blob: 6741ef4fd231d4ca08aa8e98183f214fa6e18933 [file] [log] [blame]
/* Copyright (c) 2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/mfd/pm8xxx/pm8921-bms.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/pm8xxx-adc.h>
#include <linux/mfd/pm8xxx/ccadc.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#define BMS_CONTROL 0x224
#define BMS_OUTPUT0 0x230
#define BMS_OUTPUT1 0x231
#define BMS_TEST1 0x237
#define ADC_ARB_SECP_CNTRL 0x190
#define ADC_ARB_SECP_AMUX_CNTRL 0x191
#define ADC_ARB_SECP_ANA_PARAM 0x192
#define ADC_ARB_SECP_DIG_PARAM 0x193
#define ADC_ARB_SECP_RSV 0x194
#define ADC_ARB_SECP_DATA1 0x195
#define ADC_ARB_SECP_DATA0 0x196
#define ADC_ARB_BMS_CNTRL 0x18D
enum pmic_bms_interrupts {
PM8921_BMS_SBI_WRITE_OK,
PM8921_BMS_CC_THR,
PM8921_BMS_VSENSE_THR,
PM8921_BMS_VSENSE_FOR_R,
PM8921_BMS_OCV_FOR_R,
PM8921_BMS_GOOD_OCV,
PM8921_BMS_VSENSE_AVG,
PM_BMS_MAX_INTS,
};
struct pm8921_bms_chip {
struct device *dev;
struct dentry *dent;
unsigned int r_sense;
unsigned int i_test;
unsigned int v_failure;
unsigned int fcc;
struct single_row_lut *fcc_temp_lut;
struct single_row_lut *fcc_sf_lut;
struct pc_temp_ocv_lut *pc_temp_ocv_lut;
struct pc_sf_lut *pc_sf_lut;
struct work_struct calib_hkadc_work;
struct delayed_work calib_ccadc_work;
unsigned int calib_delay_ms;
unsigned int revision;
unsigned int xoadc_v0625;
unsigned int xoadc_v125;
unsigned int batt_temp_channel;
unsigned int vbat_channel;
unsigned int ref625mv_channel;
unsigned int ref1p25v_channel;
unsigned int batt_id_channel;
unsigned int pmic_bms_irq[PM_BMS_MAX_INTS];
DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS);
spinlock_t bms_output_lock;
struct single_row_lut *adjusted_fcc_temp_lut;
unsigned int charging_began;
unsigned int start_percent;
unsigned int end_percent;
uint16_t ocv_reading_at_100;
int cc_reading_at_100;
};
static struct pm8921_bms_chip *the_chip;
#define DEFAULT_RBATT_MOHMS 128
#define DEFAULT_OCV_MICROVOLTS 3900000
#define DEFAULT_CHARGE_CYCLES 0
static int last_chargecycles = DEFAULT_CHARGE_CYCLES;
static int last_charge_increase;
module_param(last_chargecycles, int, 0644);
module_param(last_charge_increase, int, 0644);
static int last_rbatt = -EINVAL;
static int last_ocv_uv = -EINVAL;
static int last_soc = -EINVAL;
static int last_real_fcc = -EINVAL;
static int last_real_fcc_batt_temp = -EINVAL;
static int bms_ops_set(const char *val, const struct kernel_param *kp)
{
if (*(int *)kp->arg == -EINVAL)
return param_set_int(val, kp);
else
return 0;
}
static struct kernel_param_ops bms_param_ops = {
.set = bms_ops_set,
.get = param_get_int,
};
module_param_cb(last_rbatt, &bms_param_ops, &last_rbatt, 0644);
module_param_cb(last_ocv_uv, &bms_param_ops, &last_ocv_uv, 0644);
module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644);
static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp);
static void readjust_fcc_table(void)
{
struct single_row_lut *temp, *old;
int i, fcc, ratio;
if (!the_chip->fcc_temp_lut) {
pr_err("The static fcc lut table is NULL\n");
return;
}
temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL);
if (!temp) {
pr_err("Cannot allocate memory for adjusted fcc table\n");
return;
}
fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp);
temp->cols = the_chip->fcc_temp_lut->cols;
for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) {
temp->x[i] = the_chip->fcc_temp_lut->x[i];
ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc);
temp->y[i] = (ratio * last_real_fcc);
temp->y[i] /= 1000;
pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n",
temp->x[i], the_chip->fcc_temp_lut->y[i],
temp->y[i], ratio);
}
old = the_chip->adjusted_fcc_temp_lut;
the_chip->adjusted_fcc_temp_lut = temp;
kfree(old);
}
static int bms_last_real_fcc_set(const char *val,
const struct kernel_param *kp)
{
int rc = 0;
if (last_real_fcc == -EINVAL)
rc = param_set_int(val, kp);
if (rc) {
pr_err("Failed to set last_real_fcc rc=%d\n", rc);
return rc;
}
if (last_real_fcc_batt_temp != -EINVAL)
readjust_fcc_table();
return rc;
}
static struct kernel_param_ops bms_last_real_fcc_param_ops = {
.set = bms_last_real_fcc_set,
.get = param_get_int,
};
module_param_cb(last_real_fcc, &bms_last_real_fcc_param_ops,
&last_real_fcc, 0644);
static int bms_last_real_fcc_batt_temp_set(const char *val,
const struct kernel_param *kp)
{
int rc = 0;
if (last_real_fcc_batt_temp == -EINVAL)
rc = param_set_int(val, kp);
if (rc) {
pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc);
return rc;
}
if (last_real_fcc != -EINVAL)
readjust_fcc_table();
return rc;
}
static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = {
.set = bms_last_real_fcc_batt_temp_set,
.get = param_get_int,
};
module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops,
&last_real_fcc_batt_temp, 0644);
static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id)
{
return pm8xxx_read_irq_stat(chip->dev->parent,
chip->pmic_bms_irq[irq_id]);
}
static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt)
{
if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) {
dev_dbg(chip->dev, "%s %d\n", __func__,
chip->pmic_bms_irq[interrupt]);
enable_irq(chip->pmic_bms_irq[interrupt]);
}
}
static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt)
{
if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) {
pr_debug("%d\n", chip->pmic_bms_irq[interrupt]);
disable_irq_nosync(chip->pmic_bms_irq[interrupt]);
}
}
static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = pm8xxx_readb(chip->dev->parent, addr, &reg);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = pm8xxx_writeb(chip->dev->parent, addr, reg);
if (rc) {
pr_err("write failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
return 0;
}
#define HOLD_OREG_DATA BIT(1)
static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA,
HOLD_OREG_DATA);
if (rc) {
pr_err("couldnt lock bms output rc = %d\n", rc);
return rc;
}
return 0;
}
static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0);
if (rc) {
pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
return rc;
}
return 0;
}
#define SELECT_OUTPUT_DATA 0x1C
#define SELECT_OUTPUT_TYPE_SHIFT 2
#define OCV_FOR_RBATT 0x0
#define VSENSE_FOR_RBATT 0x1
#define VBATT_FOR_RBATT 0x2
#define CC_MSB 0x3
#define CC_LSB 0x4
#define LAST_GOOD_OCV_VALUE 0x5
#define VSENSE_AVG 0x6
#define VBATT_AVG 0x7
static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type,
int16_t *result)
{
int rc;
u8 reg;
if (!result) {
pr_err("result pointer null\n");
return -EINVAL;
}
*result = 0;
if (type < OCV_FOR_RBATT || type > VBATT_AVG) {
pr_err("invalid type %d asked to read\n", type);
return -EINVAL;
}
/* make sure the bms registers are locked */
rc = pm8xxx_readb(chip->dev->parent, BMS_CONTROL, &reg);
if (rc) {
pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n",
type, rc);
return rc;
}
/* Output register data must be held (locked) while reading output */
WARN_ON(!(reg && HOLD_OREG_DATA));
rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA,
type << SELECT_OUTPUT_TYPE_SHIFT);
if (rc) {
pr_err("fail to select %d type in BMS_CONTROL rc = %d\n",
type, rc);
return rc;
}
rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, &reg);
if (rc) {
pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n",
type, rc);
return rc;
}
*result = reg;
rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, &reg);
if (rc) {
pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n",
type, rc);
return rc;
}
*result |= reg << 8;
pr_debug("type %d result %x", type, *result);
return 0;
}
#define V_PER_BIT_MUL_FACTOR 97656
#define V_PER_BIT_DIV_FACTOR 1000
#define XOADC_INTRINSIC_OFFSET 0x6000
static int xoadc_reading_to_microvolt(unsigned int a)
{
if (a <= XOADC_INTRINSIC_OFFSET)
return 0;
return (a - XOADC_INTRINSIC_OFFSET)
* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
}
#define XOADC_CALIB_UV 625000
#define VBATT_MUL_FACTOR 3
static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip,
unsigned int uv)
{
u64 numerator, denominator;
if (uv == 0)
return 0;
numerator = ((u64)uv - chip->xoadc_v0625) * XOADC_CALIB_UV;
denominator = chip->xoadc_v125 - chip->xoadc_v0625;
if (denominator == 0)
return uv * VBATT_MUL_FACTOR;
return (XOADC_CALIB_UV + div_u64(numerator, denominator))
* VBATT_MUL_FACTOR;
}
#define CC_RESOLUTION_N_V1 1085069
#define CC_RESOLUTION_D_V1 100000
#define CC_RESOLUTION_N_V2 868056
#define CC_RESOLUTION_D_V2 10000
static s64 cc_to_microvolt_v1(s64 cc)
{
return div_s64(cc * CC_RESOLUTION_N_V1, CC_RESOLUTION_D_V1);
}
static s64 cc_to_microvolt_v2(s64 cc)
{
return div_s64(cc * CC_RESOLUTION_N_V2, CC_RESOLUTION_D_V2);
}
static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc)
{
/*
* resolution (the value of a single bit) was changed after revision 2.0
* for more accurate readings
*/
return (chip->revision < PM8XXX_REVISION_8921_2p0) ?
cc_to_microvolt_v1((s64)cc) :
cc_to_microvolt_v2((s64)cc);
}
#define CC_READING_TICKS 55
#define SLEEP_CLK_HZ 32768
#define SECONDS_PER_HOUR 3600
static s64 ccmicrovolt_to_uvh(s64 cc_uv)
{
return div_s64(cc_uv * CC_READING_TICKS,
SLEEP_CLK_HZ * SECONDS_PER_HOUR);
}
/* returns the signed value read from the hardware */
static int read_cc(struct pm8921_bms_chip *chip, int *result)
{
int rc;
uint16_t msw, lsw;
rc = pm_bms_read_output_data(chip, CC_LSB, &lsw);
if (rc) {
pr_err("fail to read CC_LSB rc = %d\n", rc);
return rc;
}
rc = pm_bms_read_output_data(chip, CC_MSB, &msw);
if (rc) {
pr_err("fail to read CC_MSB rc = %d\n", rc);
return rc;
}
*result = msw << 16 | lsw;
pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result);
*result = *result - chip->cc_reading_at_100;
pr_debug("cc = %d after subtracting %d\n",
*result, chip->cc_reading_at_100);
return 0;
}
static int read_last_good_ocv(struct pm8921_bms_chip *chip, uint *result)
{
int rc;
uint16_t reading;
rc = pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &reading);
if (rc) {
pr_err("fail to read LAST_GOOD_OCV_VALUE rc = %d\n", rc);
return rc;
}
if (chip->ocv_reading_at_100 != reading) {
chip->ocv_reading_at_100 = 0;
chip->cc_reading_at_100 = 0;
*result = xoadc_reading_to_microvolt(reading);
pr_debug("raw = %04x ocv_uV = %u\n", reading, *result);
*result = adjust_xo_vbatt_reading(chip, *result);
pr_debug("after adj ocv_uV = %u\n", *result);
if (*result != 0)
last_ocv_uv = *result;
} else {
/*
* force 100% ocv by selecting the highest profiled ocv
* This is the first row last column entry in the ocv
* lookup table
*/
int cols = chip->pc_temp_ocv_lut->cols;
pr_debug("Forcing max voltage %d\n",
1000 * chip->pc_temp_ocv_lut->ocv[0][cols-1]);
*result = 1000 * chip->pc_temp_ocv_lut->ocv[0][cols-1];
}
return 0;
}
static int read_vbatt_for_rbatt(struct pm8921_bms_chip *chip, uint *result)
{
int rc;
uint16_t reading;
rc = pm_bms_read_output_data(chip, VBATT_FOR_RBATT, &reading);
if (rc) {
pr_err("fail to read VBATT_FOR_RBATT rc = %d\n", rc);
return rc;
}
*result = xoadc_reading_to_microvolt(reading);
pr_debug("raw = %04x vbatt_for_r_microV = %u\n", reading, *result);
*result = adjust_xo_vbatt_reading(chip, *result);
pr_debug("after adj vbatt_for_r_uV = %u\n", *result);
return 0;
}
static int read_vsense_for_rbatt(struct pm8921_bms_chip *chip, uint *result)
{
int rc;
uint16_t reading;
rc = pm_bms_read_output_data(chip, VSENSE_FOR_RBATT, &reading);
if (rc) {
pr_err("fail to read VSENSE_FOR_RBATT rc = %d\n", rc);
return rc;
}
*result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading);
pr_debug("raw = %04x vsense_for_r_uV = %u\n", reading, *result);
*result = pm8xxx_cc_adjust_for_gain(*result);
pr_debug("after adj vsense_for_r_uV = %u\n", *result);
return 0;
}
static int read_ocv_for_rbatt(struct pm8921_bms_chip *chip, uint *result)
{
int rc;
uint16_t reading;
rc = pm_bms_read_output_data(chip, OCV_FOR_RBATT, &reading);
if (rc) {
pr_err("fail to read OCV_FOR_RBATT rc = %d\n", rc);
return rc;
}
*result = xoadc_reading_to_microvolt(reading);
pr_debug("raw = %04x ocv_for_r_uV = %u\n", reading, *result);
*result = adjust_xo_vbatt_reading(chip, *result);
pr_debug("after adj ocv_for_r_uV = %u\n", *result);
return 0;
}
static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result)
{
int rc;
int16_t reading;
rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading);
if (rc) {
pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
return rc;
}
*result = pm8xxx_ccadc_reading_to_microvolt(the_chip->revision,
reading);
pr_debug("raw = %04x vsense = %d\n", reading, *result);
*result = pm8xxx_cc_adjust_for_gain((s64)*result);
pr_debug("after adj vsense = %d\n", *result);
return 0;
}
static int linear_interpolate(int y0, int x0, int y1, int x1, int x)
{
if (y0 == y1 || x == x0)
return y0;
if (x1 == x0 || x == x1)
return y1;
return y0 + ((y1 - y0) * (x - x0) / (x1 - x0));
}
static int interpolate_single_lut(struct single_row_lut *lut, int x)
{
int i, result;
if (x < lut->x[0]) {
pr_debug("x %d less than known range return y = %d lut = %pS\n",
x, lut->y[0], lut);
return lut->y[0];
}
if (x > lut->x[lut->cols - 1]) {
pr_debug("x %d more than known range return y = %d lut = %pS\n",
x, lut->y[lut->cols - 1], lut);
return lut->y[lut->cols - 1];
}
for (i = 0; i < lut->cols; i++)
if (x <= lut->x[i])
break;
if (x == lut->x[i]) {
result = lut->y[i];
} else {
result = linear_interpolate(
lut->y[i - 1],
lut->x[i - 1],
lut->y[i],
lut->x[i],
x);
}
return result;
}
static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp)
{
return interpolate_single_lut(chip->fcc_temp_lut, batt_temp);
}
static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp)
{
return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp);
}
static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip,
int cycles)
{
/*
* sf table could be null when no battery aging data is available, in
* that case return 100%
*/
if (chip->fcc_sf_lut)
return interpolate_single_lut(chip->fcc_sf_lut, cycles);
else
return 100;
}
static int interpolate_scalingfactor_pc(struct pm8921_bms_chip *chip,
int cycles, int pc)
{
int i, scalefactorrow1, scalefactorrow2, scalefactor;
int rows, cols;
int row1 = 0;
int row2 = 0;
/*
* sf table could be null when no battery aging data is available, in
* that case return 100%
*/
if (!chip->pc_sf_lut)
return 100;
rows = chip->pc_sf_lut->rows;
cols = chip->pc_sf_lut->cols;
if (pc > chip->pc_sf_lut->percent[0]) {
pr_debug("pc %d greater than known pc ranges for sfd\n", pc);
row1 = 0;
row2 = 0;
}
if (pc < chip->pc_sf_lut->percent[rows - 1]) {
pr_debug("pc %d less than known pc ranges for sf", pc);
row1 = rows - 1;
row2 = rows - 1;
}
for (i = 0; i < rows; i++) {
if (pc == chip->pc_sf_lut->percent[i]) {
row1 = i;
row2 = i;
break;
}
if (pc > chip->pc_sf_lut->percent[i]) {
row1 = i - 1;
row2 = i;
break;
}
}
if (cycles < chip->pc_sf_lut->cycles[0])
cycles = chip->pc_sf_lut->cycles[0];
if (cycles > chip->pc_sf_lut->cycles[cols - 1])
cycles = chip->pc_sf_lut->cycles[cols - 1];
for (i = 0; i < cols; i++)
if (cycles <= chip->pc_sf_lut->cycles[i])
break;
if (cycles == chip->pc_sf_lut->cycles[i]) {
scalefactor = linear_interpolate(
chip->pc_sf_lut->sf[row1][i],
chip->pc_sf_lut->percent[row1],
chip->pc_sf_lut->sf[row2][i],
chip->pc_sf_lut->percent[row2],
pc);
return scalefactor;
}
scalefactorrow1 = linear_interpolate(
chip->pc_sf_lut->sf[row1][i - 1],
chip->pc_sf_lut->cycles[i - 1],
chip->pc_sf_lut->sf[row1][i],
chip->pc_sf_lut->cycles[i],
cycles);
scalefactorrow2 = linear_interpolate(
chip->pc_sf_lut->sf[row2][i - 1],
chip->pc_sf_lut->cycles[i - 1],
chip->pc_sf_lut->sf[row2][i],
chip->pc_sf_lut->cycles[i],
cycles);
scalefactor = linear_interpolate(
scalefactorrow1,
chip->pc_sf_lut->percent[row1],
scalefactorrow2,
chip->pc_sf_lut->percent[row2],
pc);
return scalefactor;
}
static int is_between(int left, int right, int value)
{
if (left >= right && left >= value && value >= right)
return 1;
if (left <= right && left <= value && value <= right)
return 1;
return 0;
}
static int interpolate_pc(struct pm8921_bms_chip *chip,
int batt_temp, int ocv)
{
int i, j, pcj, pcj_minus_one, pc;
int rows = chip->pc_temp_ocv_lut->rows;
int cols = chip->pc_temp_ocv_lut->cols;
if (batt_temp < chip->pc_temp_ocv_lut->temp[0]) {
pr_debug("batt_temp %d < known temp range for pc\n", batt_temp);
batt_temp = chip->pc_temp_ocv_lut->temp[0];
}
if (batt_temp > chip->pc_temp_ocv_lut->temp[cols - 1]) {
pr_debug("batt_temp %d > known temp range for pc\n", batt_temp);
batt_temp = chip->pc_temp_ocv_lut->temp[cols - 1];
}
for (j = 0; j < cols; j++)
if (batt_temp <= chip->pc_temp_ocv_lut->temp[j])
break;
if (batt_temp == chip->pc_temp_ocv_lut->temp[j]) {
/* found an exact match for temp in the table */
if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
return chip->pc_temp_ocv_lut->percent[0];
if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j])
return chip->pc_temp_ocv_lut->percent[rows - 1];
for (i = 0; i < rows; i++) {
if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) {
if (ocv == chip->pc_temp_ocv_lut->ocv[i][j])
return
chip->pc_temp_ocv_lut->percent[i];
pc = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->percent[i - 1],
chip->pc_temp_ocv_lut->ocv[i - 1][j],
ocv);
return pc;
}
}
}
/*
* batt_temp is within temperature for
* column j-1 and j
*/
if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
return chip->pc_temp_ocv_lut->percent[0];
if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1])
return chip->pc_temp_ocv_lut->percent[rows - 1];
pcj_minus_one = 0;
pcj = 0;
for (i = 0; i < rows-1; i++) {
if (pcj == 0
&& is_between(chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) {
pcj = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->percent[i + 1],
chip->pc_temp_ocv_lut->ocv[i+1][j],
ocv);
}
if (pcj_minus_one == 0
&& is_between(chip->pc_temp_ocv_lut->ocv[i][j-1],
chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) {
pcj_minus_one = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j-1],
chip->pc_temp_ocv_lut->percent[i + 1],
chip->pc_temp_ocv_lut->ocv[i+1][j-1],
ocv);
}
if (pcj && pcj_minus_one) {
pc = linear_interpolate(
pcj_minus_one,
chip->pc_temp_ocv_lut->temp[j-1],
pcj,
chip->pc_temp_ocv_lut->temp[j],
batt_temp);
return pc;
}
}
if (pcj)
return pcj;
if (pcj_minus_one)
return pcj_minus_one;
pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%",
ocv, batt_temp);
return 100;
}
static int calculate_rbatt(struct pm8921_bms_chip *chip)
{
int rc;
unsigned int ocv, vsense, vbatt, r_batt;
rc = read_ocv_for_rbatt(chip, &ocv);
if (rc) {
pr_err("fail to read ocv_for_rbatt rc = %d\n", rc);
ocv = 0;
}
rc = read_vbatt_for_rbatt(chip, &vbatt);
if (rc) {
pr_err("fail to read vbatt_for_rbatt rc = %d\n", rc);
ocv = 0;
}
rc = read_vsense_for_rbatt(chip, &vsense);
if (rc) {
pr_err("fail to read vsense_for_rbatt rc = %d\n", rc);
ocv = 0;
}
if (ocv == 0
|| ocv == vbatt
|| vsense == 0) {
pr_debug("rbatt readings unavailable ocv = %d, vbatt = %d,"
"vsen = %d\n",
ocv, vbatt, vsense);
return -EINVAL;
}
r_batt = ((ocv - vbatt) * chip->r_sense) / vsense;
last_rbatt = r_batt;
pr_debug("r_batt = %umilliOhms", r_batt);
return r_batt;
}
static int calculate_fcc(struct pm8921_bms_chip *chip, int batt_temp,
int chargecycles)
{
int initfcc, result, scalefactor = 0;
if (chip->adjusted_fcc_temp_lut == NULL) {
initfcc = interpolate_fcc(chip, batt_temp);
scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles);
/* Multiply the initial FCC value by the scale factor. */
result = (initfcc * scalefactor) / 100;
pr_debug("fcc mAh = %d\n", result);
return result;
} else {
return interpolate_fcc_adjusted(chip, batt_temp);
}
}
static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->vbat_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical,
result.measurement);
*uvolts = (int)result.physical;
*uvolts = *uvolts * 1000;
return 0;
}
static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv)
{
int vbatt, rbatt, ibatt, rc;
rc = get_battery_uvolts(chip, &vbatt);
if (rc) {
pr_err("failed to read vbatt from adc rc = %d\n", rc);
return rc;
}
rc = pm8921_bms_get_battery_current(&ibatt);
if (rc) {
pr_err("failed to read batt current rc = %d\n", rc);
return rc;
}
rbatt = calculate_rbatt(the_chip);
if (rbatt < 0)
rbatt = (last_rbatt < 0) ? DEFAULT_RBATT_MOHMS : last_rbatt;
*ocv = vbatt + ibatt * rbatt;
return 0;
}
static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp,
int chargecycles)
{
int pc, scalefactor;
pc = interpolate_pc(chip, batt_temp, ocv_uv / 1000);
pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n",
pc, ocv_uv, batt_temp);
scalefactor = interpolate_scalingfactor_pc(chip, chargecycles, pc);
pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp);
/* Multiply the initial FCC value by the scale factor. */
pc = (pc * scalefactor) / 100;
return pc;
}
static void calculate_cc_mah(struct pm8921_bms_chip *chip, int64_t *val,
int *coulumb_counter)
{
int rc;
int64_t cc_voltage_uv, cc_uvh, cc_mah;
rc = read_cc(the_chip, coulumb_counter);
cc_voltage_uv = (int64_t)*coulumb_counter;
cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv);
cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv);
pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv);
cc_uvh = ccmicrovolt_to_uvh(cc_voltage_uv);
pr_debug("cc_uvh = %lld micro_volt_hour\n", cc_uvh);
cc_mah = div_s64(cc_uvh, chip->r_sense);
*val = cc_mah;
}
static int calculate_unusable_charge_mah(struct pm8921_bms_chip *chip,
int fcc, int batt_temp, int chargecycles)
{
int rbatt, voltage_unusable_uv, pc_unusable;
rbatt = calculate_rbatt(chip);
if (rbatt < 0) {
rbatt = (last_rbatt < 0) ? DEFAULT_RBATT_MOHMS : last_rbatt;
pr_debug("rbatt unavailable assuming %d\n", rbatt);
}
/* calculate unusable charge */
voltage_unusable_uv = (rbatt * chip->i_test)
+ (chip->v_failure * 1000);
pc_unusable = calculate_pc(chip, voltage_unusable_uv,
batt_temp, chargecycles);
pr_debug("rbatt = %umilliOhms unusable_v =%d unusable_pc = %d\n",
rbatt, voltage_unusable_uv, pc_unusable);
return (fcc * pc_unusable) / 100;
}
/* calculate remainging charge at the time of ocv */
static int calculate_remaining_charge_mah(struct pm8921_bms_chip *chip, int fcc,
int batt_temp, int chargecycles)
{
int rc, ocv, pc;
/* calculate remainging charge */
ocv = 0;
rc = read_last_good_ocv(chip, &ocv);
if (rc)
pr_debug("failed to read ocv rc = %d\n", rc);
if (ocv == 0) {
ocv = last_ocv_uv;
pr_debug("ocv not available using last_ocv_uv=%d\n", ocv);
}
pc = calculate_pc(chip, ocv, batt_temp, chargecycles);
pr_debug("ocv = %d pc = %d\n", ocv, pc);
return (fcc * pc) / 100;
}
static void calculate_charging_params(struct pm8921_bms_chip *chip,
int batt_temp, int chargecycles,
int *fcc,
int *unusable_charge,
int *remaining_charge,
int64_t *cc_mah)
{
int coulumb_counter;
unsigned long flags;
*fcc = calculate_fcc(chip, batt_temp, chargecycles);
pr_debug("FCC = %umAh batt_temp = %d, cycles = %d",
*fcc, batt_temp, chargecycles);
/* fcc doesnt need to be read from hardware, lock the bms now */
spin_lock_irqsave(&chip->bms_output_lock, flags);
pm_bms_lock_output_data(chip);
*unusable_charge = calculate_unusable_charge_mah(chip, *fcc,
batt_temp, chargecycles);
pr_debug("UUC = %umAh", *unusable_charge);
/* calculate remainging charge */
*remaining_charge = calculate_remaining_charge_mah(chip, *fcc,
batt_temp, chargecycles);
pr_debug("RC = %umAh\n", *remaining_charge);
/* calculate cc milli_volt_hour */
calculate_cc_mah(chip, cc_mah, &coulumb_counter);
pr_debug("cc_mah = %lldmAh cc = %d\n", *cc_mah, coulumb_counter);
pm_bms_unlock_output_data(chip);
spin_unlock_irqrestore(&chip->bms_output_lock, flags);
}
static int calculate_real_fcc(struct pm8921_bms_chip *chip,
int batt_temp, int chargecycles)
{
int fcc, unusable_charge;
int remaining_charge;
int64_t cc_mah;
int real_fcc;
calculate_charging_params(chip, batt_temp, chargecycles,
&fcc,
&unusable_charge,
&remaining_charge,
&cc_mah);
real_fcc = remaining_charge - cc_mah;
pr_debug("real_fcc = %d, RC = %d CC = %lld\n",
real_fcc, remaining_charge, cc_mah);
return real_fcc;
}
/*
* Remaining Usable Charge = remaining_charge (charge at ocv instance)
* - coloumb counter charge
* - unusable charge (due to battery resistance)
* SOC% = (remaining usable charge/ fcc - usable_charge);
*/
#define BMS_BATT_NOMINAL 3700000
#define MIN_OPERABLE_SOC 10
#define BATTERY_POWER_SUPPLY_SOC 53
static int calculate_state_of_charge(struct pm8921_bms_chip *chip,
int batt_temp, int chargecycles)
{
int remaining_usable_charge, fcc, unusable_charge;
int remaining_charge, soc;
int update_userspace = 1;
int64_t cc_mah;
calculate_charging_params(chip, batt_temp, chargecycles,
&fcc,
&unusable_charge,
&remaining_charge,
&cc_mah);
/* calculate remaining usable charge */
remaining_usable_charge = remaining_charge - cc_mah - unusable_charge;
pr_debug("RUC = %dmAh\n", remaining_usable_charge);
soc = (remaining_usable_charge * 100) / (fcc - unusable_charge);
if (soc > 100)
soc = 100;
pr_debug("SOC = %u%%\n", soc);
if (soc < MIN_OPERABLE_SOC) {
int ocv = 0, rc;
rc = adc_based_ocv(chip, &ocv);
if (rc == 0 && ocv >= BMS_BATT_NOMINAL) {
/*
* The ocv doesnt seem to have dropped for
* soc to go negative.
* The setup must be using a power supply
* instead of real batteries.
* Fake high enough soc to prevent userspace
* shutdown for low battery
*/
soc = BATTERY_POWER_SUPPLY_SOC;
pr_debug("Adjusting SOC to %d\n", soc);
}
}
if (soc < 0) {
pr_err("bad rem_usb_chg = %d rem_chg %d,"
"cc_mah %lld, unusb_chg %d\n",
remaining_usable_charge, remaining_charge,
cc_mah, unusable_charge);
pr_err("for bad rem_usb_chg last_ocv_uv = %d"
"chargecycles = %d, batt_temp = %d"
"fcc = %d soc =%d\n",
last_ocv_uv, chargecycles, batt_temp,
fcc, soc);
update_userspace = 0;
}
if (last_soc == -EINVAL || soc <= last_soc) {
last_soc = update_userspace ? soc : last_soc;
return soc;
}
/*
* soc > last_soc
* the device must be charging for reporting a higher soc, if not ignore
* this soc and continue reporting the last_soc
*/
if (the_chip->start_percent != 0) {
last_soc = soc;
} else {
pr_debug("soc = %d reporting last_soc = %d\n", soc, last_soc);
soc = last_soc;
}
return soc;
}
#define XOADC_MAX_1P25V 1312500
#define XOADC_MIN_1P25V 1187500
#define XOADC_MAX_0P625V 656250
#define XOADC_MIN_0P625V 593750
#define HKADC_V_PER_BIT_MUL_FACTOR 977
#define HKADC_V_PER_BIT_DIV_FACTOR 10
static int calib_hkadc_convert_microvolt(unsigned int phy)
{
return (phy - 0x6000) *
HKADC_V_PER_BIT_MUL_FACTOR / HKADC_V_PER_BIT_DIV_FACTOR;
}
static void calib_hkadc(struct pm8921_bms_chip *chip)
{
int voltage, rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result);
if (rc) {
pr_err("ADC failed for 1.25volts rc = %d\n", rc);
return;
}
voltage = calib_hkadc_convert_microvolt(result.adc_code);
pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n",
result.adc_code, voltage, result.measurement);
/* check for valid range */
if (voltage > XOADC_MAX_1P25V)
voltage = XOADC_MAX_1P25V;
else if (voltage < XOADC_MIN_1P25V)
voltage = XOADC_MIN_1P25V;
chip->xoadc_v125 = voltage;
rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result);
if (rc) {
pr_err("ADC failed for 1.25volts rc = %d\n", rc);
return;
}
voltage = calib_hkadc_convert_microvolt(result.adc_code);
pr_debug("result 0.625V = 0x%x, voltage = %duV adc_mead = %lld\n",
result.adc_code, voltage, result.measurement);
/* check for valid range */
if (voltage > XOADC_MAX_0P625V)
voltage = XOADC_MAX_0P625V;
else if (voltage < XOADC_MIN_0P625V)
voltage = XOADC_MIN_0P625V;
chip->xoadc_v0625 = voltage;
}
static void calibrate_hkadc_work(struct work_struct *work)
{
struct pm8921_bms_chip *chip = container_of(work,
struct pm8921_bms_chip, calib_hkadc_work);
calib_hkadc(chip);
}
static void calibrate_ccadc_work(struct work_struct *work)
{
struct pm8921_bms_chip *chip = container_of(work,
struct pm8921_bms_chip, calib_ccadc_work.work);
pm8xxx_calib_ccadc();
schedule_delayed_work(&chip->calib_ccadc_work,
round_jiffies_relative(msecs_to_jiffies
(chip->calib_delay_ms)));
}
int pm8921_bms_get_vsense_avg(int *result)
{
int rc = -EINVAL;
unsigned long flags;
if (the_chip) {
spin_lock_irqsave(&the_chip->bms_output_lock, flags);
pm_bms_lock_output_data(the_chip);
rc = read_vsense_avg(the_chip, result);
pm_bms_unlock_output_data(the_chip);
spin_unlock_irqrestore(&the_chip->bms_output_lock, flags);
}
pr_err("called before initialization\n");
return rc;
}
EXPORT_SYMBOL(pm8921_bms_get_vsense_avg);
int pm8921_bms_get_battery_current(int *result)
{
unsigned long flags;
int vsense;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
if (the_chip->r_sense == 0) {
pr_err("r_sense is zero\n");
return -EINVAL;
}
spin_lock_irqsave(&the_chip->bms_output_lock, flags);
pm_bms_lock_output_data(the_chip);
read_vsense_avg(the_chip, &vsense);
pm_bms_unlock_output_data(the_chip);
spin_unlock_irqrestore(&the_chip->bms_output_lock, flags);
pr_debug("vsense=%d\n", vsense);
/* cast for signed division */
*result = vsense / (int)the_chip->r_sense;
return 0;
}
EXPORT_SYMBOL(pm8921_bms_get_battery_current);
int pm8921_bms_get_percent_charge(void)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
result.measurement);
batt_temp = (int)result.physical;
return calculate_state_of_charge(the_chip,
batt_temp, last_chargecycles);
}
EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge);
int pm8921_bms_get_fcc(void)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
result.measurement);
batt_temp = (int)result.physical;
return calculate_fcc(the_chip, batt_temp, last_chargecycles);
}
EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc);
void pm8921_bms_charging_began(void)
{
the_chip->start_percent = pm8921_bms_get_percent_charge();
pr_debug("start_percent = %u%%\n", the_chip->start_percent);
}
EXPORT_SYMBOL_GPL(pm8921_bms_charging_began);
void pm8921_bms_charging_end(int is_battery_full)
{
if (is_battery_full && the_chip != NULL) {
unsigned long flags;
int batt_temp, rc, cc_reading;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
goto charge_cycle_calculation;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
result.measurement);
batt_temp = (int)result.physical;
last_real_fcc = calculate_real_fcc(the_chip,
batt_temp, last_chargecycles);
last_real_fcc_batt_temp = batt_temp;
readjust_fcc_table();
spin_lock_irqsave(&the_chip->bms_output_lock, flags);
pm_bms_lock_output_data(the_chip);
pm_bms_read_output_data(the_chip, LAST_GOOD_OCV_VALUE,
&the_chip->ocv_reading_at_100);
read_cc(the_chip, &cc_reading);
pm_bms_unlock_output_data(the_chip);
spin_unlock_irqrestore(&the_chip->bms_output_lock, flags);
the_chip->cc_reading_at_100 = cc_reading;
pr_debug("EOC ocv_reading = 0x%x cc_reading = %d\n",
the_chip->ocv_reading_at_100,
the_chip->cc_reading_at_100);
}
charge_cycle_calculation:
the_chip->end_percent = pm8921_bms_get_percent_charge();
if (the_chip->end_percent > the_chip->start_percent) {
last_charge_increase =
the_chip->end_percent - the_chip->start_percent;
if (last_charge_increase > 100) {
last_chargecycles++;
last_charge_increase = last_charge_increase % 100;
}
}
pr_debug("end_percent = %u%% last_charge_increase = %d"
"last_chargecycles = %d\n",
the_chip->end_percent,
last_charge_increase,
last_chargecycles);
the_chip->start_percent = 0;
the_chip->end_percent = 0;
}
EXPORT_SYMBOL_GPL(pm8921_bms_charging_end);
static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data)
{
struct pm8921_bms_chip *chip = data;
pr_debug("irq = %d triggered", irq);
schedule_work(&chip->calib_hkadc_work);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data)
{
struct pm8921_bms_chip *chip = data;
pr_debug("irq = %d triggered", irq);
schedule_work(&chip->calib_hkadc_work);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
struct pm_bms_irq_init_data {
unsigned int irq_id;
char *name;
unsigned long flags;
irqreturn_t (*handler)(int, void *);
};
#define BMS_IRQ(_id, _flags, _handler) \
{ \
.irq_id = _id, \
.name = #_id, \
.flags = _flags, \
.handler = _handler, \
}
struct pm_bms_irq_init_data bms_irq_data[] = {
BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING,
pm8921_bms_sbi_write_ok_handler),
BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING,
pm8921_bms_cc_thr_handler),
BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_thr_handler),
BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_for_r_handler),
BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING,
pm8921_bms_ocv_for_r_handler),
BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING,
pm8921_bms_good_ocv_handler),
BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_avg_handler),
};
static void free_irqs(struct pm8921_bms_chip *chip)
{
int i;
for (i = 0; i < PM_BMS_MAX_INTS; i++)
if (chip->pmic_bms_irq[i]) {
free_irq(chip->pmic_bms_irq[i], NULL);
chip->pmic_bms_irq[i] = 0;
}
}
static int __devinit request_irqs(struct pm8921_bms_chip *chip,
struct platform_device *pdev)
{
struct resource *res;
int ret, i;
ret = 0;
bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS);
for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
bms_irq_data[i].name);
if (res == NULL) {
pr_err("couldn't find %s\n", bms_irq_data[i].name);
goto err_out;
}
ret = request_irq(res->start, bms_irq_data[i].handler,
bms_irq_data[i].flags,
bms_irq_data[i].name, chip);
if (ret < 0) {
pr_err("couldn't request %d (%s) %d\n", res->start,
bms_irq_data[i].name, ret);
goto err_out;
}
chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start;
pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id);
}
return 0;
err_out:
free_irqs(chip);
return -EINVAL;
}
#define EN_BMS_BIT BIT(7)
#define EN_PON_HS_BIT BIT(0)
static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL,
EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT);
if (rc) {
pr_err("failed to enable pon and bms addr = %d %d",
BMS_CONTROL, rc);
}
return 0;
}
static void check_initial_ocv(struct pm8921_bms_chip *chip)
{
int ocv, rc;
/*
* Check if a ocv is available in bms hw,
* if not compute it here at boot time and save it
* in the last_ocv_uv.
*/
ocv = 0;
rc = read_last_good_ocv(chip, &ocv);
if (rc || ocv == 0) {
rc = adc_based_ocv(chip, &ocv);
if (rc) {
pr_err("failed to read adc based ocv rc = %d\n", rc);
ocv = DEFAULT_OCV_MICROVOLTS;
}
last_ocv_uv = ocv;
}
pr_debug("ocv = %d last_ocv_uv = %d\n", ocv, last_ocv_uv);
}
static int64_t read_battery_id(struct pm8921_bms_chip *chip)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->batt_id_channel, &result);
if (rc) {
pr_err("error reading batt id channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
return result.physical;
}
#define PALLADIUM_ID_MIN 2500
#define PALLADIUM_ID_MAX 4000
static int set_battery_data(struct pm8921_bms_chip *chip)
{
int64_t battery_id;
battery_id = read_battery_id(chip);
if (battery_id < 0) {
pr_err("cannot read battery id err = %lld\n", battery_id);
return battery_id;
}
if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) {
chip->fcc = palladium_1500_data.fcc;
chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
return 0;
} else {
pr_warn("invalid battery id, palladium 1500 assumed\n");
chip->fcc = palladium_1500_data.fcc;
chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
return 0;
}
}
enum {
CALC_RBATT,
CALC_FCC,
CALC_PC,
CALC_SOC,
CALIB_HKADC,
CALIB_CCADC,
};
static int test_batt_temp = 5;
static int test_chargecycle = 150;
static int test_ocv = 3900000;
enum {
TEST_BATT_TEMP,
TEST_CHARGE_CYCLE,
TEST_OCV,
};
static int get_test_param(void *data, u64 * val)
{
switch ((int)data) {
case TEST_BATT_TEMP:
*val = test_batt_temp;
break;
case TEST_CHARGE_CYCLE:
*val = test_chargecycle;
break;
case TEST_OCV:
*val = test_ocv;
break;
default:
return -EINVAL;
}
return 0;
}
static int set_test_param(void *data, u64 val)
{
switch ((int)data) {
case TEST_BATT_TEMP:
test_batt_temp = (int)val;
break;
case TEST_CHARGE_CYCLE:
test_chargecycle = (int)val;
break;
case TEST_OCV:
test_ocv = (int)val;
break;
default:
return -EINVAL;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n");
static int get_calc(void *data, u64 * val)
{
int param = (int)data;
int ret = 0;
*val = 0;
/* global irq number passed in via data */
switch (param) {
case CALC_RBATT:
*val = calculate_rbatt(the_chip);
break;
case CALC_FCC:
*val = calculate_fcc(the_chip, test_batt_temp,
test_chargecycle);
break;
case CALC_PC:
*val = calculate_pc(the_chip, test_ocv, test_batt_temp,
test_chargecycle);
break;
case CALC_SOC:
*val = calculate_state_of_charge(the_chip,
test_batt_temp, test_chargecycle);
break;
case CALIB_HKADC:
/* reading this will trigger calibration */
*val = 0;
calib_hkadc(the_chip);
break;
case CALIB_CCADC:
/* reading this will trigger calibration */
*val = 0;
pm8xxx_calib_ccadc();
break;
default:
ret = -EINVAL;
}
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, NULL, "%llu\n");
static int get_reading(void *data, u64 * val)
{
int param = (int)data;
int ret = 0;
*val = 0;
/* global irq number passed in via data */
switch (param) {
case CC_MSB:
case CC_LSB:
read_cc(the_chip, (int *)val);
break;
case LAST_GOOD_OCV_VALUE:
read_last_good_ocv(the_chip, (uint *)val);
break;
case VBATT_FOR_RBATT:
read_vbatt_for_rbatt(the_chip, (uint *)val);
break;
case VSENSE_FOR_RBATT:
read_vsense_for_rbatt(the_chip, (uint *)val);
break;
case OCV_FOR_RBATT:
read_ocv_for_rbatt(the_chip, (uint *)val);
break;
case VSENSE_AVG:
read_vsense_avg(the_chip, (uint *)val);
break;
default:
ret = -EINVAL;
}
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n");
static int get_rt_status(void *data, u64 * val)
{
int i = (int)data;
int ret;
/* global irq number passed in via data */
ret = pm_bms_get_rt_status(the_chip, i);
*val = ret;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n");
static int get_reg(void *data, u64 * val)
{
int addr = (int)data;
int ret;
u8 temp;
ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp);
if (ret) {
pr_err("pm8xxx_readb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
int addr = (int)data;
int ret;
u8 temp;
temp = (u8) val;
ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp);
if (ret) {
pr_err("pm8xxx_writeb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n");
static void create_debugfs_entries(struct pm8921_bms_chip *chip)
{
int i;
chip->dent = debugfs_create_dir("pm8921-bms", NULL);
if (IS_ERR(chip->dent)) {
pr_err("pmic bms couldnt create debugfs dir\n");
return;
}
debugfs_create_file("BMS_CONTROL", 0644, chip->dent,
(void *)BMS_CONTROL, &reg_fops);
debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent,
(void *)BMS_OUTPUT0, &reg_fops);
debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent,
(void *)BMS_OUTPUT1, &reg_fops);
debugfs_create_file("BMS_TEST1", 0644, chip->dent,
(void *)BMS_TEST1, &reg_fops);
debugfs_create_file("test_batt_temp", 0644, chip->dent,
(void *)TEST_BATT_TEMP, &temp_fops);
debugfs_create_file("test_chargecycle", 0644, chip->dent,
(void *)TEST_CHARGE_CYCLE, &temp_fops);
debugfs_create_file("test_ocv", 0644, chip->dent,
(void *)TEST_OCV, &temp_fops);
debugfs_create_file("read_cc", 0644, chip->dent,
(void *)CC_MSB, &reading_fops);
debugfs_create_file("read_last_good_ocv", 0644, chip->dent,
(void *)LAST_GOOD_OCV_VALUE, &reading_fops);
debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent,
(void *)VBATT_FOR_RBATT, &reading_fops);
debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent,
(void *)VSENSE_FOR_RBATT, &reading_fops);
debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent,
(void *)OCV_FOR_RBATT, &reading_fops);
debugfs_create_file("read_vsense_avg", 0644, chip->dent,
(void *)VSENSE_AVG, &reading_fops);
debugfs_create_file("show_rbatt", 0644, chip->dent,
(void *)CALC_RBATT, &calc_fops);
debugfs_create_file("show_fcc", 0644, chip->dent,
(void *)CALC_FCC, &calc_fops);
debugfs_create_file("show_pc", 0644, chip->dent,
(void *)CALC_PC, &calc_fops);
debugfs_create_file("show_soc", 0644, chip->dent,
(void *)CALC_SOC, &calc_fops);
debugfs_create_file("calib_hkadc", 0644, chip->dent,
(void *)CALIB_HKADC, &calc_fops);
debugfs_create_file("calib_ccadc", 0644, chip->dent,
(void *)CALIB_CCADC, &calc_fops);
for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
if (chip->pmic_bms_irq[bms_irq_data[i].irq_id])
debugfs_create_file(bms_irq_data[i].name, 0444,
chip->dent,
(void *)bms_irq_data[i].irq_id,
&rt_fops);
}
}
static int __devinit pm8921_bms_probe(struct platform_device *pdev)
{
int rc = 0;
int vbatt;
struct pm8921_bms_chip *chip;
const struct pm8921_bms_platform_data *pdata
= pdev->dev.platform_data;
if (!pdata) {
pr_err("missing platform data\n");
return -EINVAL;
}
chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL);
if (!chip) {
pr_err("Cannot allocate pm_bms_chip\n");
return -ENOMEM;
}
spin_lock_init(&chip->bms_output_lock);
chip->dev = &pdev->dev;
chip->r_sense = pdata->r_sense;
chip->i_test = pdata->i_test;
chip->v_failure = pdata->v_failure;
chip->calib_delay_ms = pdata->calib_delay_ms;
rc = set_battery_data(chip);
if (rc) {
pr_err("%s bad battery data %d\n", __func__, rc);
goto free_chip;
}
chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel;
chip->vbat_channel = pdata->bms_cdata.vbat_channel;
chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel;
chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel;
chip->batt_id_channel = pdata->bms_cdata.batt_id_channel;
chip->revision = pm8xxx_get_revision(chip->dev->parent);
INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work);
rc = request_irqs(chip, pdev);
if (rc) {
pr_err("couldn't register interrupts rc = %d\n", rc);
goto free_chip;
}
rc = pm8921_bms_hw_init(chip);
if (rc) {
pr_err("couldn't init hardware rc = %d\n", rc);
goto free_irqs;
}
platform_set_drvdata(pdev, chip);
the_chip = chip;
create_debugfs_entries(chip);
check_initial_ocv(chip);
INIT_DELAYED_WORK(&chip->calib_ccadc_work, calibrate_ccadc_work);
/* begin calibration only on chips > 2.0 */
if (chip->revision >= PM8XXX_REVISION_8921_2p0)
calibrate_ccadc_work(&(chip->calib_ccadc_work.work));
/* initial hkadc calibration */
schedule_work(&chip->calib_hkadc_work);
/* enable the vbatt reading interrupts for scheduling hkadc calib */
pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV);
pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R);
get_battery_uvolts(chip, &vbatt);
pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n",
pm8921_bms_get_percent_charge(),
vbatt, last_ocv_uv);
return 0;
free_irqs:
free_irqs(chip);
free_chip:
kfree(chip);
return rc;
}
static int __devexit pm8921_bms_remove(struct platform_device *pdev)
{
struct pm8921_bms_chip *chip = platform_get_drvdata(pdev);
free_irqs(chip);
kfree(chip->adjusted_fcc_temp_lut);
platform_set_drvdata(pdev, NULL);
the_chip = NULL;
kfree(chip);
return 0;
}
static struct platform_driver pm8921_bms_driver = {
.probe = pm8921_bms_probe,
.remove = __devexit_p(pm8921_bms_remove),
.driver = {
.name = PM8921_BMS_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init pm8921_bms_init(void)
{
return platform_driver_register(&pm8921_bms_driver);
}
static void __exit pm8921_bms_exit(void)
{
platform_driver_unregister(&pm8921_bms_driver);
}
late_initcall(pm8921_bms_init);
module_exit(pm8921_bms_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8921 bms driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME);