blob: 8521bdbf614d4eaaad4278fd9163d96860c2423b [file] [log] [blame]
rileya@google.com589708b2012-07-26 20:04:23 +00001
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#include "SkGradientShaderPriv.h"
10#include "SkLinearGradient.h"
11#include "SkRadialGradient.h"
12#include "SkTwoPointRadialGradient.h"
13#include "SkTwoPointConicalGradient.h"
14#include "SkSweepGradient.h"
15
16SkGradientShaderBase::SkGradientShaderBase(const SkColor colors[], const SkScalar pos[],
17 int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper) {
18 SkASSERT(colorCount > 1);
19
20 fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return
21
22 fMapper = mapper;
23 SkSafeRef(mapper);
24
25 SkASSERT((unsigned)mode < SkShader::kTileModeCount);
26 SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
27 fTileMode = mode;
28 fTileProc = gTileProcs[mode];
29
30 fCache16 = fCache16Storage = NULL;
31 fCache32 = NULL;
32 fCache32PixelRef = NULL;
33
34 /* Note: we let the caller skip the first and/or last position.
35 i.e. pos[0] = 0.3, pos[1] = 0.7
36 In these cases, we insert dummy entries to ensure that the final data
37 will be bracketed by [0, 1].
38 i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
39
40 Thus colorCount (the caller's value, and fColorCount (our value) may
41 differ by up to 2. In the above example:
42 colorCount = 2
43 fColorCount = 4
44 */
45 fColorCount = colorCount;
46 // check if we need to add in dummy start and/or end position/colors
47 bool dummyFirst = false;
48 bool dummyLast = false;
49 if (pos) {
50 dummyFirst = pos[0] != 0;
51 dummyLast = pos[colorCount - 1] != SK_Scalar1;
52 fColorCount += dummyFirst + dummyLast;
53 }
54
55 if (fColorCount > kColorStorageCount) {
56 size_t size = sizeof(SkColor) + sizeof(Rec);
57 fOrigColors = reinterpret_cast<SkColor*>(
58 sk_malloc_throw(size * fColorCount));
59 }
60 else {
61 fOrigColors = fStorage;
62 }
63
64 // Now copy over the colors, adding the dummies as needed
65 {
66 SkColor* origColors = fOrigColors;
67 if (dummyFirst) {
68 *origColors++ = colors[0];
69 }
70 memcpy(origColors, colors, colorCount * sizeof(SkColor));
71 if (dummyLast) {
72 origColors += colorCount;
73 *origColors = colors[colorCount - 1];
74 }
75 }
76
77 fRecs = (Rec*)(fOrigColors + fColorCount);
78 if (fColorCount > 2) {
79 Rec* recs = fRecs;
80 recs->fPos = 0;
81 // recs->fScale = 0; // unused;
82 recs += 1;
83 if (pos) {
84 /* We need to convert the user's array of relative positions into
85 fixed-point positions and scale factors. We need these results
86 to be strictly monotonic (no two values equal or out of order).
87 Hence this complex loop that just jams a zero for the scale
88 value if it sees a segment out of order, and it assures that
89 we start at 0 and end at 1.0
90 */
91 SkFixed prev = 0;
92 int startIndex = dummyFirst ? 0 : 1;
93 int count = colorCount + dummyLast;
94 for (int i = startIndex; i < count; i++) {
95 // force the last value to be 1.0
96 SkFixed curr;
97 if (i == colorCount) { // we're really at the dummyLast
98 curr = SK_Fixed1;
99 } else {
100 curr = SkScalarToFixed(pos[i]);
101 }
102 // pin curr withing range
103 if (curr < 0) {
104 curr = 0;
105 } else if (curr > SK_Fixed1) {
106 curr = SK_Fixed1;
107 }
108 recs->fPos = curr;
109 if (curr > prev) {
110 recs->fScale = (1 << 24) / (curr - prev);
111 } else {
112 recs->fScale = 0; // ignore this segment
113 }
114 // get ready for the next value
115 prev = curr;
116 recs += 1;
117 }
118 } else { // assume even distribution
119 SkFixed dp = SK_Fixed1 / (colorCount - 1);
120 SkFixed p = dp;
121 SkFixed scale = (colorCount - 1) << 8; // (1 << 24) / dp
122 for (int i = 1; i < colorCount; i++) {
123 recs->fPos = p;
124 recs->fScale = scale;
125 recs += 1;
126 p += dp;
127 }
128 }
129 }
130 this->initCommon();
131}
132
133SkGradientShaderBase::SkGradientShaderBase(SkFlattenableReadBuffer& buffer) :
134 INHERITED(buffer) {
135 fCacheAlpha = 256;
136
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000137 fMapper = buffer.readFlattenableT<SkUnitMapper>();
rileya@google.com589708b2012-07-26 20:04:23 +0000138
139 fCache16 = fCache16Storage = NULL;
140 fCache32 = NULL;
141 fCache32PixelRef = NULL;
142
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000143 int colorCount = fColorCount = buffer.getArrayCount();
rileya@google.com589708b2012-07-26 20:04:23 +0000144 if (colorCount > kColorStorageCount) {
145 size_t size = sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec);
146 fOrigColors = (SkColor*)sk_malloc_throw(size * colorCount);
147 } else {
148 fOrigColors = fStorage;
149 }
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000150 buffer.readColorArray(fOrigColors);
rileya@google.com589708b2012-07-26 20:04:23 +0000151
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000152 fTileMode = (TileMode)buffer.readUInt();
rileya@google.com589708b2012-07-26 20:04:23 +0000153 fTileProc = gTileProcs[fTileMode];
154 fRecs = (Rec*)(fOrigColors + colorCount);
155 if (colorCount > 2) {
156 Rec* recs = fRecs;
157 recs[0].fPos = 0;
158 for (int i = 1; i < colorCount; i++) {
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000159 recs[i].fPos = buffer.readInt();
160 recs[i].fScale = buffer.readUInt();
rileya@google.com589708b2012-07-26 20:04:23 +0000161 }
162 }
163 buffer.readMatrix(&fPtsToUnit);
164 this->initCommon();
165}
166
167SkGradientShaderBase::~SkGradientShaderBase() {
168 if (fCache16Storage) {
169 sk_free(fCache16Storage);
170 }
171 SkSafeUnref(fCache32PixelRef);
172 if (fOrigColors != fStorage) {
173 sk_free(fOrigColors);
174 }
175 SkSafeUnref(fMapper);
176}
177
178void SkGradientShaderBase::initCommon() {
179 fFlags = 0;
180 unsigned colorAlpha = 0xFF;
181 for (int i = 0; i < fColorCount; i++) {
182 colorAlpha &= SkColorGetA(fOrigColors[i]);
183 }
184 fColorsAreOpaque = colorAlpha == 0xFF;
185}
186
187void SkGradientShaderBase::flatten(SkFlattenableWriteBuffer& buffer) const {
188 this->INHERITED::flatten(buffer);
189 buffer.writeFlattenable(fMapper);
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000190 buffer.writeColorArray(fOrigColors, fColorCount);
191 buffer.writeUInt(fTileMode);
rileya@google.com589708b2012-07-26 20:04:23 +0000192 if (fColorCount > 2) {
193 Rec* recs = fRecs;
194 for (int i = 1; i < fColorCount; i++) {
djsollen@google.comc73dd5c2012-08-07 15:54:32 +0000195 buffer.writeInt(recs[i].fPos);
196 buffer.writeUInt(recs[i].fScale);
rileya@google.com589708b2012-07-26 20:04:23 +0000197 }
198 }
199 buffer.writeMatrix(fPtsToUnit);
200}
201
202bool SkGradientShaderBase::isOpaque() const {
203 return fColorsAreOpaque;
204}
205
206bool SkGradientShaderBase::setContext(const SkBitmap& device,
207 const SkPaint& paint,
208 const SkMatrix& matrix) {
209 if (!this->INHERITED::setContext(device, paint, matrix)) {
210 return false;
211 }
212
213 const SkMatrix& inverse = this->getTotalInverse();
214
215 if (!fDstToIndex.setConcat(fPtsToUnit, inverse)) {
reed@google.coma641f3f2012-12-13 22:16:30 +0000216 // need to keep our set/end context calls balanced.
217 this->INHERITED::endContext();
rileya@google.com589708b2012-07-26 20:04:23 +0000218 return false;
219 }
220
221 fDstToIndexProc = fDstToIndex.getMapXYProc();
222 fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex);
223
224 // now convert our colors in to PMColors
225 unsigned paintAlpha = this->getPaintAlpha();
226
227 fFlags = this->INHERITED::getFlags();
228 if (fColorsAreOpaque && paintAlpha == 0xFF) {
229 fFlags |= kOpaqueAlpha_Flag;
230 }
231 // we can do span16 as long as our individual colors are opaque,
232 // regardless of the paint's alpha
233 if (fColorsAreOpaque) {
234 fFlags |= kHasSpan16_Flag;
235 }
236
237 this->setCacheAlpha(paintAlpha);
238 return true;
239}
240
241void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const {
242 // if the new alpha differs from the previous time we were called, inval our cache
243 // this will trigger the cache to be rebuilt.
244 // we don't care about the first time, since the cache ptrs will already be NULL
245 if (fCacheAlpha != alpha) {
246 fCache16 = NULL; // inval the cache
247 fCache32 = NULL; // inval the cache
248 fCacheAlpha = alpha; // record the new alpha
249 // inform our subclasses
250 if (fCache32PixelRef) {
251 fCache32PixelRef->notifyPixelsChanged();
252 }
253 }
254}
255
256#define Fixed_To_Dot8(x) (((x) + 0x80) >> 8)
257
258/** We take the original colors, not our premultiplied PMColors, since we can
259 build a 16bit table as long as the original colors are opaque, even if the
260 paint specifies a non-opaque alpha.
261*/
262void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1,
263 int count) {
264 SkASSERT(count > 1);
265 SkASSERT(SkColorGetA(c0) == 0xFF);
266 SkASSERT(SkColorGetA(c1) == 0xFF);
267
268 SkFixed r = SkColorGetR(c0);
269 SkFixed g = SkColorGetG(c0);
270 SkFixed b = SkColorGetB(c0);
271
272 SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
273 SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
274 SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
275
276 r = SkIntToFixed(r) + 0x8000;
277 g = SkIntToFixed(g) + 0x8000;
278 b = SkIntToFixed(b) + 0x8000;
279
280 do {
281 unsigned rr = r >> 16;
282 unsigned gg = g >> 16;
283 unsigned bb = b >> 16;
284 cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
285 cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
286 cache += 1;
287 r += dr;
288 g += dg;
289 b += db;
290 } while (--count != 0);
291}
292
293/*
294 * 2x2 dither a fixed-point color component (8.16) down to 8, matching the
295 * semantics of how we 2x2 dither 32->16
296 */
297static inline U8CPU dither_fixed_to_8(SkFixed n) {
298 n >>= 8;
299 return ((n << 1) - ((n >> 8 << 8) | (n >> 8))) >> 8;
300}
301
302/*
303 * For dithering with premultiply, we want to ceiling the alpha component,
304 * to ensure that it is always >= any color component.
305 */
306static inline U8CPU dither_ceil_fixed_to_8(SkFixed n) {
307 n >>= 8;
308 return ((n << 1) - (n | (n >> 8))) >> 8;
309}
310
311void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
312 int count, U8CPU paintAlpha) {
313 SkASSERT(count > 1);
314
315 // need to apply paintAlpha to our two endpoints
316 SkFixed a = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
317 SkFixed da;
318 {
319 int tmp = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
320 da = SkIntToFixed(tmp - a) / (count - 1);
321 }
322
323 SkFixed r = SkColorGetR(c0);
324 SkFixed g = SkColorGetG(c0);
325 SkFixed b = SkColorGetB(c0);
326 SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
327 SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
328 SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
329
330 a = SkIntToFixed(a) + 0x8000;
331 r = SkIntToFixed(r) + 0x8000;
332 g = SkIntToFixed(g) + 0x8000;
333 b = SkIntToFixed(b) + 0x8000;
334
335 do {
336 cache[0] = SkPremultiplyARGBInline(a >> 16, r >> 16, g >> 16, b >> 16);
337 cache[kCache32Count] =
338 SkPremultiplyARGBInline(dither_ceil_fixed_to_8(a),
339 dither_fixed_to_8(r),
340 dither_fixed_to_8(g),
341 dither_fixed_to_8(b));
342 cache += 1;
343 a += da;
344 r += dr;
345 g += dg;
346 b += db;
347 } while (--count != 0);
348}
349
350static inline int SkFixedToFFFF(SkFixed x) {
351 SkASSERT((unsigned)x <= SK_Fixed1);
352 return x - (x >> 16);
353}
354
355static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
356 SkASSERT(x < (1U << bits));
357 if (6 == bits) {
358 return (x << 10) | (x << 4) | (x >> 2);
359 }
360 if (8 == bits) {
361 return (x << 8) | x;
362 }
363 sk_throw();
364 return 0;
365}
366
367/** We duplicate the last value in each half of the cache so that
368 interpolation doesn't have to special-case being at the last point.
369*/
370static void complete_16bit_cache(uint16_t* cache, int stride) {
371 cache[stride - 1] = cache[stride - 2];
372 cache[2 * stride - 1] = cache[2 * stride - 2];
373}
374
375const uint16_t* SkGradientShaderBase::getCache16() const {
376 if (fCache16 == NULL) {
377 // double the count for dither entries
378 const int entryCount = kCache16Count * 2;
379 const size_t allocSize = sizeof(uint16_t) * entryCount;
380
381 if (fCache16Storage == NULL) { // set the storage and our working ptr
382 fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
383 }
384 fCache16 = fCache16Storage;
385 if (fColorCount == 2) {
386 Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1],
387 kGradient16Length);
388 } else {
389 Rec* rec = fRecs;
390 int prevIndex = 0;
391 for (int i = 1; i < fColorCount; i++) {
392 int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
393 SkASSERT(nextIndex < kCache16Count);
394
395 if (nextIndex > prevIndex)
396 Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
397 prevIndex = nextIndex;
398 }
399 // one extra space left over at the end for complete_16bit_cache()
400 SkASSERT(prevIndex == kGradient16Length - 1);
401 }
402
403 if (fMapper) {
404 fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
405 uint16_t* linear = fCache16; // just computed linear data
406 uint16_t* mapped = fCache16Storage; // storage for mapped data
407 SkUnitMapper* map = fMapper;
408 for (int i = 0; i < kGradient16Length; i++) {
409 int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
410 mapped[i] = linear[index];
411 mapped[i + kCache16Count] = linear[index + kCache16Count];
412 }
413 sk_free(fCache16);
414 fCache16 = fCache16Storage;
415 }
416 complete_16bit_cache(fCache16, kCache16Count);
417 }
418 return fCache16;
419}
420
421/** We duplicate the last value in each half of the cache so that
422 interpolation doesn't have to special-case being at the last point.
423*/
424static void complete_32bit_cache(SkPMColor* cache, int stride) {
425 cache[stride - 1] = cache[stride - 2];
426 cache[2 * stride - 1] = cache[2 * stride - 2];
427}
428
429const SkPMColor* SkGradientShaderBase::getCache32() const {
430 if (fCache32 == NULL) {
431 // double the count for dither entries
432 const int entryCount = kCache32Count * 2;
433 const size_t allocSize = sizeof(SkPMColor) * entryCount;
434
435 if (NULL == fCache32PixelRef) {
436 fCache32PixelRef = SkNEW_ARGS(SkMallocPixelRef,
437 (NULL, allocSize, NULL));
438 }
439 fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
440 if (fColorCount == 2) {
441 Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
442 kGradient32Length, fCacheAlpha);
443 } else {
444 Rec* rec = fRecs;
445 int prevIndex = 0;
446 for (int i = 1; i < fColorCount; i++) {
447 int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
448 SkASSERT(nextIndex < kGradient32Length);
449
450 if (nextIndex > prevIndex)
451 Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1],
452 fOrigColors[i],
453 nextIndex - prevIndex + 1, fCacheAlpha);
454 prevIndex = nextIndex;
455 }
456 SkASSERT(prevIndex == kGradient32Length - 1);
457 }
458
459 if (fMapper) {
460 SkMallocPixelRef* newPR = SkNEW_ARGS(SkMallocPixelRef,
461 (NULL, allocSize, NULL));
462 SkPMColor* linear = fCache32; // just computed linear data
463 SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data
464 SkUnitMapper* map = fMapper;
465 for (int i = 0; i < kGradient32Length; i++) {
466 int index = map->mapUnit16((i << 8) | i) >> 8;
467 mapped[i] = linear[index];
468 mapped[i + kCache32Count] = linear[index + kCache32Count];
469 }
470 fCache32PixelRef->unref();
471 fCache32PixelRef = newPR;
472 fCache32 = (SkPMColor*)newPR->getAddr();
473 }
474 complete_32bit_cache(fCache32, kCache32Count);
475 }
476 return fCache32;
477}
478
479/*
480 * Because our caller might rebuild the same (logically the same) gradient
481 * over and over, we'd like to return exactly the same "bitmap" if possible,
482 * allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
483 * To do that, we maintain a private cache of built-bitmaps, based on our
484 * colors and positions. Note: we don't try to flatten the fMapper, so if one
485 * is present, we skip the cache for now.
486 */
rileya@google.com1c6d64b2012-07-27 15:49:05 +0000487void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
rileya@google.com589708b2012-07-26 20:04:23 +0000488 // our caller assumes no external alpha, so we ensure that our cache is
489 // built with 0xFF
490 this->setCacheAlpha(0xFF);
491
492 // don't have a way to put the mapper into our cache-key yet
493 if (fMapper) {
494 // force our cahce32pixelref to be built
495 (void)this->getCache32();
496 bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
497 bitmap->setPixelRef(fCache32PixelRef);
498 return;
499 }
500
501 // build our key: [numColors + colors[] + {positions[]} ]
502 int count = 1 + fColorCount;
503 if (fColorCount > 2) {
504 count += fColorCount - 1; // fRecs[].fPos
505 }
506
507 SkAutoSTMalloc<16, int32_t> storage(count);
508 int32_t* buffer = storage.get();
509
510 *buffer++ = fColorCount;
511 memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
512 buffer += fColorCount;
513 if (fColorCount > 2) {
514 for (int i = 1; i < fColorCount; i++) {
515 *buffer++ = fRecs[i].fPos;
516 }
517 }
518 SkASSERT(buffer - storage.get() == count);
519
520 ///////////////////////////////////
521
522 SK_DECLARE_STATIC_MUTEX(gMutex);
523 static SkBitmapCache* gCache;
524 // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
525 static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
526 SkAutoMutexAcquire ama(gMutex);
527
528 if (NULL == gCache) {
529 gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
530 }
531 size_t size = count * sizeof(int32_t);
532
533 if (!gCache->find(storage.get(), size, bitmap)) {
534 // force our cahce32pixelref to be built
535 (void)this->getCache32();
536 // Only expose the linear section of the cache; don't let the caller
537 // know about the padding at the end to make interpolation faster.
538 bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
539 bitmap->setPixelRef(fCache32PixelRef);
540
541 gCache->add(storage.get(), size, *bitmap);
542 }
543}
544
545void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
546 if (info) {
547 if (info->fColorCount >= fColorCount) {
548 if (info->fColors) {
549 memcpy(info->fColors, fOrigColors,
550 fColorCount * sizeof(SkColor));
551 }
552 if (info->fColorOffsets) {
553 if (fColorCount == 2) {
554 info->fColorOffsets[0] = 0;
555 info->fColorOffsets[1] = SK_Scalar1;
556 } else if (fColorCount > 2) {
557 for (int i = 0; i < fColorCount; i++)
558 info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos);
559 }
560 }
561 }
562 info->fColorCount = fColorCount;
563 info->fTileMode = fTileMode;
564 }
565}
566
567///////////////////////////////////////////////////////////////////////////////
568///////////////////////////////////////////////////////////////////////////////
569
570#include "SkEmptyShader.h"
571
572// assumes colors is SkColor* and pos is SkScalar*
573#define EXPAND_1_COLOR(count) \
574 SkColor tmp[2]; \
575 do { \
576 if (1 == count) { \
577 tmp[0] = tmp[1] = colors[0]; \
578 colors = tmp; \
579 pos = NULL; \
580 count = 2; \
581 } \
582 } while (0)
583
584SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
585 const SkColor colors[],
586 const SkScalar pos[], int colorCount,
587 SkShader::TileMode mode,
588 SkUnitMapper* mapper) {
589 if (NULL == pts || NULL == colors || colorCount < 1) {
590 return NULL;
591 }
592 EXPAND_1_COLOR(colorCount);
593
594 return SkNEW_ARGS(SkLinearGradient,
595 (pts, colors, pos, colorCount, mode, mapper));
596}
597
598SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
599 const SkColor colors[],
600 const SkScalar pos[], int colorCount,
601 SkShader::TileMode mode,
602 SkUnitMapper* mapper) {
603 if (radius <= 0 || NULL == colors || colorCount < 1) {
604 return NULL;
605 }
606 EXPAND_1_COLOR(colorCount);
607
608 return SkNEW_ARGS(SkRadialGradient,
609 (center, radius, colors, pos, colorCount, mode, mapper));
610}
611
612SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
613 SkScalar startRadius,
614 const SkPoint& end,
615 SkScalar endRadius,
616 const SkColor colors[],
617 const SkScalar pos[],
618 int colorCount,
619 SkShader::TileMode mode,
620 SkUnitMapper* mapper) {
621 if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
622 return NULL;
623 }
624 EXPAND_1_COLOR(colorCount);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000625
rileya@google.com589708b2012-07-26 20:04:23 +0000626 return SkNEW_ARGS(SkTwoPointRadialGradient,
627 (start, startRadius, end, endRadius, colors, pos,
628 colorCount, mode, mapper));
629}
630
631SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
632 SkScalar startRadius,
633 const SkPoint& end,
634 SkScalar endRadius,
635 const SkColor colors[],
636 const SkScalar pos[],
637 int colorCount,
638 SkShader::TileMode mode,
639 SkUnitMapper* mapper) {
640 if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
641 return NULL;
642 }
643 if (start == end && startRadius == endRadius) {
644 return SkNEW(SkEmptyShader);
645 }
rileya@google.com1ee7c6a2012-07-31 16:00:13 +0000646 EXPAND_1_COLOR(colorCount);
rileya@google.com589708b2012-07-26 20:04:23 +0000647
648 return SkNEW_ARGS(SkTwoPointConicalGradient,
649 (start, startRadius, end, endRadius, colors, pos,
650 colorCount, mode, mapper));
651}
652
653SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
654 const SkColor colors[],
655 const SkScalar pos[],
656 int count, SkUnitMapper* mapper) {
657 if (NULL == colors || count < 1) {
658 return NULL;
659 }
660 EXPAND_1_COLOR(count);
661
662 return SkNEW_ARGS(SkSweepGradient, (cx, cy, colors, pos, count, mapper));
663}
664
665SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
666 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
667 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
668 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
669 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
670 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
671SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
rileya@google.comd7cc6512012-07-27 14:00:39 +0000672
673///////////////////////////////////////////////////////////////////////////////
674
bsalomon@google.comcf8fb1f2012-08-02 14:03:32 +0000675#if SK_SUPPORT_GPU
676
rileya@google.comb3e50f22012-08-20 17:43:08 +0000677#include "effects/GrTextureStripAtlas.h"
bsalomon@google.comcf8fb1f2012-08-02 14:03:32 +0000678#include "SkGr.h"
679
bsalomon@google.com0707c292012-10-25 21:45:42 +0000680GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
rileya@google.comb3e50f22012-08-20 17:43:08 +0000681 : INHERITED(factory)
bsalomon@google.com81712882012-11-01 17:12:34 +0000682 , fCachedYCoord(SK_ScalarMax)
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000683 , fFSYUni(GrGLUniformManager::kInvalidUniformHandle) {
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000684}
rileya@google.comd7cc6512012-07-27 14:00:39 +0000685
bsalomon@google.com0707c292012-10-25 21:45:42 +0000686GrGLGradientEffect::~GrGLGradientEffect() { }
rileya@google.comd7cc6512012-07-27 14:00:39 +0000687
bsalomon@google.comf78df332012-10-29 12:43:38 +0000688void GrGLGradientEffect::emitYCoordUniform(GrGLShaderBuilder* builder) {
rileya@google.comb3e50f22012-08-20 17:43:08 +0000689 fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
690 kFloat_GrSLType, "GradientYCoordFS");
691}
692
bsalomon@google.com28a15fb2012-10-26 17:53:18 +0000693void GrGLGradientEffect::setData(const GrGLUniformManager& uman, const GrEffectStage& stage) {
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000694 const GrGradientEffect& e = static_cast<const GrGradientEffect&>(*stage.getEffect());
695 const GrTexture* texture = e.texture(0);
696 fEffectMatrix.setData(uman, e.getMatrix(), stage.getCoordChangeMatrix(), texture);
697
bsalomon@google.com81712882012-11-01 17:12:34 +0000698 SkScalar yCoord = e.getYCoord();
rileya@google.comb3e50f22012-08-20 17:43:08 +0000699 if (yCoord != fCachedYCoord) {
700 uman.set1f(fFSYUni, yCoord);
701 fCachedYCoord = yCoord;
702 }
703}
704
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000705GrGLEffect::EffectKey GrGLGradientEffect::GenMatrixKey(const GrEffectStage& s) {
706 const GrGradientEffect& e = static_cast<const GrGradientEffect&>(*s.getEffect());
707 const GrTexture* texture = e.texture(0);
skia.committer@gmail.com760f2d92012-11-02 02:01:24 +0000708 return GrGLEffectMatrix::GenKey(e.getMatrix(), s.getCoordChangeMatrix(), texture);
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000709}
710
711void GrGLGradientEffect::setupMatrix(GrGLShaderBuilder* builder,
712 EffectKey key,
713 const char* vertexCoords,
714 const char** fsCoordName,
715 const char** vsVaryingName,
716 GrSLType* vsVaryingType) {
717 fEffectMatrix.emitCodeMakeFSCoords2D(builder,
718 key & kMatrixKeyMask,
719 vertexCoords,
720 fsCoordName,
721 vsVaryingName,
722 vsVaryingType);
723}
724
bsalomon@google.com0707c292012-10-25 21:45:42 +0000725void GrGLGradientEffect::emitColorLookup(GrGLShaderBuilder* builder,
726 const char* gradientTValue,
727 const char* outputColor,
728 const char* inputColor,
729 const GrGLShaderBuilder::TextureSampler& sampler) {
bsalomon@google.com34bcb9f2012-08-28 18:20:18 +0000730
bsalomon@google.com868a8e72012-08-30 19:11:34 +0000731 SkString* code = &builder->fFSCode;
732 code->appendf("\tvec2 coord = vec2(%s, %s);\n",
733 gradientTValue,
734 builder->getUniformVariable(fFSYUni).c_str());
bsalomon@google.com868a8e72012-08-30 19:11:34 +0000735 code->appendf("\t%s = ", outputColor);
bsalomon@google.comf06df1b2012-09-06 20:22:31 +0000736 builder->appendTextureLookupAndModulate(code, inputColor, sampler, "coord");
bsalomon@google.com868a8e72012-08-30 19:11:34 +0000737 code->append(";\n");
rileya@google.comd7cc6512012-07-27 14:00:39 +0000738}
739
740/////////////////////////////////////////////////////////////////////
741
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000742GrGradientEffect::GrGradientEffect(GrContext* ctx,
rileya@google.com1c6d64b2012-07-27 15:49:05 +0000743 const SkGradientShaderBase& shader,
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000744 const SkMatrix& matrix,
bsalomon@google.com50db75c2013-01-11 13:54:30 +0000745 SkShader::TileMode tileMode) {
rileya@google.comd7cc6512012-07-27 14:00:39 +0000746 // TODO: check for simple cases where we don't need a texture:
747 //GradientInfo info;
748 //shader.asAGradient(&info);
749 //if (info.fColorCount == 2) { ...
750
bsalomon@google.comd8b5fac2012-11-01 17:02:46 +0000751 fMatrix = matrix;
752
rileya@google.comd7cc6512012-07-27 14:00:39 +0000753 SkBitmap bitmap;
rileya@google.com1c6d64b2012-07-27 15:49:05 +0000754 shader.getGradientTableBitmap(&bitmap);
rileya@google.comd7cc6512012-07-27 14:00:39 +0000755
rileya@google.comb3e50f22012-08-20 17:43:08 +0000756 GrTextureStripAtlas::Desc desc;
757 desc.fWidth = bitmap.width();
758 desc.fHeight = 32;
759 desc.fRowHeight = bitmap.height();
760 desc.fContext = ctx;
761 desc.fConfig = SkBitmapConfig2GrPixelConfig(bitmap.config());
762 fAtlas = GrTextureStripAtlas::GetAtlas(desc);
763 GrAssert(NULL != fAtlas);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000764
bsalomon@google.com1ce49fc2012-09-18 14:14:49 +0000765 // We always filter the gradient table. Each table is one row of a texture, so always y-clamp.
766 GrTextureParams params;
767 params.setBilerp(true);
768 params.setTileModeX(tileMode);
769
rileya@google.comb3e50f22012-08-20 17:43:08 +0000770 fRow = fAtlas->lockRow(bitmap);
771 if (-1 != fRow) {
bsalomon@google.com81712882012-11-01 17:12:34 +0000772 fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
rileya@google.comb3e50f22012-08-20 17:43:08 +0000773 fAtlas->getVerticalScaleFactor();
bsalomon@google.com1ce49fc2012-09-18 14:14:49 +0000774 fTextureAccess.reset(fAtlas->getTexture(), params);
rileya@google.comb3e50f22012-08-20 17:43:08 +0000775 } else {
bsalomon@google.com1ce49fc2012-09-18 14:14:49 +0000776 GrTexture* texture = GrLockCachedBitmapTexture(ctx, bitmap, &params);
777 fTextureAccess.reset(texture, params);
bsalomon@google.com81712882012-11-01 17:12:34 +0000778 fYCoord = SK_ScalarHalf;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000779
rileya@google.comb3e50f22012-08-20 17:43:08 +0000780 // Unlock immediately, this is not great, but we don't have a way of
781 // knowing when else to unlock it currently, so it may get purged from
782 // the cache, but it'll still be ref'd until it's no longer being used.
bsalomon@google.com6d003d12012-09-11 15:45:20 +0000783 GrUnlockCachedBitmapTexture(texture);
rileya@google.comb3e50f22012-08-20 17:43:08 +0000784 }
bsalomon@google.com50db75c2013-01-11 13:54:30 +0000785 this->addTextureAccess(&fTextureAccess);
rileya@google.comd7cc6512012-07-27 14:00:39 +0000786}
787
788GrGradientEffect::~GrGradientEffect() {
rileya@google.comb3e50f22012-08-20 17:43:08 +0000789 if (this->useAtlas()) {
790 fAtlas->unlockRow(fRow);
rileya@google.comb3e50f22012-08-20 17:43:08 +0000791 }
rileya@google.comd7cc6512012-07-27 14:00:39 +0000792}
793
bsalomon@google.comd4726202012-08-03 14:34:46 +0000794int GrGradientEffect::RandomGradientParams(SkRandom* random,
795 SkColor colors[],
796 SkScalar** stops,
797 SkShader::TileMode* tm) {
798 int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
799
800 // if one color, omit stops, otherwise randomly decide whether or not to
801 if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
802 *stops = NULL;
803 }
804
bsalomon@google.com81712882012-11-01 17:12:34 +0000805 SkScalar stop = 0.f;
bsalomon@google.comd4726202012-08-03 14:34:46 +0000806 for (int i = 0; i < outColors; ++i) {
807 colors[i] = random->nextU();
808 if (NULL != *stops) {
809 (*stops)[i] = stop;
810 stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
811 }
812 }
813 *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
814
815 return outColors;
816}
817
bsalomon@google.comcf8fb1f2012-08-02 14:03:32 +0000818#endif