blob: fc87726a2115f07c9a1253bb02215b61e7573399 [file] [log] [blame]
Chris Lattner9fba49a2007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner959e5be2007-12-29 19:59:25 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner9fba49a2007-08-24 05:35:26 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
Daniel Dunbareee5cd12008-08-11 05:00:27 +000016#include "clang/AST/ASTContext.h"
Daniel Dunbarfa456242008-08-12 05:08:18 +000017#include "clang/AST/DeclObjC.h"
Daniel Dunbareee5cd12008-08-11 05:00:27 +000018#include "clang/AST/StmtVisitor.h"
Chris Lattnerd54d1f22008-04-20 00:50:39 +000019#include "clang/Basic/TargetInfo.h"
Chris Lattner9fba49a2007-08-24 05:35:26 +000020#include "llvm/Constants.h"
21#include "llvm/Function.h"
Anders Carlsson36f07d82007-10-29 05:01:08 +000022#include "llvm/GlobalVariable.h"
Anders Carlsson36760332007-10-15 20:28:48 +000023#include "llvm/Intrinsics.h"
Chris Lattner9fba49a2007-08-24 05:35:26 +000024#include "llvm/Support/Compiler.h"
Chris Lattner7f80bb32008-11-12 08:38:24 +000025#include "llvm/Support/CFG.h"
Chris Lattnerc2126682008-01-03 07:05:49 +000026#include <cstdarg>
Ted Kremenek03cf4df2007-12-10 23:44:32 +000027
Chris Lattner9fba49a2007-08-24 05:35:26 +000028using namespace clang;
29using namespace CodeGen;
30using llvm::Value;
31
32//===----------------------------------------------------------------------===//
33// Scalar Expression Emitter
34//===----------------------------------------------------------------------===//
35
36struct BinOpInfo {
37 Value *LHS;
38 Value *RHS;
Chris Lattner660e31d2007-08-24 21:00:35 +000039 QualType Ty; // Computation Type.
Chris Lattner9fba49a2007-08-24 05:35:26 +000040 const BinaryOperator *E;
41};
42
43namespace {
44class VISIBILITY_HIDDEN ScalarExprEmitter
45 : public StmtVisitor<ScalarExprEmitter, Value*> {
46 CodeGenFunction &CGF;
Daniel Dunbard916e6e2008-11-01 01:53:16 +000047 CGBuilderTy &Builder;
Chris Lattnercbfb5512008-03-01 08:45:05 +000048
Chris Lattner9fba49a2007-08-24 05:35:26 +000049public:
50
Chris Lattnercbfb5512008-03-01 08:45:05 +000051 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
Daniel Dunbarf1f7f192008-08-20 00:28:19 +000052 Builder(CGF.Builder) {
Chris Lattner9fba49a2007-08-24 05:35:26 +000053 }
Chris Lattner9fba49a2007-08-24 05:35:26 +000054
55 //===--------------------------------------------------------------------===//
56 // Utilities
57 //===--------------------------------------------------------------------===//
58
59 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
60 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
61
62 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +000063 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +000064 }
65
66 /// EmitLoadOfLValue - Given an expression with complex type that represents a
67 /// value l-value, this method emits the address of the l-value, then loads
68 /// and returns the result.
69 Value *EmitLoadOfLValue(const Expr *E) {
70 // FIXME: Volatile
71 return EmitLoadOfLValue(EmitLValue(E), E->getType());
72 }
73
Chris Lattnerd8d44222007-08-26 16:42:57 +000074 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +000075 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +000076 Value *EmitConversionToBool(Value *Src, QualType DstTy);
77
Chris Lattner4e05d1e2007-08-26 06:48:56 +000078 /// EmitScalarConversion - Emit a conversion from the specified type to the
79 /// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +000080 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
81
82 /// EmitComplexToScalarConversion - Emit a conversion from the specified
83 /// complex type to the specified destination type, where the destination
84 /// type is an LLVM scalar type.
85 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
86 QualType SrcTy, QualType DstTy);
Chris Lattner4e05d1e2007-08-26 06:48:56 +000087
Chris Lattner9fba49a2007-08-24 05:35:26 +000088 //===--------------------------------------------------------------------===//
89 // Visitor Methods
90 //===--------------------------------------------------------------------===//
91
92 Value *VisitStmt(Stmt *S) {
Ted Kremenekb3ee1932007-12-11 21:27:55 +000093 S->dump(CGF.getContext().getSourceManager());
Chris Lattner9fba49a2007-08-24 05:35:26 +000094 assert(0 && "Stmt can't have complex result type!");
95 return 0;
96 }
97 Value *VisitExpr(Expr *S);
98 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
99
100 // Leaves.
101 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
102 return llvm::ConstantInt::get(E->getValue());
103 }
104 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattner70c38672008-04-20 00:45:53 +0000105 return llvm::ConstantFP::get(E->getValue());
Chris Lattner9fba49a2007-08-24 05:35:26 +0000106 }
107 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
108 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
109 }
Nate Begemane9bfe6d2007-11-15 05:40:03 +0000110 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
111 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112 }
Argiris Kirtzidis750eb972008-08-23 19:35:47 +0000113 Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
114 return llvm::Constant::getNullValue(ConvertType(E->getType()));
115 }
Anders Carlsson774f9c72008-12-21 22:39:40 +0000116 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
117 return llvm::Constant::getNullValue(ConvertType(E->getType()));
118 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000119 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
120 return llvm::ConstantInt::get(ConvertType(E->getType()),
Steve Naroff85f0dc52007-10-15 20:41:53 +0000121 CGF.getContext().typesAreCompatible(
122 E->getArgType1(), E->getArgType2()));
Chris Lattner9fba49a2007-08-24 05:35:26 +0000123 }
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000124 Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
Daniel Dunbar879788d2008-08-04 16:51:22 +0000125 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
Daniel Dunbarb5fda0c2008-08-16 01:41:47 +0000126 llvm::Value *V =
127 llvm::ConstantInt::get(llvm::Type::Int32Ty,
128 CGF.GetIDForAddrOfLabel(E->getLabel()));
129
130 return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
Daniel Dunbar879788d2008-08-04 16:51:22 +0000131 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000132
133 // l-values.
134 Value *VisitDeclRefExpr(DeclRefExpr *E) {
135 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
136 return llvm::ConstantInt::get(EC->getInitVal());
137 return EmitLoadOfLValue(E);
138 }
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000139 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
140 return CGF.EmitObjCSelectorExpr(E);
141 }
142 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
143 return CGF.EmitObjCProtocolExpr(E);
144 }
145 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
146 return EmitLoadOfLValue(E);
147 }
Daniel Dunbar5e105892008-08-23 10:51:21 +0000148 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
Daniel Dunbare6c31752008-08-29 08:11:39 +0000149 return EmitLoadOfLValue(E);
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000150 }
Fariborz Jahanianb0973da2008-11-22 22:30:21 +0000151 Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
152 return EmitLoadOfLValue(E);
153 }
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000154 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
155 return CGF.EmitObjCMessageExpr(E).getScalarVal();
Daniel Dunbar5e105892008-08-23 10:51:21 +0000156 }
157
Chris Lattner9fba49a2007-08-24 05:35:26 +0000158 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Eli Friedmand0e9d092008-05-14 19:38:39 +0000159 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000160 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
Nate Begemanaf6ed502008-04-18 23:10:10 +0000161 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Chris Lattnera9177982008-10-26 23:53:12 +0000162 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
163 return EmitLoadOfLValue(E);
164 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000165 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
Chris Lattner69909292008-08-10 01:53:14 +0000166 Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
Devang Patel01ab1302007-10-24 17:18:43 +0000167
168 Value *VisitInitListExpr(InitListExpr *E) {
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000169 unsigned NumInitElements = E->getNumInits();
170
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000171 const llvm::VectorType *VType =
Anders Carlsson35ab4f92008-01-29 01:15:48 +0000172 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
173
174 // We have a scalar in braces. Just use the first element.
175 if (!VType)
176 return Visit(E->getInit(0));
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000177
Chris Lattnera9177982008-10-26 23:53:12 +0000178 if (E->hadDesignators()) {
179 CGF.ErrorUnsupported(E, "initializer list with designators");
180 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
181 }
182
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000183 unsigned NumVectorElements = VType->getNumElements();
184 const llvm::Type *ElementType = VType->getElementType();
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000185
186 // Emit individual vector element stores.
187 llvm::Value *V = llvm::UndefValue::get(VType);
188
Anders Carlsson323d5682007-12-18 02:45:33 +0000189 // Emit initializers
190 unsigned i;
191 for (i = 0; i < NumInitElements; ++i) {
Devang Patel32c39832007-10-24 18:05:48 +0000192 Value *NewV = Visit(E->getInit(i));
193 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
194 V = Builder.CreateInsertElement(V, NewV, Idx);
Devang Patel01ab1302007-10-24 17:18:43 +0000195 }
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000196
197 // Emit remaining default initializers
198 for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
199 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
200 llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
201 V = Builder.CreateInsertElement(V, NewV, Idx);
202 }
203
Devang Patel32c39832007-10-24 18:05:48 +0000204 return V;
Devang Patel01ab1302007-10-24 17:18:43 +0000205 }
Chris Lattner3e254fb2008-04-08 04:40:51 +0000206
Chris Lattner9fba49a2007-08-24 05:35:26 +0000207 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
208 Value *VisitCastExpr(const CastExpr *E) {
209 return EmitCastExpr(E->getSubExpr(), E->getType());
210 }
211 Value *EmitCastExpr(const Expr *E, QualType T);
212
213 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000214 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000215 }
Daniel Dunbara04840b2008-08-23 03:46:30 +0000216
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000217 Value *VisitStmtExpr(const StmtExpr *E);
218
Chris Lattner9fba49a2007-08-24 05:35:26 +0000219 // Unary Operators.
220 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
221 Value *VisitUnaryPostDec(const UnaryOperator *E) {
222 return VisitPrePostIncDec(E, false, false);
223 }
224 Value *VisitUnaryPostInc(const UnaryOperator *E) {
225 return VisitPrePostIncDec(E, true, false);
226 }
227 Value *VisitUnaryPreDec(const UnaryOperator *E) {
228 return VisitPrePostIncDec(E, false, true);
229 }
230 Value *VisitUnaryPreInc(const UnaryOperator *E) {
231 return VisitPrePostIncDec(E, true, true);
232 }
233 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
234 return EmitLValue(E->getSubExpr()).getAddress();
235 }
236 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
237 Value *VisitUnaryPlus(const UnaryOperator *E) {
238 return Visit(E->getSubExpr());
239 }
240 Value *VisitUnaryMinus (const UnaryOperator *E);
241 Value *VisitUnaryNot (const UnaryOperator *E);
242 Value *VisitUnaryLNot (const UnaryOperator *E);
Chris Lattner01211af2007-08-24 21:20:17 +0000243 Value *VisitUnaryReal (const UnaryOperator *E);
244 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000245 Value *VisitUnaryExtension(const UnaryOperator *E) {
246 return Visit(E->getSubExpr());
247 }
Anders Carlsson52774ad2008-01-29 15:56:48 +0000248 Value *VisitUnaryOffsetOf(const UnaryOperator *E);
Chris Lattner3e254fb2008-04-08 04:40:51 +0000249 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
250 return Visit(DAE->getExpr());
251 }
Anders Carlsson52774ad2008-01-29 15:56:48 +0000252
Chris Lattner9fba49a2007-08-24 05:35:26 +0000253 // Binary Operators.
Chris Lattner9fba49a2007-08-24 05:35:26 +0000254 Value *EmitMul(const BinOpInfo &Ops) {
255 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
256 }
257 Value *EmitDiv(const BinOpInfo &Ops);
258 Value *EmitRem(const BinOpInfo &Ops);
259 Value *EmitAdd(const BinOpInfo &Ops);
260 Value *EmitSub(const BinOpInfo &Ops);
261 Value *EmitShl(const BinOpInfo &Ops);
262 Value *EmitShr(const BinOpInfo &Ops);
263 Value *EmitAnd(const BinOpInfo &Ops) {
264 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
265 }
266 Value *EmitXor(const BinOpInfo &Ops) {
267 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
268 }
269 Value *EmitOr (const BinOpInfo &Ops) {
270 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
271 }
272
Chris Lattner660e31d2007-08-24 21:00:35 +0000273 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner0d965302007-08-26 21:41:21 +0000274 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000275 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
276
277 // Binary operators and binary compound assignment operators.
278#define HANDLEBINOP(OP) \
Chris Lattner0d965302007-08-26 21:41:21 +0000279 Value *VisitBin ## OP(const BinaryOperator *E) { \
280 return Emit ## OP(EmitBinOps(E)); \
281 } \
282 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
283 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner660e31d2007-08-24 21:00:35 +0000284 }
285 HANDLEBINOP(Mul);
286 HANDLEBINOP(Div);
287 HANDLEBINOP(Rem);
288 HANDLEBINOP(Add);
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000289 HANDLEBINOP(Sub);
Chris Lattner660e31d2007-08-24 21:00:35 +0000290 HANDLEBINOP(Shl);
291 HANDLEBINOP(Shr);
292 HANDLEBINOP(And);
293 HANDLEBINOP(Xor);
294 HANDLEBINOP(Or);
295#undef HANDLEBINOP
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000296
Chris Lattner9fba49a2007-08-24 05:35:26 +0000297 // Comparisons.
298 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
299 unsigned SICmpOpc, unsigned FCmpOpc);
300#define VISITCOMP(CODE, UI, SI, FP) \
301 Value *VisitBin##CODE(const BinaryOperator *E) { \
302 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
303 llvm::FCmpInst::FP); }
304 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
305 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
306 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
307 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
308 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
309 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
310#undef VISITCOMP
311
312 Value *VisitBinAssign (const BinaryOperator *E);
313
314 Value *VisitBinLAnd (const BinaryOperator *E);
315 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000316 Value *VisitBinComma (const BinaryOperator *E);
317
318 // Other Operators.
Daniel Dunbarbf5eb6c2009-01-09 17:04:29 +0000319 Value *VisitBlockExpr(const BlockExpr *BE) {
320 CGF.ErrorUnsupported(BE, "block expression");
321 return llvm::UndefValue::get(CGF.ConvertType(BE->getType()));
322 }
323
Chris Lattner9fba49a2007-08-24 05:35:26 +0000324 Value *VisitConditionalOperator(const ConditionalOperator *CO);
325 Value *VisitChooseExpr(ChooseExpr *CE);
Nate Begeman9f3bfb72008-01-17 17:46:27 +0000326 Value *VisitOverloadExpr(OverloadExpr *OE);
Anders Carlsson36760332007-10-15 20:28:48 +0000327 Value *VisitVAArgExpr(VAArgExpr *VE);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000328 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
329 return CGF.EmitObjCStringLiteral(E);
330 }
Anders Carlsson36f07d82007-10-29 05:01:08 +0000331 Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000332};
333} // end anonymous namespace.
334
335//===----------------------------------------------------------------------===//
336// Utilities
337//===----------------------------------------------------------------------===//
338
Chris Lattnerd8d44222007-08-26 16:42:57 +0000339/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +0000340/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +0000341Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
342 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
343
344 if (SrcType->isRealFloatingType()) {
345 // Compare against 0.0 for fp scalars.
346 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattnerd8d44222007-08-26 16:42:57 +0000347 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
348 }
349
Daniel Dunbar5d54eed2008-08-25 10:38:11 +0000350 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
Chris Lattnerd8d44222007-08-26 16:42:57 +0000351 "Unknown scalar type to convert");
352
353 // Because of the type rules of C, we often end up computing a logical value,
354 // then zero extending it to int, then wanting it as a logical value again.
355 // Optimize this common case.
356 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
357 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
358 Value *Result = ZI->getOperand(0);
Eli Friedman24f33972008-01-29 18:13:51 +0000359 // If there aren't any more uses, zap the instruction to save space.
360 // Note that there can be more uses, for example if this
361 // is the result of an assignment.
362 if (ZI->use_empty())
363 ZI->eraseFromParent();
Chris Lattnerd8d44222007-08-26 16:42:57 +0000364 return Result;
365 }
366 }
367
368 // Compare against an integer or pointer null.
369 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
370 return Builder.CreateICmpNE(Src, Zero, "tobool");
371}
372
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000373/// EmitScalarConversion - Emit a conversion from the specified type to the
374/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000375Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
376 QualType DstType) {
Chris Lattnerc154ac12008-07-26 22:37:01 +0000377 SrcType = CGF.getContext().getCanonicalType(SrcType);
378 DstType = CGF.getContext().getCanonicalType(DstType);
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000379 if (SrcType == DstType) return Src;
Chris Lattnere133d7f2007-08-26 07:21:11 +0000380
381 if (DstType->isVoidType()) return 0;
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000382
383 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnerc39c3652007-08-26 16:52:28 +0000384 if (DstType->isBooleanType())
385 return EmitConversionToBool(Src, SrcType);
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000386
387 const llvm::Type *DstTy = ConvertType(DstType);
388
389 // Ignore conversions like int -> uint.
390 if (Src->getType() == DstTy)
391 return Src;
392
Daniel Dunbar238335f2008-08-25 09:51:32 +0000393 // Handle pointer conversions next: pointers can only be converted
394 // to/from other pointers and integers. Check for pointer types in
395 // terms of LLVM, as some native types (like Obj-C id) may map to a
396 // pointer type.
397 if (isa<llvm::PointerType>(DstTy)) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000398 // The source value may be an integer, or a pointer.
399 if (isa<llvm::PointerType>(Src->getType()))
400 return Builder.CreateBitCast(Src, DstTy, "conv");
401 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
402 return Builder.CreateIntToPtr(Src, DstTy, "conv");
403 }
404
Daniel Dunbar238335f2008-08-25 09:51:32 +0000405 if (isa<llvm::PointerType>(Src->getType())) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000406 // Must be an ptr to int cast.
407 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
Anders Carlsson44db38f2007-10-31 23:18:02 +0000408 return Builder.CreatePtrToInt(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000409 }
410
Nate Begemanaf6ed502008-04-18 23:10:10 +0000411 // A scalar can be splatted to an extended vector of the same element type
Nate Begeman7903d052009-01-18 06:42:49 +0000412 if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
413 // Cast the scalar to element type
414 QualType EltTy = DstType->getAsExtVectorType()->getElementType();
415 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
416
417 // Insert the element in element zero of an undef vector
418 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
419 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
420 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
421
422 // Splat the element across to all elements
423 llvm::SmallVector<llvm::Constant*, 16> Args;
424 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
425 for (unsigned i = 0; i < NumElements; i++)
426 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
427
428 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
429 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
430 return Yay;
431 }
Nate Begemanec2d1062007-12-30 02:59:45 +0000432
Chris Lattner4f025a42008-02-02 04:51:41 +0000433 // Allow bitcast from vector to integer/fp of the same size.
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000434 if (isa<llvm::VectorType>(Src->getType()) ||
Chris Lattner4f025a42008-02-02 04:51:41 +0000435 isa<llvm::VectorType>(DstTy))
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000436 return Builder.CreateBitCast(Src, DstTy, "conv");
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000437
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000438 // Finally, we have the arithmetic types: real int/float.
439 if (isa<llvm::IntegerType>(Src->getType())) {
440 bool InputSigned = SrcType->isSignedIntegerType();
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000441 if (isa<llvm::IntegerType>(DstTy))
442 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
443 else if (InputSigned)
444 return Builder.CreateSIToFP(Src, DstTy, "conv");
445 else
446 return Builder.CreateUIToFP(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000447 }
448
449 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
450 if (isa<llvm::IntegerType>(DstTy)) {
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000451 if (DstType->isSignedIntegerType())
452 return Builder.CreateFPToSI(Src, DstTy, "conv");
453 else
454 return Builder.CreateFPToUI(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000455 }
456
457 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000458 if (DstTy->getTypeID() < Src->getType()->getTypeID())
459 return Builder.CreateFPTrunc(Src, DstTy, "conv");
460 else
461 return Builder.CreateFPExt(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000462}
463
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000464/// EmitComplexToScalarConversion - Emit a conversion from the specified
465/// complex type to the specified destination type, where the destination
466/// type is an LLVM scalar type.
467Value *ScalarExprEmitter::
468EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
469 QualType SrcTy, QualType DstTy) {
Chris Lattnerc39c3652007-08-26 16:52:28 +0000470 // Get the source element type.
Chris Lattnerc154ac12008-07-26 22:37:01 +0000471 SrcTy = SrcTy->getAsComplexType()->getElementType();
Chris Lattnerc39c3652007-08-26 16:52:28 +0000472
473 // Handle conversions to bool first, they are special: comparisons against 0.
474 if (DstTy->isBooleanType()) {
475 // Complex != 0 -> (Real != 0) | (Imag != 0)
476 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
477 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
478 return Builder.CreateOr(Src.first, Src.second, "tobool");
479 }
480
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000481 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
482 // the imaginary part of the complex value is discarded and the value of the
483 // real part is converted according to the conversion rules for the
484 // corresponding real type.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000485 return EmitScalarConversion(Src.first, SrcTy, DstTy);
486}
487
488
Chris Lattner9fba49a2007-08-24 05:35:26 +0000489//===----------------------------------------------------------------------===//
490// Visitor Methods
491//===----------------------------------------------------------------------===//
492
493Value *ScalarExprEmitter::VisitExpr(Expr *E) {
Daniel Dunbar9503b782008-08-16 00:56:44 +0000494 CGF.ErrorUnsupported(E, "scalar expression");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000495 if (E->getType()->isVoidType())
496 return 0;
497 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
498}
499
Eli Friedmand0e9d092008-05-14 19:38:39 +0000500Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
501 llvm::SmallVector<llvm::Constant*, 32> indices;
502 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
503 indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
504 }
505 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
506 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
507 Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
508 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
509}
510
Chris Lattner9fba49a2007-08-24 05:35:26 +0000511Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
512 // Emit subscript expressions in rvalue context's. For most cases, this just
513 // loads the lvalue formed by the subscript expr. However, we have to be
514 // careful, because the base of a vector subscript is occasionally an rvalue,
515 // so we can't get it as an lvalue.
516 if (!E->getBase()->getType()->isVectorType())
517 return EmitLoadOfLValue(E);
518
519 // Handle the vector case. The base must be a vector, the index must be an
520 // integer value.
521 Value *Base = Visit(E->getBase());
522 Value *Idx = Visit(E->getIdx());
523
524 // FIXME: Convert Idx to i32 type.
525 return Builder.CreateExtractElement(Base, Idx, "vecext");
526}
527
528/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
529/// also handle things like function to pointer-to-function decay, and array to
530/// pointer decay.
531Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
532 const Expr *Op = E->getSubExpr();
533
534 // If this is due to array->pointer conversion, emit the array expression as
535 // an l-value.
536 if (Op->getType()->isArrayType()) {
537 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
538 // will not true when we add support for VLAs.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000539 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Eli Friedman8fef47e2008-12-20 23:11:59 +0000540
541 if (!Op->getType()->isVariableArrayType()) {
542 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
543 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
544 ->getElementType()) &&
545 "Expected pointer to array");
546 V = Builder.CreateStructGEP(V, 0, "arraydecay");
Daniel Dunbar952f4732008-08-29 17:28:43 +0000547 }
Chris Lattnere54443b2007-12-12 04:13:20 +0000548
549 // The resultant pointer type can be implicitly casted to other pointer
Chris Lattner3b8f5c62008-07-23 06:31:27 +0000550 // types as well (e.g. void*) and can be implicitly converted to integer.
551 const llvm::Type *DestTy = ConvertType(E->getType());
552 if (V->getType() != DestTy) {
553 if (isa<llvm::PointerType>(DestTy))
554 V = Builder.CreateBitCast(V, DestTy, "ptrconv");
555 else {
556 assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
557 V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
558 }
559 }
Chris Lattnere54443b2007-12-12 04:13:20 +0000560 return V;
561
Anders Carlssoncebb8d62007-10-12 23:56:29 +0000562 } else if (E->getType()->isReferenceType()) {
Anders Carlssoncebb8d62007-10-12 23:56:29 +0000563 return EmitLValue(Op).getAddress();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000564 }
565
566 return EmitCastExpr(Op, E->getType());
567}
568
569
570// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
571// have to handle a more broad range of conversions than explicit casts, as they
572// handle things like function to ptr-to-function decay etc.
573Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner82e10392007-08-26 07:26:12 +0000574 // Handle cases where the source is an non-complex type.
Chris Lattner77288792008-02-16 23:55:16 +0000575
576 if (!CGF.hasAggregateLLVMType(E->getType())) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000577 Value *Src = Visit(const_cast<Expr*>(E));
578
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000579 // Use EmitScalarConversion to perform the conversion.
580 return EmitScalarConversion(Src, E->getType(), DestTy);
581 }
Chris Lattner77288792008-02-16 23:55:16 +0000582
Chris Lattnerde0908b2008-04-04 16:54:41 +0000583 if (E->getType()->isAnyComplexType()) {
Chris Lattner77288792008-02-16 23:55:16 +0000584 // Handle cases where the source is a complex type.
585 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
586 DestTy);
587 }
Chris Lattnerd579f7f2007-08-26 07:16:41 +0000588
Chris Lattner77288792008-02-16 23:55:16 +0000589 // Okay, this is a cast from an aggregate. It must be a cast to void. Just
590 // evaluate the result and return.
591 CGF.EmitAggExpr(E, 0, false);
592 return 0;
Chris Lattner9fba49a2007-08-24 05:35:26 +0000593}
594
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000595Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner09cee852008-07-26 20:23:23 +0000596 return CGF.EmitCompoundStmt(*E->getSubStmt(),
597 !E->getType()->isVoidType()).getScalarVal();
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000598}
599
600
Chris Lattner9fba49a2007-08-24 05:35:26 +0000601//===----------------------------------------------------------------------===//
602// Unary Operators
603//===----------------------------------------------------------------------===//
604
605Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattner855e3d72007-08-24 16:24:49 +0000606 bool isInc, bool isPre) {
Chris Lattner9fba49a2007-08-24 05:35:26 +0000607 LValue LV = EmitLValue(E->getSubExpr());
608 // FIXME: Handle volatile!
Chris Lattner0dc11f62007-08-26 05:10:16 +0000609 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000610 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000611
612 int AmountVal = isInc ? 1 : -1;
613
614 Value *NextVal;
Chris Lattner0dc11f62007-08-26 05:10:16 +0000615 if (isa<llvm::PointerType>(InVal->getType())) {
616 // FIXME: This isn't right for VLAs.
617 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
Chris Lattner07307562008-03-19 05:19:41 +0000618 NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
Chris Lattner0dc11f62007-08-26 05:10:16 +0000619 } else {
620 // Add the inc/dec to the real part.
621 if (isa<llvm::IntegerType>(InVal->getType()))
622 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerb2a7dab2007-09-13 06:19:18 +0000623 else if (InVal->getType() == llvm::Type::FloatTy)
Devang Patel0f2a8fb2007-10-30 20:59:40 +0000624 NextVal =
Chris Lattner70c38672008-04-20 00:45:53 +0000625 llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000626 else if (InVal->getType() == llvm::Type::DoubleTy)
Devang Patel0f2a8fb2007-10-30 20:59:40 +0000627 NextVal =
Chris Lattner70c38672008-04-20 00:45:53 +0000628 llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000629 else {
630 llvm::APFloat F(static_cast<float>(AmountVal));
Dale Johannesen2461f612008-10-09 23:02:32 +0000631 bool ignored;
632 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
633 &ignored);
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000634 NextVal = llvm::ConstantFP::get(F);
Chris Lattnerb2a7dab2007-09-13 06:19:18 +0000635 }
Chris Lattner0dc11f62007-08-26 05:10:16 +0000636 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
637 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000638
639 // Store the updated result through the lvalue.
640 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
641 E->getSubExpr()->getType());
642
643 // If this is a postinc, return the value read from memory, otherwise use the
644 // updated value.
645 return isPre ? NextVal : InVal;
646}
647
648
649Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
650 Value *Op = Visit(E->getSubExpr());
651 return Builder.CreateNeg(Op, "neg");
652}
653
654Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
655 Value *Op = Visit(E->getSubExpr());
656 return Builder.CreateNot(Op, "neg");
657}
658
659Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
660 // Compare operand to zero.
661 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
662
663 // Invert value.
664 // TODO: Could dynamically modify easy computations here. For example, if
665 // the operand is an icmp ne, turn into icmp eq.
666 BoolVal = Builder.CreateNot(BoolVal, "lnot");
667
668 // ZExt result to int.
669 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
670}
671
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000672/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
673/// argument of the sizeof expression as an integer.
674Value *
675ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
676 QualType RetType = E->getType();
Chris Lattner20515462008-02-21 05:45:29 +0000677 assert(RetType->isIntegerType() && "Result type must be an integer!");
678 uint32_t ResultWidth =
Chris Lattner8cd0e932008-03-05 18:54:05 +0000679 static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
Chris Lattner20515462008-02-21 05:45:29 +0000680
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000681 QualType TypeToSize = E->getTypeOfArgument();
Daniel Dunbarfdb7acd2008-07-22 01:35:47 +0000682 // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
683 // for function types.
Daniel Dunbar1c73aa22008-07-22 19:44:18 +0000684 // FIXME: what is alignof a function type in gcc?
Daniel Dunbarfdb7acd2008-07-22 01:35:47 +0000685 if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
Chris Lattner20515462008-02-21 05:45:29 +0000686 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
687
Anders Carlsson9be6aaf2008-12-12 07:38:43 +0000688 if (const VariableArrayType *VAT =
689 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
Anders Carlsson6cb99b72008-12-21 03:33:21 +0000690 if (E->isSizeOf()) {
691 if (E->isArgumentType()) {
692 // sizeof(type) - make sure to emit the VLA size.
693 CGF.EmitVLASize(TypeToSize);
694 }
Anders Carlsson9be6aaf2008-12-12 07:38:43 +0000695 return CGF.GetVLASize(VAT);
Anders Carlsson6cb99b72008-12-21 03:33:21 +0000696 }
Anders Carlsson1c488192008-12-21 03:48:05 +0000697
698 // alignof
699 QualType BaseType = CGF.getContext().getBaseElementType(VAT);
700 uint64_t Align = CGF.getContext().getTypeAlign(BaseType);
701
702 Align /= 8; // Return alignment in bytes, not bits.
703 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Align));
Anders Carlsson9be6aaf2008-12-12 07:38:43 +0000704 }
Fariborz Jahanian56b6a1e2009-01-16 00:57:08 +0000705 if (TypeToSize->isObjCInterfaceType()) {
706 ObjCInterfaceDecl *OI = TypeToSize->getAsObjCInterfaceType()->getDecl();
Fariborz Jahanian8a00a8d2009-01-16 19:02:53 +0000707 RecordDecl *RD = const_cast<RecordDecl*>(
708 CGF.getContext().addRecordToClass(OI));
709 TypeToSize = CGF.getContext().getTagDeclType(static_cast<TagDecl*>(RD));
Fariborz Jahanian56b6a1e2009-01-16 00:57:08 +0000710 }
Chris Lattner8cd0e932008-03-05 18:54:05 +0000711 std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000712
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000713 uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
Chris Lattner9fba49a2007-08-24 05:35:26 +0000714 Val /= 8; // Return size in bytes, not bits.
715
Chris Lattner9fba49a2007-08-24 05:35:26 +0000716 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
717}
718
Chris Lattner01211af2007-08-24 21:20:17 +0000719Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
720 Expr *Op = E->getSubExpr();
Chris Lattnerde0908b2008-04-04 16:54:41 +0000721 if (Op->getType()->isAnyComplexType())
Chris Lattner01211af2007-08-24 21:20:17 +0000722 return CGF.EmitComplexExpr(Op).first;
723 return Visit(Op);
724}
725Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
726 Expr *Op = E->getSubExpr();
Chris Lattnerde0908b2008-04-04 16:54:41 +0000727 if (Op->getType()->isAnyComplexType())
Chris Lattner01211af2007-08-24 21:20:17 +0000728 return CGF.EmitComplexExpr(Op).second;
Chris Lattnerdb8a6c92007-08-26 05:29:21 +0000729
730 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
731 // effects are evaluated.
732 CGF.EmitScalarExpr(Op);
733 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner01211af2007-08-24 21:20:17 +0000734}
735
Anders Carlsson52774ad2008-01-29 15:56:48 +0000736Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
737{
738 int64_t Val = E->evaluateOffsetOf(CGF.getContext());
739
740 assert(E->getType()->isIntegerType() && "Result type must be an integer!");
741
Chris Lattner8cd0e932008-03-05 18:54:05 +0000742 uint32_t ResultWidth =
743 static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
Anders Carlsson52774ad2008-01-29 15:56:48 +0000744 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
745}
Chris Lattner01211af2007-08-24 21:20:17 +0000746
Chris Lattner9fba49a2007-08-24 05:35:26 +0000747//===----------------------------------------------------------------------===//
748// Binary Operators
749//===----------------------------------------------------------------------===//
750
751BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
752 BinOpInfo Result;
753 Result.LHS = Visit(E->getLHS());
754 Result.RHS = Visit(E->getRHS());
Chris Lattner660e31d2007-08-24 21:00:35 +0000755 Result.Ty = E->getType();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000756 Result.E = E;
757 return Result;
758}
759
Chris Lattner0d965302007-08-26 21:41:21 +0000760Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000761 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
762 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
763
764 BinOpInfo OpInfo;
765
766 // Load the LHS and RHS operands.
767 LValue LHSLV = EmitLValue(E->getLHS());
768 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000769
770 // Determine the computation type. If the RHS is complex, then this is one of
771 // the add/sub/mul/div operators. All of these operators can be computed in
772 // with just their real component even though the computation domain really is
773 // complex.
Chris Lattner0d965302007-08-26 21:41:21 +0000774 QualType ComputeType = E->getComputationType();
Chris Lattner660e31d2007-08-24 21:00:35 +0000775
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000776 // If the computation type is complex, then the RHS is complex. Emit the RHS.
777 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
778 ComputeType = CT->getElementType();
779
780 // Emit the RHS, only keeping the real component.
781 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
782 RHSTy = RHSTy->getAsComplexType()->getElementType();
783 } else {
784 // Otherwise the RHS is a simple scalar value.
785 OpInfo.RHS = Visit(E->getRHS());
786 }
787
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000788 QualType LComputeTy, RComputeTy, ResultTy;
789
790 // Compound assignment does not contain enough information about all
791 // the types involved for pointer arithmetic cases. Figure it out
792 // here for now.
793 if (E->getLHS()->getType()->isPointerType()) {
794 // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
795 assert((E->getOpcode() == BinaryOperator::AddAssign ||
796 E->getOpcode() == BinaryOperator::SubAssign) &&
797 "Invalid compound assignment operator on pointer type.");
798 LComputeTy = E->getLHS()->getType();
799
800 if (E->getRHS()->getType()->isPointerType()) {
801 // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
802 // extension, the conversion from the pointer difference back to
803 // the LHS type is handled at the end.
804 assert(E->getOpcode() == BinaryOperator::SubAssign &&
805 "Invalid compound assignment operator on pointer type.");
806 RComputeTy = E->getLHS()->getType();
807 ResultTy = CGF.getContext().getPointerDiffType();
808 } else {
809 RComputeTy = E->getRHS()->getType();
810 ResultTy = LComputeTy;
811 }
812 } else if (E->getRHS()->getType()->isPointerType()) {
813 // Degenerate case of (int += ptr) allowed by GCC implicit cast
814 // extension.
815 assert(E->getOpcode() == BinaryOperator::AddAssign &&
816 "Invalid compound assignment operator on pointer type.");
817 LComputeTy = E->getLHS()->getType();
818 RComputeTy = E->getRHS()->getType();
819 ResultTy = RComputeTy;
820 } else {
821 LComputeTy = RComputeTy = ResultTy = ComputeType;
Chris Lattner660e31d2007-08-24 21:00:35 +0000822 }
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000823
824 // Convert the LHS/RHS values to the computation type.
825 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
826 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
827 OpInfo.Ty = ResultTy;
Chris Lattner660e31d2007-08-24 21:00:35 +0000828 OpInfo.E = E;
829
830 // Expand the binary operator.
831 Value *Result = (this->*Func)(OpInfo);
832
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000833 // Convert the result back to the LHS type.
834 Result = EmitScalarConversion(Result, ResultTy, LHSTy);
Chris Lattner660e31d2007-08-24 21:00:35 +0000835
Daniel Dunbar2668dd12008-11-19 09:36:46 +0000836 // Store the result value into the LHS lvalue. Bit-fields are
Daniel Dunbar2710fc92008-11-19 11:54:05 +0000837 // handled specially because the result is altered by the store,
838 // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
839 // the left operand after the assignment...'.
Eli Friedmanf9b930c2008-05-25 14:13:57 +0000840 if (LHSLV.isBitfield())
Daniel Dunbar2668dd12008-11-19 09:36:46 +0000841 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
842 &Result);
843 else
844 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
845
Chris Lattner660e31d2007-08-24 21:00:35 +0000846 return Result;
847}
848
849
Chris Lattner9fba49a2007-08-24 05:35:26 +0000850Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
Nate Begemanaade3bf2007-12-30 01:28:16 +0000851 if (Ops.LHS->getType()->isFPOrFPVector())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000852 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner660e31d2007-08-24 21:00:35 +0000853 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000854 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
855 else
856 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
857}
858
859Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
860 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner660e31d2007-08-24 21:00:35 +0000861 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000862 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
863 else
864 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
865}
866
867
868Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner660e31d2007-08-24 21:00:35 +0000869 if (!Ops.Ty->isPointerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000870 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner660e31d2007-08-24 21:00:35 +0000871
872 // FIXME: What about a pointer to a VLA?
Chris Lattner17c0cb02008-01-03 06:36:51 +0000873 Value *Ptr, *Idx;
874 Expr *IdxExp;
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000875 const PointerType *PT;
876 if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
Chris Lattner17c0cb02008-01-03 06:36:51 +0000877 Ptr = Ops.LHS;
878 Idx = Ops.RHS;
879 IdxExp = Ops.E->getRHS();
880 } else { // int + pointer
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000881 PT = Ops.E->getRHS()->getType()->getAsPointerType();
882 assert(PT && "Invalid add expr");
Chris Lattner17c0cb02008-01-03 06:36:51 +0000883 Ptr = Ops.RHS;
884 Idx = Ops.LHS;
885 IdxExp = Ops.E->getLHS();
886 }
887
888 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
889 if (Width < CGF.LLVMPointerWidth) {
890 // Zero or sign extend the pointer value based on whether the index is
891 // signed or not.
892 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
Chris Lattnerc154ac12008-07-26 22:37:01 +0000893 if (IdxExp->getType()->isSignedIntegerType())
Chris Lattner17c0cb02008-01-03 06:36:51 +0000894 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
895 else
896 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
897 }
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000898
899 // Explicitly handle GNU void* and function pointer arithmetic
900 // extensions. The GNU void* casts amount to no-ops since our void*
901 // type is i8*, but this is future proof.
902 const QualType ElementType = PT->getPointeeType();
903 if (ElementType->isVoidType() || ElementType->isFunctionType()) {
904 const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
905 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
906 Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
907 return Builder.CreateBitCast(Res, Ptr->getType());
908 }
Chris Lattner17c0cb02008-01-03 06:36:51 +0000909
910 return Builder.CreateGEP(Ptr, Idx, "add.ptr");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000911}
912
913Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
914 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
915 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
Chris Lattner660e31d2007-08-24 21:00:35 +0000916
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000917 const QualType LHSType = Ops.E->getLHS()->getType();
918 const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000919 if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
920 // pointer - int
921 Value *Idx = Ops.RHS;
922 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
923 if (Width < CGF.LLVMPointerWidth) {
924 // Zero or sign extend the pointer value based on whether the index is
925 // signed or not.
926 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
927 if (Ops.E->getRHS()->getType()->isSignedIntegerType())
928 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
929 else
930 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
931 }
932 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
933
934 // FIXME: The pointer could point to a VLA.
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000935
936 // Explicitly handle GNU void* and function pointer arithmetic
937 // extensions. The GNU void* casts amount to no-ops since our
938 // void* type is i8*, but this is future proof.
939 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
940 const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
941 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
942 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
943 return Builder.CreateBitCast(Res, Ops.LHS->getType());
944 }
945
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000946 return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
Daniel Dunbar0aac9f62008-08-05 00:47:03 +0000947 } else {
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000948 // pointer - pointer
949 Value *LHS = Ops.LHS;
950 Value *RHS = Ops.RHS;
Chris Lattner660e31d2007-08-24 21:00:35 +0000951
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000952 uint64_t ElementSize;
Daniel Dunbar0aac9f62008-08-05 00:47:03 +0000953
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000954 // Handle GCC extension for pointer arithmetic on void* types.
955 if (LHSElementType->isVoidType()) {
956 ElementSize = 1;
957 } else {
958 ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
959 }
960
961 const llvm::Type *ResultType = ConvertType(Ops.Ty);
962 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
963 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
964 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
965
966 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
967 // remainder. As such, we handle common power-of-two cases here to generate
968 // better code. See PR2247.
969 if (llvm::isPowerOf2_64(ElementSize)) {
970 Value *ShAmt =
971 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
972 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
973 }
974
975 // Otherwise, do a full sdiv.
976 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
977 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000978 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000979}
980
981Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
982 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
983 // RHS to the same size as the LHS.
984 Value *RHS = Ops.RHS;
985 if (Ops.LHS->getType() != RHS->getType())
986 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
987
988 return Builder.CreateShl(Ops.LHS, RHS, "shl");
989}
990
991Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
992 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
993 // RHS to the same size as the LHS.
994 Value *RHS = Ops.RHS;
995 if (Ops.LHS->getType() != RHS->getType())
996 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
997
Chris Lattner660e31d2007-08-24 21:00:35 +0000998 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000999 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1000 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1001}
1002
1003Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1004 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001005 Value *Result;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001006 QualType LHSTy = E->getLHS()->getType();
Nate Begeman1591bc52008-07-25 20:16:05 +00001007 if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
Chris Lattner9fba49a2007-08-24 05:35:26 +00001008 Value *LHS = Visit(E->getLHS());
1009 Value *RHS = Visit(E->getRHS());
1010
1011 if (LHS->getType()->isFloatingPoint()) {
Nate Begeman1591bc52008-07-25 20:16:05 +00001012 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001013 LHS, RHS, "cmp");
Eli Friedman850ea372008-05-29 15:09:15 +00001014 } else if (LHSTy->isSignedIntegerType()) {
1015 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001016 LHS, RHS, "cmp");
1017 } else {
Eli Friedman850ea372008-05-29 15:09:15 +00001018 // Unsigned integers and pointers.
1019 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001020 LHS, RHS, "cmp");
1021 }
Nate Begeman1591bc52008-07-25 20:16:05 +00001022 } else if (LHSTy->isVectorType()) {
1023 Value *LHS = Visit(E->getLHS());
1024 Value *RHS = Visit(E->getRHS());
1025
1026 if (LHS->getType()->isFPOrFPVector()) {
1027 Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1028 LHS, RHS, "cmp");
1029 } else if (LHSTy->isUnsignedIntegerType()) {
1030 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1031 LHS, RHS, "cmp");
1032 } else {
1033 // Signed integers and pointers.
1034 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1035 LHS, RHS, "cmp");
1036 }
1037 return Result;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001038 } else {
1039 // Complex Comparison: can only be an equality comparison.
1040 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1041 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1042
Chris Lattnerc154ac12008-07-26 22:37:01 +00001043 QualType CETy = LHSTy->getAsComplexType()->getElementType();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001044
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001045 Value *ResultR, *ResultI;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001046 if (CETy->isRealFloatingType()) {
1047 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1048 LHS.first, RHS.first, "cmp.r");
1049 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1050 LHS.second, RHS.second, "cmp.i");
1051 } else {
1052 // Complex comparisons can only be equality comparisons. As such, signed
1053 // and unsigned opcodes are the same.
1054 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1055 LHS.first, RHS.first, "cmp.r");
1056 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1057 LHS.second, RHS.second, "cmp.i");
1058 }
1059
1060 if (E->getOpcode() == BinaryOperator::EQ) {
1061 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1062 } else {
1063 assert(E->getOpcode() == BinaryOperator::NE &&
1064 "Complex comparison other than == or != ?");
1065 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1066 }
1067 }
Nuno Lopes92577002009-01-11 23:22:37 +00001068
1069 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001070}
1071
1072Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1073 LValue LHS = EmitLValue(E->getLHS());
1074 Value *RHS = Visit(E->getRHS());
1075
Daniel Dunbar2668dd12008-11-19 09:36:46 +00001076 // Store the value into the LHS. Bit-fields are handled specially
Daniel Dunbar2710fc92008-11-19 11:54:05 +00001077 // because the result is altered by the store, i.e., [C99 6.5.16p1]
1078 // 'An assignment expression has the value of the left operand after
1079 // the assignment...'.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001080 // FIXME: Volatility!
Eli Friedmanf9b930c2008-05-25 14:13:57 +00001081 if (LHS.isBitfield())
Daniel Dunbar2668dd12008-11-19 09:36:46 +00001082 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1083 &RHS);
1084 else
1085 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
Daniel Dunbare6c31752008-08-29 08:11:39 +00001086
Chris Lattner9fba49a2007-08-24 05:35:26 +00001087 // Return the RHS.
1088 return RHS;
1089}
1090
1091Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Chris Lattner715c2a72008-11-12 08:26:50 +00001092 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1093 // If we have 1 && X, just emit X without inserting the control flow.
1094 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1095 if (Cond == 1) { // If we have 1 && X, just emit X.
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001096 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1097 // ZExt result to int.
1098 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1099 }
Chris Lattner715c2a72008-11-12 08:26:50 +00001100
1101 // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1102 if (!CGF.ContainsLabel(E->getRHS()))
1103 return llvm::Constant::getNullValue(CGF.LLVMIntTy);
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001104 }
1105
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001106 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1107 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
Chris Lattner715c2a72008-11-12 08:26:50 +00001108
Chris Lattner7f80bb32008-11-12 08:38:24 +00001109 // Branch on the LHS first. If it is false, go to the failure (cont) block.
1110 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1111
1112 // Any edges into the ContBlock are now from an (indeterminate number of)
1113 // edges from this first condition. All of these values will be false. Start
1114 // setting up the PHI node in the Cont Block for this.
1115 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1116 PN->reserveOperandSpace(2); // Normal case, two inputs.
1117 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1118 PI != PE; ++PI)
1119 PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001120
1121 CGF.EmitBlock(RHSBlock);
1122 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1123
1124 // Reaquire the RHS block, as there may be subblocks inserted.
1125 RHSBlock = Builder.GetInsertBlock();
Chris Lattner7f80bb32008-11-12 08:38:24 +00001126
1127 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1128 // into the phi node for the edge with the value of RHSCond.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001129 CGF.EmitBlock(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001130 PN->addIncoming(RHSCond, RHSBlock);
1131
1132 // ZExt result to int.
1133 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1134}
1135
1136Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Chris Lattner715c2a72008-11-12 08:26:50 +00001137 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1138 // If we have 0 || X, just emit X without inserting the control flow.
1139 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1140 if (Cond == -1) { // If we have 0 || X, just emit X.
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001141 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1142 // ZExt result to int.
1143 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1144 }
Chris Lattner715c2a72008-11-12 08:26:50 +00001145
Eli Friedmanea137cd2008-12-02 16:02:46 +00001146 // 1 || RHS: If it is safe, just elide the RHS, and return 1.
Chris Lattner715c2a72008-11-12 08:26:50 +00001147 if (!CGF.ContainsLabel(E->getRHS()))
Eli Friedmanea137cd2008-12-02 16:02:46 +00001148 return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001149 }
1150
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001151 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1152 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
Chris Lattner9fba49a2007-08-24 05:35:26 +00001153
Chris Lattner7f80bb32008-11-12 08:38:24 +00001154 // Branch on the LHS first. If it is true, go to the success (cont) block.
1155 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1156
1157 // Any edges into the ContBlock are now from an (indeterminate number of)
1158 // edges from this first condition. All of these values will be true. Start
1159 // setting up the PHI node in the Cont Block for this.
1160 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1161 PN->reserveOperandSpace(2); // Normal case, two inputs.
1162 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1163 PI != PE; ++PI)
1164 PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1165
1166 // Emit the RHS condition as a bool value.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001167 CGF.EmitBlock(RHSBlock);
1168 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1169
1170 // Reaquire the RHS block, as there may be subblocks inserted.
1171 RHSBlock = Builder.GetInsertBlock();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001172
Chris Lattner7f80bb32008-11-12 08:38:24 +00001173 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1174 // into the phi node for the edge with the value of RHSCond.
1175 CGF.EmitBlock(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001176 PN->addIncoming(RHSCond, RHSBlock);
1177
1178 // ZExt result to int.
1179 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1180}
1181
1182Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1183 CGF.EmitStmt(E->getLHS());
Daniel Dunbar5aa22bc2008-11-11 23:11:34 +00001184 CGF.EnsureInsertPoint();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001185 return Visit(E->getRHS());
1186}
1187
1188//===----------------------------------------------------------------------===//
1189// Other Operators
1190//===----------------------------------------------------------------------===//
1191
Chris Lattner504a5282008-11-12 08:55:54 +00001192/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1193/// expression is cheap enough and side-effect-free enough to evaluate
1194/// unconditionally instead of conditionally. This is used to convert control
1195/// flow into selects in some cases.
1196static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1197 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1198 return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1199
1200 // TODO: Allow anything we can constant fold to an integer or fp constant.
1201 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1202 isa<FloatingLiteral>(E))
1203 return true;
1204
1205 // Non-volatile automatic variables too, to get "cond ? X : Y" where
1206 // X and Y are local variables.
1207 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1208 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1209 if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1210 return true;
1211
1212 return false;
1213}
1214
1215
Chris Lattner9fba49a2007-08-24 05:35:26 +00001216Value *ScalarExprEmitter::
1217VisitConditionalOperator(const ConditionalOperator *E) {
Chris Lattner3d6606b2008-11-12 08:04:58 +00001218 // If the condition constant folds and can be elided, try to avoid emitting
1219 // the condition and the dead arm.
1220 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
Chris Lattner044bffc2008-11-11 18:56:45 +00001221 Expr *Live = E->getLHS(), *Dead = E->getRHS();
Chris Lattner3d6606b2008-11-12 08:04:58 +00001222 if (Cond == -1)
Chris Lattner044bffc2008-11-11 18:56:45 +00001223 std::swap(Live, Dead);
Chris Lattner3d6606b2008-11-12 08:04:58 +00001224
1225 // If the dead side doesn't have labels we need, and if the Live side isn't
1226 // the gnu missing ?: extension (which we could handle, but don't bother
1227 // to), just emit the Live part.
1228 if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
1229 Live) // Live part isn't missing.
1230 return Visit(Live);
Chris Lattner044bffc2008-11-11 18:56:45 +00001231 }
1232
Chris Lattner504a5282008-11-12 08:55:54 +00001233
1234 // If this is a really simple expression (like x ? 4 : 5), emit this as a
1235 // select instead of as control flow. We can only do this if it is cheap and
Chris Lattner1f11af22008-11-16 06:16:27 +00001236 // safe to evaluate the LHS and RHS unconditionally.
Chris Lattner504a5282008-11-12 08:55:54 +00001237 if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1238 isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1239 llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1240 llvm::Value *LHS = Visit(E->getLHS());
1241 llvm::Value *RHS = Visit(E->getRHS());
1242 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1243 }
1244
1245
Daniel Dunbarb23e9922008-11-12 10:13:37 +00001246 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1247 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001248 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
Chris Lattner67e22462008-11-12 08:08:13 +00001249 Value *CondVal = 0;
Chris Lattner3d6606b2008-11-12 08:04:58 +00001250
Chris Lattner67e22462008-11-12 08:08:13 +00001251 // If we have the GNU missing condition extension, evaluate the conditional
1252 // and then convert it to bool the hard way. We do this explicitly
1253 // because we need the unconverted value for the missing middle value of
1254 // the ?:.
1255 if (E->getLHS() == 0) {
1256 CondVal = CGF.EmitScalarExpr(E->getCond());
1257 Value *CondBoolVal =
1258 CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1259 CGF.getContext().BoolTy);
1260 Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1261 } else {
1262 // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1263 // the branch on bool.
1264 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1265 }
Chris Lattner9fba49a2007-08-24 05:35:26 +00001266
1267 CGF.EmitBlock(LHSBlock);
1268
1269 // Handle the GNU extension for missing LHS.
Chris Lattner98a425c2007-11-26 01:40:58 +00001270 Value *LHS;
1271 if (E->getLHS())
Eli Friedmance8d7032008-05-16 20:38:39 +00001272 LHS = Visit(E->getLHS());
Chris Lattner98a425c2007-11-26 01:40:58 +00001273 else // Perform promotions, to handle cases like "short ?: int"
1274 LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1275
Chris Lattner9fba49a2007-08-24 05:35:26 +00001276 LHSBlock = Builder.GetInsertBlock();
Daniel Dunbar5276caa2008-11-11 09:41:28 +00001277 CGF.EmitBranch(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001278
1279 CGF.EmitBlock(RHSBlock);
1280
Eli Friedmance8d7032008-05-16 20:38:39 +00001281 Value *RHS = Visit(E->getRHS());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001282 RHSBlock = Builder.GetInsertBlock();
Daniel Dunbar5276caa2008-11-11 09:41:28 +00001283 CGF.EmitBranch(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001284
1285 CGF.EmitBlock(ContBlock);
1286
Nuno Lopesb62ff242008-06-04 19:15:45 +00001287 if (!LHS || !RHS) {
Chris Lattner307da022007-11-30 17:56:23 +00001288 assert(E->getType()->isVoidType() && "Non-void value should have a value");
1289 return 0;
1290 }
1291
Chris Lattner9fba49a2007-08-24 05:35:26 +00001292 // Create a PHI node for the real part.
1293 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1294 PN->reserveOperandSpace(2);
1295 PN->addIncoming(LHS, LHSBlock);
1296 PN->addIncoming(RHS, RHSBlock);
1297 return PN;
1298}
1299
1300Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
Chris Lattner9fba49a2007-08-24 05:35:26 +00001301 // Emit the LHS or RHS as appropriate.
Devang Patel0f2a8fb2007-10-30 20:59:40 +00001302 return
1303 Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001304}
1305
Nate Begeman9f3bfb72008-01-17 17:46:27 +00001306Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
Nate Begemanbd881ef2008-01-30 20:50:20 +00001307 return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
Ted Kremenek2719e982008-06-17 02:43:46 +00001308 E->arg_end(CGF.getContext())).getScalarVal();
Nate Begeman9f3bfb72008-01-17 17:46:27 +00001309}
1310
Chris Lattner307da022007-11-30 17:56:23 +00001311Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
Eli Friedman8f5e8782009-01-20 17:46:04 +00001312 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
Anders Carlsson36760332007-10-15 20:28:48 +00001313
Anders Carlsson285611e2008-11-04 05:30:00 +00001314 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1315
1316 // If EmitVAArg fails, we fall back to the LLVM instruction.
1317 if (!ArgPtr)
1318 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1319
1320 // FIXME: volatile?
1321 return Builder.CreateLoad(ArgPtr);
Anders Carlsson36760332007-10-15 20:28:48 +00001322}
1323
Chris Lattner307da022007-11-30 17:56:23 +00001324Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
Anders Carlsson36f07d82007-10-29 05:01:08 +00001325 std::string str;
Daniel Dunbarc9197cd2008-10-17 20:21:44 +00001326 CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
Anders Carlsson36f07d82007-10-29 05:01:08 +00001327
1328 llvm::Constant *C = llvm::ConstantArray::get(str);
1329 C = new llvm::GlobalVariable(C->getType(), true,
1330 llvm::GlobalValue::InternalLinkage,
1331 C, ".str", &CGF.CGM.getModule());
1332 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1333 llvm::Constant *Zeros[] = { Zero, Zero };
1334 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1335
1336 return C;
1337}
1338
Chris Lattner9fba49a2007-08-24 05:35:26 +00001339//===----------------------------------------------------------------------===//
1340// Entry Point into this File
1341//===----------------------------------------------------------------------===//
1342
1343/// EmitComplexExpr - Emit the computation of the specified expression of
1344/// complex type, ignoring the result.
1345Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1346 assert(E && !hasAggregateLLVMType(E->getType()) &&
1347 "Invalid scalar expression to emit");
1348
1349 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1350}
Chris Lattner4e05d1e2007-08-26 06:48:56 +00001351
1352/// EmitScalarConversion - Emit a conversion from the specified type to the
1353/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001354Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1355 QualType DstTy) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +00001356 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1357 "Invalid scalar expression to emit");
1358 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1359}
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001360
1361/// EmitComplexToScalarConversion - Emit a conversion from the specified
1362/// complex type to the specified destination type, where the destination
1363/// type is an LLVM scalar type.
1364Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1365 QualType SrcTy,
1366 QualType DstTy) {
Chris Lattnerde0908b2008-04-04 16:54:41 +00001367 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001368 "Invalid complex -> scalar conversion");
1369 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1370 DstTy);
1371}
Anders Carlssona9234fe2007-12-10 19:35:18 +00001372
1373Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1374 assert(V1->getType() == V2->getType() &&
1375 "Vector operands must be of the same type");
Anders Carlssona9234fe2007-12-10 19:35:18 +00001376 unsigned NumElements =
1377 cast<llvm::VectorType>(V1->getType())->getNumElements();
1378
1379 va_list va;
1380 va_start(va, V2);
1381
1382 llvm::SmallVector<llvm::Constant*, 16> Args;
Anders Carlssona9234fe2007-12-10 19:35:18 +00001383 for (unsigned i = 0; i < NumElements; i++) {
1384 int n = va_arg(va, int);
Anders Carlssona9234fe2007-12-10 19:35:18 +00001385 assert(n >= 0 && n < (int)NumElements * 2 &&
1386 "Vector shuffle index out of bounds!");
Anders Carlssona9234fe2007-12-10 19:35:18 +00001387 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1388 }
1389
1390 const char *Name = va_arg(va, const char *);
1391 va_end(va);
1392
1393 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1394
1395 return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1396}
1397
Anders Carlsson68b8be92007-12-15 21:23:30 +00001398llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001399 unsigned NumVals, bool isSplat) {
Anders Carlsson68b8be92007-12-15 21:23:30 +00001400 llvm::Value *Vec
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001401 = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
Anders Carlsson68b8be92007-12-15 21:23:30 +00001402
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001403 for (unsigned i = 0, e = NumVals; i != e; ++i) {
Nate Begemanec2d1062007-12-30 02:59:45 +00001404 llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
Anders Carlsson68b8be92007-12-15 21:23:30 +00001405 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Nate Begemanec2d1062007-12-30 02:59:45 +00001406 Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
Anders Carlsson68b8be92007-12-15 21:23:30 +00001407 }
1408
1409 return Vec;
1410}