blob: da8c04483f9cabddaf12720f20efcf43a9f6e0d3 [file] [log] [blame]
Duncan Sandsdea551c2011-07-28 14:17:11 +00001//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Duncan Sandsdea551c2011-07-28 14:17:11 +000010#include "llvm/ADT/SCCIterator.h"
Chandler Carruth130cec22012-12-04 10:23:08 +000011#include "llvm/ADT/GraphTraits.h"
Duncan Sandsdea551c2011-07-28 14:17:11 +000012#include "gtest/gtest.h"
Chandler Carruth130cec22012-12-04 10:23:08 +000013#include <limits.h>
Duncan Sandsdea551c2011-07-28 14:17:11 +000014
15using namespace llvm;
16
17namespace llvm {
18
19/// Graph<N> - A graph with N nodes. Note that N can be at most 8.
20template <unsigned N>
21class Graph {
22private:
23 // Disable copying.
24 Graph(const Graph&);
25 Graph& operator=(const Graph&);
26
27 static void ValidateIndex(unsigned Idx) {
28 assert(Idx < N && "Invalid node index!");
29 }
30public:
31
32 /// NodeSubset - A subset of the graph's nodes.
33 class NodeSubset {
34 typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
35 BitVector Elements;
Jakub Staszak9f56d022011-07-29 00:05:35 +000036 NodeSubset(BitVector e) : Elements(e) {}
Duncan Sandsdea551c2011-07-28 14:17:11 +000037 public:
38 /// NodeSubset - Default constructor, creates an empty subset.
39 NodeSubset() : Elements(0) {
40 assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
41 }
Duncan Sandsdea551c2011-07-28 14:17:11 +000042
43 /// Comparison operators.
44 bool operator==(const NodeSubset &other) const {
45 return other.Elements == this->Elements;
46 }
47 bool operator!=(const NodeSubset &other) const {
48 return !(*this == other);
49 }
50
51 /// AddNode - Add the node with the given index to the subset.
52 void AddNode(unsigned Idx) {
53 ValidateIndex(Idx);
54 Elements |= 1U << Idx;
55 }
56
57 /// DeleteNode - Remove the node with the given index from the subset.
58 void DeleteNode(unsigned Idx) {
59 ValidateIndex(Idx);
60 Elements &= ~(1U << Idx);
61 }
62
63 /// count - Return true if the node with the given index is in the subset.
64 bool count(unsigned Idx) {
65 ValidateIndex(Idx);
66 return (Elements & (1U << Idx)) != 0;
67 }
68
69 /// isEmpty - Return true if this is the empty set.
70 bool isEmpty() const {
71 return Elements == 0;
72 }
73
74 /// isSubsetOf - Return true if this set is a subset of the given one.
75 bool isSubsetOf(const NodeSubset &other) const {
76 return (this->Elements | other.Elements) == other.Elements;
77 }
78
79 /// Complement - Return the complement of this subset.
80 NodeSubset Complement() const {
81 return ~(unsigned)this->Elements & ((1U << N) - 1);
82 }
83
84 /// Join - Return the union of this subset and the given one.
85 NodeSubset Join(const NodeSubset &other) const {
86 return this->Elements | other.Elements;
87 }
88
89 /// Meet - Return the intersection of this subset and the given one.
90 NodeSubset Meet(const NodeSubset &other) const {
91 return this->Elements & other.Elements;
92 }
93 };
94
95 /// NodeType - Node index and set of children of the node.
96 typedef std::pair<unsigned, NodeSubset> NodeType;
97
98private:
99 /// Nodes - The list of nodes for this graph.
100 NodeType Nodes[N];
101public:
102
103 /// Graph - Default constructor. Creates an empty graph.
104 Graph() {
105 // Let each node know which node it is. This allows us to find the start of
106 // the Nodes array given a pointer to any element of it.
107 for (unsigned i = 0; i != N; ++i)
108 Nodes[i].first = i;
109 }
110
111 /// AddEdge - Add an edge from the node with index FromIdx to the node with
112 /// index ToIdx.
113 void AddEdge(unsigned FromIdx, unsigned ToIdx) {
114 ValidateIndex(FromIdx);
115 Nodes[FromIdx].second.AddNode(ToIdx);
116 }
117
118 /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
119 /// the node with index ToIdx.
120 void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
121 ValidateIndex(FromIdx);
122 Nodes[FromIdx].second.DeleteNode(ToIdx);
123 }
124
125 /// AccessNode - Get a pointer to the node with the given index.
126 NodeType *AccessNode(unsigned Idx) const {
127 ValidateIndex(Idx);
128 // The constant cast is needed when working with GraphTraits, which insists
129 // on taking a constant Graph.
130 return const_cast<NodeType *>(&Nodes[Idx]);
131 }
132
133 /// NodesReachableFrom - Return the set of all nodes reachable from the given
134 /// node.
135 NodeSubset NodesReachableFrom(unsigned Idx) const {
136 // This algorithm doesn't scale, but that doesn't matter given the small
137 // size of our graphs.
138 NodeSubset Reachable;
139
140 // The initial node is reachable.
141 Reachable.AddNode(Idx);
142 do {
143 NodeSubset Previous(Reachable);
144
145 // Add in all nodes which are children of a reachable node.
146 for (unsigned i = 0; i != N; ++i)
147 if (Previous.count(i))
148 Reachable = Reachable.Join(Nodes[i].second);
149
150 // If nothing changed then we have found all reachable nodes.
151 if (Reachable == Previous)
152 return Reachable;
153
154 // Rinse and repeat.
155 } while (1);
156 }
157
158 /// ChildIterator - Visit all children of a node.
159 class ChildIterator {
160 friend class Graph;
161
162 /// FirstNode - Pointer to first node in the graph's Nodes array.
163 NodeType *FirstNode;
164 /// Children - Set of nodes which are children of this one and that haven't
165 /// yet been visited.
166 NodeSubset Children;
167
168 ChildIterator(); // Disable default constructor.
169 protected:
170 ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
171
172 public:
173 /// ChildIterator - Copy constructor.
174 ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
175 Children(other.Children) {}
176
177 /// Comparison operators.
178 bool operator==(const ChildIterator &other) const {
179 return other.FirstNode == this->FirstNode &&
180 other.Children == this->Children;
181 }
182 bool operator!=(const ChildIterator &other) const {
183 return !(*this == other);
184 }
185
186 /// Prefix increment operator.
187 ChildIterator& operator++() {
188 // Find the next unvisited child node.
189 for (unsigned i = 0; i != N; ++i)
190 if (Children.count(i)) {
191 // Remove that child - it has been visited. This is the increment!
192 Children.DeleteNode(i);
193 return *this;
194 }
195 assert(false && "Incrementing end iterator!");
196 return *this; // Avoid compiler warnings.
197 }
198
199 /// Postfix increment operator.
200 ChildIterator operator++(int) {
201 ChildIterator Result(*this);
202 ++(*this);
203 return Result;
204 }
205
206 /// Dereference operator.
207 NodeType *operator*() {
208 // Find the next unvisited child node.
209 for (unsigned i = 0; i != N; ++i)
210 if (Children.count(i))
211 // Return a pointer to it.
212 return FirstNode + i;
213 assert(false && "Dereferencing end iterator!");
Craig Topper66f09ad2014-06-08 22:29:17 +0000214 return nullptr; // Avoid compiler warning.
Duncan Sandsdea551c2011-07-28 14:17:11 +0000215 }
216 };
217
218 /// child_begin - Return an iterator pointing to the first child of the given
219 /// node.
220 static ChildIterator child_begin(NodeType *Parent) {
221 return ChildIterator(Parent - Parent->first, Parent->second);
222 }
223
224 /// child_end - Return the end iterator for children of the given node.
225 static ChildIterator child_end(NodeType *Parent) {
226 return ChildIterator(Parent - Parent->first, NodeSubset());
227 }
228};
229
230template <unsigned N>
231struct GraphTraits<Graph<N> > {
232 typedef typename Graph<N>::NodeType NodeType;
233 typedef typename Graph<N>::ChildIterator ChildIteratorType;
234
235 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
236 static inline ChildIteratorType child_begin(NodeType *Node) {
237 return Graph<N>::child_begin(Node);
238 }
239 static inline ChildIteratorType child_end(NodeType *Node) {
240 return Graph<N>::child_end(Node);
241 }
242};
243
244TEST(SCCIteratorTest, AllSmallGraphs) {
245 // Test SCC computation against every graph with NUM_NODES nodes or less.
246 // Since SCC considers every node to have an implicit self-edge, we only
247 // create graphs for which every node has a self-edge.
248#define NUM_NODES 4
249#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000250 typedef Graph<NUM_NODES> GT;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000251
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000252 /// Enumerate all graphs using NUM_GRAPHS bits.
Gabor Horvathfee04342015-03-16 09:53:42 +0000253 static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000254 for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
255 ++GraphDescriptor) {
Duncan Sandsdea551c2011-07-28 14:17:11 +0000256 GT G;
257
258 // Add edges as specified by the descriptor.
Duncan Sands251daee2011-07-28 14:37:53 +0000259 unsigned DescriptorCopy = GraphDescriptor;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000260 for (unsigned i = 0; i != NUM_NODES; ++i)
261 for (unsigned j = 0; j != NUM_NODES; ++j) {
262 // Always add a self-edge.
263 if (i == j) {
264 G.AddEdge(i, j);
265 continue;
266 }
267 if (DescriptorCopy & 1)
268 G.AddEdge(i, j);
269 DescriptorCopy >>= 1;
270 }
271
272 // Test the SCC logic on this graph.
273
274 /// NodesInSomeSCC - Those nodes which are in some SCC.
275 GT::NodeSubset NodesInSomeSCC;
276
277 for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
Duncan P. N. Exon Smithd2b2fac2014-04-25 18:24:50 +0000278 const std::vector<GT::NodeType *> &SCC = *I;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000279
280 // Get the nodes in this SCC as a NodeSubset rather than a vector.
281 GT::NodeSubset NodesInThisSCC;
282 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
283 NodesInThisSCC.AddNode(SCC[i]->first);
284
285 // There should be at least one node in every SCC.
286 EXPECT_FALSE(NodesInThisSCC.isEmpty());
287
288 // Check that every node in the SCC is reachable from every other node in
289 // the SCC.
290 for (unsigned i = 0; i != NUM_NODES; ++i)
291 if (NodesInThisSCC.count(i))
292 EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
293
294 // OK, now that we now that every node in the SCC is reachable from every
295 // other, this means that the set of nodes reachable from any node in the
296 // SCC is the same as the set of nodes reachable from every node in the
297 // SCC. Check that for every node N not in the SCC but reachable from the
298 // SCC, no element of the SCC is reachable from N.
299 for (unsigned i = 0; i != NUM_NODES; ++i)
300 if (NodesInThisSCC.count(i)) {
301 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
302 GT::NodeSubset ReachableButNotInSCC =
303 NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
304
305 for (unsigned j = 0; j != NUM_NODES; ++j)
306 if (ReachableButNotInSCC.count(j))
307 EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
308
309 // The result must be the same for all other nodes in this SCC, so
310 // there is no point in checking them.
311 break;
312 }
313
314 // This is indeed a SCC: a maximal set of nodes for which each node is
315 // reachable from every other.
316
317 // Check that we didn't already see this SCC.
318 EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
319
320 NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
Duncan Sands6d0f0ff2011-07-28 14:33:01 +0000321
322 // Check a property that is specific to the LLVM SCC iterator and
323 // guaranteed by it: if a node in SCC S1 has an edge to a node in
324 // SCC S2, then S1 is visited *after* S2. This means that the set
325 // of nodes reachable from this SCC must be contained either in the
326 // union of this SCC and all previously visited SCC's.
327
328 for (unsigned i = 0; i != NUM_NODES; ++i)
329 if (NodesInThisSCC.count(i)) {
330 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
331 EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
332 // The result must be the same for all other nodes in this SCC, so
333 // there is no point in checking them.
334 break;
335 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000336 }
337
338 // Finally, check that the nodes in some SCC are exactly those that are
339 // reachable from the initial node.
340 EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000341 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000342}
343
344}