy =
732 llvm::FunctionType::get(CGM.VoidTy, CopyToScratchpadTypeParams,
733 /*isVarArg=*/false);
734 llvm::Type *LoadReduceTypeParams[] = {
735 CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty};
736 auto *LoadReduceFnTy =
737 llvm::FunctionType::get(CGM.VoidTy, LoadReduceTypeParams,
738 /*isVarArg=*/false);
739 llvm::Type *TypeParams[] = {CGM.Int32Ty,
740 CGM.Int32Ty,
741 CGM.SizeTy,
742 CGM.VoidPtrTy,
743 ShuffleReduceFnTy->getPointerTo(),
744 InterWarpCopyFnTy->getPointerTo(),
745 CopyToScratchpadFnTy->getPointerTo(),
746 LoadReduceFnTy->getPointerTo()};
747 llvm::FunctionType *FnTy =
748 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
749 RTLFn = CGM.CreateRuntimeFunction(
750 FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait");
751 break;
752 }
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000753 case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
754 // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
755 llvm::Type *TypeParams[] = {CGM.Int32Ty};
756 llvm::FunctionType *FnTy =
757 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
758 RTLFn = CGM.CreateRuntimeFunction(
759 FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
760 break;
761 }
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000762 }
763 return RTLFn;
764}
765
766void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
767 llvm::Constant *Addr,
Samuel Antaof83efdb2017-01-05 16:02:49 +0000768 uint64_t Size, int32_t) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000769 auto *F = dyn_cast<llvm::Function>(Addr);
770 // TODO: Add support for global variables on the device after declare target
771 // support.
772 if (!F)
773 return;
774 llvm::Module *M = F->getParent();
775 llvm::LLVMContext &Ctx = M->getContext();
776
777 // Get "nvvm.annotations" metadata node
778 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
779
780 llvm::Metadata *MDVals[] = {
781 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"),
782 llvm::ConstantAsMetadata::get(
783 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
784 // Append metadata to nvvm.annotations
785 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
786}
787
788void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
789 const OMPExecutableDirective &D, StringRef ParentName,
790 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
Alexey Bataev14fa1c62016-03-29 05:34:15 +0000791 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000792 if (!IsOffloadEntry) // Nothing to do.
793 return;
794
795 assert(!ParentName.empty() && "Invalid target region parent name!");
796
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000797 CGOpenMPRuntimeNVPTX::ExecutionMode Mode =
798 getExecutionModeForDirective(CGM, D);
799 switch (Mode) {
800 case CGOpenMPRuntimeNVPTX::ExecutionMode::Generic:
801 emitGenericKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
802 CodeGen);
803 break;
804 case CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd:
805 emitSpmdKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
806 CodeGen);
807 break;
808 case CGOpenMPRuntimeNVPTX::ExecutionMode::Unknown:
809 llvm_unreachable(
810 "Unknown programming model for OpenMP directive on NVPTX target.");
811 }
812
813 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000814}
815
Samuel Antao45bfe4c2016-02-08 15:59:20 +0000816CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000817 : CGOpenMPRuntime(CGM), CurrentExecutionMode(ExecutionMode::Unknown) {
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000818 if (!CGM.getLangOpts().OpenMPIsDevice)
819 llvm_unreachable("OpenMP NVPTX can only handle device code.");
Arpith Chacko Jacob5c309e42016-03-22 01:48:56 +0000820}
Carlo Bertollic6872252016-04-04 15:55:02 +0000821
Arpith Chacko Jacob2cd6eea2017-01-25 16:55:10 +0000822void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
823 OpenMPProcBindClauseKind ProcBind,
824 SourceLocation Loc) {
825 // Do nothing in case of Spmd mode and L0 parallel.
826 // TODO: If in Spmd mode and L1 parallel emit the clause.
827 if (isInSpmdExecutionMode())
828 return;
829
830 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
831}
832
Arpith Chacko Jacobe04da5d2017-01-25 01:18:34 +0000833void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
834 llvm::Value *NumThreads,
835 SourceLocation Loc) {
836 // Do nothing in case of Spmd mode and L0 parallel.
837 // TODO: If in Spmd mode and L1 parallel emit the clause.
838 if (isInSpmdExecutionMode())
839 return;
840
841 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
842}
843
Carlo Bertollic6872252016-04-04 15:55:02 +0000844void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
845 const Expr *NumTeams,
846 const Expr *ThreadLimit,
847 SourceLocation Loc) {}
848
Arpith Chacko Jacob19b911c2017-01-18 18:18:53 +0000849llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
850 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
851 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
852 return CGOpenMPRuntime::emitParallelOutlinedFunction(D, ThreadIDVar,
853 InnermostKind, CodeGen);
854}
855
856llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
Carlo Bertollic6872252016-04-04 15:55:02 +0000857 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
858 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
859
Arpith Chacko Jacob19b911c2017-01-18 18:18:53 +0000860 llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction(
861 D, ThreadIDVar, InnermostKind, CodeGen);
862 llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal);
863 OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
864 OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
Carlo Bertollic6872252016-04-04 15:55:02 +0000865
866 return OutlinedFun;
867}
868
869void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
870 const OMPExecutableDirective &D,
871 SourceLocation Loc,
872 llvm::Value *OutlinedFn,
873 ArrayRef<llvm::Value *> CapturedVars) {
874 if (!CGF.HaveInsertPoint())
875 return;
876
877 Address ZeroAddr =
878 CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
879 /*Name*/ ".zero.addr");
880 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
881 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
882 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
883 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
884 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
885 CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
886}
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000887
888void CGOpenMPRuntimeNVPTX::emitParallelCall(
889 CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
890 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
891 if (!CGF.HaveInsertPoint())
892 return;
893
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000894 if (isInSpmdExecutionMode())
895 emitSpmdParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
896 else
897 emitGenericParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000898}
899
900void CGOpenMPRuntimeNVPTX::emitGenericParallelCall(
901 CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
902 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
903 llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
904
Malcolm Parsonsc6e45832017-01-13 18:55:32 +0000905 auto &&L0ParallelGen = [this, Fn](CodeGenFunction &CGF, PrePostActionTy &) {
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000906 CGBuilderTy &Bld = CGF.Builder;
907
908 // Prepare for parallel region. Indicate the outlined function.
909 llvm::Value *Args[] = {Bld.CreateBitOrPointerCast(Fn, CGM.Int8PtrTy)};
910 CGF.EmitRuntimeCall(
911 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
912 Args);
913
914 // Activate workers. This barrier is used by the master to signal
915 // work for the workers.
916 syncCTAThreads(CGF);
917
918 // OpenMP [2.5, Parallel Construct, p.49]
919 // There is an implied barrier at the end of a parallel region. After the
920 // end of a parallel region, only the master thread of the team resumes
921 // execution of the enclosing task region.
922 //
923 // The master waits at this barrier until all workers are done.
924 syncCTAThreads(CGF);
925
926 // Remember for post-processing in worker loop.
927 Work.push_back(Fn);
928 };
929
930 auto *RTLoc = emitUpdateLocation(CGF, Loc);
931 auto *ThreadID = getThreadID(CGF, Loc);
932 llvm::Value *Args[] = {RTLoc, ThreadID};
933
934 auto &&SeqGen = [this, Fn, &CapturedVars, &Args](CodeGenFunction &CGF,
935 PrePostActionTy &) {
Malcolm Parsonsc6e45832017-01-13 18:55:32 +0000936 auto &&CodeGen = [this, Fn, &CapturedVars](CodeGenFunction &CGF,
937 PrePostActionTy &Action) {
Arpith Chacko Jacobbb36fe82017-01-10 15:42:51 +0000938 Action.Enter(CGF);
939
940 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
941 OutlinedFnArgs.push_back(
942 llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
943 OutlinedFnArgs.push_back(
944 llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
945 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
946 CGF.EmitCallOrInvoke(Fn, OutlinedFnArgs);
947 };
948
949 RegionCodeGenTy RCG(CodeGen);
950 NVPTXActionTy Action(
951 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
952 Args,
953 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
954 Args);
955 RCG.setAction(Action);
956 RCG(CGF);
957 };
958
959 if (IfCond)
960 emitOMPIfClause(CGF, IfCond, L0ParallelGen, SeqGen);
961 else {
962 CodeGenFunction::RunCleanupsScope Scope(CGF);
963 RegionCodeGenTy ThenRCG(L0ParallelGen);
964 ThenRCG(CGF);
965 }
966}
Arpith Chacko Jacob44a87c92017-01-18 19:35:00 +0000967
968void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall(
969 CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
970 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
971 // Just call the outlined function to execute the parallel region.
972 // OutlinedFn(&GTid, &zero, CapturedStruct);
973 //
974 // TODO: Do something with IfCond when support for the 'if' clause
975 // is added on Spmd target directives.
976 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
977 OutlinedFnArgs.push_back(
978 llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
979 OutlinedFnArgs.push_back(
980 llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
981 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
982 CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
983}
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +0000984
985/// This function creates calls to one of two shuffle functions to copy
986/// variables between lanes in a warp.
987static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
988 QualType ElemTy,
989 llvm::Value *Elem,
990 llvm::Value *Offset) {
991 auto &CGM = CGF.CGM;
992 auto &C = CGM.getContext();
993 auto &Bld = CGF.Builder;
994 CGOpenMPRuntimeNVPTX &RT =
995 *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
996
997 unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity();
998 assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction.");
999
1000 OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4
1001 ? OMPRTL_NVPTX__kmpc_shuffle_int32
1002 : OMPRTL_NVPTX__kmpc_shuffle_int64;
1003
1004 // Cast all types to 32- or 64-bit values before calling shuffle routines.
1005 auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty;
1006 auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy);
1007 auto *WarpSize = CGF.EmitScalarConversion(
1008 getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true),
1009 C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation());
1010
1011 auto *ShuffledVal =
1012 CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn),
1013 {ElemCast, Offset, WarpSize});
1014
1015 return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy));
1016}
1017
1018namespace {
1019enum CopyAction : unsigned {
1020 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1021 // the warp using shuffle instructions.
1022 RemoteLaneToThread,
1023 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1024 ThreadCopy,
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001025 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1026 ThreadToScratchpad,
1027 // ScratchpadToThread: Copy from a scratchpad array in global memory
1028 // containing team-reduced data to a thread's stack.
1029 ScratchpadToThread,
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001030};
1031} // namespace
1032
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001033struct CopyOptionsTy {
1034 llvm::Value *RemoteLaneOffset;
1035 llvm::Value *ScratchpadIndex;
1036 llvm::Value *ScratchpadWidth;
1037};
1038
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001039/// Emit instructions to copy a Reduce list, which contains partially
1040/// aggregated values, in the specified direction.
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001041static void emitReductionListCopy(
1042 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1043 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1044 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001045
1046 auto &CGM = CGF.CGM;
1047 auto &C = CGM.getContext();
1048 auto &Bld = CGF.Builder;
1049
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001050 auto *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1051 auto *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1052 auto *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1053
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001054 // Iterates, element-by-element, through the source Reduce list and
1055 // make a copy.
1056 unsigned Idx = 0;
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001057 unsigned Size = Privates.size();
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001058 for (auto &Private : Privates) {
1059 Address SrcElementAddr = Address::invalid();
1060 Address DestElementAddr = Address::invalid();
1061 Address DestElementPtrAddr = Address::invalid();
1062 // Should we shuffle in an element from a remote lane?
1063 bool ShuffleInElement = false;
1064 // Set to true to update the pointer in the dest Reduce list to a
1065 // newly created element.
1066 bool UpdateDestListPtr = false;
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001067 // Increment the src or dest pointer to the scratchpad, for each
1068 // new element.
1069 bool IncrScratchpadSrc = false;
1070 bool IncrScratchpadDest = false;
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001071
1072 switch (Action) {
1073 case RemoteLaneToThread: {
1074 // Step 1.1: Get the address for the src element in the Reduce list.
1075 Address SrcElementPtrAddr =
1076 Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
1077 llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
1078 SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1079 SrcElementAddr =
1080 Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
1081
1082 // Step 1.2: Create a temporary to store the element in the destination
1083 // Reduce list.
1084 DestElementPtrAddr =
1085 Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
1086 DestElementAddr =
1087 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1088 ShuffleInElement = true;
1089 UpdateDestListPtr = true;
1090 break;
1091 }
1092 case ThreadCopy: {
1093 // Step 1.1: Get the address for the src element in the Reduce list.
1094 Address SrcElementPtrAddr =
1095 Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
1096 llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
1097 SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1098 SrcElementAddr =
1099 Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
1100
1101 // Step 1.2: Get the address for dest element. The destination
1102 // element has already been created on the thread's stack.
1103 DestElementPtrAddr =
1104 Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
1105 llvm::Value *DestElementPtr =
1106 CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false,
1107 C.VoidPtrTy, SourceLocation());
1108 Address DestElemAddr =
1109 Address(DestElementPtr, C.getTypeAlignInChars(Private->getType()));
1110 DestElementAddr = Bld.CreateElementBitCast(
1111 DestElemAddr, CGF.ConvertTypeForMem(Private->getType()));
1112 break;
1113 }
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001114 case ThreadToScratchpad: {
1115 // Step 1.1: Get the address for the src element in the Reduce list.
1116 Address SrcElementPtrAddr =
1117 Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
1118 llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar(
1119 SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1120 SrcElementAddr =
1121 Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType()));
1122
1123 // Step 1.2: Get the address for dest element:
1124 // address = base + index * ElementSizeInChars.
1125 unsigned ElementSizeInChars =
1126 C.getTypeSizeInChars(Private->getType()).getQuantity();
1127 auto *CurrentOffset =
1128 Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
1129 ScratchpadIndex);
1130 auto *ScratchPadElemAbsolutePtrVal =
1131 Bld.CreateAdd(DestBase.getPointer(), CurrentOffset);
1132 ScratchPadElemAbsolutePtrVal =
1133 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1134 Address ScratchpadPtr =
1135 Address(ScratchPadElemAbsolutePtrVal,
1136 C.getTypeAlignInChars(Private->getType()));
1137 DestElementAddr = Bld.CreateElementBitCast(
1138 ScratchpadPtr, CGF.ConvertTypeForMem(Private->getType()));
1139 IncrScratchpadDest = true;
1140 break;
1141 }
1142 case ScratchpadToThread: {
1143 // Step 1.1: Get the address for the src element in the scratchpad.
1144 // address = base + index * ElementSizeInChars.
1145 unsigned ElementSizeInChars =
1146 C.getTypeSizeInChars(Private->getType()).getQuantity();
1147 auto *CurrentOffset =
1148 Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
1149 ScratchpadIndex);
1150 auto *ScratchPadElemAbsolutePtrVal =
1151 Bld.CreateAdd(SrcBase.getPointer(), CurrentOffset);
1152 ScratchPadElemAbsolutePtrVal =
1153 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1154 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1155 C.getTypeAlignInChars(Private->getType()));
1156 IncrScratchpadSrc = true;
1157
1158 // Step 1.2: Create a temporary to store the element in the destination
1159 // Reduce list.
1160 DestElementPtrAddr =
1161 Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
1162 DestElementAddr =
1163 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1164 UpdateDestListPtr = true;
1165 break;
1166 }
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001167 }
1168
1169 // Regardless of src and dest of copy, we emit the load of src
1170 // element as this is required in all directions
1171 SrcElementAddr = Bld.CreateElementBitCast(
1172 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1173 llvm::Value *Elem =
1174 CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
1175 Private->getType(), SourceLocation());
1176
1177 // Now that all active lanes have read the element in the
1178 // Reduce list, shuffle over the value from the remote lane.
1179 if (ShuffleInElement) {
1180 Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem,
1181 RemoteLaneOffset);
1182 }
1183
1184 // Store the source element value to the dest element address.
1185 CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
1186 Private->getType());
1187
1188 // Step 3.1: Modify reference in dest Reduce list as needed.
1189 // Modifying the reference in Reduce list to point to the newly
1190 // created element. The element is live in the current function
1191 // scope and that of functions it invokes (i.e., reduce_function).
1192 // RemoteReduceData[i] = (void*)&RemoteElem
1193 if (UpdateDestListPtr) {
1194 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
1195 DestElementAddr.getPointer(), CGF.VoidPtrTy),
1196 DestElementPtrAddr, /*Volatile=*/false,
1197 C.VoidPtrTy);
1198 }
1199
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001200 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
1201 // address of the next element in scratchpad memory, unless we're currently
1202 // processing the last one. Memory alignment is also taken care of here.
1203 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
1204 llvm::Value *ScratchpadBasePtr =
1205 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
1206 unsigned ElementSizeInChars =
1207 C.getTypeSizeInChars(Private->getType()).getQuantity();
1208 ScratchpadBasePtr = Bld.CreateAdd(
1209 ScratchpadBasePtr,
1210 Bld.CreateMul(ScratchpadWidth, llvm::ConstantInt::get(
1211 CGM.SizeTy, ElementSizeInChars)));
1212
1213 // Take care of global memory alignment for performance
1214 ScratchpadBasePtr = Bld.CreateSub(ScratchpadBasePtr,
1215 llvm::ConstantInt::get(CGM.SizeTy, 1));
1216 ScratchpadBasePtr = Bld.CreateSDiv(
1217 ScratchpadBasePtr,
1218 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1219 ScratchpadBasePtr = Bld.CreateAdd(ScratchpadBasePtr,
1220 llvm::ConstantInt::get(CGM.SizeTy, 1));
1221 ScratchpadBasePtr = Bld.CreateMul(
1222 ScratchpadBasePtr,
1223 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1224
1225 if (IncrScratchpadDest)
1226 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
1227 else /* IncrScratchpadSrc = true */
1228 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
1229 }
1230
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001231 Idx++;
1232 }
1233}
1234
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001235/// This function emits a helper that loads data from the scratchpad array
1236/// and (optionally) reduces it with the input operand.
1237///
1238/// load_and_reduce(local, scratchpad, index, width, should_reduce)
1239/// reduce_data remote;
1240/// for elem in remote:
1241/// remote.elem = Scratchpad[elem_id][index]
1242/// if (should_reduce)
1243/// local = local @ remote
1244/// else
1245/// local = remote
1246llvm::Value *emitReduceScratchpadFunction(CodeGenModule &CGM,
1247 ArrayRef<const Expr *> Privates,
1248 QualType ReductionArrayTy,
1249 llvm::Value *ReduceFn) {
1250 auto &C = CGM.getContext();
1251 auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
1252
1253 // Destination of the copy.
1254 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
1255 /*Id=*/nullptr, C.VoidPtrTy);
1256 // Base address of the scratchpad array, with each element storing a
1257 // Reduce list per team.
1258 ImplicitParamDecl ScratchPadArg(C, /*DC=*/nullptr, SourceLocation(),
1259 /*Id=*/nullptr, C.VoidPtrTy);
1260 // A source index into the scratchpad array.
1261 ImplicitParamDecl IndexArg(C, /*DC=*/nullptr, SourceLocation(),
1262 /*Id=*/nullptr, Int32Ty);
1263 // Row width of an element in the scratchpad array, typically
1264 // the number of teams.
1265 ImplicitParamDecl WidthArg(C, /*DC=*/nullptr, SourceLocation(),
1266 /*Id=*/nullptr, Int32Ty);
1267 // If should_reduce == 1, then it's load AND reduce,
1268 // If should_reduce == 0 (or otherwise), then it only loads (+ copy).
1269 // The latter case is used for initialization.
1270 ImplicitParamDecl ShouldReduceArg(C, /*DC=*/nullptr, SourceLocation(),
1271 /*Id=*/nullptr, Int32Ty);
1272
1273 FunctionArgList Args;
1274 Args.push_back(&ReduceListArg);
1275 Args.push_back(&ScratchPadArg);
1276 Args.push_back(&IndexArg);
1277 Args.push_back(&WidthArg);
1278 Args.push_back(&ShouldReduceArg);
1279
1280 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1281 auto *Fn = llvm::Function::Create(
1282 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
1283 "_omp_reduction_load_and_reduce", &CGM.getModule());
1284 CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
1285 CodeGenFunction CGF(CGM);
1286 // We don't need debug information in this function as nothing here refers to
1287 // user code.
1288 CGF.disableDebugInfo();
1289 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
1290
1291 auto &Bld = CGF.Builder;
1292
1293 // Get local Reduce list pointer.
1294 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1295 Address ReduceListAddr(
1296 Bld.CreatePointerBitCastOrAddrSpaceCast(
1297 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
1298 C.VoidPtrTy, SourceLocation()),
1299 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
1300 CGF.getPointerAlign());
1301
1302 Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
1303 llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
1304 AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1305
1306 Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
1307 llvm::Value *IndexVal =
1308 Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false,
1309 Int32Ty, SourceLocation()),
1310 CGM.SizeTy, /*isSigned=*/true);
1311
1312 Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
1313 llvm::Value *WidthVal =
1314 Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false,
1315 Int32Ty, SourceLocation()),
1316 CGM.SizeTy, /*isSigned=*/true);
1317
1318 Address AddrShouldReduceArg = CGF.GetAddrOfLocalVar(&ShouldReduceArg);
1319 llvm::Value *ShouldReduceVal = CGF.EmitLoadOfScalar(
1320 AddrShouldReduceArg, /*Volatile=*/false, Int32Ty, SourceLocation());
1321
1322 // The absolute ptr address to the base addr of the next element to copy.
1323 llvm::Value *CumulativeElemBasePtr =
1324 Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
1325 Address SrcDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
1326
1327 // Create a Remote Reduce list to store the elements read from the
1328 // scratchpad array.
1329 Address RemoteReduceList =
1330 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_red_list");
1331
1332 // Assemble remote Reduce list from scratchpad array.
1333 emitReductionListCopy(ScratchpadToThread, CGF, ReductionArrayTy, Privates,
1334 SrcDataAddr, RemoteReduceList,
1335 {/*RemoteLaneOffset=*/nullptr,
1336 /*ScratchpadIndex=*/IndexVal,
1337 /*ScratchpadWidth=*/WidthVal});
1338
1339 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1340 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1341 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1342
1343 auto CondReduce = Bld.CreateICmpEQ(ShouldReduceVal, Bld.getInt32(1));
1344 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
1345
1346 CGF.EmitBlock(ThenBB);
1347 // We should reduce with the local Reduce list.
1348 // reduce_function(LocalReduceList, RemoteReduceList)
1349 llvm::Value *LocalDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1350 ReduceListAddr.getPointer(), CGF.VoidPtrTy);
1351 llvm::Value *RemoteDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1352 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
1353 CGF.EmitCallOrInvoke(ReduceFn, {LocalDataPtr, RemoteDataPtr});
1354 Bld.CreateBr(MergeBB);
1355
1356 CGF.EmitBlock(ElseBB);
1357 // No reduction; just copy:
1358 // Local Reduce list = Remote Reduce list.
1359 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
1360 RemoteReduceList, ReduceListAddr);
1361 Bld.CreateBr(MergeBB);
1362
1363 CGF.EmitBlock(MergeBB);
1364
1365 CGF.FinishFunction();
1366 return Fn;
1367}
1368
1369/// This function emits a helper that stores reduced data from the team
1370/// master to a scratchpad array in global memory.
1371///
1372/// for elem in Reduce List:
1373/// scratchpad[elem_id][index] = elem
1374///
1375llvm::Value *emitCopyToScratchpad(CodeGenModule &CGM,
1376 ArrayRef<const Expr *> Privates,
1377 QualType ReductionArrayTy) {
1378
1379 auto &C = CGM.getContext();
1380 auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
1381
1382 // Source of the copy.
1383 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
1384 /*Id=*/nullptr, C.VoidPtrTy);
1385 // Base address of the scratchpad array, with each element storing a
1386 // Reduce list per team.
1387 ImplicitParamDecl ScratchPadArg(C, /*DC=*/nullptr, SourceLocation(),
1388 /*Id=*/nullptr, C.VoidPtrTy);
1389 // A destination index into the scratchpad array, typically the team
1390 // identifier.
1391 ImplicitParamDecl IndexArg(C, /*DC=*/nullptr, SourceLocation(),
1392 /*Id=*/nullptr, Int32Ty);
1393 // Row width of an element in the scratchpad array, typically
1394 // the number of teams.
1395 ImplicitParamDecl WidthArg(C, /*DC=*/nullptr, SourceLocation(),
1396 /*Id=*/nullptr, Int32Ty);
1397
1398 FunctionArgList Args;
1399 Args.push_back(&ReduceListArg);
1400 Args.push_back(&ScratchPadArg);
1401 Args.push_back(&IndexArg);
1402 Args.push_back(&WidthArg);
1403
1404 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1405 auto *Fn = llvm::Function::Create(
1406 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
1407 "_omp_reduction_copy_to_scratchpad", &CGM.getModule());
1408 CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
1409 CodeGenFunction CGF(CGM);
1410 // We don't need debug information in this function as nothing here refers to
1411 // user code.
1412 CGF.disableDebugInfo();
1413 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
1414
1415 auto &Bld = CGF.Builder;
1416
1417 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1418 Address SrcDataAddr(
1419 Bld.CreatePointerBitCastOrAddrSpaceCast(
1420 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
1421 C.VoidPtrTy, SourceLocation()),
1422 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
1423 CGF.getPointerAlign());
1424
1425 Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
1426 llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
1427 AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1428
1429 Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
1430 llvm::Value *IndexVal =
1431 Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false,
1432 Int32Ty, SourceLocation()),
1433 CGF.SizeTy, /*isSigned=*/true);
1434
1435 Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
1436 llvm::Value *WidthVal =
1437 Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false,
1438 Int32Ty, SourceLocation()),
1439 CGF.SizeTy, /*isSigned=*/true);
1440
1441 // The absolute ptr address to the base addr of the next element to copy.
1442 llvm::Value *CumulativeElemBasePtr =
1443 Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
1444 Address DestDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
1445
1446 emitReductionListCopy(ThreadToScratchpad, CGF, ReductionArrayTy, Privates,
1447 SrcDataAddr, DestDataAddr,
1448 {/*RemoteLaneOffset=*/nullptr,
1449 /*ScratchpadIndex=*/IndexVal,
1450 /*ScratchpadWidth=*/WidthVal});
1451
1452 CGF.FinishFunction();
1453 return Fn;
1454}
1455
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001456/// This function emits a helper that gathers Reduce lists from the first
1457/// lane of every active warp to lanes in the first warp.
1458///
1459/// void inter_warp_copy_func(void* reduce_data, num_warps)
1460/// shared smem[warp_size];
1461/// For all data entries D in reduce_data:
1462/// If (I am the first lane in each warp)
1463/// Copy my local D to smem[warp_id]
1464/// sync
1465/// if (I am the first warp)
1466/// Copy smem[thread_id] to my local D
1467/// sync
1468static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
1469 ArrayRef<const Expr *> Privates,
1470 QualType ReductionArrayTy) {
1471 auto &C = CGM.getContext();
1472 auto &M = CGM.getModule();
1473
1474 // ReduceList: thread local Reduce list.
1475 // At the stage of the computation when this function is called, partially
1476 // aggregated values reside in the first lane of every active warp.
1477 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
1478 /*Id=*/nullptr, C.VoidPtrTy);
1479 // NumWarps: number of warps active in the parallel region. This could
1480 // be smaller than 32 (max warps in a CTA) for partial block reduction.
1481 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, SourceLocation(),
1482 /*Id=*/nullptr,
1483 C.getIntTypeForBitwidth(32, /* Signed */ true));
1484 FunctionArgList Args;
1485 Args.push_back(&ReduceListArg);
1486 Args.push_back(&NumWarpsArg);
1487
1488 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1489 auto *Fn = llvm::Function::Create(
1490 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
1491 "_omp_reduction_inter_warp_copy_func", &CGM.getModule());
1492 CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
1493 CodeGenFunction CGF(CGM);
1494 // We don't need debug information in this function as nothing here refers to
1495 // user code.
1496 CGF.disableDebugInfo();
1497 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
1498
1499 auto &Bld = CGF.Builder;
1500
1501 // This array is used as a medium to transfer, one reduce element at a time,
1502 // the data from the first lane of every warp to lanes in the first warp
1503 // in order to perform the final step of a reduction in a parallel region
1504 // (reduction across warps). The array is placed in NVPTX __shared__ memory
1505 // for reduced latency, as well as to have a distinct copy for concurrently
1506 // executing target regions. The array is declared with common linkage so
1507 // as to be shared across compilation units.
1508 const char *TransferMediumName =
1509 "__openmp_nvptx_data_transfer_temporary_storage";
1510 llvm::GlobalVariable *TransferMedium =
1511 M.getGlobalVariable(TransferMediumName);
1512 if (!TransferMedium) {
1513 auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize);
1514 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
1515 TransferMedium = new llvm::GlobalVariable(
1516 M, Ty,
1517 /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
1518 llvm::Constant::getNullValue(Ty), TransferMediumName,
1519 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
1520 SharedAddressSpace);
1521 }
1522
1523 // Get the CUDA thread id of the current OpenMP thread on the GPU.
1524 auto *ThreadID = getNVPTXThreadID(CGF);
1525 // nvptx_lane_id = nvptx_id % warpsize
1526 auto *LaneID = getNVPTXLaneID(CGF);
1527 // nvptx_warp_id = nvptx_id / warpsize
1528 auto *WarpID = getNVPTXWarpID(CGF);
1529
1530 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1531 Address LocalReduceList(
1532 Bld.CreatePointerBitCastOrAddrSpaceCast(
1533 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
1534 C.VoidPtrTy, SourceLocation()),
1535 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
1536 CGF.getPointerAlign());
1537
1538 unsigned Idx = 0;
1539 for (auto &Private : Privates) {
1540 //
1541 // Warp master copies reduce element to transfer medium in __shared__
1542 // memory.
1543 //
1544 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1545 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1546 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1547
1548 // if (lane_id == 0)
1549 auto IsWarpMaster =
1550 Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master");
1551 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
1552 CGF.EmitBlock(ThenBB);
1553
1554 // Reduce element = LocalReduceList[i]
1555 Address ElemPtrPtrAddr =
1556 Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
1557 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
1558 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1559 // elemptr = (type[i]*)(elemptrptr)
1560 Address ElemPtr =
1561 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
1562 ElemPtr = Bld.CreateElementBitCast(
1563 ElemPtr, CGF.ConvertTypeForMem(Private->getType()));
1564 // elem = *elemptr
1565 llvm::Value *Elem = CGF.EmitLoadOfScalar(
1566 ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
1567
1568 // Get pointer to location in transfer medium.
1569 // MediumPtr = &medium[warp_id]
1570 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
1571 TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
1572 Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType()));
1573 // Casting to actual data type.
1574 // MediumPtr = (type[i]*)MediumPtrAddr;
1575 MediumPtr = Bld.CreateElementBitCast(
1576 MediumPtr, CGF.ConvertTypeForMem(Private->getType()));
1577
1578 //*MediumPtr = elem
1579 Bld.CreateStore(Elem, MediumPtr);
1580
1581 Bld.CreateBr(MergeBB);
1582
1583 CGF.EmitBlock(ElseBB);
1584 Bld.CreateBr(MergeBB);
1585
1586 CGF.EmitBlock(MergeBB);
1587
1588 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
1589 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
1590 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation());
1591
1592 auto *NumActiveThreads = Bld.CreateNSWMul(
1593 NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads");
1594 // named_barrier_sync(ParallelBarrierID, num_active_threads)
1595 syncParallelThreads(CGF, NumActiveThreads);
1596
1597 //
1598 // Warp 0 copies reduce element from transfer medium.
1599 //
1600 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
1601 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
1602 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
1603
1604 // Up to 32 threads in warp 0 are active.
1605 auto IsActiveThread =
1606 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
1607 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
1608
1609 CGF.EmitBlock(W0ThenBB);
1610
1611 // SrcMediumPtr = &medium[tid]
1612 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
1613 TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
1614 Address SrcMediumPtr(SrcMediumPtrVal,
1615 C.getTypeAlignInChars(Private->getType()));
1616 // SrcMediumVal = *SrcMediumPtr;
1617 SrcMediumPtr = Bld.CreateElementBitCast(
1618 SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType()));
1619 llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar(
1620 SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
1621
1622 // TargetElemPtr = (type[i]*)(SrcDataAddr[i])
1623 Address TargetElemPtrPtr =
1624 Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
1625 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
1626 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1627 Address TargetElemPtr =
1628 Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType()));
1629 TargetElemPtr = Bld.CreateElementBitCast(
1630 TargetElemPtr, CGF.ConvertTypeForMem(Private->getType()));
1631
1632 // *TargetElemPtr = SrcMediumVal;
1633 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
1634 Private->getType());
1635 Bld.CreateBr(W0MergeBB);
1636
1637 CGF.EmitBlock(W0ElseBB);
1638 Bld.CreateBr(W0MergeBB);
1639
1640 CGF.EmitBlock(W0MergeBB);
1641
1642 // While warp 0 copies values from transfer medium, all other warps must
1643 // wait.
1644 syncParallelThreads(CGF, NumActiveThreads);
1645 Idx++;
1646 }
1647
1648 CGF.FinishFunction();
1649 return Fn;
1650}
1651
1652/// Emit a helper that reduces data across two OpenMP threads (lanes)
1653/// in the same warp. It uses shuffle instructions to copy over data from
1654/// a remote lane's stack. The reduction algorithm performed is specified
1655/// by the fourth parameter.
1656///
1657/// Algorithm Versions.
1658/// Full Warp Reduce (argument value 0):
1659/// This algorithm assumes that all 32 lanes are active and gathers
1660/// data from these 32 lanes, producing a single resultant value.
1661/// Contiguous Partial Warp Reduce (argument value 1):
1662/// This algorithm assumes that only a *contiguous* subset of lanes
1663/// are active. This happens for the last warp in a parallel region
1664/// when the user specified num_threads is not an integer multiple of
1665/// 32. This contiguous subset always starts with the zeroth lane.
1666/// Partial Warp Reduce (argument value 2):
1667/// This algorithm gathers data from any number of lanes at any position.
1668/// All reduced values are stored in the lowest possible lane. The set
1669/// of problems every algorithm addresses is a super set of those
1670/// addressable by algorithms with a lower version number. Overhead
1671/// increases as algorithm version increases.
1672///
1673/// Terminology
1674/// Reduce element:
1675/// Reduce element refers to the individual data field with primitive
1676/// data types to be combined and reduced across threads.
1677/// Reduce list:
1678/// Reduce list refers to a collection of local, thread-private
1679/// reduce elements.
1680/// Remote Reduce list:
1681/// Remote Reduce list refers to a collection of remote (relative to
1682/// the current thread) reduce elements.
1683///
1684/// We distinguish between three states of threads that are important to
1685/// the implementation of this function.
1686/// Alive threads:
1687/// Threads in a warp executing the SIMT instruction, as distinguished from
1688/// threads that are inactive due to divergent control flow.
1689/// Active threads:
1690/// The minimal set of threads that has to be alive upon entry to this
1691/// function. The computation is correct iff active threads are alive.
1692/// Some threads are alive but they are not active because they do not
1693/// contribute to the computation in any useful manner. Turning them off
1694/// may introduce control flow overheads without any tangible benefits.
1695/// Effective threads:
1696/// In order to comply with the argument requirements of the shuffle
1697/// function, we must keep all lanes holding data alive. But at most
1698/// half of them perform value aggregation; we refer to this half of
1699/// threads as effective. The other half is simply handing off their
1700/// data.
1701///
1702/// Procedure
1703/// Value shuffle:
1704/// In this step active threads transfer data from higher lane positions
1705/// in the warp to lower lane positions, creating Remote Reduce list.
1706/// Value aggregation:
1707/// In this step, effective threads combine their thread local Reduce list
1708/// with Remote Reduce list and store the result in the thread local
1709/// Reduce list.
1710/// Value copy:
1711/// In this step, we deal with the assumption made by algorithm 2
1712/// (i.e. contiguity assumption). When we have an odd number of lanes
1713/// active, say 2k+1, only k threads will be effective and therefore k
1714/// new values will be produced. However, the Reduce list owned by the
1715/// (2k+1)th thread is ignored in the value aggregation. Therefore
1716/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
1717/// that the contiguity assumption still holds.
1718static llvm::Value *
1719emitShuffleAndReduceFunction(CodeGenModule &CGM,
1720 ArrayRef<const Expr *> Privates,
1721 QualType ReductionArrayTy, llvm::Value *ReduceFn) {
1722 auto &C = CGM.getContext();
1723
1724 // Thread local Reduce list used to host the values of data to be reduced.
1725 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, SourceLocation(),
1726 /*Id=*/nullptr, C.VoidPtrTy);
1727 // Current lane id; could be logical.
1728 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, SourceLocation(),
1729 /*Id=*/nullptr, C.ShortTy);
1730 // Offset of the remote source lane relative to the current lane.
1731 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, SourceLocation(),
1732 /*Id=*/nullptr, C.ShortTy);
1733 // Algorithm version. This is expected to be known at compile time.
1734 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, SourceLocation(),
1735 /*Id=*/nullptr, C.ShortTy);
1736 FunctionArgList Args;
1737 Args.push_back(&ReduceListArg);
1738 Args.push_back(&LaneIDArg);
1739 Args.push_back(&RemoteLaneOffsetArg);
1740 Args.push_back(&AlgoVerArg);
1741
1742 auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1743 auto *Fn = llvm::Function::Create(
1744 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
1745 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
1746 CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
1747 CodeGenFunction CGF(CGM);
1748 // We don't need debug information in this function as nothing here refers to
1749 // user code.
1750 CGF.disableDebugInfo();
1751 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
1752
1753 auto &Bld = CGF.Builder;
1754
1755 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1756 Address LocalReduceList(
1757 Bld.CreatePointerBitCastOrAddrSpaceCast(
1758 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
1759 C.VoidPtrTy, SourceLocation()),
1760 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
1761 CGF.getPointerAlign());
1762
1763 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
1764 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
1765 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
1766
1767 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
1768 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
1769 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
1770
1771 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
1772 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
1773 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
1774
1775 // Create a local thread-private variable to host the Reduce list
1776 // from a remote lane.
1777 Address RemoteReduceList =
1778 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
1779
1780 // This loop iterates through the list of reduce elements and copies,
1781 // element by element, from a remote lane in the warp to RemoteReduceList,
1782 // hosted on the thread's stack.
1783 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
1784 LocalReduceList, RemoteReduceList,
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001785 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
1786 /*ScratchpadIndex=*/nullptr,
1787 /*ScratchpadWidth=*/nullptr});
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001788
1789 // The actions to be performed on the Remote Reduce list is dependent
1790 // on the algorithm version.
1791 //
1792 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
1793 // LaneId % 2 == 0 && Offset > 0):
1794 // do the reduction value aggregation
1795 //
1796 // The thread local variable Reduce list is mutated in place to host the
1797 // reduced data, which is the aggregated value produced from local and
1798 // remote lanes.
1799 //
1800 // Note that AlgoVer is expected to be a constant integer known at compile
1801 // time.
1802 // When AlgoVer==0, the first conjunction evaluates to true, making
1803 // the entire predicate true during compile time.
1804 // When AlgoVer==1, the second conjunction has only the second part to be
1805 // evaluated during runtime. Other conjunctions evaluates to false
1806 // during compile time.
1807 // When AlgoVer==2, the third conjunction has only the second part to be
1808 // evaluated during runtime. Other conjunctions evaluates to false
1809 // during compile time.
1810 auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0));
1811
1812 auto Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
1813 auto CondAlgo1 = Bld.CreateAnd(
1814 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
1815
1816 auto Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
1817 auto CondAlgo2 = Bld.CreateAnd(
1818 Algo2,
1819 Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)),
1820 Bld.getInt16(0)));
1821 CondAlgo2 = Bld.CreateAnd(
1822 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
1823
1824 auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
1825 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
1826
1827 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1828 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1829 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1830 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
1831
1832 CGF.EmitBlock(ThenBB);
1833 // reduce_function(LocalReduceList, RemoteReduceList)
1834 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1835 LocalReduceList.getPointer(), CGF.VoidPtrTy);
1836 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1837 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
1838 CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
1839 Bld.CreateBr(MergeBB);
1840
1841 CGF.EmitBlock(ElseBB);
1842 Bld.CreateBr(MergeBB);
1843
1844 CGF.EmitBlock(MergeBB);
1845
1846 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
1847 // Reduce list.
1848 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
1849 auto CondCopy = Bld.CreateAnd(
1850 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
1851
1852 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
1853 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
1854 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
1855 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
1856
1857 CGF.EmitBlock(CpyThenBB);
1858 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
1859 RemoteReduceList, LocalReduceList);
1860 Bld.CreateBr(CpyMergeBB);
1861
1862 CGF.EmitBlock(CpyElseBB);
1863 Bld.CreateBr(CpyMergeBB);
1864
1865 CGF.EmitBlock(CpyMergeBB);
1866
1867 CGF.FinishFunction();
1868 return Fn;
1869}
1870
1871///
1872/// Design of OpenMP reductions on the GPU
1873///
1874/// Consider a typical OpenMP program with one or more reduction
1875/// clauses:
1876///
1877/// float foo;
1878/// double bar;
1879/// #pragma omp target teams distribute parallel for \
1880/// reduction(+:foo) reduction(*:bar)
1881/// for (int i = 0; i < N; i++) {
1882/// foo += A[i]; bar *= B[i];
1883/// }
1884///
1885/// where 'foo' and 'bar' are reduced across all OpenMP threads in
1886/// all teams. In our OpenMP implementation on the NVPTX device an
1887/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
1888/// within a team are mapped to CUDA threads within a threadblock.
1889/// Our goal is to efficiently aggregate values across all OpenMP
1890/// threads such that:
1891///
1892/// - the compiler and runtime are logically concise, and
1893/// - the reduction is performed efficiently in a hierarchical
1894/// manner as follows: within OpenMP threads in the same warp,
1895/// across warps in a threadblock, and finally across teams on
1896/// the NVPTX device.
1897///
1898/// Introduction to Decoupling
1899///
1900/// We would like to decouple the compiler and the runtime so that the
1901/// latter is ignorant of the reduction variables (number, data types)
1902/// and the reduction operators. This allows a simpler interface
1903/// and implementation while still attaining good performance.
1904///
1905/// Pseudocode for the aforementioned OpenMP program generated by the
1906/// compiler is as follows:
1907///
1908/// 1. Create private copies of reduction variables on each OpenMP
1909/// thread: 'foo_private', 'bar_private'
1910/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
1911/// to it and writes the result in 'foo_private' and 'bar_private'
1912/// respectively.
1913/// 3. Call the OpenMP runtime on the GPU to reduce within a team
1914/// and store the result on the team master:
1915///
1916/// __kmpc_nvptx_parallel_reduce_nowait(...,
1917/// reduceData, shuffleReduceFn, interWarpCpyFn)
1918///
1919/// where:
1920/// struct ReduceData {
1921/// double *foo;
1922/// double *bar;
1923/// } reduceData
1924/// reduceData.foo = &foo_private
1925/// reduceData.bar = &bar_private
1926///
1927/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
1928/// auxiliary functions generated by the compiler that operate on
1929/// variables of type 'ReduceData'. They aid the runtime perform
1930/// algorithmic steps in a data agnostic manner.
1931///
1932/// 'shuffleReduceFn' is a pointer to a function that reduces data
1933/// of type 'ReduceData' across two OpenMP threads (lanes) in the
1934/// same warp. It takes the following arguments as input:
1935///
1936/// a. variable of type 'ReduceData' on the calling lane,
1937/// b. its lane_id,
1938/// c. an offset relative to the current lane_id to generate a
1939/// remote_lane_id. The remote lane contains the second
1940/// variable of type 'ReduceData' that is to be reduced.
1941/// d. an algorithm version parameter determining which reduction
1942/// algorithm to use.
1943///
1944/// 'shuffleReduceFn' retrieves data from the remote lane using
1945/// efficient GPU shuffle intrinsics and reduces, using the
1946/// algorithm specified by the 4th parameter, the two operands
1947/// element-wise. The result is written to the first operand.
1948///
1949/// Different reduction algorithms are implemented in different
1950/// runtime functions, all calling 'shuffleReduceFn' to perform
1951/// the essential reduction step. Therefore, based on the 4th
1952/// parameter, this function behaves slightly differently to
1953/// cooperate with the runtime to ensure correctness under
1954/// different circumstances.
1955///
1956/// 'InterWarpCpyFn' is a pointer to a function that transfers
1957/// reduced variables across warps. It tunnels, through CUDA
1958/// shared memory, the thread-private data of type 'ReduceData'
1959/// from lane 0 of each warp to a lane in the first warp.
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00001960/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
1961/// The last team writes the global reduced value to memory.
1962///
1963/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
1964/// reduceData, shuffleReduceFn, interWarpCpyFn,
1965/// scratchpadCopyFn, loadAndReduceFn)
1966///
1967/// 'scratchpadCopyFn' is a helper that stores reduced
1968/// data from the team master to a scratchpad array in
1969/// global memory.
1970///
1971/// 'loadAndReduceFn' is a helper that loads data from
1972/// the scratchpad array and reduces it with the input
1973/// operand.
1974///
1975/// These compiler generated functions hide address
1976/// calculation and alignment information from the runtime.
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00001977/// 5. if ret == 1:
1978/// The team master of the last team stores the reduced
1979/// result to the globals in memory.
1980/// foo += reduceData.foo; bar *= reduceData.bar
1981///
1982///
1983/// Warp Reduction Algorithms
1984///
1985/// On the warp level, we have three algorithms implemented in the
1986/// OpenMP runtime depending on the number of active lanes:
1987///
1988/// Full Warp Reduction
1989///
1990/// The reduce algorithm within a warp where all lanes are active
1991/// is implemented in the runtime as follows:
1992///
1993/// full_warp_reduce(void *reduce_data,
1994/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
1995/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
1996/// ShuffleReduceFn(reduce_data, 0, offset, 0);
1997/// }
1998///
1999/// The algorithm completes in log(2, WARPSIZE) steps.
2000///
2001/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
2002/// not used therefore we save instructions by not retrieving lane_id
2003/// from the corresponding special registers. The 4th parameter, which
2004/// represents the version of the algorithm being used, is set to 0 to
2005/// signify full warp reduction.
2006///
2007/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2008///
2009/// #reduce_elem refers to an element in the local lane's data structure
2010/// #remote_elem is retrieved from a remote lane
2011/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2012/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
2013///
2014/// Contiguous Partial Warp Reduction
2015///
2016/// This reduce algorithm is used within a warp where only the first
2017/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
2018/// number of OpenMP threads in a parallel region is not a multiple of
2019/// WARPSIZE. The algorithm is implemented in the runtime as follows:
2020///
2021/// void
2022/// contiguous_partial_reduce(void *reduce_data,
2023/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
2024/// int size, int lane_id) {
2025/// int curr_size;
2026/// int offset;
2027/// curr_size = size;
2028/// mask = curr_size/2;
2029/// while (offset>0) {
2030/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
2031/// curr_size = (curr_size+1)/2;
2032/// offset = curr_size/2;
2033/// }
2034/// }
2035///
2036/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2037///
2038/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2039/// if (lane_id < offset)
2040/// reduce_elem = reduce_elem REDUCE_OP remote_elem
2041/// else
2042/// reduce_elem = remote_elem
2043///
2044/// This algorithm assumes that the data to be reduced are located in a
2045/// contiguous subset of lanes starting from the first. When there is
2046/// an odd number of active lanes, the data in the last lane is not
2047/// aggregated with any other lane's dat but is instead copied over.
2048///
2049/// Dispersed Partial Warp Reduction
2050///
2051/// This algorithm is used within a warp when any discontiguous subset of
2052/// lanes are active. It is used to implement the reduction operation
2053/// across lanes in an OpenMP simd region or in a nested parallel region.
2054///
2055/// void
2056/// dispersed_partial_reduce(void *reduce_data,
2057/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2058/// int size, remote_id;
2059/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
2060/// do {
2061/// remote_id = next_active_lane_id_right_after_me();
2062/// # the above function returns 0 of no active lane
2063/// # is present right after the current lane.
2064/// size = number_of_active_lanes_in_this_warp();
2065/// logical_lane_id /= 2;
2066/// ShuffleReduceFn(reduce_data, logical_lane_id,
2067/// remote_id-1-threadIdx.x, 2);
2068/// } while (logical_lane_id % 2 == 0 && size > 1);
2069/// }
2070///
2071/// There is no assumption made about the initial state of the reduction.
2072/// Any number of lanes (>=1) could be active at any position. The reduction
2073/// result is returned in the first active lane.
2074///
2075/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2076///
2077/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2078/// if (lane_id % 2 == 0 && offset > 0)
2079/// reduce_elem = reduce_elem REDUCE_OP remote_elem
2080/// else
2081/// reduce_elem = remote_elem
2082///
2083///
2084/// Intra-Team Reduction
2085///
2086/// This function, as implemented in the runtime call
2087/// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP
2088/// threads in a team. It first reduces within a warp using the
2089/// aforementioned algorithms. We then proceed to gather all such
2090/// reduced values at the first warp.
2091///
2092/// The runtime makes use of the function 'InterWarpCpyFn', which copies
2093/// data from each of the "warp master" (zeroth lane of each warp, where
2094/// warp-reduced data is held) to the zeroth warp. This step reduces (in
2095/// a mathematical sense) the problem of reduction across warp masters in
2096/// a block to the problem of warp reduction.
2097///
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00002098///
2099/// Inter-Team Reduction
2100///
2101/// Once a team has reduced its data to a single value, it is stored in
2102/// a global scratchpad array. Since each team has a distinct slot, this
2103/// can be done without locking.
2104///
2105/// The last team to write to the scratchpad array proceeds to reduce the
2106/// scratchpad array. One or more workers in the last team use the helper
2107/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
2108/// the k'th worker reduces every k'th element.
2109///
2110/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait' to
2111/// reduce across workers and compute a globally reduced value.
2112///
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00002113void CGOpenMPRuntimeNVPTX::emitReduction(
2114 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
2115 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
2116 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
2117 if (!CGF.HaveInsertPoint())
2118 return;
2119
2120 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00002121 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
2122 // FIXME: Add support for simd reduction.
2123 assert((TeamsReduction || ParallelReduction) &&
2124 "Invalid reduction selection in emitReduction.");
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00002125
2126 auto &C = CGM.getContext();
2127
2128 // 1. Build a list of reduction variables.
2129 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2130 auto Size = RHSExprs.size();
2131 for (auto *E : Privates) {
2132 if (E->getType()->isVariablyModifiedType())
2133 // Reserve place for array size.
2134 ++Size;
2135 }
2136 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
2137 QualType ReductionArrayTy =
2138 C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
2139 /*IndexTypeQuals=*/0);
2140 Address ReductionList =
2141 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2142 auto IPriv = Privates.begin();
2143 unsigned Idx = 0;
2144 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
2145 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
2146 CGF.getPointerSize());
2147 CGF.Builder.CreateStore(
2148 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2149 CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
2150 Elem);
2151 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2152 // Store array size.
2153 ++Idx;
2154 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
2155 CGF.getPointerSize());
2156 llvm::Value *Size = CGF.Builder.CreateIntCast(
2157 CGF.getVLASize(
2158 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2159 .first,
2160 CGF.SizeTy, /*isSigned=*/false);
2161 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2162 Elem);
2163 }
2164 }
2165
2166 // 2. Emit reduce_func().
2167 auto *ReductionFn = emitReductionFunction(
2168 CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
2169 LHSExprs, RHSExprs, ReductionOps);
2170
2171 // 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
2172 // RedList, shuffle_reduce_func, interwarp_copy_func);
2173 auto *ThreadId = getThreadID(CGF, Loc);
2174 auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
2175 auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2176 ReductionList.getPointer(), CGF.VoidPtrTy);
2177
2178 auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
2179 CGM, Privates, ReductionArrayTy, ReductionFn);
2180 auto *InterWarpCopyFn =
2181 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy);
2182
2183 llvm::Value *Res = nullptr;
2184 if (ParallelReduction) {
2185 llvm::Value *Args[] = {ThreadId,
2186 CGF.Builder.getInt32(RHSExprs.size()),
2187 ReductionArrayTySize,
2188 RL,
2189 ShuffleAndReduceFn,
2190 InterWarpCopyFn};
2191
2192 Res = CGF.EmitRuntimeCall(
2193 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait),
2194 Args);
2195 }
2196
Arpith Chacko Jacobfc711b12017-02-16 16:48:49 +00002197 if (TeamsReduction) {
2198 auto *ScratchPadCopyFn =
2199 emitCopyToScratchpad(CGM, Privates, ReductionArrayTy);
2200 auto *LoadAndReduceFn = emitReduceScratchpadFunction(
2201 CGM, Privates, ReductionArrayTy, ReductionFn);
2202
2203 llvm::Value *Args[] = {ThreadId,
2204 CGF.Builder.getInt32(RHSExprs.size()),
2205 ReductionArrayTySize,
2206 RL,
2207 ShuffleAndReduceFn,
2208 InterWarpCopyFn,
2209 ScratchPadCopyFn,
2210 LoadAndReduceFn};
2211 Res = CGF.EmitRuntimeCall(
2212 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_teams_reduce_nowait),
2213 Args);
2214 }
2215
Arpith Chacko Jacob101e8fb2017-02-16 16:20:16 +00002216 // 5. Build switch(res)
2217 auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
2218 auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1);
2219
2220 // 6. Build case 1: where we have reduced values in the master
2221 // thread in each team.
2222 // __kmpc_end_reduce{_nowait}(<gtid>);
2223 // break;
2224 auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
2225 SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
2226 CGF.EmitBlock(Case1BB);
2227
2228 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
2229 llvm::Value *EndArgs[] = {ThreadId};
2230 auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps,
2231 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
2232 auto IPriv = Privates.begin();
2233 auto ILHS = LHSExprs.begin();
2234 auto IRHS = RHSExprs.begin();
2235 for (auto *E : ReductionOps) {
2236 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
2237 cast<DeclRefExpr>(*IRHS));
2238 ++IPriv;
2239 ++ILHS;
2240 ++IRHS;
2241 }
2242 };
2243 RegionCodeGenTy RCG(CodeGen);
2244 NVPTXActionTy Action(
2245 nullptr, llvm::None,
2246 createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
2247 EndArgs);
2248 RCG.setAction(Action);
2249 RCG(CGF);
2250 CGF.EmitBranch(DefaultBB);
2251 CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
2252}