blob: 76a8bf4ecc4ed45bd5ead6f75fd6ad5f6a762a5d [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
Eli Friedman0cd23352013-07-10 01:33:19 +000059
60 // Perform the same check for block literals.
61 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62 if (ParmVarDecl *ContextParam
63 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64 return ContextParam->getDeclContext();
65 }
Guy Benyei11169dd2012-12-18 14:30:41 +000066
Eli Friedman95f50122013-07-02 17:52:28 +000067 const DeclContext *DC = D->getDeclContext();
68 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69 return getEffectiveDeclContext(CD);
70
71 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000072}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75 return getEffectiveDeclContext(cast<Decl>(DC));
76}
Eli Friedman95f50122013-07-02 17:52:28 +000077
78static bool isLocalContainerContext(const DeclContext *DC) {
79 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
Eli Friedmaneecc09a2013-07-05 20:27:40 +000082static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000083 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000084 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000085 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000086 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000087 D = cast<Decl>(DC);
88 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000089 }
90 return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95 return ftd->getTemplatedDecl();
96
97 return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102 return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
107class ItaniumMangleContext : public MangleContext {
108 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000109 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000111 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
114 explicit ItaniumMangleContext(ASTContext &Context,
115 DiagnosticsEngine &Diags)
116 : MangleContext(Context, Diags) { }
117
118 uint64_t getAnonymousStructId(const TagDecl *TD) {
119 std::pair<llvm::DenseMap<const TagDecl *,
120 uint64_t>::iterator, bool> Result =
121 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122 return Result.first->second;
123 }
124
Guy Benyei11169dd2012-12-18 14:30:41 +0000125 /// @name Mangler Entry Points
126 /// @{
127
128 bool shouldMangleDeclName(const NamedDecl *D);
129 void mangleName(const NamedDecl *D, raw_ostream &);
130 void mangleThunk(const CXXMethodDecl *MD,
131 const ThunkInfo &Thunk,
132 raw_ostream &);
133 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134 const ThisAdjustment &ThisAdjustment,
135 raw_ostream &);
136 void mangleReferenceTemporary(const VarDecl *D,
137 raw_ostream &);
138 void mangleCXXVTable(const CXXRecordDecl *RD,
139 raw_ostream &);
140 void mangleCXXVTT(const CXXRecordDecl *RD,
141 raw_ostream &);
Reid Kleckner7810af02013-06-19 15:20:38 +0000142 void mangleCXXVBTable(const CXXRecordDecl *Derived,
143 ArrayRef<const CXXRecordDecl *> BasePath,
144 raw_ostream &Out);
Guy Benyei11169dd2012-12-18 14:30:41 +0000145 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
146 const CXXRecordDecl *Type,
147 raw_ostream &);
148 void mangleCXXRTTI(QualType T, raw_ostream &);
149 void mangleCXXRTTIName(QualType T, raw_ostream &);
150 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
151 raw_ostream &);
152 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
153 raw_ostream &);
154
155 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000156 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
157 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000158
Guy Benyei11169dd2012-12-18 14:30:41 +0000159 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000160 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000161 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000162 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000163 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000164
165 // Anonymous tags are already numbered.
166 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
167 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
168 return false;
169 }
170
171 // Use the canonical number for externally visible decls.
172 if (ND->isExternallyVisible()) {
173 unsigned discriminator = getASTContext().getManglingNumber(ND);
174 if (discriminator == 1)
175 return false;
176 disc = discriminator - 2;
177 return true;
178 }
179
180 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000181 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000182 if (!discriminator) {
183 const DeclContext *DC = getEffectiveDeclContext(ND);
184 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000186 if (discriminator == 1)
187 return false;
188 disc = discriminator-2;
189 return true;
190 }
191 /// @}
192};
193
194/// CXXNameMangler - Manage the mangling of a single name.
195class CXXNameMangler {
196 ItaniumMangleContext &Context;
197 raw_ostream &Out;
198
199 /// The "structor" is the top-level declaration being mangled, if
200 /// that's not a template specialization; otherwise it's the pattern
201 /// for that specialization.
202 const NamedDecl *Structor;
203 unsigned StructorType;
204
205 /// SeqID - The next subsitution sequence number.
206 unsigned SeqID;
207
208 class FunctionTypeDepthState {
209 unsigned Bits;
210
211 enum { InResultTypeMask = 1 };
212
213 public:
214 FunctionTypeDepthState() : Bits(0) {}
215
216 /// The number of function types we're inside.
217 unsigned getDepth() const {
218 return Bits >> 1;
219 }
220
221 /// True if we're in the return type of the innermost function type.
222 bool isInResultType() const {
223 return Bits & InResultTypeMask;
224 }
225
226 FunctionTypeDepthState push() {
227 FunctionTypeDepthState tmp = *this;
228 Bits = (Bits & ~InResultTypeMask) + 2;
229 return tmp;
230 }
231
232 void enterResultType() {
233 Bits |= InResultTypeMask;
234 }
235
236 void leaveResultType() {
237 Bits &= ~InResultTypeMask;
238 }
239
240 void pop(FunctionTypeDepthState saved) {
241 assert(getDepth() == saved.getDepth() + 1);
242 Bits = saved.Bits;
243 }
244
245 } FunctionTypeDepth;
246
247 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
248
249 ASTContext &getASTContext() const { return Context.getASTContext(); }
250
251public:
252 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
253 const NamedDecl *D = 0)
254 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
255 SeqID(0) {
256 // These can't be mangled without a ctor type or dtor type.
257 assert(!D || (!isa<CXXDestructorDecl>(D) &&
258 !isa<CXXConstructorDecl>(D)));
259 }
260 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
261 const CXXConstructorDecl *D, CXXCtorType Type)
262 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
263 SeqID(0) { }
264 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
265 const CXXDestructorDecl *D, CXXDtorType Type)
266 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
267 SeqID(0) { }
268
269#if MANGLE_CHECKER
270 ~CXXNameMangler() {
271 if (Out.str()[0] == '\01')
272 return;
273
274 int status = 0;
275 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
276 assert(status == 0 && "Could not demangle mangled name!");
277 free(result);
278 }
279#endif
280 raw_ostream &getStream() { return Out; }
281
282 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
283 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
284 void mangleNumber(const llvm::APSInt &I);
285 void mangleNumber(int64_t Number);
286 void mangleFloat(const llvm::APFloat &F);
287 void mangleFunctionEncoding(const FunctionDecl *FD);
288 void mangleName(const NamedDecl *ND);
289 void mangleType(QualType T);
290 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
291
292private:
293 bool mangleSubstitution(const NamedDecl *ND);
294 bool mangleSubstitution(QualType T);
295 bool mangleSubstitution(TemplateName Template);
296 bool mangleSubstitution(uintptr_t Ptr);
297
298 void mangleExistingSubstitution(QualType type);
299 void mangleExistingSubstitution(TemplateName name);
300
301 bool mangleStandardSubstitution(const NamedDecl *ND);
302
303 void addSubstitution(const NamedDecl *ND) {
304 ND = cast<NamedDecl>(ND->getCanonicalDecl());
305
306 addSubstitution(reinterpret_cast<uintptr_t>(ND));
307 }
308 void addSubstitution(QualType T);
309 void addSubstitution(TemplateName Template);
310 void addSubstitution(uintptr_t Ptr);
311
312 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
313 NamedDecl *firstQualifierLookup,
314 bool recursive = false);
315 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
316 NamedDecl *firstQualifierLookup,
317 DeclarationName name,
318 unsigned KnownArity = UnknownArity);
319
320 void mangleName(const TemplateDecl *TD,
321 const TemplateArgument *TemplateArgs,
322 unsigned NumTemplateArgs);
323 void mangleUnqualifiedName(const NamedDecl *ND) {
324 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
325 }
326 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
327 unsigned KnownArity);
328 void mangleUnscopedName(const NamedDecl *ND);
329 void mangleUnscopedTemplateName(const TemplateDecl *ND);
330 void mangleUnscopedTemplateName(TemplateName);
331 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000332 void mangleLocalName(const Decl *D);
333 void mangleBlockForPrefix(const BlockDecl *Block);
334 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000335 void mangleLambda(const CXXRecordDecl *Lambda);
336 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
337 bool NoFunction=false);
338 void mangleNestedName(const TemplateDecl *TD,
339 const TemplateArgument *TemplateArgs,
340 unsigned NumTemplateArgs);
341 void manglePrefix(NestedNameSpecifier *qualifier);
342 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
343 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000344 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000345 void mangleTemplatePrefix(TemplateName Template);
346 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
347 void mangleQualifiers(Qualifiers Quals);
348 void mangleRefQualifier(RefQualifierKind RefQualifier);
349
350 void mangleObjCMethodName(const ObjCMethodDecl *MD);
351
352 // Declare manglers for every type class.
353#define ABSTRACT_TYPE(CLASS, PARENT)
354#define NON_CANONICAL_TYPE(CLASS, PARENT)
355#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
356#include "clang/AST/TypeNodes.def"
357
358 void mangleType(const TagType*);
359 void mangleType(TemplateName);
360 void mangleBareFunctionType(const FunctionType *T,
361 bool MangleReturnType);
362 void mangleNeonVectorType(const VectorType *T);
363
364 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
365 void mangleMemberExpr(const Expr *base, bool isArrow,
366 NestedNameSpecifier *qualifier,
367 NamedDecl *firstQualifierLookup,
368 DeclarationName name,
369 unsigned knownArity);
370 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
371 void mangleCXXCtorType(CXXCtorType T);
372 void mangleCXXDtorType(CXXDtorType T);
373
374 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
375 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
376 unsigned NumTemplateArgs);
377 void mangleTemplateArgs(const TemplateArgumentList &AL);
378 void mangleTemplateArg(TemplateArgument A);
379
380 void mangleTemplateParameter(unsigned Index);
381
382 void mangleFunctionParam(const ParmVarDecl *parm);
383};
384
385}
386
Guy Benyei11169dd2012-12-18 14:30:41 +0000387bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
388 // In C, functions with no attributes never need to be mangled. Fastpath them.
389 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
390 return false;
391
392 // Any decl can be declared with __asm("foo") on it, and this takes precedence
393 // over all other naming in the .o file.
394 if (D->hasAttr<AsmLabelAttr>())
395 return true;
396
Guy Benyei11169dd2012-12-18 14:30:41 +0000397 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000398 if (FD) {
399 LanguageLinkage L = FD->getLanguageLinkage();
400 // Overloadable functions need mangling.
401 if (FD->hasAttr<OverloadableAttr>())
402 return true;
403
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000404 // "main" is not mangled.
405 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000406 return false;
407
408 // C++ functions and those whose names are not a simple identifier need
409 // mangling.
410 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
411 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000412
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000413 // C functions are not mangled.
414 if (L == CLanguageLinkage)
415 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000416 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000417
418 // Otherwise, no mangling is done outside C++ mode.
419 if (!getASTContext().getLangOpts().CPlusPlus)
420 return false;
421
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000422 const VarDecl *VD = dyn_cast<VarDecl>(D);
423 if (VD) {
424 // C variables are not mangled.
425 if (VD->isExternC())
426 return false;
427
428 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000429 const DeclContext *DC = getEffectiveDeclContext(D);
430 // Check for extern variable declared locally.
431 if (DC->isFunctionOrMethod() && D->hasLinkage())
432 while (!DC->isNamespace() && !DC->isTranslationUnit())
433 DC = getEffectiveParentContext(DC);
Rafael Espindola3ae00052013-05-13 00:12:11 +0000434 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage)
Guy Benyei11169dd2012-12-18 14:30:41 +0000435 return false;
436 }
437
Guy Benyei11169dd2012-12-18 14:30:41 +0000438 return true;
439}
440
441void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
442 // Any decl can be declared with __asm("foo") on it, and this takes precedence
443 // over all other naming in the .o file.
444 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
445 // If we have an asm name, then we use it as the mangling.
446
447 // Adding the prefix can cause problems when one file has a "foo" and
448 // another has a "\01foo". That is known to happen on ELF with the
449 // tricks normally used for producing aliases (PR9177). Fortunately the
450 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
451 // marker. We also avoid adding the marker if this is an alias for an
452 // LLVM intrinsic.
453 StringRef UserLabelPrefix =
454 getASTContext().getTargetInfo().getUserLabelPrefix();
455 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
456 Out << '\01'; // LLVM IR Marker for __asm("foo")
457
458 Out << ALA->getLabel();
459 return;
460 }
461
462 // <mangled-name> ::= _Z <encoding>
463 // ::= <data name>
464 // ::= <special-name>
465 Out << Prefix;
466 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
467 mangleFunctionEncoding(FD);
468 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
469 mangleName(VD);
470 else
471 mangleName(cast<FieldDecl>(D));
472}
473
474void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
475 // <encoding> ::= <function name> <bare-function-type>
476 mangleName(FD);
477
478 // Don't mangle in the type if this isn't a decl we should typically mangle.
479 if (!Context.shouldMangleDeclName(FD))
480 return;
481
482 // Whether the mangling of a function type includes the return type depends on
483 // the context and the nature of the function. The rules for deciding whether
484 // the return type is included are:
485 //
486 // 1. Template functions (names or types) have return types encoded, with
487 // the exceptions listed below.
488 // 2. Function types not appearing as part of a function name mangling,
489 // e.g. parameters, pointer types, etc., have return type encoded, with the
490 // exceptions listed below.
491 // 3. Non-template function names do not have return types encoded.
492 //
493 // The exceptions mentioned in (1) and (2) above, for which the return type is
494 // never included, are
495 // 1. Constructors.
496 // 2. Destructors.
497 // 3. Conversion operator functions, e.g. operator int.
498 bool MangleReturnType = false;
499 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
500 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
501 isa<CXXConversionDecl>(FD)))
502 MangleReturnType = true;
503
504 // Mangle the type of the primary template.
505 FD = PrimaryTemplate->getTemplatedDecl();
506 }
507
508 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
509 MangleReturnType);
510}
511
512static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
513 while (isa<LinkageSpecDecl>(DC)) {
514 DC = getEffectiveParentContext(DC);
515 }
516
517 return DC;
518}
519
520/// isStd - Return whether a given namespace is the 'std' namespace.
521static bool isStd(const NamespaceDecl *NS) {
522 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
523 ->isTranslationUnit())
524 return false;
525
526 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
527 return II && II->isStr("std");
528}
529
530// isStdNamespace - Return whether a given decl context is a toplevel 'std'
531// namespace.
532static bool isStdNamespace(const DeclContext *DC) {
533 if (!DC->isNamespace())
534 return false;
535
536 return isStd(cast<NamespaceDecl>(DC));
537}
538
539static const TemplateDecl *
540isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
541 // Check if we have a function template.
542 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
543 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
544 TemplateArgs = FD->getTemplateSpecializationArgs();
545 return TD;
546 }
547 }
548
549 // Check if we have a class template.
550 if (const ClassTemplateSpecializationDecl *Spec =
551 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
552 TemplateArgs = &Spec->getTemplateArgs();
553 return Spec->getSpecializedTemplate();
554 }
555
556 return 0;
557}
558
559static bool isLambda(const NamedDecl *ND) {
560 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
561 if (!Record)
562 return false;
563
564 return Record->isLambda();
565}
566
567void CXXNameMangler::mangleName(const NamedDecl *ND) {
568 // <name> ::= <nested-name>
569 // ::= <unscoped-name>
570 // ::= <unscoped-template-name> <template-args>
571 // ::= <local-name>
572 //
573 const DeclContext *DC = getEffectiveDeclContext(ND);
574
575 // If this is an extern variable declared locally, the relevant DeclContext
576 // is that of the containing namespace, or the translation unit.
577 // FIXME: This is a hack; extern variables declared locally should have
578 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000579 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000580 while (!DC->isNamespace() && !DC->isTranslationUnit())
581 DC = getEffectiveParentContext(DC);
582 else if (GetLocalClassDecl(ND)) {
583 mangleLocalName(ND);
584 return;
585 }
586
587 DC = IgnoreLinkageSpecDecls(DC);
588
589 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
590 // Check if we have a template.
591 const TemplateArgumentList *TemplateArgs = 0;
592 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
593 mangleUnscopedTemplateName(TD);
594 mangleTemplateArgs(*TemplateArgs);
595 return;
596 }
597
598 mangleUnscopedName(ND);
599 return;
600 }
601
Eli Friedman95f50122013-07-02 17:52:28 +0000602 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000603 mangleLocalName(ND);
604 return;
605 }
606
607 mangleNestedName(ND, DC);
608}
609void CXXNameMangler::mangleName(const TemplateDecl *TD,
610 const TemplateArgument *TemplateArgs,
611 unsigned NumTemplateArgs) {
612 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
613
614 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
615 mangleUnscopedTemplateName(TD);
616 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
617 } else {
618 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
619 }
620}
621
622void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
623 // <unscoped-name> ::= <unqualified-name>
624 // ::= St <unqualified-name> # ::std::
625
626 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
627 Out << "St";
628
629 mangleUnqualifiedName(ND);
630}
631
632void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
633 // <unscoped-template-name> ::= <unscoped-name>
634 // ::= <substitution>
635 if (mangleSubstitution(ND))
636 return;
637
638 // <template-template-param> ::= <template-param>
639 if (const TemplateTemplateParmDecl *TTP
640 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
641 mangleTemplateParameter(TTP->getIndex());
642 return;
643 }
644
645 mangleUnscopedName(ND->getTemplatedDecl());
646 addSubstitution(ND);
647}
648
649void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
650 // <unscoped-template-name> ::= <unscoped-name>
651 // ::= <substitution>
652 if (TemplateDecl *TD = Template.getAsTemplateDecl())
653 return mangleUnscopedTemplateName(TD);
654
655 if (mangleSubstitution(Template))
656 return;
657
658 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
659 assert(Dependent && "Not a dependent template name?");
660 if (const IdentifierInfo *Id = Dependent->getIdentifier())
661 mangleSourceName(Id);
662 else
663 mangleOperatorName(Dependent->getOperator(), UnknownArity);
664
665 addSubstitution(Template);
666}
667
668void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
669 // ABI:
670 // Floating-point literals are encoded using a fixed-length
671 // lowercase hexadecimal string corresponding to the internal
672 // representation (IEEE on Itanium), high-order bytes first,
673 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
674 // on Itanium.
675 // The 'without leading zeroes' thing seems to be an editorial
676 // mistake; see the discussion on cxx-abi-dev beginning on
677 // 2012-01-16.
678
679 // Our requirements here are just barely weird enough to justify
680 // using a custom algorithm instead of post-processing APInt::toString().
681
682 llvm::APInt valueBits = f.bitcastToAPInt();
683 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
684 assert(numCharacters != 0);
685
686 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000687 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000688 buffer.set_size(numCharacters);
689
690 // Fill the buffer left-to-right.
691 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
692 // The bit-index of the next hex digit.
693 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
694
695 // Project out 4 bits starting at 'digitIndex'.
696 llvm::integerPart hexDigit
697 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
698 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
699 hexDigit &= 0xF;
700
701 // Map that over to a lowercase hex digit.
702 static const char charForHex[16] = {
703 '0', '1', '2', '3', '4', '5', '6', '7',
704 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
705 };
706 buffer[stringIndex] = charForHex[hexDigit];
707 }
708
709 Out.write(buffer.data(), numCharacters);
710}
711
712void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
713 if (Value.isSigned() && Value.isNegative()) {
714 Out << 'n';
715 Value.abs().print(Out, /*signed*/ false);
716 } else {
717 Value.print(Out, /*signed*/ false);
718 }
719}
720
721void CXXNameMangler::mangleNumber(int64_t Number) {
722 // <number> ::= [n] <non-negative decimal integer>
723 if (Number < 0) {
724 Out << 'n';
725 Number = -Number;
726 }
727
728 Out << Number;
729}
730
731void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
732 // <call-offset> ::= h <nv-offset> _
733 // ::= v <v-offset> _
734 // <nv-offset> ::= <offset number> # non-virtual base override
735 // <v-offset> ::= <offset number> _ <virtual offset number>
736 // # virtual base override, with vcall offset
737 if (!Virtual) {
738 Out << 'h';
739 mangleNumber(NonVirtual);
740 Out << '_';
741 return;
742 }
743
744 Out << 'v';
745 mangleNumber(NonVirtual);
746 Out << '_';
747 mangleNumber(Virtual);
748 Out << '_';
749}
750
751void CXXNameMangler::manglePrefix(QualType type) {
752 if (const TemplateSpecializationType *TST =
753 type->getAs<TemplateSpecializationType>()) {
754 if (!mangleSubstitution(QualType(TST, 0))) {
755 mangleTemplatePrefix(TST->getTemplateName());
756
757 // FIXME: GCC does not appear to mangle the template arguments when
758 // the template in question is a dependent template name. Should we
759 // emulate that badness?
760 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
761 addSubstitution(QualType(TST, 0));
762 }
763 } else if (const DependentTemplateSpecializationType *DTST
764 = type->getAs<DependentTemplateSpecializationType>()) {
765 TemplateName Template
766 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
767 DTST->getIdentifier());
768 mangleTemplatePrefix(Template);
769
770 // FIXME: GCC does not appear to mangle the template arguments when
771 // the template in question is a dependent template name. Should we
772 // emulate that badness?
773 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
774 } else {
775 // We use the QualType mangle type variant here because it handles
776 // substitutions.
777 mangleType(type);
778 }
779}
780
781/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
782///
783/// \param firstQualifierLookup - the entity found by unqualified lookup
784/// for the first name in the qualifier, if this is for a member expression
785/// \param recursive - true if this is being called recursively,
786/// i.e. if there is more prefix "to the right".
787void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
788 NamedDecl *firstQualifierLookup,
789 bool recursive) {
790
791 // x, ::x
792 // <unresolved-name> ::= [gs] <base-unresolved-name>
793
794 // T::x / decltype(p)::x
795 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
796
797 // T::N::x /decltype(p)::N::x
798 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
799 // <base-unresolved-name>
800
801 // A::x, N::y, A<T>::z; "gs" means leading "::"
802 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
803 // <base-unresolved-name>
804
805 switch (qualifier->getKind()) {
806 case NestedNameSpecifier::Global:
807 Out << "gs";
808
809 // We want an 'sr' unless this is the entire NNS.
810 if (recursive)
811 Out << "sr";
812
813 // We never want an 'E' here.
814 return;
815
816 case NestedNameSpecifier::Namespace:
817 if (qualifier->getPrefix())
818 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
819 /*recursive*/ true);
820 else
821 Out << "sr";
822 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
823 break;
824 case NestedNameSpecifier::NamespaceAlias:
825 if (qualifier->getPrefix())
826 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
827 /*recursive*/ true);
828 else
829 Out << "sr";
830 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
831 break;
832
833 case NestedNameSpecifier::TypeSpec:
834 case NestedNameSpecifier::TypeSpecWithTemplate: {
835 const Type *type = qualifier->getAsType();
836
837 // We only want to use an unresolved-type encoding if this is one of:
838 // - a decltype
839 // - a template type parameter
840 // - a template template parameter with arguments
841 // In all of these cases, we should have no prefix.
842 if (qualifier->getPrefix()) {
843 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
844 /*recursive*/ true);
845 } else {
846 // Otherwise, all the cases want this.
847 Out << "sr";
848 }
849
850 // Only certain other types are valid as prefixes; enumerate them.
851 switch (type->getTypeClass()) {
852 case Type::Builtin:
853 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000854 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000855 case Type::Pointer:
856 case Type::BlockPointer:
857 case Type::LValueReference:
858 case Type::RValueReference:
859 case Type::MemberPointer:
860 case Type::ConstantArray:
861 case Type::IncompleteArray:
862 case Type::VariableArray:
863 case Type::DependentSizedArray:
864 case Type::DependentSizedExtVector:
865 case Type::Vector:
866 case Type::ExtVector:
867 case Type::FunctionProto:
868 case Type::FunctionNoProto:
869 case Type::Enum:
870 case Type::Paren:
871 case Type::Elaborated:
872 case Type::Attributed:
873 case Type::Auto:
874 case Type::PackExpansion:
875 case Type::ObjCObject:
876 case Type::ObjCInterface:
877 case Type::ObjCObjectPointer:
878 case Type::Atomic:
879 llvm_unreachable("type is illegal as a nested name specifier");
880
881 case Type::SubstTemplateTypeParmPack:
882 // FIXME: not clear how to mangle this!
883 // template <class T...> class A {
884 // template <class U...> void foo(decltype(T::foo(U())) x...);
885 // };
886 Out << "_SUBSTPACK_";
887 break;
888
889 // <unresolved-type> ::= <template-param>
890 // ::= <decltype>
891 // ::= <template-template-param> <template-args>
892 // (this last is not official yet)
893 case Type::TypeOfExpr:
894 case Type::TypeOf:
895 case Type::Decltype:
896 case Type::TemplateTypeParm:
897 case Type::UnaryTransform:
898 case Type::SubstTemplateTypeParm:
899 unresolvedType:
900 assert(!qualifier->getPrefix());
901
902 // We only get here recursively if we're followed by identifiers.
903 if (recursive) Out << 'N';
904
905 // This seems to do everything we want. It's not really
906 // sanctioned for a substituted template parameter, though.
907 mangleType(QualType(type, 0));
908
909 // We never want to print 'E' directly after an unresolved-type,
910 // so we return directly.
911 return;
912
913 case Type::Typedef:
914 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
915 break;
916
917 case Type::UnresolvedUsing:
918 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
919 ->getIdentifier());
920 break;
921
922 case Type::Record:
923 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
924 break;
925
926 case Type::TemplateSpecialization: {
927 const TemplateSpecializationType *tst
928 = cast<TemplateSpecializationType>(type);
929 TemplateName name = tst->getTemplateName();
930 switch (name.getKind()) {
931 case TemplateName::Template:
932 case TemplateName::QualifiedTemplate: {
933 TemplateDecl *temp = name.getAsTemplateDecl();
934
935 // If the base is a template template parameter, this is an
936 // unresolved type.
937 assert(temp && "no template for template specialization type");
938 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
939
940 mangleSourceName(temp->getIdentifier());
941 break;
942 }
943
944 case TemplateName::OverloadedTemplate:
945 case TemplateName::DependentTemplate:
946 llvm_unreachable("invalid base for a template specialization type");
947
948 case TemplateName::SubstTemplateTemplateParm: {
949 SubstTemplateTemplateParmStorage *subst
950 = name.getAsSubstTemplateTemplateParm();
951 mangleExistingSubstitution(subst->getReplacement());
952 break;
953 }
954
955 case TemplateName::SubstTemplateTemplateParmPack: {
956 // FIXME: not clear how to mangle this!
957 // template <template <class U> class T...> class A {
958 // template <class U...> void foo(decltype(T<U>::foo) x...);
959 // };
960 Out << "_SUBSTPACK_";
961 break;
962 }
963 }
964
965 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
966 break;
967 }
968
969 case Type::InjectedClassName:
970 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
971 ->getIdentifier());
972 break;
973
974 case Type::DependentName:
975 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
976 break;
977
978 case Type::DependentTemplateSpecialization: {
979 const DependentTemplateSpecializationType *tst
980 = cast<DependentTemplateSpecializationType>(type);
981 mangleSourceName(tst->getIdentifier());
982 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
983 break;
984 }
985 }
986 break;
987 }
988
989 case NestedNameSpecifier::Identifier:
990 // Member expressions can have these without prefixes.
991 if (qualifier->getPrefix()) {
992 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
993 /*recursive*/ true);
994 } else if (firstQualifierLookup) {
995
996 // Try to make a proper qualifier out of the lookup result, and
997 // then just recurse on that.
998 NestedNameSpecifier *newQualifier;
999 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1000 QualType type = getASTContext().getTypeDeclType(typeDecl);
1001
1002 // Pretend we had a different nested name specifier.
1003 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1004 /*prefix*/ 0,
1005 /*template*/ false,
1006 type.getTypePtr());
1007 } else if (NamespaceDecl *nspace =
1008 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1009 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1010 /*prefix*/ 0,
1011 nspace);
1012 } else if (NamespaceAliasDecl *alias =
1013 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1014 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1015 /*prefix*/ 0,
1016 alias);
1017 } else {
1018 // No sensible mangling to do here.
1019 newQualifier = 0;
1020 }
1021
1022 if (newQualifier)
1023 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1024
1025 } else {
1026 Out << "sr";
1027 }
1028
1029 mangleSourceName(qualifier->getAsIdentifier());
1030 break;
1031 }
1032
1033 // If this was the innermost part of the NNS, and we fell out to
1034 // here, append an 'E'.
1035 if (!recursive)
1036 Out << 'E';
1037}
1038
1039/// Mangle an unresolved-name, which is generally used for names which
1040/// weren't resolved to specific entities.
1041void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1042 NamedDecl *firstQualifierLookup,
1043 DeclarationName name,
1044 unsigned knownArity) {
1045 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1046 mangleUnqualifiedName(0, name, knownArity);
1047}
1048
1049static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1050 assert(RD->isAnonymousStructOrUnion() &&
1051 "Expected anonymous struct or union!");
1052
1053 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1054 I != E; ++I) {
1055 if (I->getIdentifier())
1056 return *I;
1057
1058 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1059 if (const FieldDecl *NamedDataMember =
1060 FindFirstNamedDataMember(RT->getDecl()))
1061 return NamedDataMember;
1062 }
1063
1064 // We didn't find a named data member.
1065 return 0;
1066}
1067
1068void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1069 DeclarationName Name,
1070 unsigned KnownArity) {
1071 // <unqualified-name> ::= <operator-name>
1072 // ::= <ctor-dtor-name>
1073 // ::= <source-name>
1074 switch (Name.getNameKind()) {
1075 case DeclarationName::Identifier: {
1076 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1077 // We must avoid conflicts between internally- and externally-
1078 // linked variable and function declaration names in the same TU:
1079 // void test() { extern void foo(); }
1080 // static void foo();
1081 // This naming convention is the same as that followed by GCC,
1082 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001083 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001084 getEffectiveDeclContext(ND)->isFileContext())
1085 Out << 'L';
1086
1087 mangleSourceName(II);
1088 break;
1089 }
1090
1091 // Otherwise, an anonymous entity. We must have a declaration.
1092 assert(ND && "mangling empty name without declaration");
1093
1094 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1095 if (NS->isAnonymousNamespace()) {
1096 // This is how gcc mangles these names.
1097 Out << "12_GLOBAL__N_1";
1098 break;
1099 }
1100 }
1101
1102 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1103 // We must have an anonymous union or struct declaration.
1104 const RecordDecl *RD =
1105 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1106
1107 // Itanium C++ ABI 5.1.2:
1108 //
1109 // For the purposes of mangling, the name of an anonymous union is
1110 // considered to be the name of the first named data member found by a
1111 // pre-order, depth-first, declaration-order walk of the data members of
1112 // the anonymous union. If there is no such data member (i.e., if all of
1113 // the data members in the union are unnamed), then there is no way for
1114 // a program to refer to the anonymous union, and there is therefore no
1115 // need to mangle its name.
1116 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1117
1118 // It's actually possible for various reasons for us to get here
1119 // with an empty anonymous struct / union. Fortunately, it
1120 // doesn't really matter what name we generate.
1121 if (!FD) break;
1122 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1123
1124 mangleSourceName(FD->getIdentifier());
1125 break;
1126 }
John McCall924046f2013-04-10 06:08:21 +00001127
1128 // Class extensions have no name as a category, and it's possible
1129 // for them to be the semantic parent of certain declarations
1130 // (primarily, tag decls defined within declarations). Such
1131 // declarations will always have internal linkage, so the name
1132 // doesn't really matter, but we shouldn't crash on them. For
1133 // safety, just handle all ObjC containers here.
1134 if (isa<ObjCContainerDecl>(ND))
1135 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001136
1137 // We must have an anonymous struct.
1138 const TagDecl *TD = cast<TagDecl>(ND);
1139 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1140 assert(TD->getDeclContext() == D->getDeclContext() &&
1141 "Typedef should not be in another decl context!");
1142 assert(D->getDeclName().getAsIdentifierInfo() &&
1143 "Typedef was not named!");
1144 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1145 break;
1146 }
1147
1148 // <unnamed-type-name> ::= <closure-type-name>
1149 //
1150 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1151 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1152 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1153 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1154 mangleLambda(Record);
1155 break;
1156 }
1157 }
1158
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001159 if (TD->isExternallyVisible()) {
1160 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001161 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001162 if (UnnamedMangle > 1)
1163 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001164 Out << '_';
1165 break;
1166 }
1167
1168 // Get a unique id for the anonymous struct.
1169 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1170
1171 // Mangle it as a source name in the form
1172 // [n] $_<id>
1173 // where n is the length of the string.
1174 SmallString<8> Str;
1175 Str += "$_";
1176 Str += llvm::utostr(AnonStructId);
1177
1178 Out << Str.size();
1179 Out << Str.str();
1180 break;
1181 }
1182
1183 case DeclarationName::ObjCZeroArgSelector:
1184 case DeclarationName::ObjCOneArgSelector:
1185 case DeclarationName::ObjCMultiArgSelector:
1186 llvm_unreachable("Can't mangle Objective-C selector names here!");
1187
1188 case DeclarationName::CXXConstructorName:
1189 if (ND == Structor)
1190 // If the named decl is the C++ constructor we're mangling, use the type
1191 // we were given.
1192 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1193 else
1194 // Otherwise, use the complete constructor name. This is relevant if a
1195 // class with a constructor is declared within a constructor.
1196 mangleCXXCtorType(Ctor_Complete);
1197 break;
1198
1199 case DeclarationName::CXXDestructorName:
1200 if (ND == Structor)
1201 // If the named decl is the C++ destructor we're mangling, use the type we
1202 // were given.
1203 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1204 else
1205 // Otherwise, use the complete destructor name. This is relevant if a
1206 // class with a destructor is declared within a destructor.
1207 mangleCXXDtorType(Dtor_Complete);
1208 break;
1209
1210 case DeclarationName::CXXConversionFunctionName:
1211 // <operator-name> ::= cv <type> # (cast)
1212 Out << "cv";
1213 mangleType(Name.getCXXNameType());
1214 break;
1215
1216 case DeclarationName::CXXOperatorName: {
1217 unsigned Arity;
1218 if (ND) {
1219 Arity = cast<FunctionDecl>(ND)->getNumParams();
1220
1221 // If we have a C++ member function, we need to include the 'this' pointer.
1222 // FIXME: This does not make sense for operators that are static, but their
1223 // names stay the same regardless of the arity (operator new for instance).
1224 if (isa<CXXMethodDecl>(ND))
1225 Arity++;
1226 } else
1227 Arity = KnownArity;
1228
1229 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1230 break;
1231 }
1232
1233 case DeclarationName::CXXLiteralOperatorName:
1234 // FIXME: This mangling is not yet official.
1235 Out << "li";
1236 mangleSourceName(Name.getCXXLiteralIdentifier());
1237 break;
1238
1239 case DeclarationName::CXXUsingDirective:
1240 llvm_unreachable("Can't mangle a using directive name!");
1241 }
1242}
1243
1244void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1245 // <source-name> ::= <positive length number> <identifier>
1246 // <number> ::= [n] <non-negative decimal integer>
1247 // <identifier> ::= <unqualified source code identifier>
1248 Out << II->getLength() << II->getName();
1249}
1250
1251void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1252 const DeclContext *DC,
1253 bool NoFunction) {
1254 // <nested-name>
1255 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1256 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1257 // <template-args> E
1258
1259 Out << 'N';
1260 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1261 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1262 mangleRefQualifier(Method->getRefQualifier());
1263 }
1264
1265 // Check if we have a template.
1266 const TemplateArgumentList *TemplateArgs = 0;
1267 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001268 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001269 mangleTemplateArgs(*TemplateArgs);
1270 }
1271 else {
1272 manglePrefix(DC, NoFunction);
1273 mangleUnqualifiedName(ND);
1274 }
1275
1276 Out << 'E';
1277}
1278void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1279 const TemplateArgument *TemplateArgs,
1280 unsigned NumTemplateArgs) {
1281 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1282
1283 Out << 'N';
1284
1285 mangleTemplatePrefix(TD);
1286 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1287
1288 Out << 'E';
1289}
1290
Eli Friedman95f50122013-07-02 17:52:28 +00001291void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001292 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1293 // := Z <function encoding> E s [<discriminator>]
1294 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1295 // _ <entity name>
1296 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001297 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001298 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001299 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001300
1301 Out << 'Z';
1302
Eli Friedman92821742013-07-02 02:01:18 +00001303 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1304 mangleObjCMethodName(MD);
1305 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001306 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001307 else
1308 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001309
Eli Friedman92821742013-07-02 02:01:18 +00001310 Out << 'E';
1311
1312 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001313 // The parameter number is omitted for the last parameter, 0 for the
1314 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1315 // <entity name> will of course contain a <closure-type-name>: Its
1316 // numbering will be local to the particular argument in which it appears
1317 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001318 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1319 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001320 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001321 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001322 if (const FunctionDecl *Func
1323 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1324 Out << 'd';
1325 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1326 if (Num > 1)
1327 mangleNumber(Num - 2);
1328 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001329 }
1330 }
1331 }
1332
1333 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001334 // equality ok because RD derived from ND above
1335 if (D == RD) {
1336 mangleUnqualifiedName(RD);
1337 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1338 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1339 mangleUnqualifiedBlock(BD);
1340 } else {
1341 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001342 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001343 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001344 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1345 // Mangle a block in a default parameter; see above explanation for
1346 // lambdas.
1347 if (const ParmVarDecl *Parm
1348 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1349 if (const FunctionDecl *Func
1350 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1351 Out << 'd';
1352 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1353 if (Num > 1)
1354 mangleNumber(Num - 2);
1355 Out << '_';
1356 }
1357 }
1358
1359 mangleUnqualifiedBlock(BD);
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001360 } else {
Eli Friedman0cd23352013-07-10 01:33:19 +00001361 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001362 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001363
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001364 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1365 unsigned disc;
1366 if (Context.getNextDiscriminator(ND, disc)) {
1367 if (disc < 10)
1368 Out << '_' << disc;
1369 else
1370 Out << "__" << disc << '_';
1371 }
1372 }
Eli Friedman95f50122013-07-02 17:52:28 +00001373}
1374
1375void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1376 if (GetLocalClassDecl(Block)) {
1377 mangleLocalName(Block);
1378 return;
1379 }
1380 const DeclContext *DC = getEffectiveDeclContext(Block);
1381 if (isLocalContainerContext(DC)) {
1382 mangleLocalName(Block);
1383 return;
1384 }
1385 manglePrefix(getEffectiveDeclContext(Block));
1386 mangleUnqualifiedBlock(Block);
1387}
1388
1389void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1390 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1391 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1392 Context->getDeclContext()->isRecord()) {
1393 if (const IdentifierInfo *Name
1394 = cast<NamedDecl>(Context)->getIdentifier()) {
1395 mangleSourceName(Name);
1396 Out << 'M';
1397 }
1398 }
1399 }
1400
1401 // If we have a block mangling number, use it.
1402 unsigned Number = Block->getBlockManglingNumber();
1403 // Otherwise, just make up a number. It doesn't matter what it is because
1404 // the symbol in question isn't externally visible.
1405 if (!Number)
1406 Number = Context.getBlockId(Block, false);
1407 Out << "Ub";
1408 if (Number > 1)
1409 Out << Number - 2;
1410 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001411}
1412
1413void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1414 // If the context of a closure type is an initializer for a class member
1415 // (static or nonstatic), it is encoded in a qualified name with a final
1416 // <prefix> of the form:
1417 //
1418 // <data-member-prefix> := <member source-name> M
1419 //
1420 // Technically, the data-member-prefix is part of the <prefix>. However,
1421 // since a closure type will always be mangled with a prefix, it's easier
1422 // to emit that last part of the prefix here.
1423 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1424 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1425 Context->getDeclContext()->isRecord()) {
1426 if (const IdentifierInfo *Name
1427 = cast<NamedDecl>(Context)->getIdentifier()) {
1428 mangleSourceName(Name);
1429 Out << 'M';
1430 }
1431 }
1432 }
1433
1434 Out << "Ul";
1435 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1436 getAs<FunctionProtoType>();
1437 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1438 Out << "E";
1439
1440 // The number is omitted for the first closure type with a given
1441 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1442 // (in lexical order) with that same <lambda-sig> and context.
1443 //
1444 // The AST keeps track of the number for us.
1445 unsigned Number = Lambda->getLambdaManglingNumber();
1446 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1447 if (Number > 1)
1448 mangleNumber(Number - 2);
1449 Out << '_';
1450}
1451
1452void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1453 switch (qualifier->getKind()) {
1454 case NestedNameSpecifier::Global:
1455 // nothing
1456 return;
1457
1458 case NestedNameSpecifier::Namespace:
1459 mangleName(qualifier->getAsNamespace());
1460 return;
1461
1462 case NestedNameSpecifier::NamespaceAlias:
1463 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1464 return;
1465
1466 case NestedNameSpecifier::TypeSpec:
1467 case NestedNameSpecifier::TypeSpecWithTemplate:
1468 manglePrefix(QualType(qualifier->getAsType(), 0));
1469 return;
1470
1471 case NestedNameSpecifier::Identifier:
1472 // Member expressions can have these without prefixes, but that
1473 // should end up in mangleUnresolvedPrefix instead.
1474 assert(qualifier->getPrefix());
1475 manglePrefix(qualifier->getPrefix());
1476
1477 mangleSourceName(qualifier->getAsIdentifier());
1478 return;
1479 }
1480
1481 llvm_unreachable("unexpected nested name specifier");
1482}
1483
1484void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1485 // <prefix> ::= <prefix> <unqualified-name>
1486 // ::= <template-prefix> <template-args>
1487 // ::= <template-param>
1488 // ::= # empty
1489 // ::= <substitution>
1490
1491 DC = IgnoreLinkageSpecDecls(DC);
1492
1493 if (DC->isTranslationUnit())
1494 return;
1495
Eli Friedman95f50122013-07-02 17:52:28 +00001496 if (NoFunction && isLocalContainerContext(DC))
1497 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001498
Eli Friedman95f50122013-07-02 17:52:28 +00001499 assert(!isLocalContainerContext(DC));
1500
Guy Benyei11169dd2012-12-18 14:30:41 +00001501 const NamedDecl *ND = cast<NamedDecl>(DC);
1502 if (mangleSubstitution(ND))
1503 return;
1504
1505 // Check if we have a template.
1506 const TemplateArgumentList *TemplateArgs = 0;
1507 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1508 mangleTemplatePrefix(TD);
1509 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001510 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001511 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1512 mangleUnqualifiedName(ND);
1513 }
1514
1515 addSubstitution(ND);
1516}
1517
1518void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1519 // <template-prefix> ::= <prefix> <template unqualified-name>
1520 // ::= <template-param>
1521 // ::= <substitution>
1522 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1523 return mangleTemplatePrefix(TD);
1524
1525 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1526 manglePrefix(Qualified->getQualifier());
1527
1528 if (OverloadedTemplateStorage *Overloaded
1529 = Template.getAsOverloadedTemplate()) {
1530 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1531 UnknownArity);
1532 return;
1533 }
1534
1535 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1536 assert(Dependent && "Unknown template name kind?");
1537 manglePrefix(Dependent->getQualifier());
1538 mangleUnscopedTemplateName(Template);
1539}
1540
Eli Friedman86af13f02013-07-05 18:41:30 +00001541void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1542 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001543 // <template-prefix> ::= <prefix> <template unqualified-name>
1544 // ::= <template-param>
1545 // ::= <substitution>
1546 // <template-template-param> ::= <template-param>
1547 // <substitution>
1548
1549 if (mangleSubstitution(ND))
1550 return;
1551
1552 // <template-template-param> ::= <template-param>
1553 if (const TemplateTemplateParmDecl *TTP
1554 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1555 mangleTemplateParameter(TTP->getIndex());
1556 return;
1557 }
1558
Eli Friedman86af13f02013-07-05 18:41:30 +00001559 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001560 mangleUnqualifiedName(ND->getTemplatedDecl());
1561 addSubstitution(ND);
1562}
1563
1564/// Mangles a template name under the production <type>. Required for
1565/// template template arguments.
1566/// <type> ::= <class-enum-type>
1567/// ::= <template-param>
1568/// ::= <substitution>
1569void CXXNameMangler::mangleType(TemplateName TN) {
1570 if (mangleSubstitution(TN))
1571 return;
1572
1573 TemplateDecl *TD = 0;
1574
1575 switch (TN.getKind()) {
1576 case TemplateName::QualifiedTemplate:
1577 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1578 goto HaveDecl;
1579
1580 case TemplateName::Template:
1581 TD = TN.getAsTemplateDecl();
1582 goto HaveDecl;
1583
1584 HaveDecl:
1585 if (isa<TemplateTemplateParmDecl>(TD))
1586 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1587 else
1588 mangleName(TD);
1589 break;
1590
1591 case TemplateName::OverloadedTemplate:
1592 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1593
1594 case TemplateName::DependentTemplate: {
1595 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1596 assert(Dependent->isIdentifier());
1597
1598 // <class-enum-type> ::= <name>
1599 // <name> ::= <nested-name>
1600 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1601 mangleSourceName(Dependent->getIdentifier());
1602 break;
1603 }
1604
1605 case TemplateName::SubstTemplateTemplateParm: {
1606 // Substituted template parameters are mangled as the substituted
1607 // template. This will check for the substitution twice, which is
1608 // fine, but we have to return early so that we don't try to *add*
1609 // the substitution twice.
1610 SubstTemplateTemplateParmStorage *subst
1611 = TN.getAsSubstTemplateTemplateParm();
1612 mangleType(subst->getReplacement());
1613 return;
1614 }
1615
1616 case TemplateName::SubstTemplateTemplateParmPack: {
1617 // FIXME: not clear how to mangle this!
1618 // template <template <class> class T...> class A {
1619 // template <template <class> class U...> void foo(B<T,U> x...);
1620 // };
1621 Out << "_SUBSTPACK_";
1622 break;
1623 }
1624 }
1625
1626 addSubstitution(TN);
1627}
1628
1629void
1630CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1631 switch (OO) {
1632 // <operator-name> ::= nw # new
1633 case OO_New: Out << "nw"; break;
1634 // ::= na # new[]
1635 case OO_Array_New: Out << "na"; break;
1636 // ::= dl # delete
1637 case OO_Delete: Out << "dl"; break;
1638 // ::= da # delete[]
1639 case OO_Array_Delete: Out << "da"; break;
1640 // ::= ps # + (unary)
1641 // ::= pl # + (binary or unknown)
1642 case OO_Plus:
1643 Out << (Arity == 1? "ps" : "pl"); break;
1644 // ::= ng # - (unary)
1645 // ::= mi # - (binary or unknown)
1646 case OO_Minus:
1647 Out << (Arity == 1? "ng" : "mi"); break;
1648 // ::= ad # & (unary)
1649 // ::= an # & (binary or unknown)
1650 case OO_Amp:
1651 Out << (Arity == 1? "ad" : "an"); break;
1652 // ::= de # * (unary)
1653 // ::= ml # * (binary or unknown)
1654 case OO_Star:
1655 // Use binary when unknown.
1656 Out << (Arity == 1? "de" : "ml"); break;
1657 // ::= co # ~
1658 case OO_Tilde: Out << "co"; break;
1659 // ::= dv # /
1660 case OO_Slash: Out << "dv"; break;
1661 // ::= rm # %
1662 case OO_Percent: Out << "rm"; break;
1663 // ::= or # |
1664 case OO_Pipe: Out << "or"; break;
1665 // ::= eo # ^
1666 case OO_Caret: Out << "eo"; break;
1667 // ::= aS # =
1668 case OO_Equal: Out << "aS"; break;
1669 // ::= pL # +=
1670 case OO_PlusEqual: Out << "pL"; break;
1671 // ::= mI # -=
1672 case OO_MinusEqual: Out << "mI"; break;
1673 // ::= mL # *=
1674 case OO_StarEqual: Out << "mL"; break;
1675 // ::= dV # /=
1676 case OO_SlashEqual: Out << "dV"; break;
1677 // ::= rM # %=
1678 case OO_PercentEqual: Out << "rM"; break;
1679 // ::= aN # &=
1680 case OO_AmpEqual: Out << "aN"; break;
1681 // ::= oR # |=
1682 case OO_PipeEqual: Out << "oR"; break;
1683 // ::= eO # ^=
1684 case OO_CaretEqual: Out << "eO"; break;
1685 // ::= ls # <<
1686 case OO_LessLess: Out << "ls"; break;
1687 // ::= rs # >>
1688 case OO_GreaterGreater: Out << "rs"; break;
1689 // ::= lS # <<=
1690 case OO_LessLessEqual: Out << "lS"; break;
1691 // ::= rS # >>=
1692 case OO_GreaterGreaterEqual: Out << "rS"; break;
1693 // ::= eq # ==
1694 case OO_EqualEqual: Out << "eq"; break;
1695 // ::= ne # !=
1696 case OO_ExclaimEqual: Out << "ne"; break;
1697 // ::= lt # <
1698 case OO_Less: Out << "lt"; break;
1699 // ::= gt # >
1700 case OO_Greater: Out << "gt"; break;
1701 // ::= le # <=
1702 case OO_LessEqual: Out << "le"; break;
1703 // ::= ge # >=
1704 case OO_GreaterEqual: Out << "ge"; break;
1705 // ::= nt # !
1706 case OO_Exclaim: Out << "nt"; break;
1707 // ::= aa # &&
1708 case OO_AmpAmp: Out << "aa"; break;
1709 // ::= oo # ||
1710 case OO_PipePipe: Out << "oo"; break;
1711 // ::= pp # ++
1712 case OO_PlusPlus: Out << "pp"; break;
1713 // ::= mm # --
1714 case OO_MinusMinus: Out << "mm"; break;
1715 // ::= cm # ,
1716 case OO_Comma: Out << "cm"; break;
1717 // ::= pm # ->*
1718 case OO_ArrowStar: Out << "pm"; break;
1719 // ::= pt # ->
1720 case OO_Arrow: Out << "pt"; break;
1721 // ::= cl # ()
1722 case OO_Call: Out << "cl"; break;
1723 // ::= ix # []
1724 case OO_Subscript: Out << "ix"; break;
1725
1726 // ::= qu # ?
1727 // The conditional operator can't be overloaded, but we still handle it when
1728 // mangling expressions.
1729 case OO_Conditional: Out << "qu"; break;
1730
1731 case OO_None:
1732 case NUM_OVERLOADED_OPERATORS:
1733 llvm_unreachable("Not an overloaded operator");
1734 }
1735}
1736
1737void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1738 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1739 if (Quals.hasRestrict())
1740 Out << 'r';
1741 if (Quals.hasVolatile())
1742 Out << 'V';
1743 if (Quals.hasConst())
1744 Out << 'K';
1745
1746 if (Quals.hasAddressSpace()) {
1747 // Extension:
1748 //
1749 // <type> ::= U <address-space-number>
1750 //
1751 // where <address-space-number> is a source name consisting of 'AS'
1752 // followed by the address space <number>.
1753 SmallString<64> ASString;
Tanya Lattner60e93a62013-02-08 01:07:32 +00001754 ASString = "AS" + llvm::utostr_32(
1755 Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
Guy Benyei11169dd2012-12-18 14:30:41 +00001756 Out << 'U' << ASString.size() << ASString;
1757 }
1758
1759 StringRef LifetimeName;
1760 switch (Quals.getObjCLifetime()) {
1761 // Objective-C ARC Extension:
1762 //
1763 // <type> ::= U "__strong"
1764 // <type> ::= U "__weak"
1765 // <type> ::= U "__autoreleasing"
1766 case Qualifiers::OCL_None:
1767 break;
1768
1769 case Qualifiers::OCL_Weak:
1770 LifetimeName = "__weak";
1771 break;
1772
1773 case Qualifiers::OCL_Strong:
1774 LifetimeName = "__strong";
1775 break;
1776
1777 case Qualifiers::OCL_Autoreleasing:
1778 LifetimeName = "__autoreleasing";
1779 break;
1780
1781 case Qualifiers::OCL_ExplicitNone:
1782 // The __unsafe_unretained qualifier is *not* mangled, so that
1783 // __unsafe_unretained types in ARC produce the same manglings as the
1784 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1785 // better ABI compatibility.
1786 //
1787 // It's safe to do this because unqualified 'id' won't show up
1788 // in any type signatures that need to be mangled.
1789 break;
1790 }
1791 if (!LifetimeName.empty())
1792 Out << 'U' << LifetimeName.size() << LifetimeName;
1793}
1794
1795void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1796 // <ref-qualifier> ::= R # lvalue reference
1797 // ::= O # rvalue-reference
1798 // Proposal to Itanium C++ ABI list on 1/26/11
1799 switch (RefQualifier) {
1800 case RQ_None:
1801 break;
1802
1803 case RQ_LValue:
1804 Out << 'R';
1805 break;
1806
1807 case RQ_RValue:
1808 Out << 'O';
1809 break;
1810 }
1811}
1812
1813void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1814 Context.mangleObjCMethodName(MD, Out);
1815}
1816
1817void CXXNameMangler::mangleType(QualType T) {
1818 // If our type is instantiation-dependent but not dependent, we mangle
1819 // it as it was written in the source, removing any top-level sugar.
1820 // Otherwise, use the canonical type.
1821 //
1822 // FIXME: This is an approximation of the instantiation-dependent name
1823 // mangling rules, since we should really be using the type as written and
1824 // augmented via semantic analysis (i.e., with implicit conversions and
1825 // default template arguments) for any instantiation-dependent type.
1826 // Unfortunately, that requires several changes to our AST:
1827 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1828 // uniqued, so that we can handle substitutions properly
1829 // - Default template arguments will need to be represented in the
1830 // TemplateSpecializationType, since they need to be mangled even though
1831 // they aren't written.
1832 // - Conversions on non-type template arguments need to be expressed, since
1833 // they can affect the mangling of sizeof/alignof.
1834 if (!T->isInstantiationDependentType() || T->isDependentType())
1835 T = T.getCanonicalType();
1836 else {
1837 // Desugar any types that are purely sugar.
1838 do {
1839 // Don't desugar through template specialization types that aren't
1840 // type aliases. We need to mangle the template arguments as written.
1841 if (const TemplateSpecializationType *TST
1842 = dyn_cast<TemplateSpecializationType>(T))
1843 if (!TST->isTypeAlias())
1844 break;
1845
1846 QualType Desugared
1847 = T.getSingleStepDesugaredType(Context.getASTContext());
1848 if (Desugared == T)
1849 break;
1850
1851 T = Desugared;
1852 } while (true);
1853 }
1854 SplitQualType split = T.split();
1855 Qualifiers quals = split.Quals;
1856 const Type *ty = split.Ty;
1857
1858 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1859 if (isSubstitutable && mangleSubstitution(T))
1860 return;
1861
1862 // If we're mangling a qualified array type, push the qualifiers to
1863 // the element type.
1864 if (quals && isa<ArrayType>(T)) {
1865 ty = Context.getASTContext().getAsArrayType(T);
1866 quals = Qualifiers();
1867
1868 // Note that we don't update T: we want to add the
1869 // substitution at the original type.
1870 }
1871
1872 if (quals) {
1873 mangleQualifiers(quals);
1874 // Recurse: even if the qualified type isn't yet substitutable,
1875 // the unqualified type might be.
1876 mangleType(QualType(ty, 0));
1877 } else {
1878 switch (ty->getTypeClass()) {
1879#define ABSTRACT_TYPE(CLASS, PARENT)
1880#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1881 case Type::CLASS: \
1882 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1883 return;
1884#define TYPE(CLASS, PARENT) \
1885 case Type::CLASS: \
1886 mangleType(static_cast<const CLASS##Type*>(ty)); \
1887 break;
1888#include "clang/AST/TypeNodes.def"
1889 }
1890 }
1891
1892 // Add the substitution.
1893 if (isSubstitutable)
1894 addSubstitution(T);
1895}
1896
1897void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1898 if (!mangleStandardSubstitution(ND))
1899 mangleName(ND);
1900}
1901
1902void CXXNameMangler::mangleType(const BuiltinType *T) {
1903 // <type> ::= <builtin-type>
1904 // <builtin-type> ::= v # void
1905 // ::= w # wchar_t
1906 // ::= b # bool
1907 // ::= c # char
1908 // ::= a # signed char
1909 // ::= h # unsigned char
1910 // ::= s # short
1911 // ::= t # unsigned short
1912 // ::= i # int
1913 // ::= j # unsigned int
1914 // ::= l # long
1915 // ::= m # unsigned long
1916 // ::= x # long long, __int64
1917 // ::= y # unsigned long long, __int64
1918 // ::= n # __int128
1919 // UNSUPPORTED: ::= o # unsigned __int128
1920 // ::= f # float
1921 // ::= d # double
1922 // ::= e # long double, __float80
1923 // UNSUPPORTED: ::= g # __float128
1924 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1925 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1926 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1927 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1928 // ::= Di # char32_t
1929 // ::= Ds # char16_t
1930 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1931 // ::= u <source-name> # vendor extended type
1932 switch (T->getKind()) {
1933 case BuiltinType::Void: Out << 'v'; break;
1934 case BuiltinType::Bool: Out << 'b'; break;
1935 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1936 case BuiltinType::UChar: Out << 'h'; break;
1937 case BuiltinType::UShort: Out << 't'; break;
1938 case BuiltinType::UInt: Out << 'j'; break;
1939 case BuiltinType::ULong: Out << 'm'; break;
1940 case BuiltinType::ULongLong: Out << 'y'; break;
1941 case BuiltinType::UInt128: Out << 'o'; break;
1942 case BuiltinType::SChar: Out << 'a'; break;
1943 case BuiltinType::WChar_S:
1944 case BuiltinType::WChar_U: Out << 'w'; break;
1945 case BuiltinType::Char16: Out << "Ds"; break;
1946 case BuiltinType::Char32: Out << "Di"; break;
1947 case BuiltinType::Short: Out << 's'; break;
1948 case BuiltinType::Int: Out << 'i'; break;
1949 case BuiltinType::Long: Out << 'l'; break;
1950 case BuiltinType::LongLong: Out << 'x'; break;
1951 case BuiltinType::Int128: Out << 'n'; break;
1952 case BuiltinType::Half: Out << "Dh"; break;
1953 case BuiltinType::Float: Out << 'f'; break;
1954 case BuiltinType::Double: Out << 'd'; break;
1955 case BuiltinType::LongDouble: Out << 'e'; break;
1956 case BuiltinType::NullPtr: Out << "Dn"; break;
1957
1958#define BUILTIN_TYPE(Id, SingletonId)
1959#define PLACEHOLDER_TYPE(Id, SingletonId) \
1960 case BuiltinType::Id:
1961#include "clang/AST/BuiltinTypes.def"
1962 case BuiltinType::Dependent:
1963 llvm_unreachable("mangling a placeholder type");
1964 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1965 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1966 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001967 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1968 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1969 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1970 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1971 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1972 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001973 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001974 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001975 }
1976}
1977
1978// <type> ::= <function-type>
1979// <function-type> ::= [<CV-qualifiers>] F [Y]
1980// <bare-function-type> [<ref-qualifier>] E
1981// (Proposal to cxx-abi-dev, 2012-05-11)
1982void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1983 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1984 // e.g. "const" in "int (A::*)() const".
1985 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1986
1987 Out << 'F';
1988
1989 // FIXME: We don't have enough information in the AST to produce the 'Y'
1990 // encoding for extern "C" function types.
1991 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1992
1993 // Mangle the ref-qualifier, if present.
1994 mangleRefQualifier(T->getRefQualifier());
1995
1996 Out << 'E';
1997}
1998void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1999 llvm_unreachable("Can't mangle K&R function prototypes");
2000}
2001void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2002 bool MangleReturnType) {
2003 // We should never be mangling something without a prototype.
2004 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2005
2006 // Record that we're in a function type. See mangleFunctionParam
2007 // for details on what we're trying to achieve here.
2008 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2009
2010 // <bare-function-type> ::= <signature type>+
2011 if (MangleReturnType) {
2012 FunctionTypeDepth.enterResultType();
2013 mangleType(Proto->getResultType());
2014 FunctionTypeDepth.leaveResultType();
2015 }
2016
2017 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2018 // <builtin-type> ::= v # void
2019 Out << 'v';
2020
2021 FunctionTypeDepth.pop(saved);
2022 return;
2023 }
2024
2025 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2026 ArgEnd = Proto->arg_type_end();
2027 Arg != ArgEnd; ++Arg)
2028 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2029
2030 FunctionTypeDepth.pop(saved);
2031
2032 // <builtin-type> ::= z # ellipsis
2033 if (Proto->isVariadic())
2034 Out << 'z';
2035}
2036
2037// <type> ::= <class-enum-type>
2038// <class-enum-type> ::= <name>
2039void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2040 mangleName(T->getDecl());
2041}
2042
2043// <type> ::= <class-enum-type>
2044// <class-enum-type> ::= <name>
2045void CXXNameMangler::mangleType(const EnumType *T) {
2046 mangleType(static_cast<const TagType*>(T));
2047}
2048void CXXNameMangler::mangleType(const RecordType *T) {
2049 mangleType(static_cast<const TagType*>(T));
2050}
2051void CXXNameMangler::mangleType(const TagType *T) {
2052 mangleName(T->getDecl());
2053}
2054
2055// <type> ::= <array-type>
2056// <array-type> ::= A <positive dimension number> _ <element type>
2057// ::= A [<dimension expression>] _ <element type>
2058void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2059 Out << 'A' << T->getSize() << '_';
2060 mangleType(T->getElementType());
2061}
2062void CXXNameMangler::mangleType(const VariableArrayType *T) {
2063 Out << 'A';
2064 // decayed vla types (size 0) will just be skipped.
2065 if (T->getSizeExpr())
2066 mangleExpression(T->getSizeExpr());
2067 Out << '_';
2068 mangleType(T->getElementType());
2069}
2070void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2071 Out << 'A';
2072 mangleExpression(T->getSizeExpr());
2073 Out << '_';
2074 mangleType(T->getElementType());
2075}
2076void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2077 Out << "A_";
2078 mangleType(T->getElementType());
2079}
2080
2081// <type> ::= <pointer-to-member-type>
2082// <pointer-to-member-type> ::= M <class type> <member type>
2083void CXXNameMangler::mangleType(const MemberPointerType *T) {
2084 Out << 'M';
2085 mangleType(QualType(T->getClass(), 0));
2086 QualType PointeeType = T->getPointeeType();
2087 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2088 mangleType(FPT);
2089
2090 // Itanium C++ ABI 5.1.8:
2091 //
2092 // The type of a non-static member function is considered to be different,
2093 // for the purposes of substitution, from the type of a namespace-scope or
2094 // static member function whose type appears similar. The types of two
2095 // non-static member functions are considered to be different, for the
2096 // purposes of substitution, if the functions are members of different
2097 // classes. In other words, for the purposes of substitution, the class of
2098 // which the function is a member is considered part of the type of
2099 // function.
2100
2101 // Given that we already substitute member function pointers as a
2102 // whole, the net effect of this rule is just to unconditionally
2103 // suppress substitution on the function type in a member pointer.
2104 // We increment the SeqID here to emulate adding an entry to the
2105 // substitution table.
2106 ++SeqID;
2107 } else
2108 mangleType(PointeeType);
2109}
2110
2111// <type> ::= <template-param>
2112void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2113 mangleTemplateParameter(T->getIndex());
2114}
2115
2116// <type> ::= <template-param>
2117void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2118 // FIXME: not clear how to mangle this!
2119 // template <class T...> class A {
2120 // template <class U...> void foo(T(*)(U) x...);
2121 // };
2122 Out << "_SUBSTPACK_";
2123}
2124
2125// <type> ::= P <type> # pointer-to
2126void CXXNameMangler::mangleType(const PointerType *T) {
2127 Out << 'P';
2128 mangleType(T->getPointeeType());
2129}
2130void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2131 Out << 'P';
2132 mangleType(T->getPointeeType());
2133}
2134
2135// <type> ::= R <type> # reference-to
2136void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2137 Out << 'R';
2138 mangleType(T->getPointeeType());
2139}
2140
2141// <type> ::= O <type> # rvalue reference-to (C++0x)
2142void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2143 Out << 'O';
2144 mangleType(T->getPointeeType());
2145}
2146
2147// <type> ::= C <type> # complex pair (C 2000)
2148void CXXNameMangler::mangleType(const ComplexType *T) {
2149 Out << 'C';
2150 mangleType(T->getElementType());
2151}
2152
2153// ARM's ABI for Neon vector types specifies that they should be mangled as
2154// if they are structs (to match ARM's initial implementation). The
2155// vector type must be one of the special types predefined by ARM.
2156void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2157 QualType EltType = T->getElementType();
2158 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2159 const char *EltName = 0;
2160 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2161 switch (cast<BuiltinType>(EltType)->getKind()) {
2162 case BuiltinType::SChar: EltName = "poly8_t"; break;
2163 case BuiltinType::Short: EltName = "poly16_t"; break;
2164 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2165 }
2166 } else {
2167 switch (cast<BuiltinType>(EltType)->getKind()) {
2168 case BuiltinType::SChar: EltName = "int8_t"; break;
2169 case BuiltinType::UChar: EltName = "uint8_t"; break;
2170 case BuiltinType::Short: EltName = "int16_t"; break;
2171 case BuiltinType::UShort: EltName = "uint16_t"; break;
2172 case BuiltinType::Int: EltName = "int32_t"; break;
2173 case BuiltinType::UInt: EltName = "uint32_t"; break;
2174 case BuiltinType::LongLong: EltName = "int64_t"; break;
2175 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2176 case BuiltinType::Float: EltName = "float32_t"; break;
2177 default: llvm_unreachable("unexpected Neon vector element type");
2178 }
2179 }
2180 const char *BaseName = 0;
2181 unsigned BitSize = (T->getNumElements() *
2182 getASTContext().getTypeSize(EltType));
2183 if (BitSize == 64)
2184 BaseName = "__simd64_";
2185 else {
2186 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2187 BaseName = "__simd128_";
2188 }
2189 Out << strlen(BaseName) + strlen(EltName);
2190 Out << BaseName << EltName;
2191}
2192
2193// GNU extension: vector types
2194// <type> ::= <vector-type>
2195// <vector-type> ::= Dv <positive dimension number> _
2196// <extended element type>
2197// ::= Dv [<dimension expression>] _ <element type>
2198// <extended element type> ::= <element type>
2199// ::= p # AltiVec vector pixel
2200// ::= b # Altivec vector bool
2201void CXXNameMangler::mangleType(const VectorType *T) {
2202 if ((T->getVectorKind() == VectorType::NeonVector ||
2203 T->getVectorKind() == VectorType::NeonPolyVector)) {
2204 mangleNeonVectorType(T);
2205 return;
2206 }
2207 Out << "Dv" << T->getNumElements() << '_';
2208 if (T->getVectorKind() == VectorType::AltiVecPixel)
2209 Out << 'p';
2210 else if (T->getVectorKind() == VectorType::AltiVecBool)
2211 Out << 'b';
2212 else
2213 mangleType(T->getElementType());
2214}
2215void CXXNameMangler::mangleType(const ExtVectorType *T) {
2216 mangleType(static_cast<const VectorType*>(T));
2217}
2218void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2219 Out << "Dv";
2220 mangleExpression(T->getSizeExpr());
2221 Out << '_';
2222 mangleType(T->getElementType());
2223}
2224
2225void CXXNameMangler::mangleType(const PackExpansionType *T) {
2226 // <type> ::= Dp <type> # pack expansion (C++0x)
2227 Out << "Dp";
2228 mangleType(T->getPattern());
2229}
2230
2231void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2232 mangleSourceName(T->getDecl()->getIdentifier());
2233}
2234
2235void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002236 if (!T->qual_empty()) {
2237 // Mangle protocol qualifiers.
2238 SmallString<64> QualStr;
2239 llvm::raw_svector_ostream QualOS(QualStr);
2240 QualOS << "objcproto";
2241 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2242 for ( ; i != e; ++i) {
2243 StringRef name = (*i)->getName();
2244 QualOS << name.size() << name;
2245 }
2246 QualOS.flush();
2247 Out << 'U' << QualStr.size() << QualStr;
2248 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002249 mangleType(T->getBaseType());
2250}
2251
2252void CXXNameMangler::mangleType(const BlockPointerType *T) {
2253 Out << "U13block_pointer";
2254 mangleType(T->getPointeeType());
2255}
2256
2257void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2258 // Mangle injected class name types as if the user had written the
2259 // specialization out fully. It may not actually be possible to see
2260 // this mangling, though.
2261 mangleType(T->getInjectedSpecializationType());
2262}
2263
2264void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2265 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2266 mangleName(TD, T->getArgs(), T->getNumArgs());
2267 } else {
2268 if (mangleSubstitution(QualType(T, 0)))
2269 return;
2270
2271 mangleTemplatePrefix(T->getTemplateName());
2272
2273 // FIXME: GCC does not appear to mangle the template arguments when
2274 // the template in question is a dependent template name. Should we
2275 // emulate that badness?
2276 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2277 addSubstitution(QualType(T, 0));
2278 }
2279}
2280
2281void CXXNameMangler::mangleType(const DependentNameType *T) {
2282 // Typename types are always nested
2283 Out << 'N';
2284 manglePrefix(T->getQualifier());
2285 mangleSourceName(T->getIdentifier());
2286 Out << 'E';
2287}
2288
2289void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2290 // Dependently-scoped template types are nested if they have a prefix.
2291 Out << 'N';
2292
2293 // TODO: avoid making this TemplateName.
2294 TemplateName Prefix =
2295 getASTContext().getDependentTemplateName(T->getQualifier(),
2296 T->getIdentifier());
2297 mangleTemplatePrefix(Prefix);
2298
2299 // FIXME: GCC does not appear to mangle the template arguments when
2300 // the template in question is a dependent template name. Should we
2301 // emulate that badness?
2302 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2303 Out << 'E';
2304}
2305
2306void CXXNameMangler::mangleType(const TypeOfType *T) {
2307 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2308 // "extension with parameters" mangling.
2309 Out << "u6typeof";
2310}
2311
2312void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2313 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2314 // "extension with parameters" mangling.
2315 Out << "u6typeof";
2316}
2317
2318void CXXNameMangler::mangleType(const DecltypeType *T) {
2319 Expr *E = T->getUnderlyingExpr();
2320
2321 // type ::= Dt <expression> E # decltype of an id-expression
2322 // # or class member access
2323 // ::= DT <expression> E # decltype of an expression
2324
2325 // This purports to be an exhaustive list of id-expressions and
2326 // class member accesses. Note that we do not ignore parentheses;
2327 // parentheses change the semantics of decltype for these
2328 // expressions (and cause the mangler to use the other form).
2329 if (isa<DeclRefExpr>(E) ||
2330 isa<MemberExpr>(E) ||
2331 isa<UnresolvedLookupExpr>(E) ||
2332 isa<DependentScopeDeclRefExpr>(E) ||
2333 isa<CXXDependentScopeMemberExpr>(E) ||
2334 isa<UnresolvedMemberExpr>(E))
2335 Out << "Dt";
2336 else
2337 Out << "DT";
2338 mangleExpression(E);
2339 Out << 'E';
2340}
2341
2342void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2343 // If this is dependent, we need to record that. If not, we simply
2344 // mangle it as the underlying type since they are equivalent.
2345 if (T->isDependentType()) {
2346 Out << 'U';
2347
2348 switch (T->getUTTKind()) {
2349 case UnaryTransformType::EnumUnderlyingType:
2350 Out << "3eut";
2351 break;
2352 }
2353 }
2354
2355 mangleType(T->getUnderlyingType());
2356}
2357
2358void CXXNameMangler::mangleType(const AutoType *T) {
2359 QualType D = T->getDeducedType();
2360 // <builtin-type> ::= Da # dependent auto
2361 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002362 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002363 else
2364 mangleType(D);
2365}
2366
2367void CXXNameMangler::mangleType(const AtomicType *T) {
2368 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2369 // (Until there's a standardized mangling...)
2370 Out << "U7_Atomic";
2371 mangleType(T->getValueType());
2372}
2373
2374void CXXNameMangler::mangleIntegerLiteral(QualType T,
2375 const llvm::APSInt &Value) {
2376 // <expr-primary> ::= L <type> <value number> E # integer literal
2377 Out << 'L';
2378
2379 mangleType(T);
2380 if (T->isBooleanType()) {
2381 // Boolean values are encoded as 0/1.
2382 Out << (Value.getBoolValue() ? '1' : '0');
2383 } else {
2384 mangleNumber(Value);
2385 }
2386 Out << 'E';
2387
2388}
2389
2390/// Mangles a member expression.
2391void CXXNameMangler::mangleMemberExpr(const Expr *base,
2392 bool isArrow,
2393 NestedNameSpecifier *qualifier,
2394 NamedDecl *firstQualifierLookup,
2395 DeclarationName member,
2396 unsigned arity) {
2397 // <expression> ::= dt <expression> <unresolved-name>
2398 // ::= pt <expression> <unresolved-name>
2399 if (base) {
2400 if (base->isImplicitCXXThis()) {
2401 // Note: GCC mangles member expressions to the implicit 'this' as
2402 // *this., whereas we represent them as this->. The Itanium C++ ABI
2403 // does not specify anything here, so we follow GCC.
2404 Out << "dtdefpT";
2405 } else {
2406 Out << (isArrow ? "pt" : "dt");
2407 mangleExpression(base);
2408 }
2409 }
2410 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2411}
2412
2413/// Look at the callee of the given call expression and determine if
2414/// it's a parenthesized id-expression which would have triggered ADL
2415/// otherwise.
2416static bool isParenthesizedADLCallee(const CallExpr *call) {
2417 const Expr *callee = call->getCallee();
2418 const Expr *fn = callee->IgnoreParens();
2419
2420 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2421 // too, but for those to appear in the callee, it would have to be
2422 // parenthesized.
2423 if (callee == fn) return false;
2424
2425 // Must be an unresolved lookup.
2426 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2427 if (!lookup) return false;
2428
2429 assert(!lookup->requiresADL());
2430
2431 // Must be an unqualified lookup.
2432 if (lookup->getQualifier()) return false;
2433
2434 // Must not have found a class member. Note that if one is a class
2435 // member, they're all class members.
2436 if (lookup->getNumDecls() > 0 &&
2437 (*lookup->decls_begin())->isCXXClassMember())
2438 return false;
2439
2440 // Otherwise, ADL would have been triggered.
2441 return true;
2442}
2443
2444void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2445 // <expression> ::= <unary operator-name> <expression>
2446 // ::= <binary operator-name> <expression> <expression>
2447 // ::= <trinary operator-name> <expression> <expression> <expression>
2448 // ::= cv <type> expression # conversion with one argument
2449 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2450 // ::= st <type> # sizeof (a type)
2451 // ::= at <type> # alignof (a type)
2452 // ::= <template-param>
2453 // ::= <function-param>
2454 // ::= sr <type> <unqualified-name> # dependent name
2455 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2456 // ::= ds <expression> <expression> # expr.*expr
2457 // ::= sZ <template-param> # size of a parameter pack
2458 // ::= sZ <function-param> # size of a function parameter pack
2459 // ::= <expr-primary>
2460 // <expr-primary> ::= L <type> <value number> E # integer literal
2461 // ::= L <type <value float> E # floating literal
2462 // ::= L <mangled-name> E # external name
2463 // ::= fpT # 'this' expression
2464 QualType ImplicitlyConvertedToType;
2465
2466recurse:
2467 switch (E->getStmtClass()) {
2468 case Expr::NoStmtClass:
2469#define ABSTRACT_STMT(Type)
2470#define EXPR(Type, Base)
2471#define STMT(Type, Base) \
2472 case Expr::Type##Class:
2473#include "clang/AST/StmtNodes.inc"
2474 // fallthrough
2475
2476 // These all can only appear in local or variable-initialization
2477 // contexts and so should never appear in a mangling.
2478 case Expr::AddrLabelExprClass:
2479 case Expr::DesignatedInitExprClass:
2480 case Expr::ImplicitValueInitExprClass:
2481 case Expr::ParenListExprClass:
2482 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002483 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002484 llvm_unreachable("unexpected statement kind");
2485
2486 // FIXME: invent manglings for all these.
2487 case Expr::BlockExprClass:
2488 case Expr::CXXPseudoDestructorExprClass:
2489 case Expr::ChooseExprClass:
2490 case Expr::CompoundLiteralExprClass:
2491 case Expr::ExtVectorElementExprClass:
2492 case Expr::GenericSelectionExprClass:
2493 case Expr::ObjCEncodeExprClass:
2494 case Expr::ObjCIsaExprClass:
2495 case Expr::ObjCIvarRefExprClass:
2496 case Expr::ObjCMessageExprClass:
2497 case Expr::ObjCPropertyRefExprClass:
2498 case Expr::ObjCProtocolExprClass:
2499 case Expr::ObjCSelectorExprClass:
2500 case Expr::ObjCStringLiteralClass:
2501 case Expr::ObjCBoxedExprClass:
2502 case Expr::ObjCArrayLiteralClass:
2503 case Expr::ObjCDictionaryLiteralClass:
2504 case Expr::ObjCSubscriptRefExprClass:
2505 case Expr::ObjCIndirectCopyRestoreExprClass:
2506 case Expr::OffsetOfExprClass:
2507 case Expr::PredefinedExprClass:
2508 case Expr::ShuffleVectorExprClass:
2509 case Expr::StmtExprClass:
2510 case Expr::UnaryTypeTraitExprClass:
2511 case Expr::BinaryTypeTraitExprClass:
2512 case Expr::TypeTraitExprClass:
2513 case Expr::ArrayTypeTraitExprClass:
2514 case Expr::ExpressionTraitExprClass:
2515 case Expr::VAArgExprClass:
2516 case Expr::CXXUuidofExprClass:
2517 case Expr::CUDAKernelCallExprClass:
2518 case Expr::AsTypeExprClass:
2519 case Expr::PseudoObjectExprClass:
2520 case Expr::AtomicExprClass:
2521 {
2522 // As bad as this diagnostic is, it's better than crashing.
2523 DiagnosticsEngine &Diags = Context.getDiags();
2524 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2525 "cannot yet mangle expression type %0");
2526 Diags.Report(E->getExprLoc(), DiagID)
2527 << E->getStmtClassName() << E->getSourceRange();
2528 break;
2529 }
2530
2531 // Even gcc-4.5 doesn't mangle this.
2532 case Expr::BinaryConditionalOperatorClass: {
2533 DiagnosticsEngine &Diags = Context.getDiags();
2534 unsigned DiagID =
2535 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2536 "?: operator with omitted middle operand cannot be mangled");
2537 Diags.Report(E->getExprLoc(), DiagID)
2538 << E->getStmtClassName() << E->getSourceRange();
2539 break;
2540 }
2541
2542 // These are used for internal purposes and cannot be meaningfully mangled.
2543 case Expr::OpaqueValueExprClass:
2544 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2545
2546 case Expr::InitListExprClass: {
2547 // Proposal by Jason Merrill, 2012-01-03
2548 Out << "il";
2549 const InitListExpr *InitList = cast<InitListExpr>(E);
2550 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2551 mangleExpression(InitList->getInit(i));
2552 Out << "E";
2553 break;
2554 }
2555
2556 case Expr::CXXDefaultArgExprClass:
2557 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2558 break;
2559
Richard Smith852c9db2013-04-20 22:23:05 +00002560 case Expr::CXXDefaultInitExprClass:
2561 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2562 break;
2563
Richard Smithcc1b96d2013-06-12 22:31:48 +00002564 case Expr::CXXStdInitializerListExprClass:
2565 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2566 break;
2567
Guy Benyei11169dd2012-12-18 14:30:41 +00002568 case Expr::SubstNonTypeTemplateParmExprClass:
2569 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2570 Arity);
2571 break;
2572
2573 case Expr::UserDefinedLiteralClass:
2574 // We follow g++'s approach of mangling a UDL as a call to the literal
2575 // operator.
2576 case Expr::CXXMemberCallExprClass: // fallthrough
2577 case Expr::CallExprClass: {
2578 const CallExpr *CE = cast<CallExpr>(E);
2579
2580 // <expression> ::= cp <simple-id> <expression>* E
2581 // We use this mangling only when the call would use ADL except
2582 // for being parenthesized. Per discussion with David
2583 // Vandervoorde, 2011.04.25.
2584 if (isParenthesizedADLCallee(CE)) {
2585 Out << "cp";
2586 // The callee here is a parenthesized UnresolvedLookupExpr with
2587 // no qualifier and should always get mangled as a <simple-id>
2588 // anyway.
2589
2590 // <expression> ::= cl <expression>* E
2591 } else {
2592 Out << "cl";
2593 }
2594
2595 mangleExpression(CE->getCallee(), CE->getNumArgs());
2596 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2597 mangleExpression(CE->getArg(I));
2598 Out << 'E';
2599 break;
2600 }
2601
2602 case Expr::CXXNewExprClass: {
2603 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2604 if (New->isGlobalNew()) Out << "gs";
2605 Out << (New->isArray() ? "na" : "nw");
2606 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2607 E = New->placement_arg_end(); I != E; ++I)
2608 mangleExpression(*I);
2609 Out << '_';
2610 mangleType(New->getAllocatedType());
2611 if (New->hasInitializer()) {
2612 // Proposal by Jason Merrill, 2012-01-03
2613 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2614 Out << "il";
2615 else
2616 Out << "pi";
2617 const Expr *Init = New->getInitializer();
2618 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2619 // Directly inline the initializers.
2620 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2621 E = CCE->arg_end();
2622 I != E; ++I)
2623 mangleExpression(*I);
2624 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2625 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2626 mangleExpression(PLE->getExpr(i));
2627 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2628 isa<InitListExpr>(Init)) {
2629 // Only take InitListExprs apart for list-initialization.
2630 const InitListExpr *InitList = cast<InitListExpr>(Init);
2631 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2632 mangleExpression(InitList->getInit(i));
2633 } else
2634 mangleExpression(Init);
2635 }
2636 Out << 'E';
2637 break;
2638 }
2639
2640 case Expr::MemberExprClass: {
2641 const MemberExpr *ME = cast<MemberExpr>(E);
2642 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2643 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2644 Arity);
2645 break;
2646 }
2647
2648 case Expr::UnresolvedMemberExprClass: {
2649 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2650 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2651 ME->getQualifier(), 0, ME->getMemberName(),
2652 Arity);
2653 if (ME->hasExplicitTemplateArgs())
2654 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2655 break;
2656 }
2657
2658 case Expr::CXXDependentScopeMemberExprClass: {
2659 const CXXDependentScopeMemberExpr *ME
2660 = cast<CXXDependentScopeMemberExpr>(E);
2661 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2662 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2663 ME->getMember(), Arity);
2664 if (ME->hasExplicitTemplateArgs())
2665 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2666 break;
2667 }
2668
2669 case Expr::UnresolvedLookupExprClass: {
2670 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2671 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2672
2673 // All the <unresolved-name> productions end in a
2674 // base-unresolved-name, where <template-args> are just tacked
2675 // onto the end.
2676 if (ULE->hasExplicitTemplateArgs())
2677 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2678 break;
2679 }
2680
2681 case Expr::CXXUnresolvedConstructExprClass: {
2682 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2683 unsigned N = CE->arg_size();
2684
2685 Out << "cv";
2686 mangleType(CE->getType());
2687 if (N != 1) Out << '_';
2688 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2689 if (N != 1) Out << 'E';
2690 break;
2691 }
2692
2693 case Expr::CXXTemporaryObjectExprClass:
2694 case Expr::CXXConstructExprClass: {
2695 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2696 unsigned N = CE->getNumArgs();
2697
2698 // Proposal by Jason Merrill, 2012-01-03
2699 if (CE->isListInitialization())
2700 Out << "tl";
2701 else
2702 Out << "cv";
2703 mangleType(CE->getType());
2704 if (N != 1) Out << '_';
2705 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2706 if (N != 1) Out << 'E';
2707 break;
2708 }
2709
2710 case Expr::CXXScalarValueInitExprClass:
2711 Out <<"cv";
2712 mangleType(E->getType());
2713 Out <<"_E";
2714 break;
2715
2716 case Expr::CXXNoexceptExprClass:
2717 Out << "nx";
2718 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2719 break;
2720
2721 case Expr::UnaryExprOrTypeTraitExprClass: {
2722 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2723
2724 if (!SAE->isInstantiationDependent()) {
2725 // Itanium C++ ABI:
2726 // If the operand of a sizeof or alignof operator is not
2727 // instantiation-dependent it is encoded as an integer literal
2728 // reflecting the result of the operator.
2729 //
2730 // If the result of the operator is implicitly converted to a known
2731 // integer type, that type is used for the literal; otherwise, the type
2732 // of std::size_t or std::ptrdiff_t is used.
2733 QualType T = (ImplicitlyConvertedToType.isNull() ||
2734 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2735 : ImplicitlyConvertedToType;
2736 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2737 mangleIntegerLiteral(T, V);
2738 break;
2739 }
2740
2741 switch(SAE->getKind()) {
2742 case UETT_SizeOf:
2743 Out << 's';
2744 break;
2745 case UETT_AlignOf:
2746 Out << 'a';
2747 break;
2748 case UETT_VecStep:
2749 DiagnosticsEngine &Diags = Context.getDiags();
2750 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2751 "cannot yet mangle vec_step expression");
2752 Diags.Report(DiagID);
2753 return;
2754 }
2755 if (SAE->isArgumentType()) {
2756 Out << 't';
2757 mangleType(SAE->getArgumentType());
2758 } else {
2759 Out << 'z';
2760 mangleExpression(SAE->getArgumentExpr());
2761 }
2762 break;
2763 }
2764
2765 case Expr::CXXThrowExprClass: {
2766 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2767
2768 // Proposal from David Vandervoorde, 2010.06.30
2769 if (TE->getSubExpr()) {
2770 Out << "tw";
2771 mangleExpression(TE->getSubExpr());
2772 } else {
2773 Out << "tr";
2774 }
2775 break;
2776 }
2777
2778 case Expr::CXXTypeidExprClass: {
2779 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2780
2781 // Proposal from David Vandervoorde, 2010.06.30
2782 if (TIE->isTypeOperand()) {
2783 Out << "ti";
2784 mangleType(TIE->getTypeOperand());
2785 } else {
2786 Out << "te";
2787 mangleExpression(TIE->getExprOperand());
2788 }
2789 break;
2790 }
2791
2792 case Expr::CXXDeleteExprClass: {
2793 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2794
2795 // Proposal from David Vandervoorde, 2010.06.30
2796 if (DE->isGlobalDelete()) Out << "gs";
2797 Out << (DE->isArrayForm() ? "da" : "dl");
2798 mangleExpression(DE->getArgument());
2799 break;
2800 }
2801
2802 case Expr::UnaryOperatorClass: {
2803 const UnaryOperator *UO = cast<UnaryOperator>(E);
2804 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2805 /*Arity=*/1);
2806 mangleExpression(UO->getSubExpr());
2807 break;
2808 }
2809
2810 case Expr::ArraySubscriptExprClass: {
2811 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2812
2813 // Array subscript is treated as a syntactically weird form of
2814 // binary operator.
2815 Out << "ix";
2816 mangleExpression(AE->getLHS());
2817 mangleExpression(AE->getRHS());
2818 break;
2819 }
2820
2821 case Expr::CompoundAssignOperatorClass: // fallthrough
2822 case Expr::BinaryOperatorClass: {
2823 const BinaryOperator *BO = cast<BinaryOperator>(E);
2824 if (BO->getOpcode() == BO_PtrMemD)
2825 Out << "ds";
2826 else
2827 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2828 /*Arity=*/2);
2829 mangleExpression(BO->getLHS());
2830 mangleExpression(BO->getRHS());
2831 break;
2832 }
2833
2834 case Expr::ConditionalOperatorClass: {
2835 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2836 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2837 mangleExpression(CO->getCond());
2838 mangleExpression(CO->getLHS(), Arity);
2839 mangleExpression(CO->getRHS(), Arity);
2840 break;
2841 }
2842
2843 case Expr::ImplicitCastExprClass: {
2844 ImplicitlyConvertedToType = E->getType();
2845 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2846 goto recurse;
2847 }
2848
2849 case Expr::ObjCBridgedCastExprClass: {
2850 // Mangle ownership casts as a vendor extended operator __bridge,
2851 // __bridge_transfer, or __bridge_retain.
2852 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2853 Out << "v1U" << Kind.size() << Kind;
2854 }
2855 // Fall through to mangle the cast itself.
2856
2857 case Expr::CStyleCastExprClass:
2858 case Expr::CXXStaticCastExprClass:
2859 case Expr::CXXDynamicCastExprClass:
2860 case Expr::CXXReinterpretCastExprClass:
2861 case Expr::CXXConstCastExprClass:
2862 case Expr::CXXFunctionalCastExprClass: {
2863 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2864 Out << "cv";
2865 mangleType(ECE->getType());
2866 mangleExpression(ECE->getSubExpr());
2867 break;
2868 }
2869
2870 case Expr::CXXOperatorCallExprClass: {
2871 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2872 unsigned NumArgs = CE->getNumArgs();
2873 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2874 // Mangle the arguments.
2875 for (unsigned i = 0; i != NumArgs; ++i)
2876 mangleExpression(CE->getArg(i));
2877 break;
2878 }
2879
2880 case Expr::ParenExprClass:
2881 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2882 break;
2883
2884 case Expr::DeclRefExprClass: {
2885 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2886
2887 switch (D->getKind()) {
2888 default:
2889 // <expr-primary> ::= L <mangled-name> E # external name
2890 Out << 'L';
2891 mangle(D, "_Z");
2892 Out << 'E';
2893 break;
2894
2895 case Decl::ParmVar:
2896 mangleFunctionParam(cast<ParmVarDecl>(D));
2897 break;
2898
2899 case Decl::EnumConstant: {
2900 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2901 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2902 break;
2903 }
2904
2905 case Decl::NonTypeTemplateParm: {
2906 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2907 mangleTemplateParameter(PD->getIndex());
2908 break;
2909 }
2910
2911 }
2912
2913 break;
2914 }
2915
2916 case Expr::SubstNonTypeTemplateParmPackExprClass:
2917 // FIXME: not clear how to mangle this!
2918 // template <unsigned N...> class A {
2919 // template <class U...> void foo(U (&x)[N]...);
2920 // };
2921 Out << "_SUBSTPACK_";
2922 break;
2923
2924 case Expr::FunctionParmPackExprClass: {
2925 // FIXME: not clear how to mangle this!
2926 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2927 Out << "v110_SUBSTPACK";
2928 mangleFunctionParam(FPPE->getParameterPack());
2929 break;
2930 }
2931
2932 case Expr::DependentScopeDeclRefExprClass: {
2933 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2934 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2935
2936 // All the <unresolved-name> productions end in a
2937 // base-unresolved-name, where <template-args> are just tacked
2938 // onto the end.
2939 if (DRE->hasExplicitTemplateArgs())
2940 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2941 break;
2942 }
2943
2944 case Expr::CXXBindTemporaryExprClass:
2945 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2946 break;
2947
2948 case Expr::ExprWithCleanupsClass:
2949 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2950 break;
2951
2952 case Expr::FloatingLiteralClass: {
2953 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2954 Out << 'L';
2955 mangleType(FL->getType());
2956 mangleFloat(FL->getValue());
2957 Out << 'E';
2958 break;
2959 }
2960
2961 case Expr::CharacterLiteralClass:
2962 Out << 'L';
2963 mangleType(E->getType());
2964 Out << cast<CharacterLiteral>(E)->getValue();
2965 Out << 'E';
2966 break;
2967
2968 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2969 case Expr::ObjCBoolLiteralExprClass:
2970 Out << "Lb";
2971 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2972 Out << 'E';
2973 break;
2974
2975 case Expr::CXXBoolLiteralExprClass:
2976 Out << "Lb";
2977 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2978 Out << 'E';
2979 break;
2980
2981 case Expr::IntegerLiteralClass: {
2982 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2983 if (E->getType()->isSignedIntegerType())
2984 Value.setIsSigned(true);
2985 mangleIntegerLiteral(E->getType(), Value);
2986 break;
2987 }
2988
2989 case Expr::ImaginaryLiteralClass: {
2990 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2991 // Mangle as if a complex literal.
2992 // Proposal from David Vandevoorde, 2010.06.30.
2993 Out << 'L';
2994 mangleType(E->getType());
2995 if (const FloatingLiteral *Imag =
2996 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2997 // Mangle a floating-point zero of the appropriate type.
2998 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2999 Out << '_';
3000 mangleFloat(Imag->getValue());
3001 } else {
3002 Out << "0_";
3003 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3004 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3005 Value.setIsSigned(true);
3006 mangleNumber(Value);
3007 }
3008 Out << 'E';
3009 break;
3010 }
3011
3012 case Expr::StringLiteralClass: {
3013 // Revised proposal from David Vandervoorde, 2010.07.15.
3014 Out << 'L';
3015 assert(isa<ConstantArrayType>(E->getType()));
3016 mangleType(E->getType());
3017 Out << 'E';
3018 break;
3019 }
3020
3021 case Expr::GNUNullExprClass:
3022 // FIXME: should this really be mangled the same as nullptr?
3023 // fallthrough
3024
3025 case Expr::CXXNullPtrLiteralExprClass: {
3026 // Proposal from David Vandervoorde, 2010.06.30, as
3027 // modified by ABI list discussion.
3028 Out << "LDnE";
3029 break;
3030 }
3031
3032 case Expr::PackExpansionExprClass:
3033 Out << "sp";
3034 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3035 break;
3036
3037 case Expr::SizeOfPackExprClass: {
3038 Out << "sZ";
3039 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3040 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3041 mangleTemplateParameter(TTP->getIndex());
3042 else if (const NonTypeTemplateParmDecl *NTTP
3043 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3044 mangleTemplateParameter(NTTP->getIndex());
3045 else if (const TemplateTemplateParmDecl *TempTP
3046 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3047 mangleTemplateParameter(TempTP->getIndex());
3048 else
3049 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3050 break;
3051 }
3052
3053 case Expr::MaterializeTemporaryExprClass: {
3054 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3055 break;
3056 }
3057
3058 case Expr::CXXThisExprClass:
3059 Out << "fpT";
3060 break;
3061 }
3062}
3063
3064/// Mangle an expression which refers to a parameter variable.
3065///
3066/// <expression> ::= <function-param>
3067/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3068/// <function-param> ::= fp <top-level CV-qualifiers>
3069/// <parameter-2 non-negative number> _ # L == 0, I > 0
3070/// <function-param> ::= fL <L-1 non-negative number>
3071/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3072/// <function-param> ::= fL <L-1 non-negative number>
3073/// p <top-level CV-qualifiers>
3074/// <I-1 non-negative number> _ # L > 0, I > 0
3075///
3076/// L is the nesting depth of the parameter, defined as 1 if the
3077/// parameter comes from the innermost function prototype scope
3078/// enclosing the current context, 2 if from the next enclosing
3079/// function prototype scope, and so on, with one special case: if
3080/// we've processed the full parameter clause for the innermost
3081/// function type, then L is one less. This definition conveniently
3082/// makes it irrelevant whether a function's result type was written
3083/// trailing or leading, but is otherwise overly complicated; the
3084/// numbering was first designed without considering references to
3085/// parameter in locations other than return types, and then the
3086/// mangling had to be generalized without changing the existing
3087/// manglings.
3088///
3089/// I is the zero-based index of the parameter within its parameter
3090/// declaration clause. Note that the original ABI document describes
3091/// this using 1-based ordinals.
3092void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3093 unsigned parmDepth = parm->getFunctionScopeDepth();
3094 unsigned parmIndex = parm->getFunctionScopeIndex();
3095
3096 // Compute 'L'.
3097 // parmDepth does not include the declaring function prototype.
3098 // FunctionTypeDepth does account for that.
3099 assert(parmDepth < FunctionTypeDepth.getDepth());
3100 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3101 if (FunctionTypeDepth.isInResultType())
3102 nestingDepth--;
3103
3104 if (nestingDepth == 0) {
3105 Out << "fp";
3106 } else {
3107 Out << "fL" << (nestingDepth - 1) << 'p';
3108 }
3109
3110 // Top-level qualifiers. We don't have to worry about arrays here,
3111 // because parameters declared as arrays should already have been
3112 // transformed to have pointer type. FIXME: apparently these don't
3113 // get mangled if used as an rvalue of a known non-class type?
3114 assert(!parm->getType()->isArrayType()
3115 && "parameter's type is still an array type?");
3116 mangleQualifiers(parm->getType().getQualifiers());
3117
3118 // Parameter index.
3119 if (parmIndex != 0) {
3120 Out << (parmIndex - 1);
3121 }
3122 Out << '_';
3123}
3124
3125void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3126 // <ctor-dtor-name> ::= C1 # complete object constructor
3127 // ::= C2 # base object constructor
3128 // ::= C3 # complete object allocating constructor
3129 //
3130 switch (T) {
3131 case Ctor_Complete:
3132 Out << "C1";
3133 break;
3134 case Ctor_Base:
3135 Out << "C2";
3136 break;
3137 case Ctor_CompleteAllocating:
3138 Out << "C3";
3139 break;
3140 }
3141}
3142
3143void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3144 // <ctor-dtor-name> ::= D0 # deleting destructor
3145 // ::= D1 # complete object destructor
3146 // ::= D2 # base object destructor
3147 //
3148 switch (T) {
3149 case Dtor_Deleting:
3150 Out << "D0";
3151 break;
3152 case Dtor_Complete:
3153 Out << "D1";
3154 break;
3155 case Dtor_Base:
3156 Out << "D2";
3157 break;
3158 }
3159}
3160
3161void CXXNameMangler::mangleTemplateArgs(
3162 const ASTTemplateArgumentListInfo &TemplateArgs) {
3163 // <template-args> ::= I <template-arg>+ E
3164 Out << 'I';
3165 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3166 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3167 Out << 'E';
3168}
3169
3170void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3171 // <template-args> ::= I <template-arg>+ E
3172 Out << 'I';
3173 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3174 mangleTemplateArg(AL[i]);
3175 Out << 'E';
3176}
3177
3178void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3179 unsigned NumTemplateArgs) {
3180 // <template-args> ::= I <template-arg>+ E
3181 Out << 'I';
3182 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3183 mangleTemplateArg(TemplateArgs[i]);
3184 Out << 'E';
3185}
3186
3187void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3188 // <template-arg> ::= <type> # type or template
3189 // ::= X <expression> E # expression
3190 // ::= <expr-primary> # simple expressions
3191 // ::= J <template-arg>* E # argument pack
3192 // ::= sp <expression> # pack expansion of (C++0x)
3193 if (!A.isInstantiationDependent() || A.isDependent())
3194 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3195
3196 switch (A.getKind()) {
3197 case TemplateArgument::Null:
3198 llvm_unreachable("Cannot mangle NULL template argument");
3199
3200 case TemplateArgument::Type:
3201 mangleType(A.getAsType());
3202 break;
3203 case TemplateArgument::Template:
3204 // This is mangled as <type>.
3205 mangleType(A.getAsTemplate());
3206 break;
3207 case TemplateArgument::TemplateExpansion:
3208 // <type> ::= Dp <type> # pack expansion (C++0x)
3209 Out << "Dp";
3210 mangleType(A.getAsTemplateOrTemplatePattern());
3211 break;
3212 case TemplateArgument::Expression: {
3213 // It's possible to end up with a DeclRefExpr here in certain
3214 // dependent cases, in which case we should mangle as a
3215 // declaration.
3216 const Expr *E = A.getAsExpr()->IgnoreParens();
3217 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3218 const ValueDecl *D = DRE->getDecl();
3219 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3220 Out << "L";
3221 mangle(D, "_Z");
3222 Out << 'E';
3223 break;
3224 }
3225 }
3226
3227 Out << 'X';
3228 mangleExpression(E);
3229 Out << 'E';
3230 break;
3231 }
3232 case TemplateArgument::Integral:
3233 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3234 break;
3235 case TemplateArgument::Declaration: {
3236 // <expr-primary> ::= L <mangled-name> E # external name
3237 // Clang produces AST's where pointer-to-member-function expressions
3238 // and pointer-to-function expressions are represented as a declaration not
3239 // an expression. We compensate for it here to produce the correct mangling.
3240 ValueDecl *D = A.getAsDecl();
3241 bool compensateMangling = !A.isDeclForReferenceParam();
3242 if (compensateMangling) {
3243 Out << 'X';
3244 mangleOperatorName(OO_Amp, 1);
3245 }
3246
3247 Out << 'L';
3248 // References to external entities use the mangled name; if the name would
3249 // not normally be manged then mangle it as unqualified.
3250 //
3251 // FIXME: The ABI specifies that external names here should have _Z, but
3252 // gcc leaves this off.
3253 if (compensateMangling)
3254 mangle(D, "_Z");
3255 else
3256 mangle(D, "Z");
3257 Out << 'E';
3258
3259 if (compensateMangling)
3260 Out << 'E';
3261
3262 break;
3263 }
3264 case TemplateArgument::NullPtr: {
3265 // <expr-primary> ::= L <type> 0 E
3266 Out << 'L';
3267 mangleType(A.getNullPtrType());
3268 Out << "0E";
3269 break;
3270 }
3271 case TemplateArgument::Pack: {
3272 // Note: proposal by Mike Herrick on 12/20/10
3273 Out << 'J';
3274 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3275 PAEnd = A.pack_end();
3276 PA != PAEnd; ++PA)
3277 mangleTemplateArg(*PA);
3278 Out << 'E';
3279 }
3280 }
3281}
3282
3283void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3284 // <template-param> ::= T_ # first template parameter
3285 // ::= T <parameter-2 non-negative number> _
3286 if (Index == 0)
3287 Out << "T_";
3288 else
3289 Out << 'T' << (Index - 1) << '_';
3290}
3291
3292void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3293 bool result = mangleSubstitution(type);
3294 assert(result && "no existing substitution for type");
3295 (void) result;
3296}
3297
3298void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3299 bool result = mangleSubstitution(tname);
3300 assert(result && "no existing substitution for template name");
3301 (void) result;
3302}
3303
3304// <substitution> ::= S <seq-id> _
3305// ::= S_
3306bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3307 // Try one of the standard substitutions first.
3308 if (mangleStandardSubstitution(ND))
3309 return true;
3310
3311 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3312 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3313}
3314
3315/// \brief Determine whether the given type has any qualifiers that are
3316/// relevant for substitutions.
3317static bool hasMangledSubstitutionQualifiers(QualType T) {
3318 Qualifiers Qs = T.getQualifiers();
3319 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3320}
3321
3322bool CXXNameMangler::mangleSubstitution(QualType T) {
3323 if (!hasMangledSubstitutionQualifiers(T)) {
3324 if (const RecordType *RT = T->getAs<RecordType>())
3325 return mangleSubstitution(RT->getDecl());
3326 }
3327
3328 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3329
3330 return mangleSubstitution(TypePtr);
3331}
3332
3333bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3334 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3335 return mangleSubstitution(TD);
3336
3337 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3338 return mangleSubstitution(
3339 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3340}
3341
3342bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3343 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3344 if (I == Substitutions.end())
3345 return false;
3346
3347 unsigned SeqID = I->second;
3348 if (SeqID == 0)
3349 Out << "S_";
3350 else {
3351 SeqID--;
3352
3353 // <seq-id> is encoded in base-36, using digits and upper case letters.
3354 char Buffer[10];
3355 char *BufferPtr = llvm::array_endof(Buffer);
3356
3357 if (SeqID == 0) *--BufferPtr = '0';
3358
3359 while (SeqID) {
3360 assert(BufferPtr > Buffer && "Buffer overflow!");
3361
3362 char c = static_cast<char>(SeqID % 36);
3363
3364 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3365 SeqID /= 36;
3366 }
3367
3368 Out << 'S'
3369 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3370 << '_';
3371 }
3372
3373 return true;
3374}
3375
3376static bool isCharType(QualType T) {
3377 if (T.isNull())
3378 return false;
3379
3380 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3381 T->isSpecificBuiltinType(BuiltinType::Char_U);
3382}
3383
3384/// isCharSpecialization - Returns whether a given type is a template
3385/// specialization of a given name with a single argument of type char.
3386static bool isCharSpecialization(QualType T, const char *Name) {
3387 if (T.isNull())
3388 return false;
3389
3390 const RecordType *RT = T->getAs<RecordType>();
3391 if (!RT)
3392 return false;
3393
3394 const ClassTemplateSpecializationDecl *SD =
3395 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3396 if (!SD)
3397 return false;
3398
3399 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3400 return false;
3401
3402 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3403 if (TemplateArgs.size() != 1)
3404 return false;
3405
3406 if (!isCharType(TemplateArgs[0].getAsType()))
3407 return false;
3408
3409 return SD->getIdentifier()->getName() == Name;
3410}
3411
3412template <std::size_t StrLen>
3413static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3414 const char (&Str)[StrLen]) {
3415 if (!SD->getIdentifier()->isStr(Str))
3416 return false;
3417
3418 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3419 if (TemplateArgs.size() != 2)
3420 return false;
3421
3422 if (!isCharType(TemplateArgs[0].getAsType()))
3423 return false;
3424
3425 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3426 return false;
3427
3428 return true;
3429}
3430
3431bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3432 // <substitution> ::= St # ::std::
3433 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3434 if (isStd(NS)) {
3435 Out << "St";
3436 return true;
3437 }
3438 }
3439
3440 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3441 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3442 return false;
3443
3444 // <substitution> ::= Sa # ::std::allocator
3445 if (TD->getIdentifier()->isStr("allocator")) {
3446 Out << "Sa";
3447 return true;
3448 }
3449
3450 // <<substitution> ::= Sb # ::std::basic_string
3451 if (TD->getIdentifier()->isStr("basic_string")) {
3452 Out << "Sb";
3453 return true;
3454 }
3455 }
3456
3457 if (const ClassTemplateSpecializationDecl *SD =
3458 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3459 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3460 return false;
3461
3462 // <substitution> ::= Ss # ::std::basic_string<char,
3463 // ::std::char_traits<char>,
3464 // ::std::allocator<char> >
3465 if (SD->getIdentifier()->isStr("basic_string")) {
3466 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3467
3468 if (TemplateArgs.size() != 3)
3469 return false;
3470
3471 if (!isCharType(TemplateArgs[0].getAsType()))
3472 return false;
3473
3474 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3475 return false;
3476
3477 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3478 return false;
3479
3480 Out << "Ss";
3481 return true;
3482 }
3483
3484 // <substitution> ::= Si # ::std::basic_istream<char,
3485 // ::std::char_traits<char> >
3486 if (isStreamCharSpecialization(SD, "basic_istream")) {
3487 Out << "Si";
3488 return true;
3489 }
3490
3491 // <substitution> ::= So # ::std::basic_ostream<char,
3492 // ::std::char_traits<char> >
3493 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3494 Out << "So";
3495 return true;
3496 }
3497
3498 // <substitution> ::= Sd # ::std::basic_iostream<char,
3499 // ::std::char_traits<char> >
3500 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3501 Out << "Sd";
3502 return true;
3503 }
3504 }
3505 return false;
3506}
3507
3508void CXXNameMangler::addSubstitution(QualType T) {
3509 if (!hasMangledSubstitutionQualifiers(T)) {
3510 if (const RecordType *RT = T->getAs<RecordType>()) {
3511 addSubstitution(RT->getDecl());
3512 return;
3513 }
3514 }
3515
3516 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3517 addSubstitution(TypePtr);
3518}
3519
3520void CXXNameMangler::addSubstitution(TemplateName Template) {
3521 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3522 return addSubstitution(TD);
3523
3524 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3525 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3526}
3527
3528void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3529 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3530 Substitutions[Ptr] = SeqID++;
3531}
3532
3533//
3534
3535/// \brief Mangles the name of the declaration D and emits that name to the
3536/// given output stream.
3537///
3538/// If the declaration D requires a mangled name, this routine will emit that
3539/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3540/// and this routine will return false. In this case, the caller should just
3541/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3542/// name.
3543void ItaniumMangleContext::mangleName(const NamedDecl *D,
3544 raw_ostream &Out) {
3545 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3546 "Invalid mangleName() call, argument is not a variable or function!");
3547 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3548 "Invalid mangleName() call on 'structor decl!");
3549
3550 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3551 getASTContext().getSourceManager(),
3552 "Mangling declaration");
3553
3554 CXXNameMangler Mangler(*this, Out, D);
3555 return Mangler.mangle(D);
3556}
3557
3558void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3559 CXXCtorType Type,
3560 raw_ostream &Out) {
3561 CXXNameMangler Mangler(*this, Out, D, Type);
3562 Mangler.mangle(D);
3563}
3564
3565void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3566 CXXDtorType Type,
3567 raw_ostream &Out) {
3568 CXXNameMangler Mangler(*this, Out, D, Type);
3569 Mangler.mangle(D);
3570}
3571
3572void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3573 const ThunkInfo &Thunk,
3574 raw_ostream &Out) {
3575 // <special-name> ::= T <call-offset> <base encoding>
3576 // # base is the nominal target function of thunk
3577 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3578 // # base is the nominal target function of thunk
3579 // # first call-offset is 'this' adjustment
3580 // # second call-offset is result adjustment
3581
3582 assert(!isa<CXXDestructorDecl>(MD) &&
3583 "Use mangleCXXDtor for destructor decls!");
3584 CXXNameMangler Mangler(*this, Out);
3585 Mangler.getStream() << "_ZT";
3586 if (!Thunk.Return.isEmpty())
3587 Mangler.getStream() << 'c';
3588
3589 // Mangle the 'this' pointer adjustment.
3590 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3591
3592 // Mangle the return pointer adjustment if there is one.
3593 if (!Thunk.Return.isEmpty())
3594 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3595 Thunk.Return.VBaseOffsetOffset);
3596
3597 Mangler.mangleFunctionEncoding(MD);
3598}
3599
3600void
3601ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3602 CXXDtorType Type,
3603 const ThisAdjustment &ThisAdjustment,
3604 raw_ostream &Out) {
3605 // <special-name> ::= T <call-offset> <base encoding>
3606 // # base is the nominal target function of thunk
3607 CXXNameMangler Mangler(*this, Out, DD, Type);
3608 Mangler.getStream() << "_ZT";
3609
3610 // Mangle the 'this' pointer adjustment.
3611 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3612 ThisAdjustment.VCallOffsetOffset);
3613
3614 Mangler.mangleFunctionEncoding(DD);
3615}
3616
3617/// mangleGuardVariable - Returns the mangled name for a guard variable
3618/// for the passed in VarDecl.
3619void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3620 raw_ostream &Out) {
3621 // <special-name> ::= GV <object name> # Guard variable for one-time
3622 // # initialization
3623 CXXNameMangler Mangler(*this, Out);
3624 Mangler.getStream() << "_ZGV";
3625 Mangler.mangleName(D);
3626}
3627
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003628void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3629 raw_ostream &Out) {
3630 // <special-name> ::= TH <object name>
3631 CXXNameMangler Mangler(*this, Out);
3632 Mangler.getStream() << "_ZTH";
3633 Mangler.mangleName(D);
3634}
3635
3636void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3637 raw_ostream &Out) {
3638 // <special-name> ::= TW <object name>
3639 CXXNameMangler Mangler(*this, Out);
3640 Mangler.getStream() << "_ZTW";
3641 Mangler.mangleName(D);
3642}
3643
Guy Benyei11169dd2012-12-18 14:30:41 +00003644void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3645 raw_ostream &Out) {
3646 // We match the GCC mangling here.
3647 // <special-name> ::= GR <object name>
3648 CXXNameMangler Mangler(*this, Out);
3649 Mangler.getStream() << "_ZGR";
3650 Mangler.mangleName(D);
3651}
3652
3653void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3654 raw_ostream &Out) {
3655 // <special-name> ::= TV <type> # virtual table
3656 CXXNameMangler Mangler(*this, Out);
3657 Mangler.getStream() << "_ZTV";
3658 Mangler.mangleNameOrStandardSubstitution(RD);
3659}
3660
3661void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3662 raw_ostream &Out) {
3663 // <special-name> ::= TT <type> # VTT structure
3664 CXXNameMangler Mangler(*this, Out);
3665 Mangler.getStream() << "_ZTT";
3666 Mangler.mangleNameOrStandardSubstitution(RD);
3667}
3668
Reid Kleckner7810af02013-06-19 15:20:38 +00003669void
3670ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
3671 ArrayRef<const CXXRecordDecl *> BasePath,
3672 raw_ostream &Out) {
3673 llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
3674}
3675
Guy Benyei11169dd2012-12-18 14:30:41 +00003676void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3677 int64_t Offset,
3678 const CXXRecordDecl *Type,
3679 raw_ostream &Out) {
3680 // <special-name> ::= TC <type> <offset number> _ <base type>
3681 CXXNameMangler Mangler(*this, Out);
3682 Mangler.getStream() << "_ZTC";
3683 Mangler.mangleNameOrStandardSubstitution(RD);
3684 Mangler.getStream() << Offset;
3685 Mangler.getStream() << '_';
3686 Mangler.mangleNameOrStandardSubstitution(Type);
3687}
3688
3689void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3690 raw_ostream &Out) {
3691 // <special-name> ::= TI <type> # typeinfo structure
3692 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3693 CXXNameMangler Mangler(*this, Out);
3694 Mangler.getStream() << "_ZTI";
3695 Mangler.mangleType(Ty);
3696}
3697
3698void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3699 raw_ostream &Out) {
3700 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3701 CXXNameMangler Mangler(*this, Out);
3702 Mangler.getStream() << "_ZTS";
3703 Mangler.mangleType(Ty);
3704}
3705
3706MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3707 DiagnosticsEngine &Diags) {
3708 return new ItaniumMangleContext(Context, Diags);
3709}