blob: 7a8b7288d67a78e1f2cc2c97e7e356a7c38ea7e5 [file] [log] [blame]
ager@chromium.org71daaf62009-04-01 07:22:49 +00001// Copyright 2009 the V8 project authors. All rights reserved.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "codegen-inl.h"
kasperl@chromium.orgb9123622008-09-17 14:05:56 +000034#include "compilation-cache.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000035#include "debug.h"
36#include "global-handles.h"
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000037#include "mark-compact.h"
38#include "natives.h"
39#include "scanner.h"
40#include "scopeinfo.h"
41#include "v8threads.h"
42
43namespace v8 { namespace internal {
44
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000045#define ROOT_ALLOCATION(type, name) type* Heap::name##_;
46 ROOT_LIST(ROOT_ALLOCATION)
47#undef ROOT_ALLOCATION
48
49
50#define STRUCT_ALLOCATION(NAME, Name, name) Map* Heap::name##_map_;
51 STRUCT_LIST(STRUCT_ALLOCATION)
52#undef STRUCT_ALLOCATION
53
54
55#define SYMBOL_ALLOCATION(name, string) String* Heap::name##_;
56 SYMBOL_LIST(SYMBOL_ALLOCATION)
57#undef SYMBOL_ALLOCATION
58
ager@chromium.org3b45ab52009-03-19 22:21:34 +000059String* Heap::hidden_symbol_;
60
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000061NewSpace Heap::new_space_;
ager@chromium.org9258b6b2008-09-11 09:11:10 +000062OldSpace* Heap::old_pointer_space_ = NULL;
63OldSpace* Heap::old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000064OldSpace* Heap::code_space_ = NULL;
65MapSpace* Heap::map_space_ = NULL;
66LargeObjectSpace* Heap::lo_space_ = NULL;
67
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +000068static const int kMinimumPromotionLimit = 2*MB;
69static const int kMinimumAllocationLimit = 8*MB;
70
71int Heap::old_gen_promotion_limit_ = kMinimumPromotionLimit;
72int Heap::old_gen_allocation_limit_ = kMinimumAllocationLimit;
73
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000074int Heap::old_gen_exhausted_ = false;
75
kasper.lund7276f142008-07-30 08:49:36 +000076int Heap::amount_of_external_allocated_memory_ = 0;
77int Heap::amount_of_external_allocated_memory_at_last_global_gc_ = 0;
78
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000079// semispace_size_ should be a power of 2 and old_generation_size_ should be
80// a multiple of Page::kPageSize.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +000081int Heap::semispace_size_ = 2*MB;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000082int Heap::old_generation_size_ = 512*MB;
83int Heap::initial_semispace_size_ = 256*KB;
84
85GCCallback Heap::global_gc_prologue_callback_ = NULL;
86GCCallback Heap::global_gc_epilogue_callback_ = NULL;
87
88// Variables set based on semispace_size_ and old_generation_size_ in
89// ConfigureHeap.
90int Heap::young_generation_size_ = 0; // Will be 2 * semispace_size_.
91
92// Double the new space after this many scavenge collections.
93int Heap::new_space_growth_limit_ = 8;
94int Heap::scavenge_count_ = 0;
95Heap::HeapState Heap::gc_state_ = NOT_IN_GC;
96
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +000097int Heap::mc_count_ = 0;
98int Heap::gc_count_ = 0;
99
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000100int Heap::always_allocate_scope_depth_ = 0;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000101bool Heap::context_disposed_pending_ = false;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000102
kasper.lund7276f142008-07-30 08:49:36 +0000103#ifdef DEBUG
104bool Heap::allocation_allowed_ = true;
105
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000106int Heap::allocation_timeout_ = 0;
107bool Heap::disallow_allocation_failure_ = false;
108#endif // DEBUG
109
110
111int Heap::Capacity() {
112 if (!HasBeenSetup()) return 0;
113
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000114 return new_space_.Capacity() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000115 old_pointer_space_->Capacity() +
116 old_data_space_->Capacity() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000117 code_space_->Capacity() +
118 map_space_->Capacity();
119}
120
121
122int Heap::Available() {
123 if (!HasBeenSetup()) return 0;
124
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000125 return new_space_.Available() +
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000126 old_pointer_space_->Available() +
127 old_data_space_->Available() +
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000128 code_space_->Available() +
129 map_space_->Available();
130}
131
132
133bool Heap::HasBeenSetup() {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000134 return old_pointer_space_ != NULL &&
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000135 old_data_space_ != NULL &&
136 code_space_ != NULL &&
137 map_space_ != NULL &&
138 lo_space_ != NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000139}
140
141
142GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
143 // Is global GC requested?
144 if (space != NEW_SPACE || FLAG_gc_global) {
145 Counters::gc_compactor_caused_by_request.Increment();
146 return MARK_COMPACTOR;
147 }
148
149 // Is enough data promoted to justify a global GC?
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000150 if (OldGenerationPromotionLimitReached()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000151 Counters::gc_compactor_caused_by_promoted_data.Increment();
152 return MARK_COMPACTOR;
153 }
154
155 // Have allocation in OLD and LO failed?
156 if (old_gen_exhausted_) {
157 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
158 return MARK_COMPACTOR;
159 }
160
161 // Is there enough space left in OLD to guarantee that a scavenge can
162 // succeed?
163 //
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000164 // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000165 // for object promotion. It counts only the bytes that the memory
166 // allocator has not yet allocated from the OS and assigned to any space,
167 // and does not count available bytes already in the old space or code
168 // space. Undercounting is safe---we may get an unrequested full GC when
169 // a scavenge would have succeeded.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000170 if (MemoryAllocator::MaxAvailable() <= new_space_.Size()) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000171 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
172 return MARK_COMPACTOR;
173 }
174
175 // Default
176 return SCAVENGER;
177}
178
179
180// TODO(1238405): Combine the infrastructure for --heap-stats and
181// --log-gc to avoid the complicated preprocessor and flag testing.
182#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
183void Heap::ReportStatisticsBeforeGC() {
184 // Heap::ReportHeapStatistics will also log NewSpace statistics when
185 // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set. The
186 // following logic is used to avoid double logging.
187#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000188 if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000189 if (FLAG_heap_stats) {
190 ReportHeapStatistics("Before GC");
191 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000192 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000193 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000194 if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000195#elif defined(DEBUG)
196 if (FLAG_heap_stats) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000197 new_space_.CollectStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000198 ReportHeapStatistics("Before GC");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000199 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000200 }
201#elif defined(ENABLE_LOGGING_AND_PROFILING)
202 if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000203 new_space_.CollectStatistics();
204 new_space_.ReportStatistics();
205 new_space_.ClearHistograms();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000206 }
207#endif
208}
209
210
211// TODO(1238405): Combine the infrastructure for --heap-stats and
212// --log-gc to avoid the complicated preprocessor and flag testing.
213void Heap::ReportStatisticsAfterGC() {
214 // Similar to the before GC, we use some complicated logic to ensure that
215 // NewSpace statistics are logged exactly once when --log-gc is turned on.
216#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
217 if (FLAG_heap_stats) {
218 ReportHeapStatistics("After GC");
219 } else if (FLAG_log_gc) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000220 new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000221 }
222#elif defined(DEBUG)
223 if (FLAG_heap_stats) ReportHeapStatistics("After GC");
224#elif defined(ENABLE_LOGGING_AND_PROFILING)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000225 if (FLAG_log_gc) new_space_.ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000226#endif
227}
228#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
229
230
231void Heap::GarbageCollectionPrologue() {
kasper.lund7276f142008-07-30 08:49:36 +0000232 gc_count_++;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000233#ifdef DEBUG
234 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
235 allow_allocation(false);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000236
237 if (FLAG_verify_heap) {
238 Verify();
239 }
240
241 if (FLAG_gc_verbose) Print();
242
243 if (FLAG_print_rset) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000244 // Not all spaces have remembered set bits that we care about.
245 old_pointer_space_->PrintRSet();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000246 map_space_->PrintRSet();
247 lo_space_->PrintRSet();
248 }
249#endif
250
251#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
252 ReportStatisticsBeforeGC();
253#endif
254}
255
256int Heap::SizeOfObjects() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000257 int total = 0;
258 AllSpaces spaces;
259 while (Space* space = spaces.next()) total += space->Size();
260 return total;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000261}
262
263void Heap::GarbageCollectionEpilogue() {
264#ifdef DEBUG
265 allow_allocation(true);
266 ZapFromSpace();
267
268 if (FLAG_verify_heap) {
269 Verify();
270 }
271
272 if (FLAG_print_global_handles) GlobalHandles::Print();
273 if (FLAG_print_handles) PrintHandles();
274 if (FLAG_gc_verbose) Print();
275 if (FLAG_code_stats) ReportCodeStatistics("After GC");
276#endif
277
278 Counters::alive_after_last_gc.Set(SizeOfObjects());
279
280 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table_);
281 Counters::symbol_table_capacity.Set(symbol_table->Capacity());
282 Counters::number_of_symbols.Set(symbol_table->NumberOfElements());
283#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
284 ReportStatisticsAfterGC();
285#endif
286}
287
288
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000289void Heap::CollectAllGarbage() {
290 // Since we are ignoring the return value, the exact choice of space does
291 // not matter, so long as we do not specify NEW_SPACE, which would not
292 // cause a full GC.
293 CollectGarbage(0, OLD_POINTER_SPACE);
294}
295
296
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000297void Heap::CollectAllGarbageIfContextDisposed() {
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000298 // If the garbage collector interface is exposed through the global
299 // gc() function, we avoid being clever about forcing GCs when
300 // contexts are disposed and leave it to the embedder to make
301 // informed decisions about when to force a collection.
302 if (!FLAG_expose_gc && context_disposed_pending_) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000303 HistogramTimerScope scope(&Counters::gc_context);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000304 CollectAllGarbage();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000305 }
kasperl@chromium.orgd55d36b2009-03-05 08:03:28 +0000306 context_disposed_pending_ = false;
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000307}
308
309
310void Heap::NotifyContextDisposed() {
311 context_disposed_pending_ = true;
312}
313
314
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000315bool Heap::CollectGarbage(int requested_size, AllocationSpace space) {
316 // The VM is in the GC state until exiting this function.
317 VMState state(GC);
318
319#ifdef DEBUG
320 // Reset the allocation timeout to the GC interval, but make sure to
321 // allow at least a few allocations after a collection. The reason
322 // for this is that we have a lot of allocation sequences and we
323 // assume that a garbage collection will allow the subsequent
324 // allocation attempts to go through.
325 allocation_timeout_ = Max(6, FLAG_gc_interval);
326#endif
327
328 { GCTracer tracer;
329 GarbageCollectionPrologue();
kasper.lund7276f142008-07-30 08:49:36 +0000330 // The GC count was incremented in the prologue. Tell the tracer about
331 // it.
332 tracer.set_gc_count(gc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000333
334 GarbageCollector collector = SelectGarbageCollector(space);
kasper.lund7276f142008-07-30 08:49:36 +0000335 // Tell the tracer which collector we've selected.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000336 tracer.set_collector(collector);
337
ager@chromium.orgbb29dc92009-03-24 13:25:23 +0000338 HistogramTimer* rate = (collector == SCAVENGER)
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000339 ? &Counters::gc_scavenger
340 : &Counters::gc_compactor;
341 rate->Start();
kasper.lund7276f142008-07-30 08:49:36 +0000342 PerformGarbageCollection(space, collector, &tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000343 rate->Stop();
344
345 GarbageCollectionEpilogue();
346 }
347
348
349#ifdef ENABLE_LOGGING_AND_PROFILING
350 if (FLAG_log_gc) HeapProfiler::WriteSample();
351#endif
352
353 switch (space) {
354 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000355 return new_space_.Available() >= requested_size;
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000356 case OLD_POINTER_SPACE:
357 return old_pointer_space_->Available() >= requested_size;
358 case OLD_DATA_SPACE:
359 return old_data_space_->Available() >= requested_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000360 case CODE_SPACE:
361 return code_space_->Available() >= requested_size;
362 case MAP_SPACE:
363 return map_space_->Available() >= requested_size;
364 case LO_SPACE:
365 return lo_space_->Available() >= requested_size;
366 }
367 return false;
368}
369
370
kasper.lund7276f142008-07-30 08:49:36 +0000371void Heap::PerformScavenge() {
372 GCTracer tracer;
373 PerformGarbageCollection(NEW_SPACE, SCAVENGER, &tracer);
374}
375
376
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000377#ifdef DEBUG
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000378// Helper class for verifying the symbol table.
379class SymbolTableVerifier : public ObjectVisitor {
380 public:
381 SymbolTableVerifier() { }
382 void VisitPointers(Object** start, Object** end) {
383 // Visit all HeapObject pointers in [start, end).
384 for (Object** p = start; p < end; p++) {
385 if ((*p)->IsHeapObject()) {
386 // Check that the symbol is actually a symbol.
387 ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000388 }
389 }
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000390 }
391};
392#endif // DEBUG
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000393
kasperl@chromium.org416c5b02009-04-14 14:03:52 +0000394
395static void VerifySymbolTable() {
396#ifdef DEBUG
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000397 SymbolTableVerifier verifier;
398 SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table());
399 symbol_table->IterateElements(&verifier);
400#endif // DEBUG
401}
402
403
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000404void Heap::PerformGarbageCollection(AllocationSpace space,
kasper.lund7276f142008-07-30 08:49:36 +0000405 GarbageCollector collector,
406 GCTracer* tracer) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000407 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000408 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
409 ASSERT(!allocation_allowed_);
410 global_gc_prologue_callback_();
411 }
412
413 if (collector == MARK_COMPACTOR) {
kasper.lund7276f142008-07-30 08:49:36 +0000414 MarkCompact(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000415
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +0000416 int old_gen_size = PromotedSpaceSize();
417 old_gen_promotion_limit_ =
418 old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
419 old_gen_allocation_limit_ =
420 old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 3);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000421 old_gen_exhausted_ = false;
422
423 // If we have used the mark-compact collector to collect the new
424 // space, and it has not compacted the new space, we force a
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000425 // separate scavenge collection. This is a hack. It covers the
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000426 // case where (1) a new space collection was requested, (2) the
427 // collector selection policy selected the mark-compact collector,
428 // and (3) the mark-compact collector policy selected not to
429 // compact the new space. In that case, there is no more (usable)
430 // free space in the new space after the collection compared to
431 // before.
432 if (space == NEW_SPACE && !MarkCompactCollector::HasCompacted()) {
433 Scavenge();
434 }
435 } else {
436 Scavenge();
437 }
438 Counters::objs_since_last_young.Set(0);
439
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000440 PostGarbageCollectionProcessing();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000441
kasper.lund7276f142008-07-30 08:49:36 +0000442 if (collector == MARK_COMPACTOR) {
443 // Register the amount of external allocated memory.
444 amount_of_external_allocated_memory_at_last_global_gc_ =
445 amount_of_external_allocated_memory_;
446 }
447
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000448 if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
449 ASSERT(!allocation_allowed_);
450 global_gc_epilogue_callback_();
451 }
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000452 VerifySymbolTable();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000453}
454
455
ager@chromium.orga74f0da2008-12-03 16:05:52 +0000456void Heap::PostGarbageCollectionProcessing() {
457 // Process weak handles post gc.
458 GlobalHandles::PostGarbageCollectionProcessing();
459 // Update flat string readers.
460 FlatStringReader::PostGarbageCollectionProcessing();
461}
462
463
kasper.lund7276f142008-07-30 08:49:36 +0000464void Heap::MarkCompact(GCTracer* tracer) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000465 gc_state_ = MARK_COMPACT;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000466 mc_count_++;
kasper.lund7276f142008-07-30 08:49:36 +0000467 tracer->set_full_gc_count(mc_count_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000468 LOG(ResourceEvent("markcompact", "begin"));
469
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000470 MarkCompactCollector::Prepare(tracer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000471
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000472 bool is_compacting = MarkCompactCollector::IsCompacting();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000473
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000474 MarkCompactPrologue(is_compacting);
475
476 MarkCompactCollector::CollectGarbage();
477
478 MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000479
480 LOG(ResourceEvent("markcompact", "end"));
481
482 gc_state_ = NOT_IN_GC;
483
484 Shrink();
485
486 Counters::objs_since_last_full.Set(0);
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000487 context_disposed_pending_ = false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000488}
489
490
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000491void Heap::MarkCompactPrologue(bool is_compacting) {
492 // At any old GC clear the keyed lookup cache to enable collection of unused
493 // maps.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000494 ClearKeyedLookupCache();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000495
kasperl@chromium.orgb9123622008-09-17 14:05:56 +0000496 CompilationCache::MarkCompactPrologue();
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000497
498 Top::MarkCompactPrologue(is_compacting);
499 ThreadManager::MarkCompactPrologue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000500}
501
502
kasperl@chromium.org061ef742009-02-27 12:16:20 +0000503void Heap::MarkCompactEpilogue(bool is_compacting) {
504 Top::MarkCompactEpilogue(is_compacting);
505 ThreadManager::MarkCompactEpilogue(is_compacting);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000506}
507
508
509Object* Heap::FindCodeObject(Address a) {
510 Object* obj = code_space_->FindObject(a);
511 if (obj->IsFailure()) {
512 obj = lo_space_->FindObject(a);
513 }
kasper.lund7276f142008-07-30 08:49:36 +0000514 ASSERT(!obj->IsFailure());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000515 return obj;
516}
517
518
519// Helper class for copying HeapObjects
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000520class ScavengeVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000521 public:
522
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000523 void VisitPointer(Object** p) { ScavengePointer(p); }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000524
525 void VisitPointers(Object** start, Object** end) {
526 // Copy all HeapObject pointers in [start, end)
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000527 for (Object** p = start; p < end; p++) ScavengePointer(p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000528 }
529
530 private:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000531 void ScavengePointer(Object** p) {
532 Object* object = *p;
533 if (!Heap::InNewSpace(object)) return;
534 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
535 reinterpret_cast<HeapObject*>(object));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000536 }
537};
538
539
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000540// Shared state read by the scavenge collector and set by ScavengeObject.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000541static Address promoted_top = NULL;
542
543
544#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000545// Visitor class to verify pointers in code or data space do not point into
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000546// new space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000547class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000548 public:
549 void VisitPointers(Object** start, Object**end) {
550 for (Object** current = start; current < end; current++) {
551 if ((*current)->IsHeapObject()) {
552 ASSERT(!Heap::InNewSpace(HeapObject::cast(*current)));
553 }
554 }
555 }
556};
557#endif
558
559void Heap::Scavenge() {
560#ifdef DEBUG
561 if (FLAG_enable_slow_asserts) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000562 VerifyNonPointerSpacePointersVisitor v;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000563 HeapObjectIterator it(code_space_);
564 while (it.has_next()) {
565 HeapObject* object = it.next();
566 if (object->IsCode()) {
567 Code::cast(object)->ConvertICTargetsFromAddressToObject();
568 }
569 object->Iterate(&v);
570 if (object->IsCode()) {
571 Code::cast(object)->ConvertICTargetsFromObjectToAddress();
572 }
573 }
574 }
575#endif
576
577 gc_state_ = SCAVENGE;
578
579 // Implements Cheney's copying algorithm
580 LOG(ResourceEvent("scavenge", "begin"));
581
582 scavenge_count_++;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000583 if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000584 scavenge_count_ > new_space_growth_limit_) {
585 // Double the size of the new space, and double the limit. The next
586 // doubling attempt will occur after the current new_space_growth_limit_
587 // more collections.
588 // TODO(1240712): NewSpace::Double has a return value which is
589 // ignored here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000590 new_space_.Double();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000591 new_space_growth_limit_ *= 2;
592 }
593
594 // Flip the semispaces. After flipping, to space is empty, from space has
595 // live objects.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000596 new_space_.Flip();
597 new_space_.ResetAllocationInfo();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000598
599 // We need to sweep newly copied objects which can be in either the to space
600 // or the old space. For to space objects, we use a mark. Newly copied
601 // objects lie between the mark and the allocation top. For objects
602 // promoted to old space, we write their addresses downward from the top of
603 // the new space. Sweeping newly promoted objects requires an allocation
604 // pointer and a mark. Note that the allocation pointer 'top' actually
605 // moves downward from the high address in the to space.
606 //
607 // There is guaranteed to be enough room at the top of the to space for the
608 // addresses of promoted objects: every object promoted frees up its size in
609 // bytes from the top of the new space, and objects are at least one pointer
610 // in size. Using the new space to record promoted addresses makes the
611 // scavenge collector agnostic to the allocation strategy (eg, linear or
612 // free-list) used in old space.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000613 Address new_mark = new_space_.ToSpaceLow();
614 Address promoted_mark = new_space_.ToSpaceHigh();
615 promoted_top = new_space_.ToSpaceHigh();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000616
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000617 ScavengeVisitor scavenge_visitor;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000618 // Copy roots.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000619 IterateRoots(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000620
621 // Copy objects reachable from the old generation. By definition, there
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000622 // are no intergenerational pointers in code or data spaces.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000623 IterateRSet(old_pointer_space_, &ScavengePointer);
624 IterateRSet(map_space_, &ScavengePointer);
625 lo_space_->IterateRSet(&ScavengePointer);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000626
627 bool has_processed_weak_pointers = false;
628
629 while (true) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000630 ASSERT(new_mark <= new_space_.top());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000631 ASSERT(promoted_mark >= promoted_top);
632
633 // Copy objects reachable from newly copied objects.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000634 while (new_mark < new_space_.top() || promoted_mark > promoted_top) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000635 // Sweep newly copied objects in the to space. The allocation pointer
636 // can change during sweeping.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000637 Address previous_top = new_space_.top();
638 SemiSpaceIterator new_it(new_space(), new_mark);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000639 while (new_it.has_next()) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000640 new_it.next()->Iterate(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000641 }
642 new_mark = previous_top;
643
644 // Sweep newly copied objects in the old space. The promotion 'top'
645 // pointer could change during sweeping.
646 previous_top = promoted_top;
647 for (Address current = promoted_mark - kPointerSize;
648 current >= previous_top;
649 current -= kPointerSize) {
650 HeapObject* object = HeapObject::cast(Memory::Object_at(current));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000651 object->Iterate(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000652 UpdateRSet(object);
653 }
654 promoted_mark = previous_top;
655 }
656
657 if (has_processed_weak_pointers) break; // We are done.
658 // Copy objects reachable from weak pointers.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000659 GlobalHandles::IterateWeakRoots(&scavenge_visitor);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000660 has_processed_weak_pointers = true;
661 }
662
663 // Set age mark.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000664 new_space_.set_age_mark(new_mark);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000665
666 LOG(ResourceEvent("scavenge", "end"));
667
668 gc_state_ = NOT_IN_GC;
669}
670
671
672void Heap::ClearRSetRange(Address start, int size_in_bytes) {
673 uint32_t start_bit;
674 Address start_word_address =
675 Page::ComputeRSetBitPosition(start, 0, &start_bit);
676 uint32_t end_bit;
677 Address end_word_address =
678 Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize,
679 0,
680 &end_bit);
681
682 // We want to clear the bits in the starting word starting with the
683 // first bit, and in the ending word up to and including the last
684 // bit. Build a pair of bitmasks to do that.
685 uint32_t start_bitmask = start_bit - 1;
686 uint32_t end_bitmask = ~((end_bit << 1) - 1);
687
688 // If the start address and end address are the same, we mask that
689 // word once, otherwise mask the starting and ending word
690 // separately and all the ones in between.
691 if (start_word_address == end_word_address) {
692 Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask);
693 } else {
694 Memory::uint32_at(start_word_address) &= start_bitmask;
695 Memory::uint32_at(end_word_address) &= end_bitmask;
696 start_word_address += kIntSize;
697 memset(start_word_address, 0, end_word_address - start_word_address);
698 }
699}
700
701
702class UpdateRSetVisitor: public ObjectVisitor {
703 public:
704
705 void VisitPointer(Object** p) {
706 UpdateRSet(p);
707 }
708
709 void VisitPointers(Object** start, Object** end) {
710 // Update a store into slots [start, end), used (a) to update remembered
711 // set when promoting a young object to old space or (b) to rebuild
712 // remembered sets after a mark-compact collection.
713 for (Object** p = start; p < end; p++) UpdateRSet(p);
714 }
715 private:
716
717 void UpdateRSet(Object** p) {
718 // The remembered set should not be set. It should be clear for objects
719 // newly copied to old space, and it is cleared before rebuilding in the
720 // mark-compact collector.
721 ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0));
722 if (Heap::InNewSpace(*p)) {
723 Page::SetRSet(reinterpret_cast<Address>(p), 0);
724 }
725 }
726};
727
728
729int Heap::UpdateRSet(HeapObject* obj) {
730 ASSERT(!InNewSpace(obj));
731 // Special handling of fixed arrays to iterate the body based on the start
732 // address and offset. Just iterating the pointers as in UpdateRSetVisitor
733 // will not work because Page::SetRSet needs to have the start of the
734 // object.
735 if (obj->IsFixedArray()) {
736 FixedArray* array = FixedArray::cast(obj);
737 int length = array->length();
738 for (int i = 0; i < length; i++) {
739 int offset = FixedArray::kHeaderSize + i * kPointerSize;
740 ASSERT(!Page::IsRSetSet(obj->address(), offset));
741 if (Heap::InNewSpace(array->get(i))) {
742 Page::SetRSet(obj->address(), offset);
743 }
744 }
745 } else if (!obj->IsCode()) {
746 // Skip code object, we know it does not contain inter-generational
747 // pointers.
748 UpdateRSetVisitor v;
749 obj->Iterate(&v);
750 }
751 return obj->Size();
752}
753
754
755void Heap::RebuildRSets() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000756 // By definition, we do not care about remembered set bits in code or data
757 // spaces.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000758 map_space_->ClearRSet();
759 RebuildRSets(map_space_);
760
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000761 old_pointer_space_->ClearRSet();
762 RebuildRSets(old_pointer_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000763
764 Heap::lo_space_->ClearRSet();
765 RebuildRSets(lo_space_);
766}
767
768
769void Heap::RebuildRSets(PagedSpace* space) {
770 HeapObjectIterator it(space);
771 while (it.has_next()) Heap::UpdateRSet(it.next());
772}
773
774
775void Heap::RebuildRSets(LargeObjectSpace* space) {
776 LargeObjectIterator it(space);
777 while (it.has_next()) Heap::UpdateRSet(it.next());
778}
779
780
781#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
782void Heap::RecordCopiedObject(HeapObject* obj) {
783 bool should_record = false;
784#ifdef DEBUG
785 should_record = FLAG_heap_stats;
786#endif
787#ifdef ENABLE_LOGGING_AND_PROFILING
788 should_record = should_record || FLAG_log_gc;
789#endif
790 if (should_record) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000791 if (new_space_.Contains(obj)) {
792 new_space_.RecordAllocation(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000793 } else {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000794 new_space_.RecordPromotion(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000795 }
796 }
797}
798#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
799
800
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000801
802HeapObject* Heap::MigrateObject(HeapObject* source,
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000803 HeapObject* target,
804 int size) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000805 // Copy the content of source to target.
806 CopyBlock(reinterpret_cast<Object**>(target->address()),
807 reinterpret_cast<Object**>(source->address()),
808 size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000809
kasper.lund7276f142008-07-30 08:49:36 +0000810 // Set the forwarding address.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000811 source->set_map_word(MapWord::FromForwardingAddress(target));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000812
813 // Update NewSpace stats if necessary.
814#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
815 RecordCopiedObject(target);
816#endif
817
818 return target;
819}
820
821
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000822// Inlined function.
823void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
824 ASSERT(InFromSpace(object));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000825
kasper.lund7276f142008-07-30 08:49:36 +0000826 // We use the first word (where the map pointer usually is) of a heap
827 // object to record the forwarding pointer. A forwarding pointer can
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000828 // point to an old space, the code space, or the to space of the new
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000829 // generation.
kasper.lund7276f142008-07-30 08:49:36 +0000830 MapWord first_word = object->map_word();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000831
kasper.lund7276f142008-07-30 08:49:36 +0000832 // If the first word is a forwarding address, the object has already been
833 // copied.
834 if (first_word.IsForwardingAddress()) {
835 *p = first_word.ToForwardingAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000836 return;
837 }
838
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000839 // Call the slow part of scavenge object.
840 return ScavengeObjectSlow(p, object);
841}
842
ager@chromium.org870a0b62008-11-04 11:43:05 +0000843
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000844static inline bool IsShortcutCandidate(HeapObject* object, Map* map) {
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000845 STATIC_ASSERT(kNotStringTag != 0 && kSymbolTag != 0);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000846 ASSERT(object->map() == map);
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +0000847 InstanceType type = map->instance_type();
848 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return false;
849 ASSERT(object->IsString() && !object->IsSymbol());
850 return ConsString::cast(object)->unchecked_second() == Heap::empty_string();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000851}
852
853
854void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
855 ASSERT(InFromSpace(object));
856 MapWord first_word = object->map_word();
857 ASSERT(!first_word.IsForwardingAddress());
858
859 // Optimization: Bypass flattened ConsString objects.
860 if (IsShortcutCandidate(object, first_word.ToMap())) {
ager@chromium.org870a0b62008-11-04 11:43:05 +0000861 object = HeapObject::cast(ConsString::cast(object)->unchecked_first());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000862 *p = object;
863 // After patching *p we have to repeat the checks that object is in the
864 // active semispace of the young generation and not already copied.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000865 if (!InNewSpace(object)) return;
kasper.lund7276f142008-07-30 08:49:36 +0000866 first_word = object->map_word();
867 if (first_word.IsForwardingAddress()) {
868 *p = first_word.ToForwardingAddress();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000869 return;
870 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000871 }
872
kasper.lund7276f142008-07-30 08:49:36 +0000873 int object_size = object->SizeFromMap(first_word.ToMap());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000874 // If the object should be promoted, we try to copy it to old space.
875 if (ShouldBePromoted(object->address(), object_size)) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000876 OldSpace* target_space = Heap::TargetSpace(object);
877 ASSERT(target_space == Heap::old_pointer_space_ ||
878 target_space == Heap::old_data_space_);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000879 Object* result = target_space->AllocateRaw(object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000880 if (!result->IsFailure()) {
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000881 *p = MigrateObject(object, HeapObject::cast(result), object_size);
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000882 if (target_space == Heap::old_pointer_space_) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000883 // Record the object's address at the top of the to space, to allow
884 // it to be swept by the scavenger.
885 promoted_top -= kPointerSize;
886 Memory::Object_at(promoted_top) = *p;
887 } else {
888#ifdef DEBUG
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000889 // Objects promoted to the data space should not have pointers to
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000890 // new space.
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000891 VerifyNonPointerSpacePointersVisitor v;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000892 (*p)->Iterate(&v);
893#endif
894 }
895 return;
896 }
897 }
898
899 // The object should remain in new space or the old space allocation failed.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000900 Object* result = new_space_.AllocateRaw(object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000901 // Failed allocation at this point is utterly unexpected.
902 ASSERT(!result->IsFailure());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +0000903 *p = MigrateObject(object, HeapObject::cast(result), object_size);
904}
905
906
907void Heap::ScavengePointer(HeapObject** p) {
908 ScavengeObject(p, *p);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000909}
910
911
912Object* Heap::AllocatePartialMap(InstanceType instance_type,
913 int instance_size) {
914 Object* result = AllocateRawMap(Map::kSize);
915 if (result->IsFailure()) return result;
916
917 // Map::cast cannot be used due to uninitialized map field.
918 reinterpret_cast<Map*>(result)->set_map(meta_map());
919 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
920 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +0000921 reinterpret_cast<Map*>(result)->set_inobject_properties(0);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000922 reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
923 return result;
924}
925
926
927Object* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
928 Object* result = AllocateRawMap(Map::kSize);
929 if (result->IsFailure()) return result;
930
931 Map* map = reinterpret_cast<Map*>(result);
932 map->set_map(meta_map());
933 map->set_instance_type(instance_type);
934 map->set_prototype(null_value());
935 map->set_constructor(null_value());
936 map->set_instance_size(instance_size);
ager@chromium.org7c537e22008-10-16 08:43:32 +0000937 map->set_inobject_properties(0);
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000938 map->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000939 map->set_code_cache(empty_fixed_array());
940 map->set_unused_property_fields(0);
941 map->set_bit_field(0);
942 return map;
943}
944
945
946bool Heap::CreateInitialMaps() {
947 Object* obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
948 if (obj->IsFailure()) return false;
949
950 // Map::cast cannot be used due to uninitialized map field.
951 meta_map_ = reinterpret_cast<Map*>(obj);
952 meta_map()->set_map(meta_map());
953
954 obj = AllocatePartialMap(FIXED_ARRAY_TYPE, Array::kHeaderSize);
955 if (obj->IsFailure()) return false;
956 fixed_array_map_ = Map::cast(obj);
957
958 obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
959 if (obj->IsFailure()) return false;
960 oddball_map_ = Map::cast(obj);
961
962 // Allocate the empty array
963 obj = AllocateEmptyFixedArray();
964 if (obj->IsFailure()) return false;
965 empty_fixed_array_ = FixedArray::cast(obj);
966
ager@chromium.org9258b6b2008-09-11 09:11:10 +0000967 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000968 if (obj->IsFailure()) return false;
969 null_value_ = obj;
970
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000971 // Allocate the empty descriptor array. AllocateMap can now be used.
972 obj = AllocateEmptyFixedArray();
973 if (obj->IsFailure()) return false;
974 // There is a check against empty_descriptor_array() in cast().
975 empty_descriptor_array_ = reinterpret_cast<DescriptorArray*>(obj);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000976
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000977 // Fix the instance_descriptors for the existing maps.
978 meta_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000979 meta_map()->set_code_cache(empty_fixed_array());
980
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000981 fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000982 fixed_array_map()->set_code_cache(empty_fixed_array());
983
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +0000984 oddball_map()->set_instance_descriptors(empty_descriptor_array());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +0000985 oddball_map()->set_code_cache(empty_fixed_array());
986
987 // Fix prototype object for existing maps.
988 meta_map()->set_prototype(null_value());
989 meta_map()->set_constructor(null_value());
990
991 fixed_array_map()->set_prototype(null_value());
992 fixed_array_map()->set_constructor(null_value());
993 oddball_map()->set_prototype(null_value());
994 oddball_map()->set_constructor(null_value());
995
996 obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
997 if (obj->IsFailure()) return false;
998 heap_number_map_ = Map::cast(obj);
999
1000 obj = AllocateMap(PROXY_TYPE, Proxy::kSize);
1001 if (obj->IsFailure()) return false;
1002 proxy_map_ = Map::cast(obj);
1003
1004#define ALLOCATE_STRING_MAP(type, size, name) \
1005 obj = AllocateMap(type, size); \
1006 if (obj->IsFailure()) return false; \
1007 name##_map_ = Map::cast(obj);
1008 STRING_TYPE_LIST(ALLOCATE_STRING_MAP);
1009#undef ALLOCATE_STRING_MAP
1010
ager@chromium.org7c537e22008-10-16 08:43:32 +00001011 obj = AllocateMap(SHORT_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001012 if (obj->IsFailure()) return false;
1013 undetectable_short_string_map_ = Map::cast(obj);
1014 undetectable_short_string_map_->set_is_undetectable();
1015
ager@chromium.org7c537e22008-10-16 08:43:32 +00001016 obj = AllocateMap(MEDIUM_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001017 if (obj->IsFailure()) return false;
1018 undetectable_medium_string_map_ = Map::cast(obj);
1019 undetectable_medium_string_map_->set_is_undetectable();
1020
ager@chromium.org7c537e22008-10-16 08:43:32 +00001021 obj = AllocateMap(LONG_STRING_TYPE, SeqTwoByteString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001022 if (obj->IsFailure()) return false;
1023 undetectable_long_string_map_ = Map::cast(obj);
1024 undetectable_long_string_map_->set_is_undetectable();
1025
ager@chromium.org7c537e22008-10-16 08:43:32 +00001026 obj = AllocateMap(SHORT_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001027 if (obj->IsFailure()) return false;
1028 undetectable_short_ascii_string_map_ = Map::cast(obj);
1029 undetectable_short_ascii_string_map_->set_is_undetectable();
1030
ager@chromium.org7c537e22008-10-16 08:43:32 +00001031 obj = AllocateMap(MEDIUM_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001032 if (obj->IsFailure()) return false;
1033 undetectable_medium_ascii_string_map_ = Map::cast(obj);
1034 undetectable_medium_ascii_string_map_->set_is_undetectable();
1035
ager@chromium.org7c537e22008-10-16 08:43:32 +00001036 obj = AllocateMap(LONG_ASCII_STRING_TYPE, SeqAsciiString::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001037 if (obj->IsFailure()) return false;
1038 undetectable_long_ascii_string_map_ = Map::cast(obj);
1039 undetectable_long_ascii_string_map_->set_is_undetectable();
1040
1041 obj = AllocateMap(BYTE_ARRAY_TYPE, Array::kHeaderSize);
1042 if (obj->IsFailure()) return false;
1043 byte_array_map_ = Map::cast(obj);
1044
1045 obj = AllocateMap(CODE_TYPE, Code::kHeaderSize);
1046 if (obj->IsFailure()) return false;
1047 code_map_ = Map::cast(obj);
1048
1049 obj = AllocateMap(FILLER_TYPE, kPointerSize);
1050 if (obj->IsFailure()) return false;
1051 one_word_filler_map_ = Map::cast(obj);
1052
1053 obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
1054 if (obj->IsFailure()) return false;
1055 two_word_filler_map_ = Map::cast(obj);
1056
1057#define ALLOCATE_STRUCT_MAP(NAME, Name, name) \
1058 obj = AllocateMap(NAME##_TYPE, Name::kSize); \
1059 if (obj->IsFailure()) return false; \
1060 name##_map_ = Map::cast(obj);
1061 STRUCT_LIST(ALLOCATE_STRUCT_MAP)
1062#undef ALLOCATE_STRUCT_MAP
1063
ager@chromium.org236ad962008-09-25 09:45:57 +00001064 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001065 if (obj->IsFailure()) return false;
1066 hash_table_map_ = Map::cast(obj);
1067
ager@chromium.org236ad962008-09-25 09:45:57 +00001068 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001069 if (obj->IsFailure()) return false;
1070 context_map_ = Map::cast(obj);
1071
ager@chromium.org236ad962008-09-25 09:45:57 +00001072 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001073 if (obj->IsFailure()) return false;
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00001074 catch_context_map_ = Map::cast(obj);
1075
1076 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1077 if (obj->IsFailure()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001078 global_context_map_ = Map::cast(obj);
1079
1080 obj = AllocateMap(JS_FUNCTION_TYPE, JSFunction::kSize);
1081 if (obj->IsFailure()) return false;
1082 boilerplate_function_map_ = Map::cast(obj);
1083
1084 obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kSize);
1085 if (obj->IsFailure()) return false;
1086 shared_function_info_map_ = Map::cast(obj);
1087
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001088 ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001089 return true;
1090}
1091
1092
1093Object* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
1094 // Statically ensure that it is safe to allocate heap numbers in paged
1095 // spaces.
1096 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001097 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001098 Object* result = AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001099 if (result->IsFailure()) return result;
1100
1101 HeapObject::cast(result)->set_map(heap_number_map());
1102 HeapNumber::cast(result)->set_value(value);
1103 return result;
1104}
1105
1106
1107Object* Heap::AllocateHeapNumber(double value) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001108 // Use general version, if we're forced to always allocate.
1109 if (always_allocate()) return AllocateHeapNumber(value, NOT_TENURED);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001110 // This version of AllocateHeapNumber is optimized for
1111 // allocation in new space.
1112 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1113 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001114 Object* result = new_space_.AllocateRaw(HeapNumber::kSize);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001115 if (result->IsFailure()) return result;
1116 HeapObject::cast(result)->set_map(heap_number_map());
1117 HeapNumber::cast(result)->set_value(value);
1118 return result;
1119}
1120
1121
1122Object* Heap::CreateOddball(Map* map,
1123 const char* to_string,
1124 Object* to_number) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001125 Object* result = Allocate(map, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001126 if (result->IsFailure()) return result;
1127 return Oddball::cast(result)->Initialize(to_string, to_number);
1128}
1129
1130
1131bool Heap::CreateApiObjects() {
1132 Object* obj;
1133
1134 obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
1135 if (obj->IsFailure()) return false;
1136 neander_map_ = Map::cast(obj);
1137
1138 obj = Heap::AllocateJSObjectFromMap(neander_map_);
1139 if (obj->IsFailure()) return false;
1140 Object* elements = AllocateFixedArray(2);
1141 if (elements->IsFailure()) return false;
1142 FixedArray::cast(elements)->set(0, Smi::FromInt(0));
1143 JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
1144 message_listeners_ = JSObject::cast(obj);
1145
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001146 return true;
1147}
1148
1149void Heap::CreateFixedStubs() {
1150 // Here we create roots for fixed stubs. They are needed at GC
1151 // for cooking and uncooking (check out frames.cc).
1152 // The eliminates the need for doing dictionary lookup in the
1153 // stub cache for these stubs.
1154 HandleScope scope;
1155 {
1156 CEntryStub stub;
1157 c_entry_code_ = *stub.GetCode();
1158 }
1159 {
1160 CEntryDebugBreakStub stub;
1161 c_entry_debug_break_code_ = *stub.GetCode();
1162 }
1163 {
1164 JSEntryStub stub;
1165 js_entry_code_ = *stub.GetCode();
1166 }
1167 {
1168 JSConstructEntryStub stub;
1169 js_construct_entry_code_ = *stub.GetCode();
1170 }
1171}
1172
1173
1174bool Heap::CreateInitialObjects() {
1175 Object* obj;
1176
1177 // The -0 value must be set before NumberFromDouble works.
1178 obj = AllocateHeapNumber(-0.0, TENURED);
1179 if (obj->IsFailure()) return false;
1180 minus_zero_value_ = obj;
1181 ASSERT(signbit(minus_zero_value_->Number()) != 0);
1182
1183 obj = AllocateHeapNumber(OS::nan_value(), TENURED);
1184 if (obj->IsFailure()) return false;
1185 nan_value_ = obj;
1186
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001187 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001188 if (obj->IsFailure()) return false;
1189 undefined_value_ = obj;
1190 ASSERT(!InNewSpace(undefined_value()));
1191
1192 // Allocate initial symbol table.
1193 obj = SymbolTable::Allocate(kInitialSymbolTableSize);
1194 if (obj->IsFailure()) return false;
1195 symbol_table_ = obj;
1196
1197 // Assign the print strings for oddballs after creating symboltable.
1198 Object* symbol = LookupAsciiSymbol("undefined");
1199 if (symbol->IsFailure()) return false;
1200 Oddball::cast(undefined_value_)->set_to_string(String::cast(symbol));
1201 Oddball::cast(undefined_value_)->set_to_number(nan_value_);
1202
1203 // Assign the print strings for oddballs after creating symboltable.
1204 symbol = LookupAsciiSymbol("null");
1205 if (symbol->IsFailure()) return false;
1206 Oddball::cast(null_value_)->set_to_string(String::cast(symbol));
1207 Oddball::cast(null_value_)->set_to_number(Smi::FromInt(0));
1208
1209 // Allocate the null_value
1210 obj = Oddball::cast(null_value())->Initialize("null", Smi::FromInt(0));
1211 if (obj->IsFailure()) return false;
1212
1213 obj = CreateOddball(oddball_map(), "true", Smi::FromInt(1));
1214 if (obj->IsFailure()) return false;
1215 true_value_ = obj;
1216
1217 obj = CreateOddball(oddball_map(), "false", Smi::FromInt(0));
1218 if (obj->IsFailure()) return false;
1219 false_value_ = obj;
1220
1221 obj = CreateOddball(oddball_map(), "hole", Smi::FromInt(-1));
1222 if (obj->IsFailure()) return false;
1223 the_hole_value_ = obj;
1224
1225 // Allocate the empty string.
1226 obj = AllocateRawAsciiString(0, TENURED);
1227 if (obj->IsFailure()) return false;
1228 empty_string_ = String::cast(obj);
1229
1230#define SYMBOL_INITIALIZE(name, string) \
1231 obj = LookupAsciiSymbol(string); \
1232 if (obj->IsFailure()) return false; \
1233 (name##_) = String::cast(obj);
1234 SYMBOL_LIST(SYMBOL_INITIALIZE)
1235#undef SYMBOL_INITIALIZE
1236
ager@chromium.org3b45ab52009-03-19 22:21:34 +00001237 // Allocate the hidden symbol which is used to identify the hidden properties
1238 // in JSObjects. The hash code has a special value so that it will not match
1239 // the empty string when searching for the property. It cannot be part of the
1240 // SYMBOL_LIST because it needs to be allocated manually with the special
1241 // hash code in place. The hash code for the hidden_symbol is zero to ensure
1242 // that it will always be at the first entry in property descriptors.
1243 obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask);
1244 if (obj->IsFailure()) return false;
1245 hidden_symbol_ = String::cast(obj);
1246
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001247 // Allocate the proxy for __proto__.
1248 obj = AllocateProxy((Address) &Accessors::ObjectPrototype);
1249 if (obj->IsFailure()) return false;
1250 prototype_accessors_ = Proxy::cast(obj);
1251
1252 // Allocate the code_stubs dictionary.
1253 obj = Dictionary::Allocate(4);
1254 if (obj->IsFailure()) return false;
1255 code_stubs_ = Dictionary::cast(obj);
1256
1257 // Allocate the non_monomorphic_cache used in stub-cache.cc
1258 obj = Dictionary::Allocate(4);
1259 if (obj->IsFailure()) return false;
1260 non_monomorphic_cache_ = Dictionary::cast(obj);
1261
1262 CreateFixedStubs();
1263
1264 // Allocate the number->string conversion cache
1265 obj = AllocateFixedArray(kNumberStringCacheSize * 2);
1266 if (obj->IsFailure()) return false;
1267 number_string_cache_ = FixedArray::cast(obj);
1268
1269 // Allocate cache for single character strings.
1270 obj = AllocateFixedArray(String::kMaxAsciiCharCode+1);
1271 if (obj->IsFailure()) return false;
1272 single_character_string_cache_ = FixedArray::cast(obj);
1273
1274 // Allocate cache for external strings pointing to native source code.
1275 obj = AllocateFixedArray(Natives::GetBuiltinsCount());
1276 if (obj->IsFailure()) return false;
1277 natives_source_cache_ = FixedArray::cast(obj);
1278
kasperl@chromium.org7be3c992009-03-12 07:19:55 +00001279 // Handling of script id generation is in Factory::NewScript.
1280 last_script_id_ = undefined_value();
1281
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001282 // Initialize keyed lookup cache.
1283 ClearKeyedLookupCache();
1284
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00001285 // Initialize compilation cache.
1286 CompilationCache::Clear();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001287
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001288 return true;
1289}
1290
1291
1292static inline int double_get_hash(double d) {
1293 DoubleRepresentation rep(d);
1294 return ((static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) &
1295 (Heap::kNumberStringCacheSize - 1));
1296}
1297
1298
1299static inline int smi_get_hash(Smi* smi) {
1300 return (smi->value() & (Heap::kNumberStringCacheSize - 1));
1301}
1302
1303
1304
1305Object* Heap::GetNumberStringCache(Object* number) {
1306 int hash;
1307 if (number->IsSmi()) {
1308 hash = smi_get_hash(Smi::cast(number));
1309 } else {
1310 hash = double_get_hash(number->Number());
1311 }
1312 Object* key = number_string_cache_->get(hash * 2);
1313 if (key == number) {
1314 return String::cast(number_string_cache_->get(hash * 2 + 1));
1315 } else if (key->IsHeapNumber() &&
1316 number->IsHeapNumber() &&
1317 key->Number() == number->Number()) {
1318 return String::cast(number_string_cache_->get(hash * 2 + 1));
1319 }
1320 return undefined_value();
1321}
1322
1323
1324void Heap::SetNumberStringCache(Object* number, String* string) {
1325 int hash;
1326 if (number->IsSmi()) {
1327 hash = smi_get_hash(Smi::cast(number));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001328 number_string_cache_->set(hash * 2, number, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001329 } else {
1330 hash = double_get_hash(number->Number());
1331 number_string_cache_->set(hash * 2, number);
1332 }
1333 number_string_cache_->set(hash * 2 + 1, string);
1334}
1335
1336
1337Object* Heap::SmiOrNumberFromDouble(double value,
1338 bool new_object,
1339 PretenureFlag pretenure) {
1340 // We need to distinguish the minus zero value and this cannot be
1341 // done after conversion to int. Doing this by comparing bit
1342 // patterns is faster than using fpclassify() et al.
1343 static const DoubleRepresentation plus_zero(0.0);
1344 static const DoubleRepresentation minus_zero(-0.0);
1345 static const DoubleRepresentation nan(OS::nan_value());
1346 ASSERT(minus_zero_value_ != NULL);
1347 ASSERT(sizeof(plus_zero.value) == sizeof(plus_zero.bits));
1348
1349 DoubleRepresentation rep(value);
1350 if (rep.bits == plus_zero.bits) return Smi::FromInt(0); // not uncommon
1351 if (rep.bits == minus_zero.bits) {
1352 return new_object ? AllocateHeapNumber(-0.0, pretenure)
1353 : minus_zero_value_;
1354 }
1355 if (rep.bits == nan.bits) {
1356 return new_object
1357 ? AllocateHeapNumber(OS::nan_value(), pretenure)
1358 : nan_value_;
1359 }
1360
1361 // Try to represent the value as a tagged small integer.
1362 int int_value = FastD2I(value);
1363 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
1364 return Smi::FromInt(int_value);
1365 }
1366
1367 // Materialize the value in the heap.
1368 return AllocateHeapNumber(value, pretenure);
1369}
1370
1371
1372Object* Heap::NewNumberFromDouble(double value, PretenureFlag pretenure) {
1373 return SmiOrNumberFromDouble(value,
1374 true /* number object must be new */,
1375 pretenure);
1376}
1377
1378
1379Object* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
1380 return SmiOrNumberFromDouble(value,
1381 false /* use preallocated NaN, -0.0 */,
1382 pretenure);
1383}
1384
1385
1386Object* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) {
1387 // Statically ensure that it is safe to allocate proxies in paged spaces.
1388 STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001389 AllocationSpace space =
1390 (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001391 Object* result = Allocate(proxy_map(), space);
1392 if (result->IsFailure()) return result;
1393
1394 Proxy::cast(result)->set_proxy(proxy);
1395 return result;
1396}
1397
1398
1399Object* Heap::AllocateSharedFunctionInfo(Object* name) {
1400 Object* result = Allocate(shared_function_info_map(), NEW_SPACE);
1401 if (result->IsFailure()) return result;
1402
1403 SharedFunctionInfo* share = SharedFunctionInfo::cast(result);
1404 share->set_name(name);
1405 Code* illegal = Builtins::builtin(Builtins::Illegal);
1406 share->set_code(illegal);
1407 share->set_expected_nof_properties(0);
1408 share->set_length(0);
1409 share->set_formal_parameter_count(0);
1410 share->set_instance_class_name(Object_symbol());
1411 share->set_function_data(undefined_value());
1412 share->set_lazy_load_data(undefined_value());
1413 share->set_script(undefined_value());
1414 share->set_start_position_and_type(0);
1415 share->set_debug_info(undefined_value());
kasperl@chromium.orgd1e3e722009-04-14 13:38:25 +00001416 share->set_inferred_name(empty_string());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001417 return result;
1418}
1419
1420
ager@chromium.org870a0b62008-11-04 11:43:05 +00001421Object* Heap::AllocateConsString(String* first,
ager@chromium.orgc3e50d82008-11-05 11:53:10 +00001422 String* second) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001423 int first_length = first->length();
1424 int second_length = second->length();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001425 int length = first_length + second_length;
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001426 bool is_ascii = StringShape(first).IsAsciiRepresentation()
1427 && StringShape(second).IsAsciiRepresentation();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001428
1429 // If the resulting string is small make a flat string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001430 if (length < String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001431 ASSERT(first->IsFlat());
1432 ASSERT(second->IsFlat());
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001433 if (is_ascii) {
1434 Object* result = AllocateRawAsciiString(length);
1435 if (result->IsFailure()) return result;
1436 // Copy the characters into the new object.
1437 char* dest = SeqAsciiString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001438 String::WriteToFlat(first, dest, 0, first_length);
1439 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001440 return result;
1441 } else {
1442 Object* result = AllocateRawTwoByteString(length);
1443 if (result->IsFailure()) return result;
1444 // Copy the characters into the new object.
1445 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001446 String::WriteToFlat(first, dest, 0, first_length);
1447 String::WriteToFlat(second, dest + first_length, 0, second_length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001448 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001449 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001450 }
1451
1452 Map* map;
1453 if (length <= String::kMaxShortStringSize) {
1454 map = is_ascii ? short_cons_ascii_string_map()
1455 : short_cons_string_map();
1456 } else if (length <= String::kMaxMediumStringSize) {
1457 map = is_ascii ? medium_cons_ascii_string_map()
1458 : medium_cons_string_map();
1459 } else {
1460 map = is_ascii ? long_cons_ascii_string_map()
1461 : long_cons_string_map();
1462 }
1463
1464 Object* result = Allocate(map, NEW_SPACE);
1465 if (result->IsFailure()) return result;
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001466 ASSERT(InNewSpace(result));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001467 ConsString* cons_string = ConsString::cast(result);
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001468 cons_string->set_first(first, SKIP_WRITE_BARRIER);
1469 cons_string->set_second(second, SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001470 cons_string->set_length(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001471 return result;
1472}
1473
1474
ager@chromium.org870a0b62008-11-04 11:43:05 +00001475Object* Heap::AllocateSlicedString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001476 int start,
1477 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001478 int length = end - start;
1479
1480 // If the resulting string is small make a sub string.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001481 if (end - start <= String::kMinNonFlatLength) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001482 return Heap::AllocateSubString(buffer, start, end);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001483 }
1484
1485 Map* map;
1486 if (length <= String::kMaxShortStringSize) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001487 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001488 short_sliced_ascii_string_map() :
1489 short_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001490 } else if (length <= String::kMaxMediumStringSize) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001491 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001492 medium_sliced_ascii_string_map() :
1493 medium_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001494 } else {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001495 map = StringShape(buffer).IsAsciiRepresentation() ?
ager@chromium.org870a0b62008-11-04 11:43:05 +00001496 long_sliced_ascii_string_map() :
1497 long_sliced_string_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001498 }
1499
1500 Object* result = Allocate(map, NEW_SPACE);
1501 if (result->IsFailure()) return result;
1502
1503 SlicedString* sliced_string = SlicedString::cast(result);
1504 sliced_string->set_buffer(buffer);
1505 sliced_string->set_start(start);
1506 sliced_string->set_length(length);
1507
1508 return result;
1509}
1510
1511
ager@chromium.org870a0b62008-11-04 11:43:05 +00001512Object* Heap::AllocateSubString(String* buffer,
ager@chromium.org870a0b62008-11-04 11:43:05 +00001513 int start,
1514 int end) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001515 int length = end - start;
1516
ager@chromium.org7c537e22008-10-16 08:43:32 +00001517 if (length == 1) {
ager@chromium.org870a0b62008-11-04 11:43:05 +00001518 return Heap::LookupSingleCharacterStringFromCode(
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001519 buffer->Get(start));
ager@chromium.org7c537e22008-10-16 08:43:32 +00001520 }
1521
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001522 // Make an attempt to flatten the buffer to reduce access time.
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001523 if (!buffer->IsFlat()) {
1524 buffer->TryFlatten();
ager@chromium.org870a0b62008-11-04 11:43:05 +00001525 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001526
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001527 Object* result = StringShape(buffer).IsAsciiRepresentation()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001528 ? AllocateRawAsciiString(length)
1529 : AllocateRawTwoByteString(length);
1530 if (result->IsFailure()) return result;
1531
1532 // Copy the characters into the new object.
1533 String* string_result = String::cast(result);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001534 StringHasher hasher(length);
1535 int i = 0;
1536 for (; i < length && hasher.is_array_index(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001537 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001538 hasher.AddCharacter(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001539 string_result->Set(i, c);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001540 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00001541 for (; i < length; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001542 uc32 c = buffer->Get(start + i);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001543 hasher.AddCharacterNoIndex(c);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001544 string_result->Set(i, c);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001545 }
1546 string_result->set_length_field(hasher.GetHashField());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001547 return result;
1548}
1549
1550
1551Object* Heap::AllocateExternalStringFromAscii(
1552 ExternalAsciiString::Resource* resource) {
1553 Map* map;
1554 int length = resource->length();
1555 if (length <= String::kMaxShortStringSize) {
1556 map = short_external_ascii_string_map();
1557 } else if (length <= String::kMaxMediumStringSize) {
1558 map = medium_external_ascii_string_map();
1559 } else {
1560 map = long_external_ascii_string_map();
1561 }
1562
1563 Object* result = Allocate(map, NEW_SPACE);
1564 if (result->IsFailure()) return result;
1565
1566 ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
1567 external_string->set_length(length);
1568 external_string->set_resource(resource);
1569
1570 return result;
1571}
1572
1573
1574Object* Heap::AllocateExternalStringFromTwoByte(
1575 ExternalTwoByteString::Resource* resource) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001576 int length = resource->length();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001577
ager@chromium.org6f10e412009-02-13 10:11:16 +00001578 Map* map = ExternalTwoByteString::StringMap(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001579 Object* result = Allocate(map, NEW_SPACE);
1580 if (result->IsFailure()) return result;
1581
1582 ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
1583 external_string->set_length(length);
1584 external_string->set_resource(resource);
1585
1586 return result;
1587}
1588
1589
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001590Object* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001591 if (code <= String::kMaxAsciiCharCode) {
1592 Object* value = Heap::single_character_string_cache()->get(code);
1593 if (value != Heap::undefined_value()) return value;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001594
1595 char buffer[1];
1596 buffer[0] = static_cast<char>(code);
1597 Object* result = LookupSymbol(Vector<const char>(buffer, 1));
1598
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001599 if (result->IsFailure()) return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001600 Heap::single_character_string_cache()->set(code, result);
1601 return result;
1602 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001603
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001604 Object* result = Heap::AllocateRawTwoByteString(1);
1605 if (result->IsFailure()) return result;
ager@chromium.org870a0b62008-11-04 11:43:05 +00001606 String* answer = String::cast(result);
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00001607 answer->Set(0, code);
ager@chromium.org870a0b62008-11-04 11:43:05 +00001608 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001609}
1610
1611
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001612Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
1613 if (pretenure == NOT_TENURED) {
1614 return AllocateByteArray(length);
1615 }
1616 int size = ByteArray::SizeFor(length);
1617 AllocationSpace space =
1618 size > MaxHeapObjectSize() ? LO_SPACE : OLD_DATA_SPACE;
1619
1620 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
1621
1622 if (result->IsFailure()) return result;
1623
1624 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1625 reinterpret_cast<Array*>(result)->set_length(length);
1626 return result;
1627}
1628
1629
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001630Object* Heap::AllocateByteArray(int length) {
1631 int size = ByteArray::SizeFor(length);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001632 AllocationSpace space =
1633 size > MaxHeapObjectSize() ? LO_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001634
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001635 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001636
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001637 if (result->IsFailure()) return result;
1638
1639 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1640 reinterpret_cast<Array*>(result)->set_length(length);
1641 return result;
1642}
1643
1644
ager@chromium.org6f10e412009-02-13 10:11:16 +00001645void Heap::CreateFillerObjectAt(Address addr, int size) {
1646 if (size == 0) return;
1647 HeapObject* filler = HeapObject::FromAddress(addr);
1648 if (size == kPointerSize) {
1649 filler->set_map(Heap::one_word_filler_map());
1650 } else {
1651 filler->set_map(Heap::byte_array_map());
1652 ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
1653 }
1654}
1655
1656
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001657Object* Heap::CreateCode(const CodeDesc& desc,
1658 ScopeInfo<>* sinfo,
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001659 Code::Flags flags,
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001660 Handle<Object> self_reference) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001661 // Compute size
1662 int body_size = RoundUp(desc.instr_size + desc.reloc_size, kObjectAlignment);
1663 int sinfo_size = 0;
1664 if (sinfo != NULL) sinfo_size = sinfo->Serialize(NULL);
1665 int obj_size = Code::SizeFor(body_size, sinfo_size);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001666 ASSERT(IsAligned(obj_size, Code::kCodeAlignment));
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001667 Object* result;
1668 if (obj_size > MaxHeapObjectSize()) {
1669 result = lo_space_->AllocateRawCode(obj_size);
1670 } else {
1671 result = code_space_->AllocateRaw(obj_size);
1672 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001673
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001674 if (result->IsFailure()) return result;
1675
1676 // Initialize the object
1677 HeapObject::cast(result)->set_map(code_map());
1678 Code* code = Code::cast(result);
1679 code->set_instruction_size(desc.instr_size);
1680 code->set_relocation_size(desc.reloc_size);
1681 code->set_sinfo_size(sinfo_size);
1682 code->set_flags(flags);
1683 code->set_ic_flag(Code::IC_TARGET_IS_ADDRESS);
kasperl@chromium.org061ef742009-02-27 12:16:20 +00001684 // Allow self references to created code object by patching the handle to
1685 // point to the newly allocated Code object.
1686 if (!self_reference.is_null()) {
1687 *(self_reference.location()) = code;
ager@chromium.orga74f0da2008-12-03 16:05:52 +00001688 }
1689 // Migrate generated code.
1690 // The generated code can contain Object** values (typically from handles)
1691 // that are dereferenced during the copy to point directly to the actual heap
1692 // objects. These pointers can include references to the code object itself,
1693 // through the self_reference parameter.
1694 code->CopyFrom(desc);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001695 if (sinfo != NULL) sinfo->Serialize(code); // write scope info
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00001696 LOG(CodeAllocateEvent(code, desc.origin));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001697
1698#ifdef DEBUG
1699 code->Verify();
1700#endif
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001701 return code;
1702}
1703
1704
1705Object* Heap::CopyCode(Code* code) {
1706 // Allocate an object the same size as the code object.
1707 int obj_size = code->Size();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001708 Object* result;
1709 if (obj_size > MaxHeapObjectSize()) {
1710 result = lo_space_->AllocateRawCode(obj_size);
1711 } else {
1712 result = code_space_->AllocateRaw(obj_size);
1713 }
1714
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001715 if (result->IsFailure()) return result;
1716
1717 // Copy code object.
1718 Address old_addr = code->address();
1719 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001720 CopyBlock(reinterpret_cast<Object**>(new_addr),
1721 reinterpret_cast<Object**>(old_addr),
1722 obj_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001723 // Relocate the copy.
1724 Code* new_code = Code::cast(result);
1725 new_code->Relocate(new_addr - old_addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001726 return new_code;
1727}
1728
1729
1730Object* Heap::Allocate(Map* map, AllocationSpace space) {
1731 ASSERT(gc_state_ == NOT_IN_GC);
1732 ASSERT(map->instance_type() != MAP_TYPE);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001733 Object* result = AllocateRaw(map->instance_size(),
1734 space,
1735 TargetSpaceId(map->instance_type()));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001736 if (result->IsFailure()) return result;
1737 HeapObject::cast(result)->set_map(map);
1738 return result;
1739}
1740
1741
1742Object* Heap::InitializeFunction(JSFunction* function,
1743 SharedFunctionInfo* shared,
1744 Object* prototype) {
1745 ASSERT(!prototype->IsMap());
1746 function->initialize_properties();
1747 function->initialize_elements();
1748 function->set_shared(shared);
1749 function->set_prototype_or_initial_map(prototype);
1750 function->set_context(undefined_value());
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00001751 function->set_literals(empty_fixed_array(), SKIP_WRITE_BARRIER);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001752 return function;
1753}
1754
1755
1756Object* Heap::AllocateFunctionPrototype(JSFunction* function) {
ager@chromium.orgddb913d2009-01-27 10:01:48 +00001757 // Allocate the prototype. Make sure to use the object function
1758 // from the function's context, since the function can be from a
1759 // different context.
1760 JSFunction* object_function =
1761 function->context()->global_context()->object_function();
1762 Object* prototype = AllocateJSObject(object_function);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001763 if (prototype->IsFailure()) return prototype;
1764 // When creating the prototype for the function we must set its
1765 // constructor to the function.
1766 Object* result =
1767 JSObject::cast(prototype)->SetProperty(constructor_symbol(),
1768 function,
1769 DONT_ENUM);
1770 if (result->IsFailure()) return result;
1771 return prototype;
1772}
1773
1774
1775Object* Heap::AllocateFunction(Map* function_map,
1776 SharedFunctionInfo* shared,
1777 Object* prototype) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001778 Object* result = Allocate(function_map, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001779 if (result->IsFailure()) return result;
1780 return InitializeFunction(JSFunction::cast(result), shared, prototype);
1781}
1782
1783
1784Object* Heap::AllocateArgumentsObject(Object* callee, int length) {
mads.s.ager@gmail.com9a4089a2008-09-01 08:55:01 +00001785 // To get fast allocation and map sharing for arguments objects we
1786 // allocate them based on an arguments boilerplate.
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001787
1788 // This calls Copy directly rather than using Heap::AllocateRaw so we
1789 // duplicate the check here.
1790 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
1791
1792 JSObject* boilerplate =
1793 Top::context()->global_context()->arguments_boilerplate();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001794
1795 // Make the clone.
1796 Map* map = boilerplate->map();
1797 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001798 Object* result = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001799 if (result->IsFailure()) return result;
1800
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001801 // Copy the content. The arguments boilerplate doesn't have any
1802 // fields that point to new space so it's safe to skip the write
1803 // barrier here.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001804 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()),
1805 reinterpret_cast<Object**>(boilerplate->address()),
1806 object_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001807
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001808 // Set the two properties.
1809 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index,
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001810 callee);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001811 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index,
1812 Smi::FromInt(length),
1813 SKIP_WRITE_BARRIER);
1814
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001815 // Check the state of the object
1816 ASSERT(JSObject::cast(result)->HasFastProperties());
1817 ASSERT(JSObject::cast(result)->HasFastElements());
1818
1819 return result;
1820}
1821
1822
1823Object* Heap::AllocateInitialMap(JSFunction* fun) {
1824 ASSERT(!fun->has_initial_map());
1825
ager@chromium.org7c537e22008-10-16 08:43:32 +00001826 // First create a new map with the expected number of properties being
1827 // allocated in-object.
1828 int expected_nof_properties = fun->shared()->expected_nof_properties();
1829 int instance_size = JSObject::kHeaderSize +
1830 expected_nof_properties * kPointerSize;
1831 if (instance_size > JSObject::kMaxInstanceSize) {
1832 instance_size = JSObject::kMaxInstanceSize;
1833 expected_nof_properties = (instance_size - JSObject::kHeaderSize) /
1834 kPointerSize;
1835 }
1836 Object* map_obj = Heap::AllocateMap(JS_OBJECT_TYPE, instance_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001837 if (map_obj->IsFailure()) return map_obj;
1838
1839 // Fetch or allocate prototype.
1840 Object* prototype;
1841 if (fun->has_instance_prototype()) {
1842 prototype = fun->instance_prototype();
1843 } else {
1844 prototype = AllocateFunctionPrototype(fun);
1845 if (prototype->IsFailure()) return prototype;
1846 }
1847 Map* map = Map::cast(map_obj);
ager@chromium.org7c537e22008-10-16 08:43:32 +00001848 map->set_inobject_properties(expected_nof_properties);
1849 map->set_unused_property_fields(expected_nof_properties);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001850 map->set_prototype(prototype);
1851 return map;
1852}
1853
1854
1855void Heap::InitializeJSObjectFromMap(JSObject* obj,
1856 FixedArray* properties,
1857 Map* map) {
1858 obj->set_properties(properties);
1859 obj->initialize_elements();
1860 // TODO(1240798): Initialize the object's body using valid initial values
1861 // according to the object's initial map. For example, if the map's
1862 // instance type is JS_ARRAY_TYPE, the length field should be initialized
1863 // to a number (eg, Smi::FromInt(0)) and the elements initialized to a
1864 // fixed array (eg, Heap::empty_fixed_array()). Currently, the object
1865 // verification code has to cope with (temporarily) invalid objects. See
1866 // for example, JSArray::JSArrayVerify).
1867 obj->InitializeBody(map->instance_size());
1868}
1869
1870
1871Object* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
1872 // JSFunctions should be allocated using AllocateFunction to be
1873 // properly initialized.
1874 ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
1875
1876 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001877 int prop_size = map->unused_property_fields() - map->inobject_properties();
1878 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001879 if (properties->IsFailure()) return properties;
1880
1881 // Allocate the JSObject.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00001882 AllocationSpace space =
1883 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001884 if (map->instance_size() > MaxHeapObjectSize()) space = LO_SPACE;
1885 Object* obj = Allocate(map, space);
1886 if (obj->IsFailure()) return obj;
1887
1888 // Initialize the JSObject.
1889 InitializeJSObjectFromMap(JSObject::cast(obj),
1890 FixedArray::cast(properties),
1891 map);
1892 return obj;
1893}
1894
1895
1896Object* Heap::AllocateJSObject(JSFunction* constructor,
1897 PretenureFlag pretenure) {
1898 // Allocate the initial map if absent.
1899 if (!constructor->has_initial_map()) {
1900 Object* initial_map = AllocateInitialMap(constructor);
1901 if (initial_map->IsFailure()) return initial_map;
1902 constructor->set_initial_map(Map::cast(initial_map));
1903 Map::cast(initial_map)->set_constructor(constructor);
1904 }
1905 // Allocate the object based on the constructors initial map.
1906 return AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
1907}
1908
1909
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001910Object* Heap::CopyJSObject(JSObject* source) {
1911 // Never used to copy functions. If functions need to be copied we
1912 // have to be careful to clear the literals array.
1913 ASSERT(!source->IsJSFunction());
1914
1915 // Make the clone.
1916 Map* map = source->map();
1917 int object_size = map->instance_size();
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001918 Object* clone;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001919
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001920 // If we're forced to always allocate, we use the general allocation
1921 // functions which may leave us with an object in old space.
1922 if (always_allocate()) {
1923 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
1924 if (clone->IsFailure()) return clone;
1925 Address clone_address = HeapObject::cast(clone)->address();
1926 CopyBlock(reinterpret_cast<Object**>(clone_address),
1927 reinterpret_cast<Object**>(source->address()),
1928 object_size);
1929 // Update write barrier for all fields that lie beyond the header.
1930 for (int offset = JSObject::kHeaderSize;
1931 offset < object_size;
1932 offset += kPointerSize) {
1933 RecordWrite(clone_address, offset);
1934 }
1935 } else {
1936 clone = new_space_.AllocateRaw(object_size);
1937 if (clone->IsFailure()) return clone;
1938 ASSERT(Heap::InNewSpace(clone));
1939 // Since we know the clone is allocated in new space, we can copy
ager@chromium.org32912102009-01-16 10:38:43 +00001940 // the contents without worrying about updating the write barrier.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00001941 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()),
1942 reinterpret_cast<Object**>(source->address()),
1943 object_size);
1944 }
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00001945
1946 FixedArray* elements = FixedArray::cast(source->elements());
1947 FixedArray* properties = FixedArray::cast(source->properties());
1948 // Update elements if necessary.
1949 if (elements->length()> 0) {
1950 Object* elem = CopyFixedArray(elements);
1951 if (elem->IsFailure()) return elem;
1952 JSObject::cast(clone)->set_elements(FixedArray::cast(elem));
1953 }
1954 // Update properties if necessary.
1955 if (properties->length() > 0) {
1956 Object* prop = CopyFixedArray(properties);
1957 if (prop->IsFailure()) return prop;
1958 JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
1959 }
1960 // Return the new clone.
1961 return clone;
1962}
1963
1964
1965Object* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
1966 JSGlobalProxy* object) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001967 // Allocate initial map if absent.
1968 if (!constructor->has_initial_map()) {
1969 Object* initial_map = AllocateInitialMap(constructor);
1970 if (initial_map->IsFailure()) return initial_map;
1971 constructor->set_initial_map(Map::cast(initial_map));
1972 Map::cast(initial_map)->set_constructor(constructor);
1973 }
1974
1975 Map* map = constructor->initial_map();
1976
1977 // Check that the already allocated object has the same size as
1978 // objects allocated using the constructor.
1979 ASSERT(map->instance_size() == object->map()->instance_size());
1980
1981 // Allocate the backing storage for the properties.
ager@chromium.org7c537e22008-10-16 08:43:32 +00001982 int prop_size = map->unused_property_fields() - map->inobject_properties();
1983 Object* properties = AllocateFixedArray(prop_size);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00001984 if (properties->IsFailure()) return properties;
1985
1986 // Reset the map for the object.
1987 object->set_map(constructor->initial_map());
1988
1989 // Reinitialize the object from the constructor map.
1990 InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
1991 return object;
1992}
1993
1994
1995Object* Heap::AllocateStringFromAscii(Vector<const char> string,
1996 PretenureFlag pretenure) {
1997 Object* result = AllocateRawAsciiString(string.length(), pretenure);
1998 if (result->IsFailure()) return result;
1999
2000 // Copy the characters into the new object.
ager@chromium.org7c537e22008-10-16 08:43:32 +00002001 SeqAsciiString* string_result = SeqAsciiString::cast(result);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002002 for (int i = 0; i < string.length(); i++) {
ager@chromium.org7c537e22008-10-16 08:43:32 +00002003 string_result->SeqAsciiStringSet(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002004 }
2005 return result;
2006}
2007
2008
2009Object* Heap::AllocateStringFromUtf8(Vector<const char> string,
2010 PretenureFlag pretenure) {
2011 // Count the number of characters in the UTF-8 string and check if
2012 // it is an ASCII string.
2013 Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
2014 decoder->Reset(string.start(), string.length());
2015 int chars = 0;
2016 bool is_ascii = true;
2017 while (decoder->has_more()) {
2018 uc32 r = decoder->GetNext();
2019 if (r > String::kMaxAsciiCharCode) is_ascii = false;
2020 chars++;
2021 }
2022
2023 // If the string is ascii, we do not need to convert the characters
2024 // since UTF8 is backwards compatible with ascii.
2025 if (is_ascii) return AllocateStringFromAscii(string, pretenure);
2026
2027 Object* result = AllocateRawTwoByteString(chars, pretenure);
2028 if (result->IsFailure()) return result;
2029
2030 // Convert and copy the characters into the new object.
2031 String* string_result = String::cast(result);
2032 decoder->Reset(string.start(), string.length());
2033 for (int i = 0; i < chars; i++) {
2034 uc32 r = decoder->GetNext();
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002035 string_result->Set(i, r);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002036 }
2037 return result;
2038}
2039
2040
2041Object* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
2042 PretenureFlag pretenure) {
2043 // Check if the string is an ASCII string.
2044 int i = 0;
2045 while (i < string.length() && string[i] <= String::kMaxAsciiCharCode) i++;
2046
2047 Object* result;
2048 if (i == string.length()) { // It's an ASCII string.
2049 result = AllocateRawAsciiString(string.length(), pretenure);
2050 } else { // It's not an ASCII string.
2051 result = AllocateRawTwoByteString(string.length(), pretenure);
2052 }
2053 if (result->IsFailure()) return result;
2054
2055 // Copy the characters into the new object, which may be either ASCII or
2056 // UTF-16.
2057 String* string_result = String::cast(result);
2058 for (int i = 0; i < string.length(); i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002059 string_result->Set(i, string[i]);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002060 }
2061 return result;
2062}
2063
2064
2065Map* Heap::SymbolMapForString(String* string) {
2066 // If the string is in new space it cannot be used as a symbol.
2067 if (InNewSpace(string)) return NULL;
2068
2069 // Find the corresponding symbol map for strings.
2070 Map* map = string->map();
2071
2072 if (map == short_ascii_string_map()) return short_ascii_symbol_map();
2073 if (map == medium_ascii_string_map()) return medium_ascii_symbol_map();
2074 if (map == long_ascii_string_map()) return long_ascii_symbol_map();
2075
2076 if (map == short_string_map()) return short_symbol_map();
2077 if (map == medium_string_map()) return medium_symbol_map();
2078 if (map == long_string_map()) return long_symbol_map();
2079
2080 if (map == short_cons_string_map()) return short_cons_symbol_map();
2081 if (map == medium_cons_string_map()) return medium_cons_symbol_map();
2082 if (map == long_cons_string_map()) return long_cons_symbol_map();
2083
2084 if (map == short_cons_ascii_string_map()) {
2085 return short_cons_ascii_symbol_map();
2086 }
2087 if (map == medium_cons_ascii_string_map()) {
2088 return medium_cons_ascii_symbol_map();
2089 }
2090 if (map == long_cons_ascii_string_map()) {
2091 return long_cons_ascii_symbol_map();
2092 }
2093
2094 if (map == short_sliced_string_map()) return short_sliced_symbol_map();
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002095 if (map == medium_sliced_string_map()) return medium_sliced_symbol_map();
2096 if (map == long_sliced_string_map()) return long_sliced_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002097
2098 if (map == short_sliced_ascii_string_map()) {
2099 return short_sliced_ascii_symbol_map();
2100 }
2101 if (map == medium_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002102 return medium_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002103 }
2104 if (map == long_sliced_ascii_string_map()) {
kasperl@chromium.org9fe21c62008-10-28 08:53:51 +00002105 return long_sliced_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002106 }
2107
ager@chromium.org6f10e412009-02-13 10:11:16 +00002108 if (map == short_external_string_map()) {
2109 return short_external_symbol_map();
2110 }
2111 if (map == medium_external_string_map()) {
2112 return medium_external_symbol_map();
2113 }
2114 if (map == long_external_string_map()) {
2115 return long_external_symbol_map();
2116 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002117
2118 if (map == short_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002119 return short_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002120 }
2121 if (map == medium_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002122 return medium_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002123 }
2124 if (map == long_external_ascii_string_map()) {
ager@chromium.org6f10e412009-02-13 10:11:16 +00002125 return long_external_ascii_symbol_map();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002126 }
2127
2128 // No match found.
2129 return NULL;
2130}
2131
2132
ager@chromium.orga74f0da2008-12-03 16:05:52 +00002133Object* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
2134 int chars,
2135 uint32_t length_field) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002136 // Ensure the chars matches the number of characters in the buffer.
2137 ASSERT(static_cast<unsigned>(chars) == buffer->Length());
2138 // Determine whether the string is ascii.
2139 bool is_ascii = true;
ager@chromium.org6f10e412009-02-13 10:11:16 +00002140 while (buffer->has_more() && is_ascii) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002141 if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) is_ascii = false;
2142 }
2143 buffer->Rewind();
2144
2145 // Compute map and object size.
2146 int size;
2147 Map* map;
2148
2149 if (is_ascii) {
2150 if (chars <= String::kMaxShortStringSize) {
2151 map = short_ascii_symbol_map();
2152 } else if (chars <= String::kMaxMediumStringSize) {
2153 map = medium_ascii_symbol_map();
2154 } else {
2155 map = long_ascii_symbol_map();
2156 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002157 size = SeqAsciiString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002158 } else {
2159 if (chars <= String::kMaxShortStringSize) {
2160 map = short_symbol_map();
2161 } else if (chars <= String::kMaxMediumStringSize) {
2162 map = medium_symbol_map();
2163 } else {
2164 map = long_symbol_map();
2165 }
ager@chromium.org7c537e22008-10-16 08:43:32 +00002166 size = SeqTwoByteString::SizeFor(chars);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002167 }
2168
2169 // Allocate string.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002170 AllocationSpace space =
2171 (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_DATA_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002172 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002173 if (result->IsFailure()) return result;
2174
2175 reinterpret_cast<HeapObject*>(result)->set_map(map);
2176 // The hash value contains the length of the string.
ager@chromium.org870a0b62008-11-04 11:43:05 +00002177 String* answer = String::cast(result);
ager@chromium.org870a0b62008-11-04 11:43:05 +00002178 answer->set_length_field(length_field);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002179
ager@chromium.org870a0b62008-11-04 11:43:05 +00002180 ASSERT_EQ(size, answer->Size());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002181
2182 // Fill in the characters.
2183 for (int i = 0; i < chars; i++) {
ager@chromium.orgbb29dc92009-03-24 13:25:23 +00002184 answer->Set(i, buffer->GetNext());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002185 }
ager@chromium.org870a0b62008-11-04 11:43:05 +00002186 return answer;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002187}
2188
2189
2190Object* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002191 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002192 int size = SeqAsciiString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002193 if (size > MaxHeapObjectSize()) {
2194 space = LO_SPACE;
2195 }
2196
2197 // Use AllocateRaw rather than Allocate because the object's size cannot be
2198 // determined from the map.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002199 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002200 if (result->IsFailure()) return result;
2201
2202 // Determine the map based on the string's length.
2203 Map* map;
2204 if (length <= String::kMaxShortStringSize) {
2205 map = short_ascii_string_map();
2206 } else if (length <= String::kMaxMediumStringSize) {
2207 map = medium_ascii_string_map();
2208 } else {
2209 map = long_ascii_string_map();
2210 }
2211
2212 // Partially initialize the object.
2213 HeapObject::cast(result)->set_map(map);
2214 String::cast(result)->set_length(length);
2215 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2216 return result;
2217}
2218
2219
2220Object* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002221 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
ager@chromium.org7c537e22008-10-16 08:43:32 +00002222 int size = SeqTwoByteString::SizeFor(length);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002223 if (size > MaxHeapObjectSize()) {
2224 space = LO_SPACE;
2225 }
2226
2227 // Use AllocateRaw rather than Allocate because the object's size cannot be
2228 // determined from the map.
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002229 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002230 if (result->IsFailure()) return result;
2231
2232 // Determine the map based on the string's length.
2233 Map* map;
2234 if (length <= String::kMaxShortStringSize) {
2235 map = short_string_map();
2236 } else if (length <= String::kMaxMediumStringSize) {
2237 map = medium_string_map();
2238 } else {
2239 map = long_string_map();
2240 }
2241
2242 // Partially initialize the object.
2243 HeapObject::cast(result)->set_map(map);
2244 String::cast(result)->set_length(length);
2245 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2246 return result;
2247}
2248
2249
2250Object* Heap::AllocateEmptyFixedArray() {
2251 int size = FixedArray::SizeFor(0);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002252 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002253 if (result->IsFailure()) return result;
2254 // Initialize the object.
2255 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2256 reinterpret_cast<Array*>(result)->set_length(0);
2257 return result;
2258}
2259
2260
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002261Object* Heap::AllocateRawFixedArray(int length) {
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002262 // Use the general function if we're forced to always allocate.
2263 if (always_allocate()) return AllocateFixedArray(length, NOT_TENURED);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002264 // Allocate the raw data for a fixed array.
2265 int size = FixedArray::SizeFor(length);
2266 return (size > MaxHeapObjectSize())
2267 ? lo_space_->AllocateRawFixedArray(size)
2268 : new_space_.AllocateRaw(size);
2269}
2270
2271
2272Object* Heap::CopyFixedArray(FixedArray* src) {
2273 int len = src->length();
2274 Object* obj = AllocateRawFixedArray(len);
2275 if (obj->IsFailure()) return obj;
2276 if (Heap::InNewSpace(obj)) {
2277 HeapObject* dst = HeapObject::cast(obj);
2278 CopyBlock(reinterpret_cast<Object**>(dst->address()),
2279 reinterpret_cast<Object**>(src->address()),
2280 FixedArray::SizeFor(len));
2281 return obj;
2282 }
2283 HeapObject::cast(obj)->set_map(src->map());
2284 FixedArray* result = FixedArray::cast(obj);
2285 result->set_length(len);
2286 // Copy the content
2287 WriteBarrierMode mode = result->GetWriteBarrierMode();
2288 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
2289 return result;
2290}
2291
2292
2293Object* Heap::AllocateFixedArray(int length) {
ager@chromium.org32912102009-01-16 10:38:43 +00002294 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002295 Object* result = AllocateRawFixedArray(length);
2296 if (!result->IsFailure()) {
2297 // Initialize header.
2298 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2299 FixedArray* array = FixedArray::cast(result);
2300 array->set_length(length);
2301 Object* value = undefined_value();
2302 // Initialize body.
2303 for (int index = 0; index < length; index++) {
2304 array->set(index, value, SKIP_WRITE_BARRIER);
2305 }
2306 }
2307 return result;
2308}
2309
2310
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002311Object* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
2312 ASSERT(empty_fixed_array()->IsFixedArray());
2313 if (length == 0) return empty_fixed_array();
2314
2315 int size = FixedArray::SizeFor(length);
2316 Object* result;
2317 if (size > MaxHeapObjectSize()) {
2318 result = lo_space_->AllocateRawFixedArray(size);
2319 } else {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002320 AllocationSpace space =
2321 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002322 result = AllocateRaw(size, space, OLD_POINTER_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002323 }
2324 if (result->IsFailure()) return result;
2325
2326 // Initialize the object.
2327 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2328 FixedArray* array = FixedArray::cast(result);
2329 array->set_length(length);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002330 Object* value = undefined_value();
2331 for (int index = 0; index < length; index++) {
2332 array->set(index, value, SKIP_WRITE_BARRIER);
2333 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002334 return array;
2335}
2336
2337
2338Object* Heap::AllocateFixedArrayWithHoles(int length) {
2339 if (length == 0) return empty_fixed_array();
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002340 Object* result = AllocateRawFixedArray(length);
2341 if (!result->IsFailure()) {
2342 // Initialize header.
2343 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2344 FixedArray* array = FixedArray::cast(result);
2345 array->set_length(length);
2346 // Initialize body.
2347 Object* value = the_hole_value();
2348 for (int index = 0; index < length; index++) {
2349 array->set(index, value, SKIP_WRITE_BARRIER);
2350 }
2351 }
2352 return result;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002353}
2354
2355
2356Object* Heap::AllocateHashTable(int length) {
2357 Object* result = Heap::AllocateFixedArray(length);
2358 if (result->IsFailure()) return result;
2359 reinterpret_cast<Array*>(result)->set_map(hash_table_map());
2360 ASSERT(result->IsDictionary());
2361 return result;
2362}
2363
2364
2365Object* Heap::AllocateGlobalContext() {
2366 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
2367 if (result->IsFailure()) return result;
2368 Context* context = reinterpret_cast<Context*>(result);
2369 context->set_map(global_context_map());
2370 ASSERT(context->IsGlobalContext());
2371 ASSERT(result->IsContext());
2372 return result;
2373}
2374
2375
2376Object* Heap::AllocateFunctionContext(int length, JSFunction* function) {
2377 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
2378 Object* result = Heap::AllocateFixedArray(length);
2379 if (result->IsFailure()) return result;
2380 Context* context = reinterpret_cast<Context*>(result);
2381 context->set_map(context_map());
2382 context->set_closure(function);
2383 context->set_fcontext(context);
2384 context->set_previous(NULL);
2385 context->set_extension(NULL);
2386 context->set_global(function->context()->global());
2387 ASSERT(!context->IsGlobalContext());
2388 ASSERT(context->is_function_context());
2389 ASSERT(result->IsContext());
2390 return result;
2391}
2392
2393
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002394Object* Heap::AllocateWithContext(Context* previous,
2395 JSObject* extension,
2396 bool is_catch_context) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002397 Object* result = Heap::AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
2398 if (result->IsFailure()) return result;
2399 Context* context = reinterpret_cast<Context*>(result);
christian.plesner.hansen@gmail.com37abdec2009-01-06 14:43:28 +00002400 context->set_map(is_catch_context ? catch_context_map() : context_map());
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002401 context->set_closure(previous->closure());
2402 context->set_fcontext(previous->fcontext());
2403 context->set_previous(previous);
2404 context->set_extension(extension);
2405 context->set_global(previous->global());
2406 ASSERT(!context->IsGlobalContext());
2407 ASSERT(!context->is_function_context());
2408 ASSERT(result->IsContext());
2409 return result;
2410}
2411
2412
2413Object* Heap::AllocateStruct(InstanceType type) {
2414 Map* map;
2415 switch (type) {
2416#define MAKE_CASE(NAME, Name, name) case NAME##_TYPE: map = name##_map(); break;
2417STRUCT_LIST(MAKE_CASE)
2418#undef MAKE_CASE
2419 default:
2420 UNREACHABLE();
2421 return Failure::InternalError();
2422 }
2423 int size = map->instance_size();
2424 AllocationSpace space =
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002425 (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_POINTER_SPACE;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002426 Object* result = Heap::Allocate(map, space);
2427 if (result->IsFailure()) return result;
2428 Struct::cast(result)->InitializeBody(size);
2429 return result;
2430}
2431
2432
2433#ifdef DEBUG
2434
2435void Heap::Print() {
2436 if (!HasBeenSetup()) return;
2437 Top::PrintStack();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002438 AllSpaces spaces;
2439 while (Space* space = spaces.next()) space->Print();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002440}
2441
2442
2443void Heap::ReportCodeStatistics(const char* title) {
2444 PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
2445 PagedSpace::ResetCodeStatistics();
2446 // We do not look for code in new space, map space, or old space. If code
2447 // somehow ends up in those spaces, we would miss it here.
2448 code_space_->CollectCodeStatistics();
2449 lo_space_->CollectCodeStatistics();
2450 PagedSpace::ReportCodeStatistics();
2451}
2452
2453
2454// This function expects that NewSpace's allocated objects histogram is
2455// populated (via a call to CollectStatistics or else as a side effect of a
2456// just-completed scavenge collection).
2457void Heap::ReportHeapStatistics(const char* title) {
2458 USE(title);
2459 PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
2460 title, gc_count_);
2461 PrintF("mark-compact GC : %d\n", mc_count_);
kasperl@chromium.org9bbf9682008-10-30 11:53:07 +00002462 PrintF("old_gen_promotion_limit_ %d\n", old_gen_promotion_limit_);
2463 PrintF("old_gen_allocation_limit_ %d\n", old_gen_allocation_limit_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002464
2465 PrintF("\n");
2466 PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
2467 GlobalHandles::PrintStats();
2468 PrintF("\n");
2469
2470 PrintF("Heap statistics : ");
2471 MemoryAllocator::ReportStatistics();
2472 PrintF("To space : ");
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002473 new_space_.ReportStatistics();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002474 PrintF("Old pointer space : ");
2475 old_pointer_space_->ReportStatistics();
2476 PrintF("Old data space : ");
2477 old_data_space_->ReportStatistics();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002478 PrintF("Code space : ");
2479 code_space_->ReportStatistics();
2480 PrintF("Map space : ");
2481 map_space_->ReportStatistics();
2482 PrintF("Large object space : ");
2483 lo_space_->ReportStatistics();
2484 PrintF(">>>>>> ========================================= >>>>>>\n");
2485}
2486
2487#endif // DEBUG
2488
2489bool Heap::Contains(HeapObject* value) {
2490 return Contains(value->address());
2491}
2492
2493
2494bool Heap::Contains(Address addr) {
2495 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2496 return HasBeenSetup() &&
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002497 (new_space_.ToSpaceContains(addr) ||
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002498 old_pointer_space_->Contains(addr) ||
2499 old_data_space_->Contains(addr) ||
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002500 code_space_->Contains(addr) ||
2501 map_space_->Contains(addr) ||
2502 lo_space_->SlowContains(addr));
2503}
2504
2505
2506bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
2507 return InSpace(value->address(), space);
2508}
2509
2510
2511bool Heap::InSpace(Address addr, AllocationSpace space) {
2512 if (OS::IsOutsideAllocatedSpace(addr)) return false;
2513 if (!HasBeenSetup()) return false;
2514
2515 switch (space) {
2516 case NEW_SPACE:
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002517 return new_space_.ToSpaceContains(addr);
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002518 case OLD_POINTER_SPACE:
2519 return old_pointer_space_->Contains(addr);
2520 case OLD_DATA_SPACE:
2521 return old_data_space_->Contains(addr);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002522 case CODE_SPACE:
2523 return code_space_->Contains(addr);
2524 case MAP_SPACE:
2525 return map_space_->Contains(addr);
2526 case LO_SPACE:
2527 return lo_space_->SlowContains(addr);
2528 }
2529
2530 return false;
2531}
2532
2533
2534#ifdef DEBUG
2535void Heap::Verify() {
2536 ASSERT(HasBeenSetup());
2537
2538 VerifyPointersVisitor visitor;
2539 Heap::IterateRoots(&visitor);
2540
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002541 AllSpaces spaces;
2542 while (Space* space = spaces.next()) {
2543 space->Verify();
2544 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002545}
2546#endif // DEBUG
2547
2548
2549Object* Heap::LookupSymbol(Vector<const char> string) {
2550 Object* symbol = NULL;
2551 Object* new_table =
2552 SymbolTable::cast(symbol_table_)->LookupSymbol(string, &symbol);
2553 if (new_table->IsFailure()) return new_table;
2554 symbol_table_ = new_table;
2555 ASSERT(symbol != NULL);
2556 return symbol;
2557}
2558
2559
2560Object* Heap::LookupSymbol(String* string) {
2561 if (string->IsSymbol()) return string;
2562 Object* symbol = NULL;
2563 Object* new_table =
2564 SymbolTable::cast(symbol_table_)->LookupString(string, &symbol);
2565 if (new_table->IsFailure()) return new_table;
2566 symbol_table_ = new_table;
2567 ASSERT(symbol != NULL);
2568 return symbol;
2569}
2570
2571
ager@chromium.org7c537e22008-10-16 08:43:32 +00002572bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
2573 if (string->IsSymbol()) {
2574 *symbol = string;
2575 return true;
2576 }
2577 SymbolTable* table = SymbolTable::cast(symbol_table_);
2578 return table->LookupSymbolIfExists(string, symbol);
2579}
2580
2581
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002582#ifdef DEBUG
2583void Heap::ZapFromSpace() {
2584 ASSERT(HAS_HEAP_OBJECT_TAG(kFromSpaceZapValue));
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002585 for (Address a = new_space_.FromSpaceLow();
2586 a < new_space_.FromSpaceHigh();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002587 a += kPointerSize) {
2588 Memory::Address_at(a) = kFromSpaceZapValue;
2589 }
2590}
2591#endif // DEBUG
2592
2593
2594void Heap::IterateRSetRange(Address object_start,
2595 Address object_end,
2596 Address rset_start,
2597 ObjectSlotCallback copy_object_func) {
2598 Address object_address = object_start;
2599 Address rset_address = rset_start;
2600
2601 // Loop over all the pointers in [object_start, object_end).
2602 while (object_address < object_end) {
2603 uint32_t rset_word = Memory::uint32_at(rset_address);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002604 if (rset_word != 0) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002605 uint32_t result_rset = rset_word;
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002606 for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002607 // Do not dereference pointers at or past object_end.
2608 if ((rset_word & bitmask) != 0 && object_address < object_end) {
2609 Object** object_p = reinterpret_cast<Object**>(object_address);
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002610 if (Heap::InNewSpace(*object_p)) {
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002611 copy_object_func(reinterpret_cast<HeapObject**>(object_p));
2612 }
2613 // If this pointer does not need to be remembered anymore, clear
2614 // the remembered set bit.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002615 if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002616 }
2617 object_address += kPointerSize;
2618 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002619 // Update the remembered set if it has changed.
2620 if (result_rset != rset_word) {
2621 Memory::uint32_at(rset_address) = result_rset;
2622 }
2623 } else {
2624 // No bits in the word were set. This is the common case.
2625 object_address += kPointerSize * kBitsPerInt;
2626 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002627 rset_address += kIntSize;
2628 }
2629}
2630
2631
2632void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) {
2633 ASSERT(Page::is_rset_in_use());
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002634 ASSERT(space == old_pointer_space_ || space == map_space_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002635
2636 PageIterator it(space, PageIterator::PAGES_IN_USE);
2637 while (it.has_next()) {
2638 Page* page = it.next();
2639 IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(),
2640 page->RSetStart(), copy_object_func);
2641 }
2642}
2643
2644
2645#ifdef DEBUG
2646#define SYNCHRONIZE_TAG(tag) v->Synchronize(tag)
2647#else
2648#define SYNCHRONIZE_TAG(tag)
2649#endif
2650
2651void Heap::IterateRoots(ObjectVisitor* v) {
2652 IterateStrongRoots(v);
2653 v->VisitPointer(reinterpret_cast<Object**>(&symbol_table_));
2654 SYNCHRONIZE_TAG("symbol_table");
2655}
2656
2657
2658void Heap::IterateStrongRoots(ObjectVisitor* v) {
2659#define ROOT_ITERATE(type, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002660 v->VisitPointer(bit_cast<Object**, type**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002661 STRONG_ROOT_LIST(ROOT_ITERATE);
2662#undef ROOT_ITERATE
2663 SYNCHRONIZE_TAG("strong_root_list");
2664
2665#define STRUCT_MAP_ITERATE(NAME, Name, name) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002666 v->VisitPointer(bit_cast<Object**, Map**>(&name##_map_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002667 STRUCT_LIST(STRUCT_MAP_ITERATE);
2668#undef STRUCT_MAP_ITERATE
2669 SYNCHRONIZE_TAG("struct_map");
2670
2671#define SYMBOL_ITERATE(name, string) \
kasperl@chromium.org41044eb2008-10-06 08:24:46 +00002672 v->VisitPointer(bit_cast<Object**, String**>(&name##_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002673 SYMBOL_LIST(SYMBOL_ITERATE)
2674#undef SYMBOL_ITERATE
ager@chromium.org3b45ab52009-03-19 22:21:34 +00002675 v->VisitPointer(bit_cast<Object**, String**>(&hidden_symbol_));
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002676 SYNCHRONIZE_TAG("symbol");
2677
2678 Bootstrapper::Iterate(v);
2679 SYNCHRONIZE_TAG("bootstrapper");
2680 Top::Iterate(v);
2681 SYNCHRONIZE_TAG("top");
2682 Debug::Iterate(v);
2683 SYNCHRONIZE_TAG("debug");
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002684 CompilationCache::Iterate(v);
2685 SYNCHRONIZE_TAG("compilationcache");
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002686
2687 // Iterate over local handles in handle scopes.
2688 HandleScopeImplementer::Iterate(v);
2689 SYNCHRONIZE_TAG("handlescope");
2690
2691 // Iterate over the builtin code objects and code stubs in the heap. Note
2692 // that it is not strictly necessary to iterate over code objects on
2693 // scavenge collections. We still do it here because this same function
2694 // is used by the mark-sweep collector and the deserializer.
2695 Builtins::IterateBuiltins(v);
2696 SYNCHRONIZE_TAG("builtins");
2697
2698 // Iterate over global handles.
2699 GlobalHandles::IterateRoots(v);
2700 SYNCHRONIZE_TAG("globalhandles");
2701
2702 // Iterate over pointers being held by inactive threads.
2703 ThreadManager::Iterate(v);
2704 SYNCHRONIZE_TAG("threadmanager");
2705}
2706#undef SYNCHRONIZE_TAG
2707
2708
2709// Flag is set when the heap has been configured. The heap can be repeatedly
2710// configured through the API until it is setup.
2711static bool heap_configured = false;
2712
2713// TODO(1236194): Since the heap size is configurable on the command line
2714// and through the API, we should gracefully handle the case that the heap
2715// size is not big enough to fit all the initial objects.
2716bool Heap::ConfigureHeap(int semispace_size, int old_gen_size) {
2717 if (HasBeenSetup()) return false;
2718
2719 if (semispace_size > 0) semispace_size_ = semispace_size;
2720 if (old_gen_size > 0) old_generation_size_ = old_gen_size;
2721
2722 // The new space size must be a power of two to support single-bit testing
2723 // for containment.
mads.s.ager@gmail.com769cc962008-08-06 10:02:49 +00002724 semispace_size_ = RoundUpToPowerOf2(semispace_size_);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002725 initial_semispace_size_ = Min(initial_semispace_size_, semispace_size_);
2726 young_generation_size_ = 2 * semispace_size_;
2727
2728 // The old generation is paged.
2729 old_generation_size_ = RoundUp(old_generation_size_, Page::kPageSize);
2730
2731 heap_configured = true;
2732 return true;
2733}
2734
2735
kasper.lund7276f142008-07-30 08:49:36 +00002736bool Heap::ConfigureHeapDefault() {
2737 return ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size);
2738}
2739
2740
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002741int Heap::PromotedSpaceSize() {
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002742 return old_pointer_space_->Size()
2743 + old_data_space_->Size()
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002744 + code_space_->Size()
2745 + map_space_->Size()
2746 + lo_space_->Size();
2747}
2748
2749
kasper.lund7276f142008-07-30 08:49:36 +00002750int Heap::PromotedExternalMemorySize() {
2751 if (amount_of_external_allocated_memory_
2752 <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
2753 return amount_of_external_allocated_memory_
2754 - amount_of_external_allocated_memory_at_last_global_gc_;
2755}
2756
2757
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002758bool Heap::Setup(bool create_heap_objects) {
2759 // Initialize heap spaces and initial maps and objects. Whenever something
2760 // goes wrong, just return false. The caller should check the results and
2761 // call Heap::TearDown() to release allocated memory.
2762 //
2763 // If the heap is not yet configured (eg, through the API), configure it.
2764 // Configuration is based on the flags new-space-size (really the semispace
2765 // size) and old-space-size if set or the initial values of semispace_size_
2766 // and old_generation_size_ otherwise.
2767 if (!heap_configured) {
kasper.lund7276f142008-07-30 08:49:36 +00002768 if (!ConfigureHeapDefault()) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002769 }
2770
2771 // Setup memory allocator and allocate an initial chunk of memory. The
2772 // initial chunk is double the size of the new space to ensure that we can
2773 // find a pair of semispaces that are contiguous and aligned to their size.
2774 if (!MemoryAllocator::Setup(MaxCapacity())) return false;
2775 void* chunk
2776 = MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_);
2777 if (chunk == NULL) return false;
2778
2779 // Put the initial chunk of the old space at the start of the initial
2780 // chunk, then the two new space semispaces, then the initial chunk of
2781 // code space. Align the pair of semispaces to their size, which must be
2782 // a power of 2.
2783 ASSERT(IsPowerOf2(young_generation_size_));
kasperl@chromium.orgb9123622008-09-17 14:05:56 +00002784 Address code_space_start = reinterpret_cast<Address>(chunk);
2785 Address new_space_start = RoundUp(code_space_start, young_generation_size_);
2786 Address old_space_start = new_space_start + young_generation_size_;
2787 int code_space_size = new_space_start - code_space_start;
2788 int old_space_size = young_generation_size_ - code_space_size;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002789
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002790 // Initialize new space.
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002791 if (!new_space_.Setup(new_space_start, young_generation_size_)) return false;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002792
2793 // Initialize old space, set the maximum capacity to the old generation
kasper.lund7276f142008-07-30 08:49:36 +00002794 // size. It will not contain code.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002795 old_pointer_space_ =
2796 new OldSpace(old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE);
2797 if (old_pointer_space_ == NULL) return false;
2798 if (!old_pointer_space_->Setup(old_space_start, old_space_size >> 1)) {
2799 return false;
2800 }
2801 old_data_space_ =
2802 new OldSpace(old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE);
2803 if (old_data_space_ == NULL) return false;
2804 if (!old_data_space_->Setup(old_space_start + (old_space_size >> 1),
2805 old_space_size >> 1)) {
2806 return false;
2807 }
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002808
2809 // Initialize the code space, set its maximum capacity to the old
kasper.lund7276f142008-07-30 08:49:36 +00002810 // generation size. It needs executable memory.
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002811 code_space_ =
2812 new OldSpace(old_generation_size_, CODE_SPACE, EXECUTABLE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002813 if (code_space_ == NULL) return false;
2814 if (!code_space_->Setup(code_space_start, code_space_size)) return false;
2815
2816 // Initialize map space.
kasper.lund7276f142008-07-30 08:49:36 +00002817 map_space_ = new MapSpace(kMaxMapSpaceSize, MAP_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002818 if (map_space_ == NULL) return false;
2819 // Setting up a paged space without giving it a virtual memory range big
2820 // enough to hold at least a page will cause it to allocate.
2821 if (!map_space_->Setup(NULL, 0)) return false;
2822
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002823 // The large object code space may contain code or data. We set the memory
2824 // to be non-executable here for safety, but this means we need to enable it
2825 // explicitly when allocating large code objects.
2826 lo_space_ = new LargeObjectSpace(LO_SPACE);
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002827 if (lo_space_ == NULL) return false;
2828 if (!lo_space_->Setup()) return false;
2829
2830 if (create_heap_objects) {
2831 // Create initial maps.
2832 if (!CreateInitialMaps()) return false;
2833 if (!CreateApiObjects()) return false;
2834
2835 // Create initial objects
2836 if (!CreateInitialObjects()) return false;
2837 }
2838
2839 LOG(IntEvent("heap-capacity", Capacity()));
2840 LOG(IntEvent("heap-available", Available()));
2841
2842 return true;
2843}
2844
2845
2846void Heap::TearDown() {
2847 GlobalHandles::TearDown();
2848
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00002849 new_space_.TearDown();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002850
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002851 if (old_pointer_space_ != NULL) {
2852 old_pointer_space_->TearDown();
2853 delete old_pointer_space_;
2854 old_pointer_space_ = NULL;
2855 }
2856
2857 if (old_data_space_ != NULL) {
2858 old_data_space_->TearDown();
2859 delete old_data_space_;
2860 old_data_space_ = NULL;
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002861 }
2862
2863 if (code_space_ != NULL) {
2864 code_space_->TearDown();
2865 delete code_space_;
2866 code_space_ = NULL;
2867 }
2868
2869 if (map_space_ != NULL) {
2870 map_space_->TearDown();
2871 delete map_space_;
2872 map_space_ = NULL;
2873 }
2874
2875 if (lo_space_ != NULL) {
2876 lo_space_->TearDown();
2877 delete lo_space_;
2878 lo_space_ = NULL;
2879 }
2880
2881 MemoryAllocator::TearDown();
2882}
2883
2884
2885void Heap::Shrink() {
2886 // Try to shrink map, old, and code spaces.
2887 map_space_->Shrink();
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002888 old_pointer_space_->Shrink();
2889 old_data_space_->Shrink();
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002890 code_space_->Shrink();
2891}
2892
2893
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002894#ifdef ENABLE_HEAP_PROTECTION
2895
2896void Heap::Protect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00002897 if (HasBeenSetup()) {
2898 new_space_.Protect();
2899 map_space_->Protect();
2900 old_pointer_space_->Protect();
2901 old_data_space_->Protect();
2902 code_space_->Protect();
2903 lo_space_->Protect();
2904 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002905}
2906
2907
2908void Heap::Unprotect() {
ager@chromium.org71daaf62009-04-01 07:22:49 +00002909 if (HasBeenSetup()) {
2910 new_space_.Unprotect();
2911 map_space_->Unprotect();
2912 old_pointer_space_->Unprotect();
2913 old_data_space_->Unprotect();
2914 code_space_->Unprotect();
2915 lo_space_->Unprotect();
2916 }
kasperl@chromium.orgf5aa8372009-03-24 14:47:14 +00002917}
2918
2919#endif
2920
2921
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00002922#ifdef DEBUG
2923
2924class PrintHandleVisitor: public ObjectVisitor {
2925 public:
2926 void VisitPointers(Object** start, Object** end) {
2927 for (Object** p = start; p < end; p++)
2928 PrintF(" handle %p to %p\n", p, *p);
2929 }
2930};
2931
2932void Heap::PrintHandles() {
2933 PrintF("Handles:\n");
2934 PrintHandleVisitor v;
2935 HandleScopeImplementer::Iterate(&v);
2936}
2937
2938#endif
2939
2940
ager@chromium.org9258b6b2008-09-11 09:11:10 +00002941Space* AllSpaces::next() {
2942 switch (counter_++) {
2943 case NEW_SPACE:
2944 return Heap::new_space();
2945 case OLD_POINTER_SPACE:
2946 return Heap::old_pointer_space();
2947 case OLD_DATA_SPACE:
2948 return Heap::old_data_space();
2949 case CODE_SPACE:
2950 return Heap::code_space();
2951 case MAP_SPACE:
2952 return Heap::map_space();
2953 case LO_SPACE:
2954 return Heap::lo_space();
2955 default:
2956 return NULL;
2957 }
2958}
2959
2960
2961PagedSpace* PagedSpaces::next() {
2962 switch (counter_++) {
2963 case OLD_POINTER_SPACE:
2964 return Heap::old_pointer_space();
2965 case OLD_DATA_SPACE:
2966 return Heap::old_data_space();
2967 case CODE_SPACE:
2968 return Heap::code_space();
2969 case MAP_SPACE:
2970 return Heap::map_space();
2971 default:
2972 return NULL;
2973 }
2974}
2975
2976
2977
2978OldSpace* OldSpaces::next() {
2979 switch (counter_++) {
2980 case OLD_POINTER_SPACE:
2981 return Heap::old_pointer_space();
2982 case OLD_DATA_SPACE:
2983 return Heap::old_data_space();
2984 case CODE_SPACE:
2985 return Heap::code_space();
2986 default:
2987 return NULL;
2988 }
2989}
2990
2991
kasper.lund7276f142008-07-30 08:49:36 +00002992SpaceIterator::SpaceIterator() : current_space_(FIRST_SPACE), iterator_(NULL) {
2993}
2994
2995
2996SpaceIterator::~SpaceIterator() {
2997 // Delete active iterator if any.
2998 delete iterator_;
2999}
3000
3001
3002bool SpaceIterator::has_next() {
3003 // Iterate until no more spaces.
3004 return current_space_ != LAST_SPACE;
3005}
3006
3007
3008ObjectIterator* SpaceIterator::next() {
3009 if (iterator_ != NULL) {
3010 delete iterator_;
3011 iterator_ = NULL;
3012 // Move to the next space
3013 current_space_++;
3014 if (current_space_ > LAST_SPACE) {
3015 return NULL;
3016 }
3017 }
3018
3019 // Return iterator for the new current space.
3020 return CreateIterator();
3021}
3022
3023
3024// Create an iterator for the space to iterate.
3025ObjectIterator* SpaceIterator::CreateIterator() {
3026 ASSERT(iterator_ == NULL);
3027
3028 switch (current_space_) {
3029 case NEW_SPACE:
3030 iterator_ = new SemiSpaceIterator(Heap::new_space());
3031 break;
ager@chromium.org9258b6b2008-09-11 09:11:10 +00003032 case OLD_POINTER_SPACE:
3033 iterator_ = new HeapObjectIterator(Heap::old_pointer_space());
3034 break;
3035 case OLD_DATA_SPACE:
3036 iterator_ = new HeapObjectIterator(Heap::old_data_space());
kasper.lund7276f142008-07-30 08:49:36 +00003037 break;
3038 case CODE_SPACE:
3039 iterator_ = new HeapObjectIterator(Heap::code_space());
3040 break;
3041 case MAP_SPACE:
3042 iterator_ = new HeapObjectIterator(Heap::map_space());
3043 break;
3044 case LO_SPACE:
3045 iterator_ = new LargeObjectIterator(Heap::lo_space());
3046 break;
3047 }
3048
3049 // Return the newly allocated iterator;
3050 ASSERT(iterator_ != NULL);
3051 return iterator_;
3052}
3053
3054
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003055HeapIterator::HeapIterator() {
3056 Init();
3057}
3058
3059
3060HeapIterator::~HeapIterator() {
3061 Shutdown();
3062}
3063
3064
3065void HeapIterator::Init() {
3066 // Start the iteration.
3067 space_iterator_ = new SpaceIterator();
3068 object_iterator_ = space_iterator_->next();
3069}
3070
3071
3072void HeapIterator::Shutdown() {
3073 // Make sure the last iterator is deallocated.
3074 delete space_iterator_;
3075 space_iterator_ = NULL;
3076 object_iterator_ = NULL;
3077}
3078
3079
3080bool HeapIterator::has_next() {
3081 // No iterator means we are done.
3082 if (object_iterator_ == NULL) return false;
3083
3084 if (object_iterator_->has_next_object()) {
3085 // If the current iterator has more objects we are fine.
3086 return true;
3087 } else {
3088 // Go though the spaces looking for one that has objects.
3089 while (space_iterator_->has_next()) {
3090 object_iterator_ = space_iterator_->next();
3091 if (object_iterator_->has_next_object()) {
3092 return true;
3093 }
3094 }
3095 }
3096 // Done with the last space.
3097 object_iterator_ = NULL;
3098 return false;
3099}
3100
3101
3102HeapObject* HeapIterator::next() {
3103 if (has_next()) {
3104 return object_iterator_->next_object();
3105 } else {
3106 return NULL;
3107 }
3108}
3109
3110
3111void HeapIterator::reset() {
3112 // Restart the iterator.
3113 Shutdown();
3114 Init();
3115}
3116
3117
3118//
3119// HeapProfiler class implementation.
3120//
3121#ifdef ENABLE_LOGGING_AND_PROFILING
3122void HeapProfiler::CollectStats(HeapObject* obj, HistogramInfo* info) {
3123 InstanceType type = obj->map()->instance_type();
3124 ASSERT(0 <= type && type <= LAST_TYPE);
3125 info[type].increment_number(1);
3126 info[type].increment_bytes(obj->Size());
3127}
3128#endif
3129
3130
3131#ifdef ENABLE_LOGGING_AND_PROFILING
3132void HeapProfiler::WriteSample() {
3133 LOG(HeapSampleBeginEvent("Heap", "allocated"));
3134
3135 HistogramInfo info[LAST_TYPE+1];
3136#define DEF_TYPE_NAME(name) info[name].set_name(#name);
3137 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
3138#undef DEF_TYPE_NAME
3139
3140 HeapIterator iterator;
3141 while (iterator.has_next()) {
3142 CollectStats(iterator.next(), info);
3143 }
3144
3145 // Lump all the string types together.
3146 int string_number = 0;
3147 int string_bytes = 0;
3148#define INCREMENT_SIZE(type, size, name) \
3149 string_number += info[type].number(); \
3150 string_bytes += info[type].bytes();
3151 STRING_TYPE_LIST(INCREMENT_SIZE)
3152#undef INCREMENT_SIZE
3153 if (string_bytes > 0) {
3154 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
3155 }
3156
3157 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
3158 if (info[i].bytes() > 0) {
3159 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
3160 info[i].bytes()));
3161 }
3162 }
3163
3164 LOG(HeapSampleEndEvent("Heap", "allocated"));
3165}
3166
3167
3168#endif
3169
3170
3171
3172#ifdef DEBUG
3173
3174static bool search_for_any_global;
3175static Object* search_target;
3176static bool found_target;
3177static List<Object*> object_stack(20);
3178
3179
3180// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
3181static const int kMarkTag = 2;
3182
3183static void MarkObjectRecursively(Object** p);
3184class MarkObjectVisitor : public ObjectVisitor {
3185 public:
3186 void VisitPointers(Object** start, Object** end) {
3187 // Copy all HeapObject pointers in [start, end)
3188 for (Object** p = start; p < end; p++) {
3189 if ((*p)->IsHeapObject())
3190 MarkObjectRecursively(p);
3191 }
3192 }
3193};
3194
3195static MarkObjectVisitor mark_visitor;
3196
3197static void MarkObjectRecursively(Object** p) {
3198 if (!(*p)->IsHeapObject()) return;
3199
3200 HeapObject* obj = HeapObject::cast(*p);
3201
3202 Object* map = obj->map();
3203
3204 if (!map->IsHeapObject()) return; // visited before
3205
3206 if (found_target) return; // stop if target found
3207 object_stack.Add(obj);
3208 if ((search_for_any_global && obj->IsJSGlobalObject()) ||
3209 (!search_for_any_global && (obj == search_target))) {
3210 found_target = true;
3211 return;
3212 }
3213
3214 if (obj->IsCode()) {
3215 Code::cast(obj)->ConvertICTargetsFromAddressToObject();
3216 }
3217
3218 // not visited yet
3219 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
3220
3221 Address map_addr = map_p->address();
3222
3223 obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
3224
3225 MarkObjectRecursively(&map);
3226
3227 obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
3228 &mark_visitor);
3229
3230 if (!found_target) // don't pop if found the target
3231 object_stack.RemoveLast();
3232}
3233
3234
3235static void UnmarkObjectRecursively(Object** p);
3236class UnmarkObjectVisitor : public ObjectVisitor {
3237 public:
3238 void VisitPointers(Object** start, Object** end) {
3239 // Copy all HeapObject pointers in [start, end)
3240 for (Object** p = start; p < end; p++) {
3241 if ((*p)->IsHeapObject())
3242 UnmarkObjectRecursively(p);
3243 }
3244 }
3245};
3246
3247static UnmarkObjectVisitor unmark_visitor;
3248
3249static void UnmarkObjectRecursively(Object** p) {
3250 if (!(*p)->IsHeapObject()) return;
3251
3252 HeapObject* obj = HeapObject::cast(*p);
3253
3254 Object* map = obj->map();
3255
3256 if (map->IsHeapObject()) return; // unmarked already
3257
3258 Address map_addr = reinterpret_cast<Address>(map);
3259
3260 map_addr -= kMarkTag;
3261
3262 ASSERT_TAG_ALIGNED(map_addr);
3263
3264 HeapObject* map_p = HeapObject::FromAddress(map_addr);
3265
3266 obj->set_map(reinterpret_cast<Map*>(map_p));
3267
3268 UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
3269
3270 obj->IterateBody(Map::cast(map_p)->instance_type(),
3271 obj->SizeFromMap(Map::cast(map_p)),
3272 &unmark_visitor);
3273
3274 if (obj->IsCode()) {
3275 Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
3276 }
3277}
3278
3279
3280static void MarkRootObjectRecursively(Object** root) {
3281 if (search_for_any_global) {
3282 ASSERT(search_target == NULL);
3283 } else {
3284 ASSERT(search_target->IsHeapObject());
3285 }
3286 found_target = false;
3287 object_stack.Clear();
3288
3289 MarkObjectRecursively(root);
3290 UnmarkObjectRecursively(root);
3291
3292 if (found_target) {
3293 PrintF("=====================================\n");
3294 PrintF("==== Path to object ====\n");
3295 PrintF("=====================================\n\n");
3296
3297 ASSERT(!object_stack.is_empty());
3298 for (int i = 0; i < object_stack.length(); i++) {
3299 if (i > 0) PrintF("\n |\n |\n V\n\n");
3300 Object* obj = object_stack[i];
3301 obj->Print();
3302 }
3303 PrintF("=====================================\n");
3304 }
3305}
3306
3307
3308// Helper class for visiting HeapObjects recursively.
3309class MarkRootVisitor: public ObjectVisitor {
3310 public:
3311 void VisitPointers(Object** start, Object** end) {
3312 // Visit all HeapObject pointers in [start, end)
3313 for (Object** p = start; p < end; p++) {
3314 if ((*p)->IsHeapObject())
3315 MarkRootObjectRecursively(p);
3316 }
3317 }
3318};
3319
3320
3321// Triggers a depth-first traversal of reachable objects from roots
3322// and finds a path to a specific heap object and prints it.
3323void Heap::TracePathToObject() {
3324 search_target = NULL;
3325 search_for_any_global = false;
3326
3327 MarkRootVisitor root_visitor;
3328 IterateRoots(&root_visitor);
3329}
3330
3331
3332// Triggers a depth-first traversal of reachable objects from roots
3333// and finds a path to any global object and prints it. Useful for
3334// determining the source for leaks of global objects.
3335void Heap::TracePathToGlobal() {
3336 search_target = NULL;
3337 search_for_any_global = true;
3338
3339 MarkRootVisitor root_visitor;
3340 IterateRoots(&root_visitor);
3341}
3342#endif
3343
3344
kasper.lund7276f142008-07-30 08:49:36 +00003345GCTracer::GCTracer()
3346 : start_time_(0.0),
3347 start_size_(0.0),
3348 gc_count_(0),
3349 full_gc_count_(0),
3350 is_compacting_(false),
3351 marked_count_(0) {
3352 // These two fields reflect the state of the previous full collection.
3353 // Set them before they are changed by the collector.
3354 previous_has_compacted_ = MarkCompactCollector::HasCompacted();
3355 previous_marked_count_ = MarkCompactCollector::previous_marked_count();
3356 if (!FLAG_trace_gc) return;
3357 start_time_ = OS::TimeCurrentMillis();
3358 start_size_ = SizeOfHeapObjects();
3359}
3360
3361
3362GCTracer::~GCTracer() {
3363 if (!FLAG_trace_gc) return;
3364 // Printf ONE line iff flag is set.
3365 PrintF("%s %.1f -> %.1f MB, %d ms.\n",
3366 CollectorString(),
3367 start_size_, SizeOfHeapObjects(),
3368 static_cast<int>(OS::TimeCurrentMillis() - start_time_));
3369}
3370
3371
3372const char* GCTracer::CollectorString() {
3373 switch (collector_) {
3374 case SCAVENGER:
3375 return "Scavenge";
3376 case MARK_COMPACTOR:
3377 return MarkCompactCollector::HasCompacted() ? "Mark-compact"
3378 : "Mark-sweep";
3379 }
3380 return "Unknown GC";
3381}
3382
3383
kasperl@chromium.org5a8ca6c2008-10-23 13:57:19 +00003384#ifdef DEBUG
3385bool Heap::GarbageCollectionGreedyCheck() {
3386 ASSERT(FLAG_gc_greedy);
3387 if (Bootstrapper::IsActive()) return true;
3388 if (disallow_allocation_failure()) return true;
3389 return CollectGarbage(0, NEW_SPACE);
3390}
3391#endif
3392
christian.plesner.hansen43d26ec2008-07-03 15:10:15 +00003393} } // namespace v8::internal