blob: 024e87605316933eedf4a18d1717e69a17785dab [file] [log] [blame]
John McCallfafaaef2013-03-07 21:37:12 +00001//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the code for emitting atomic operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCall.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
Ed Schoutene4692492013-05-31 19:27:59 +000018#include "llvm/ADT/StringExtras.h"
John McCallfafaaef2013-03-07 21:37:12 +000019#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/Intrinsics.h"
John McCall9eda3ab2013-03-07 21:37:17 +000021#include "llvm/IR/Operator.h"
John McCallfafaaef2013-03-07 21:37:12 +000022
23using namespace clang;
24using namespace CodeGen;
25
John McCall9eda3ab2013-03-07 21:37:17 +000026// The ABI values for various atomic memory orderings.
27enum AtomicOrderingKind {
28 AO_ABI_memory_order_relaxed = 0,
29 AO_ABI_memory_order_consume = 1,
30 AO_ABI_memory_order_acquire = 2,
31 AO_ABI_memory_order_release = 3,
32 AO_ABI_memory_order_acq_rel = 4,
33 AO_ABI_memory_order_seq_cst = 5
34};
35
36namespace {
37 class AtomicInfo {
38 CodeGenFunction &CGF;
39 QualType AtomicTy;
40 QualType ValueTy;
41 uint64_t AtomicSizeInBits;
42 uint64_t ValueSizeInBits;
43 CharUnits AtomicAlign;
44 CharUnits ValueAlign;
45 CharUnits LValueAlign;
46 TypeEvaluationKind EvaluationKind;
47 bool UseLibcall;
48 public:
49 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) {
50 assert(lvalue.isSimple());
51
52 AtomicTy = lvalue.getType();
53 ValueTy = AtomicTy->castAs<AtomicType>()->getValueType();
54 EvaluationKind = CGF.getEvaluationKind(ValueTy);
55
56 ASTContext &C = CGF.getContext();
57
58 uint64_t valueAlignInBits;
59 llvm::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy);
60
61 uint64_t atomicAlignInBits;
62 llvm::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy);
63
64 assert(ValueSizeInBits <= AtomicSizeInBits);
65 assert(valueAlignInBits <= atomicAlignInBits);
66
67 AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits);
68 ValueAlign = C.toCharUnitsFromBits(valueAlignInBits);
69 if (lvalue.getAlignment().isZero())
70 lvalue.setAlignment(AtomicAlign);
71
72 UseLibcall =
73 (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) ||
74 AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth());
75 }
76
77 QualType getAtomicType() const { return AtomicTy; }
78 QualType getValueType() const { return ValueTy; }
79 CharUnits getAtomicAlignment() const { return AtomicAlign; }
80 CharUnits getValueAlignment() const { return ValueAlign; }
81 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
82 uint64_t getValueSizeInBits() const { return AtomicSizeInBits; }
83 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
84 bool shouldUseLibcall() const { return UseLibcall; }
85
86 /// Is the atomic size larger than the underlying value type?
87 ///
88 /// Note that the absence of padding does not mean that atomic
89 /// objects are completely interchangeable with non-atomic
90 /// objects: we might have promoted the alignment of a type
91 /// without making it bigger.
92 bool hasPadding() const {
93 return (ValueSizeInBits != AtomicSizeInBits);
94 }
95
Eli Friedman336d9df2013-07-11 01:32:21 +000096 bool emitMemSetZeroIfNecessary(LValue dest) const;
John McCall9eda3ab2013-03-07 21:37:17 +000097
98 llvm::Value *getAtomicSizeValue() const {
99 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
100 return CGF.CGM.getSize(size);
101 }
102
103 /// Cast the given pointer to an integer pointer suitable for
104 /// atomic operations.
105 llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
106
107 /// Turn an atomic-layout object into an r-value.
108 RValue convertTempToRValue(llvm::Value *addr,
109 AggValueSlot resultSlot) const;
110
111 /// Copy an atomic r-value into atomic-layout memory.
112 void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const;
113
114 /// Project an l-value down to the value field.
115 LValue projectValue(LValue lvalue) const {
116 llvm::Value *addr = lvalue.getAddress();
117 if (hasPadding())
118 addr = CGF.Builder.CreateStructGEP(addr, 0);
119
120 return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(),
121 CGF.getContext(), lvalue.getTBAAInfo());
122 }
123
124 /// Materialize an atomic r-value in atomic-layout memory.
125 llvm::Value *materializeRValue(RValue rvalue) const;
126
127 private:
128 bool requiresMemSetZero(llvm::Type *type) const;
129 };
130}
131
132static RValue emitAtomicLibcall(CodeGenFunction &CGF,
133 StringRef fnName,
134 QualType resultType,
135 CallArgList &args) {
136 const CGFunctionInfo &fnInfo =
137 CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
138 FunctionType::ExtInfo(), RequiredArgs::All);
139 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
140 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
141 return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
142}
143
144/// Does a store of the given IR type modify the full expected width?
145static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
146 uint64_t expectedSize) {
147 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
148}
149
150/// Does the atomic type require memsetting to zero before initialization?
151///
152/// The IR type is provided as a way of making certain queries faster.
153bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
154 // If the atomic type has size padding, we definitely need a memset.
155 if (hasPadding()) return true;
156
157 // Otherwise, do some simple heuristics to try to avoid it:
158 switch (getEvaluationKind()) {
159 // For scalars and complexes, check whether the store size of the
160 // type uses the full size.
161 case TEK_Scalar:
162 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
163 case TEK_Complex:
164 return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
165 AtomicSizeInBits / 2);
166
Eli Friedman336d9df2013-07-11 01:32:21 +0000167 // Padding in structs has an undefined bit pattern. User beware.
John McCall9eda3ab2013-03-07 21:37:17 +0000168 case TEK_Aggregate:
Eli Friedman336d9df2013-07-11 01:32:21 +0000169 return false;
John McCall9eda3ab2013-03-07 21:37:17 +0000170 }
171 llvm_unreachable("bad evaluation kind");
172}
173
Eli Friedman336d9df2013-07-11 01:32:21 +0000174bool AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const {
John McCall9eda3ab2013-03-07 21:37:17 +0000175 llvm::Value *addr = dest.getAddress();
176 if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
Eli Friedman336d9df2013-07-11 01:32:21 +0000177 return false;
John McCall9eda3ab2013-03-07 21:37:17 +0000178
179 CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
180 AtomicSizeInBits / 8,
181 dest.getAlignment().getQuantity());
Eli Friedman336d9df2013-07-11 01:32:21 +0000182 return true;
John McCall9eda3ab2013-03-07 21:37:17 +0000183}
184
John McCallfafaaef2013-03-07 21:37:12 +0000185static void
186EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
187 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
188 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
189 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
190 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
191
192 switch (E->getOp()) {
193 case AtomicExpr::AO__c11_atomic_init:
194 llvm_unreachable("Already handled!");
195
196 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
197 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
198 case AtomicExpr::AO__atomic_compare_exchange:
199 case AtomicExpr::AO__atomic_compare_exchange_n: {
200 // Note that cmpxchg only supports specifying one ordering and
201 // doesn't support weak cmpxchg, at least at the moment.
202 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
203 LoadVal1->setAlignment(Align);
204 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
205 LoadVal2->setAlignment(Align);
206 llvm::AtomicCmpXchgInst *CXI =
207 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
208 CXI->setVolatile(E->isVolatile());
209 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
210 StoreVal1->setAlignment(Align);
211 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
212 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
213 return;
214 }
215
216 case AtomicExpr::AO__c11_atomic_load:
217 case AtomicExpr::AO__atomic_load_n:
218 case AtomicExpr::AO__atomic_load: {
219 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
220 Load->setAtomic(Order);
221 Load->setAlignment(Size);
222 Load->setVolatile(E->isVolatile());
223 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
224 StoreDest->setAlignment(Align);
225 return;
226 }
227
228 case AtomicExpr::AO__c11_atomic_store:
229 case AtomicExpr::AO__atomic_store:
230 case AtomicExpr::AO__atomic_store_n: {
231 assert(!Dest && "Store does not return a value");
232 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
233 LoadVal1->setAlignment(Align);
234 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
235 Store->setAtomic(Order);
236 Store->setAlignment(Size);
237 Store->setVolatile(E->isVolatile());
238 return;
239 }
240
241 case AtomicExpr::AO__c11_atomic_exchange:
242 case AtomicExpr::AO__atomic_exchange_n:
243 case AtomicExpr::AO__atomic_exchange:
244 Op = llvm::AtomicRMWInst::Xchg;
245 break;
246
247 case AtomicExpr::AO__atomic_add_fetch:
248 PostOp = llvm::Instruction::Add;
249 // Fall through.
250 case AtomicExpr::AO__c11_atomic_fetch_add:
251 case AtomicExpr::AO__atomic_fetch_add:
252 Op = llvm::AtomicRMWInst::Add;
253 break;
254
255 case AtomicExpr::AO__atomic_sub_fetch:
256 PostOp = llvm::Instruction::Sub;
257 // Fall through.
258 case AtomicExpr::AO__c11_atomic_fetch_sub:
259 case AtomicExpr::AO__atomic_fetch_sub:
260 Op = llvm::AtomicRMWInst::Sub;
261 break;
262
263 case AtomicExpr::AO__atomic_and_fetch:
264 PostOp = llvm::Instruction::And;
265 // Fall through.
266 case AtomicExpr::AO__c11_atomic_fetch_and:
267 case AtomicExpr::AO__atomic_fetch_and:
268 Op = llvm::AtomicRMWInst::And;
269 break;
270
271 case AtomicExpr::AO__atomic_or_fetch:
272 PostOp = llvm::Instruction::Or;
273 // Fall through.
274 case AtomicExpr::AO__c11_atomic_fetch_or:
275 case AtomicExpr::AO__atomic_fetch_or:
276 Op = llvm::AtomicRMWInst::Or;
277 break;
278
279 case AtomicExpr::AO__atomic_xor_fetch:
280 PostOp = llvm::Instruction::Xor;
281 // Fall through.
282 case AtomicExpr::AO__c11_atomic_fetch_xor:
283 case AtomicExpr::AO__atomic_fetch_xor:
284 Op = llvm::AtomicRMWInst::Xor;
285 break;
286
287 case AtomicExpr::AO__atomic_nand_fetch:
288 PostOp = llvm::Instruction::And;
289 // Fall through.
290 case AtomicExpr::AO__atomic_fetch_nand:
291 Op = llvm::AtomicRMWInst::Nand;
292 break;
293 }
294
295 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
296 LoadVal1->setAlignment(Align);
297 llvm::AtomicRMWInst *RMWI =
298 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
299 RMWI->setVolatile(E->isVolatile());
300
301 // For __atomic_*_fetch operations, perform the operation again to
302 // determine the value which was written.
303 llvm::Value *Result = RMWI;
304 if (PostOp)
305 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
306 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
307 Result = CGF.Builder.CreateNot(Result);
308 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
309 StoreDest->setAlignment(Align);
310}
311
312// This function emits any expression (scalar, complex, or aggregate)
313// into a temporary alloca.
314static llvm::Value *
315EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
316 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
317 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
318 /*Init*/ true);
319 return DeclPtr;
320}
321
Ed Schoutene4692492013-05-31 19:27:59 +0000322static void
323AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
Ed Schoutenc59cf0d2013-05-31 20:12:49 +0000324 bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy) {
Ed Schoutene4692492013-05-31 19:27:59 +0000325 if (UseOptimizedLibcall) {
326 // Load value and pass it to the function directly.
327 unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
328 Val = CGF.EmitLoadOfScalar(Val, false, Align, ValTy);
329 Args.add(RValue::get(Val), ValTy);
330 } else {
331 // Non-optimized functions always take a reference.
332 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
333 CGF.getContext().VoidPtrTy);
334 }
335}
336
John McCallfafaaef2013-03-07 21:37:12 +0000337RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
338 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
339 QualType MemTy = AtomicTy;
340 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
341 MemTy = AT->getValueType();
342 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
343 uint64_t Size = sizeChars.getQuantity();
344 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
345 unsigned Align = alignChars.getQuantity();
346 unsigned MaxInlineWidthInBits =
John McCall64aa4b32013-04-16 22:48:15 +0000347 getTarget().getMaxAtomicInlineWidth();
John McCallfafaaef2013-03-07 21:37:12 +0000348 bool UseLibcall = (Size != Align ||
349 getContext().toBits(sizeChars) > MaxInlineWidthInBits);
350
351 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
352 Ptr = EmitScalarExpr(E->getPtr());
353
354 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
355 assert(!Dest && "Init does not return a value");
John McCall9eda3ab2013-03-07 21:37:17 +0000356 LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
357 EmitAtomicInit(E->getVal1(), lvalue);
358 return RValue::get(0);
John McCallfafaaef2013-03-07 21:37:12 +0000359 }
360
361 Order = EmitScalarExpr(E->getOrder());
362
363 switch (E->getOp()) {
364 case AtomicExpr::AO__c11_atomic_init:
365 llvm_unreachable("Already handled!");
366
367 case AtomicExpr::AO__c11_atomic_load:
368 case AtomicExpr::AO__atomic_load_n:
369 break;
370
371 case AtomicExpr::AO__atomic_load:
372 Dest = EmitScalarExpr(E->getVal1());
373 break;
374
375 case AtomicExpr::AO__atomic_store:
376 Val1 = EmitScalarExpr(E->getVal1());
377 break;
378
379 case AtomicExpr::AO__atomic_exchange:
380 Val1 = EmitScalarExpr(E->getVal1());
381 Dest = EmitScalarExpr(E->getVal2());
382 break;
383
384 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
385 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
386 case AtomicExpr::AO__atomic_compare_exchange_n:
387 case AtomicExpr::AO__atomic_compare_exchange:
388 Val1 = EmitScalarExpr(E->getVal1());
389 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
390 Val2 = EmitScalarExpr(E->getVal2());
391 else
392 Val2 = EmitValToTemp(*this, E->getVal2());
393 OrderFail = EmitScalarExpr(E->getOrderFail());
394 // Evaluate and discard the 'weak' argument.
395 if (E->getNumSubExprs() == 6)
396 EmitScalarExpr(E->getWeak());
397 break;
398
399 case AtomicExpr::AO__c11_atomic_fetch_add:
400 case AtomicExpr::AO__c11_atomic_fetch_sub:
401 if (MemTy->isPointerType()) {
402 // For pointer arithmetic, we're required to do a bit of math:
403 // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
404 // ... but only for the C11 builtins. The GNU builtins expect the
405 // user to multiply by sizeof(T).
406 QualType Val1Ty = E->getVal1()->getType();
407 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
408 CharUnits PointeeIncAmt =
409 getContext().getTypeSizeInChars(MemTy->getPointeeType());
410 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
411 Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
412 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
413 break;
414 }
415 // Fall through.
416 case AtomicExpr::AO__atomic_fetch_add:
417 case AtomicExpr::AO__atomic_fetch_sub:
418 case AtomicExpr::AO__atomic_add_fetch:
419 case AtomicExpr::AO__atomic_sub_fetch:
420 case AtomicExpr::AO__c11_atomic_store:
421 case AtomicExpr::AO__c11_atomic_exchange:
422 case AtomicExpr::AO__atomic_store_n:
423 case AtomicExpr::AO__atomic_exchange_n:
424 case AtomicExpr::AO__c11_atomic_fetch_and:
425 case AtomicExpr::AO__c11_atomic_fetch_or:
426 case AtomicExpr::AO__c11_atomic_fetch_xor:
427 case AtomicExpr::AO__atomic_fetch_and:
428 case AtomicExpr::AO__atomic_fetch_or:
429 case AtomicExpr::AO__atomic_fetch_xor:
430 case AtomicExpr::AO__atomic_fetch_nand:
431 case AtomicExpr::AO__atomic_and_fetch:
432 case AtomicExpr::AO__atomic_or_fetch:
433 case AtomicExpr::AO__atomic_xor_fetch:
434 case AtomicExpr::AO__atomic_nand_fetch:
435 Val1 = EmitValToTemp(*this, E->getVal1());
436 break;
437 }
438
439 if (!E->getType()->isVoidType() && !Dest)
440 Dest = CreateMemTemp(E->getType(), ".atomicdst");
441
442 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
443 if (UseLibcall) {
Ed Schoutene4692492013-05-31 19:27:59 +0000444 bool UseOptimizedLibcall = false;
445 switch (E->getOp()) {
446 case AtomicExpr::AO__c11_atomic_fetch_add:
447 case AtomicExpr::AO__atomic_fetch_add:
448 case AtomicExpr::AO__c11_atomic_fetch_and:
449 case AtomicExpr::AO__atomic_fetch_and:
450 case AtomicExpr::AO__c11_atomic_fetch_or:
451 case AtomicExpr::AO__atomic_fetch_or:
452 case AtomicExpr::AO__c11_atomic_fetch_sub:
453 case AtomicExpr::AO__atomic_fetch_sub:
454 case AtomicExpr::AO__c11_atomic_fetch_xor:
455 case AtomicExpr::AO__atomic_fetch_xor:
456 // For these, only library calls for certain sizes exist.
457 UseOptimizedLibcall = true;
458 break;
459 default:
460 // Only use optimized library calls for sizes for which they exist.
461 if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
462 UseOptimizedLibcall = true;
463 break;
464 }
John McCallfafaaef2013-03-07 21:37:12 +0000465
John McCallfafaaef2013-03-07 21:37:12 +0000466 CallArgList Args;
Ed Schoutene4692492013-05-31 19:27:59 +0000467 if (!UseOptimizedLibcall) {
468 // For non-optimized library calls, the size is the first parameter
469 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
470 getContext().getSizeType());
471 }
472 // Atomic address is the first or second parameter
Nick Lewycky5d4a7552013-10-01 21:51:38 +0000473 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy);
John McCallfafaaef2013-03-07 21:37:12 +0000474
Ed Schoutene4692492013-05-31 19:27:59 +0000475 std::string LibCallName;
476 QualType RetTy;
477 bool HaveRetTy = false;
John McCallfafaaef2013-03-07 21:37:12 +0000478 switch (E->getOp()) {
479 // There is only one libcall for compare an exchange, because there is no
480 // optimisation benefit possible from a libcall version of a weak compare
481 // and exchange.
Ed Schoutene4692492013-05-31 19:27:59 +0000482 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
John McCallfafaaef2013-03-07 21:37:12 +0000483 // void *desired, int success, int failure)
Ed Schoutene4692492013-05-31 19:27:59 +0000484 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
485 // int success, int failure)
John McCallfafaaef2013-03-07 21:37:12 +0000486 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
487 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
488 case AtomicExpr::AO__atomic_compare_exchange:
489 case AtomicExpr::AO__atomic_compare_exchange_n:
490 LibCallName = "__atomic_compare_exchange";
491 RetTy = getContext().BoolTy;
Ed Schoutene4692492013-05-31 19:27:59 +0000492 HaveRetTy = true;
John McCallfafaaef2013-03-07 21:37:12 +0000493 Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
494 getContext().VoidPtrTy);
Ed Schoutene4692492013-05-31 19:27:59 +0000495 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy);
Nick Lewycky5d4a7552013-10-01 21:51:38 +0000496 Args.add(RValue::get(Order), getContext().IntTy);
John McCallfafaaef2013-03-07 21:37:12 +0000497 Order = OrderFail;
498 break;
499 // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
500 // int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000501 // T __atomic_exchange_N(T *mem, T val, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000502 case AtomicExpr::AO__c11_atomic_exchange:
503 case AtomicExpr::AO__atomic_exchange_n:
504 case AtomicExpr::AO__atomic_exchange:
505 LibCallName = "__atomic_exchange";
Ed Schoutene4692492013-05-31 19:27:59 +0000506 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000507 break;
508 // void __atomic_store(size_t size, void *mem, void *val, int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000509 // void __atomic_store_N(T *mem, T val, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000510 case AtomicExpr::AO__c11_atomic_store:
511 case AtomicExpr::AO__atomic_store:
512 case AtomicExpr::AO__atomic_store_n:
513 LibCallName = "__atomic_store";
Ed Schoutene4692492013-05-31 19:27:59 +0000514 RetTy = getContext().VoidTy;
515 HaveRetTy = true;
516 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000517 break;
518 // void __atomic_load(size_t size, void *mem, void *return, int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000519 // T __atomic_load_N(T *mem, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000520 case AtomicExpr::AO__c11_atomic_load:
521 case AtomicExpr::AO__atomic_load:
522 case AtomicExpr::AO__atomic_load_n:
523 LibCallName = "__atomic_load";
Ed Schoutene4692492013-05-31 19:27:59 +0000524 break;
525 // T __atomic_fetch_add_N(T *mem, T val, int order)
526 case AtomicExpr::AO__c11_atomic_fetch_add:
527 case AtomicExpr::AO__atomic_fetch_add:
528 LibCallName = "__atomic_fetch_add";
529 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
530 break;
531 // T __atomic_fetch_and_N(T *mem, T val, int order)
532 case AtomicExpr::AO__c11_atomic_fetch_and:
533 case AtomicExpr::AO__atomic_fetch_and:
534 LibCallName = "__atomic_fetch_and";
535 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
536 break;
537 // T __atomic_fetch_or_N(T *mem, T val, int order)
538 case AtomicExpr::AO__c11_atomic_fetch_or:
539 case AtomicExpr::AO__atomic_fetch_or:
540 LibCallName = "__atomic_fetch_or";
541 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
542 break;
543 // T __atomic_fetch_sub_N(T *mem, T val, int order)
544 case AtomicExpr::AO__c11_atomic_fetch_sub:
545 case AtomicExpr::AO__atomic_fetch_sub:
546 LibCallName = "__atomic_fetch_sub";
547 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
548 break;
549 // T __atomic_fetch_xor_N(T *mem, T val, int order)
550 case AtomicExpr::AO__c11_atomic_fetch_xor:
551 case AtomicExpr::AO__atomic_fetch_xor:
552 LibCallName = "__atomic_fetch_xor";
553 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000554 break;
John McCallfafaaef2013-03-07 21:37:12 +0000555 default: return EmitUnsupportedRValue(E, "atomic library call");
556 }
Ed Schoutene4692492013-05-31 19:27:59 +0000557
558 // Optimized functions have the size in their name.
559 if (UseOptimizedLibcall)
560 LibCallName += "_" + llvm::utostr(Size);
561 // By default, assume we return a value of the atomic type.
562 if (!HaveRetTy) {
563 if (UseOptimizedLibcall) {
564 // Value is returned directly.
565 RetTy = MemTy;
566 } else {
567 // Value is returned through parameter before the order.
568 RetTy = getContext().VoidTy;
569 Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
570 getContext().VoidPtrTy);
571 }
572 }
John McCallfafaaef2013-03-07 21:37:12 +0000573 // order is always the last parameter
574 Args.add(RValue::get(Order),
575 getContext().IntTy);
576
577 const CGFunctionInfo &FuncInfo =
578 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
579 FunctionType::ExtInfo(), RequiredArgs::All);
580 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
581 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
582 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
Ed Schoutene4692492013-05-31 19:27:59 +0000583 if (!RetTy->isVoidType())
John McCallfafaaef2013-03-07 21:37:12 +0000584 return Res;
585 if (E->getType()->isVoidType())
586 return RValue::get(0);
587 return convertTempToRValue(Dest, E->getType());
588 }
589
590 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
591 E->getOp() == AtomicExpr::AO__atomic_store ||
592 E->getOp() == AtomicExpr::AO__atomic_store_n;
593 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
594 E->getOp() == AtomicExpr::AO__atomic_load ||
595 E->getOp() == AtomicExpr::AO__atomic_load_n;
596
597 llvm::Type *IPtrTy =
598 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
599 llvm::Value *OrigDest = Dest;
600 Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
601 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
602 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
603 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
604
605 if (isa<llvm::ConstantInt>(Order)) {
606 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
607 switch (ord) {
John McCall9eda3ab2013-03-07 21:37:17 +0000608 case AO_ABI_memory_order_relaxed:
John McCallfafaaef2013-03-07 21:37:12 +0000609 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
610 llvm::Monotonic);
611 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000612 case AO_ABI_memory_order_consume:
613 case AO_ABI_memory_order_acquire:
John McCallfafaaef2013-03-07 21:37:12 +0000614 if (IsStore)
615 break; // Avoid crashing on code with undefined behavior
616 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
617 llvm::Acquire);
618 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000619 case AO_ABI_memory_order_release:
John McCallfafaaef2013-03-07 21:37:12 +0000620 if (IsLoad)
621 break; // Avoid crashing on code with undefined behavior
622 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
623 llvm::Release);
624 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000625 case AO_ABI_memory_order_acq_rel:
John McCallfafaaef2013-03-07 21:37:12 +0000626 if (IsLoad || IsStore)
627 break; // Avoid crashing on code with undefined behavior
628 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
629 llvm::AcquireRelease);
630 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000631 case AO_ABI_memory_order_seq_cst:
John McCallfafaaef2013-03-07 21:37:12 +0000632 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
633 llvm::SequentiallyConsistent);
634 break;
635 default: // invalid order
636 // We should not ever get here normally, but it's hard to
637 // enforce that in general.
638 break;
639 }
640 if (E->getType()->isVoidType())
641 return RValue::get(0);
642 return convertTempToRValue(OrigDest, E->getType());
643 }
644
645 // Long case, when Order isn't obviously constant.
646
647 // Create all the relevant BB's
648 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
649 *AcqRelBB = 0, *SeqCstBB = 0;
650 MonotonicBB = createBasicBlock("monotonic", CurFn);
651 if (!IsStore)
652 AcquireBB = createBasicBlock("acquire", CurFn);
653 if (!IsLoad)
654 ReleaseBB = createBasicBlock("release", CurFn);
655 if (!IsLoad && !IsStore)
656 AcqRelBB = createBasicBlock("acqrel", CurFn);
657 SeqCstBB = createBasicBlock("seqcst", CurFn);
658 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
659
660 // Create the switch for the split
661 // MonotonicBB is arbitrarily chosen as the default case; in practice, this
662 // doesn't matter unless someone is crazy enough to use something that
663 // doesn't fold to a constant for the ordering.
664 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
665 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
666
667 // Emit all the different atomics
668 Builder.SetInsertPoint(MonotonicBB);
669 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
670 llvm::Monotonic);
671 Builder.CreateBr(ContBB);
672 if (!IsStore) {
673 Builder.SetInsertPoint(AcquireBB);
674 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
675 llvm::Acquire);
676 Builder.CreateBr(ContBB);
677 SI->addCase(Builder.getInt32(1), AcquireBB);
678 SI->addCase(Builder.getInt32(2), AcquireBB);
679 }
680 if (!IsLoad) {
681 Builder.SetInsertPoint(ReleaseBB);
682 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
683 llvm::Release);
684 Builder.CreateBr(ContBB);
685 SI->addCase(Builder.getInt32(3), ReleaseBB);
686 }
687 if (!IsLoad && !IsStore) {
688 Builder.SetInsertPoint(AcqRelBB);
689 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
690 llvm::AcquireRelease);
691 Builder.CreateBr(ContBB);
692 SI->addCase(Builder.getInt32(4), AcqRelBB);
693 }
694 Builder.SetInsertPoint(SeqCstBB);
695 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
696 llvm::SequentiallyConsistent);
697 Builder.CreateBr(ContBB);
698 SI->addCase(Builder.getInt32(5), SeqCstBB);
699
700 // Cleanup and return
701 Builder.SetInsertPoint(ContBB);
702 if (E->getType()->isVoidType())
703 return RValue::get(0);
704 return convertTempToRValue(OrigDest, E->getType());
705}
John McCall9eda3ab2013-03-07 21:37:17 +0000706
707llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
708 unsigned addrspace =
709 cast<llvm::PointerType>(addr->getType())->getAddressSpace();
710 llvm::IntegerType *ty =
711 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
712 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
713}
714
715RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
716 AggValueSlot resultSlot) const {
Eli Friedman336d9df2013-07-11 01:32:21 +0000717 if (EvaluationKind == TEK_Aggregate)
718 return resultSlot.asRValue();
John McCall9eda3ab2013-03-07 21:37:17 +0000719
720 // Drill into the padding structure if we have one.
721 if (hasPadding())
722 addr = CGF.Builder.CreateStructGEP(addr, 0);
723
John McCall9eda3ab2013-03-07 21:37:17 +0000724 // Otherwise, just convert the temporary to an r-value using the
725 // normal conversion routine.
726 return CGF.convertTempToRValue(addr, getValueType());
727}
728
729/// Emit a load from an l-value of atomic type. Note that the r-value
730/// we produce is an r-value of the atomic *value* type.
731RValue CodeGenFunction::EmitAtomicLoad(LValue src, AggValueSlot resultSlot) {
732 AtomicInfo atomics(*this, src);
733
734 // Check whether we should use a library call.
735 if (atomics.shouldUseLibcall()) {
736 llvm::Value *tempAddr;
Eli Friedman336d9df2013-07-11 01:32:21 +0000737 if (!resultSlot.isIgnored()) {
John McCall9eda3ab2013-03-07 21:37:17 +0000738 assert(atomics.getEvaluationKind() == TEK_Aggregate);
739 tempAddr = resultSlot.getAddr();
740 } else {
741 tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
742 }
743
744 // void __atomic_load(size_t size, void *mem, void *return, int order);
745 CallArgList args;
746 args.add(RValue::get(atomics.getAtomicSizeValue()),
747 getContext().getSizeType());
748 args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())),
749 getContext().VoidPtrTy);
750 args.add(RValue::get(EmitCastToVoidPtr(tempAddr)),
751 getContext().VoidPtrTy);
752 args.add(RValue::get(llvm::ConstantInt::get(IntTy,
753 AO_ABI_memory_order_seq_cst)),
754 getContext().IntTy);
755 emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args);
756
757 // Produce the r-value.
758 return atomics.convertTempToRValue(tempAddr, resultSlot);
759 }
760
761 // Okay, we're doing this natively.
762 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress());
763 llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load");
764 load->setAtomic(llvm::SequentiallyConsistent);
765
766 // Other decoration.
767 load->setAlignment(src.getAlignment().getQuantity());
768 if (src.isVolatileQualified())
769 load->setVolatile(true);
770 if (src.getTBAAInfo())
771 CGM.DecorateInstruction(load, src.getTBAAInfo());
772
773 // Okay, turn that back into the original value type.
774 QualType valueType = atomics.getValueType();
775 llvm::Value *result = load;
776
777 // If we're ignoring an aggregate return, don't do anything.
778 if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored())
779 return RValue::getAggregate(0, false);
780
781 // The easiest way to do this this is to go through memory, but we
782 // try not to in some easy cases.
783 if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) {
784 llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType);
785 if (isa<llvm::IntegerType>(resultTy)) {
786 assert(result->getType() == resultTy);
787 result = EmitFromMemory(result, valueType);
788 } else if (isa<llvm::PointerType>(resultTy)) {
789 result = Builder.CreateIntToPtr(result, resultTy);
790 } else {
791 result = Builder.CreateBitCast(result, resultTy);
792 }
793 return RValue::get(result);
794 }
795
796 // Create a temporary. This needs to be big enough to hold the
797 // atomic integer.
798 llvm::Value *temp;
799 bool tempIsVolatile = false;
800 CharUnits tempAlignment;
Eli Friedman336d9df2013-07-11 01:32:21 +0000801 if (atomics.getEvaluationKind() == TEK_Aggregate) {
John McCall9eda3ab2013-03-07 21:37:17 +0000802 assert(!resultSlot.isIgnored());
Eli Friedman336d9df2013-07-11 01:32:21 +0000803 temp = resultSlot.getAddr();
804 tempAlignment = atomics.getValueAlignment();
John McCall9eda3ab2013-03-07 21:37:17 +0000805 tempIsVolatile = resultSlot.isVolatile();
806 } else {
807 temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
808 tempAlignment = atomics.getAtomicAlignment();
809 }
810
811 // Slam the integer into the temporary.
812 llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp);
813 Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity())
814 ->setVolatile(tempIsVolatile);
815
816 return atomics.convertTempToRValue(temp, resultSlot);
817}
818
819
820
821/// Copy an r-value into memory as part of storing to an atomic type.
822/// This needs to create a bit-pattern suitable for atomic operations.
823void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
824 // If we have an r-value, the rvalue should be of the atomic type,
825 // which means that the caller is responsible for having zeroed
826 // any padding. Just do an aggregate copy of that type.
827 if (rvalue.isAggregate()) {
828 CGF.EmitAggregateCopy(dest.getAddress(),
829 rvalue.getAggregateAddr(),
830 getAtomicType(),
831 (rvalue.isVolatileQualified()
832 || dest.isVolatileQualified()),
833 dest.getAlignment());
834 return;
835 }
836
837 // Okay, otherwise we're copying stuff.
838
839 // Zero out the buffer if necessary.
840 emitMemSetZeroIfNecessary(dest);
841
842 // Drill past the padding if present.
843 dest = projectValue(dest);
844
845 // Okay, store the rvalue in.
846 if (rvalue.isScalar()) {
847 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
848 } else {
849 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
850 }
851}
852
853
854/// Materialize an r-value into memory for the purposes of storing it
855/// to an atomic type.
856llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
857 // Aggregate r-values are already in memory, and EmitAtomicStore
858 // requires them to be values of the atomic type.
859 if (rvalue.isAggregate())
860 return rvalue.getAggregateAddr();
861
862 // Otherwise, make a temporary and materialize into it.
863 llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp");
864 LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
865 emitCopyIntoMemory(rvalue, tempLV);
866 return temp;
867}
868
869/// Emit a store to an l-value of atomic type.
870///
871/// Note that the r-value is expected to be an r-value *of the atomic
872/// type*; this means that for aggregate r-values, it should include
873/// storage for any padding that was necessary.
Nick Lewycky5d4a7552013-10-01 21:51:38 +0000874void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, bool isInit) {
John McCall9eda3ab2013-03-07 21:37:17 +0000875 // If this is an aggregate r-value, it should agree in type except
876 // maybe for address-space qualification.
877 assert(!rvalue.isAggregate() ||
878 rvalue.getAggregateAddr()->getType()->getPointerElementType()
879 == dest.getAddress()->getType()->getPointerElementType());
880
881 AtomicInfo atomics(*this, dest);
882
883 // If this is an initialization, just put the value there normally.
884 if (isInit) {
885 atomics.emitCopyIntoMemory(rvalue, dest);
886 return;
887 }
888
889 // Check whether we should use a library call.
890 if (atomics.shouldUseLibcall()) {
891 // Produce a source address.
892 llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
893
894 // void __atomic_store(size_t size, void *mem, void *val, int order)
895 CallArgList args;
896 args.add(RValue::get(atomics.getAtomicSizeValue()),
897 getContext().getSizeType());
898 args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())),
899 getContext().VoidPtrTy);
900 args.add(RValue::get(EmitCastToVoidPtr(srcAddr)),
901 getContext().VoidPtrTy);
902 args.add(RValue::get(llvm::ConstantInt::get(IntTy,
903 AO_ABI_memory_order_seq_cst)),
904 getContext().IntTy);
905 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
906 return;
907 }
908
909 // Okay, we're doing this natively.
910 llvm::Value *intValue;
911
912 // If we've got a scalar value of the right size, try to avoid going
913 // through memory.
914 if (rvalue.isScalar() && !atomics.hasPadding()) {
915 llvm::Value *value = rvalue.getScalarVal();
916 if (isa<llvm::IntegerType>(value->getType())) {
917 intValue = value;
918 } else {
919 llvm::IntegerType *inputIntTy =
920 llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits());
921 if (isa<llvm::PointerType>(value->getType())) {
922 intValue = Builder.CreatePtrToInt(value, inputIntTy);
923 } else {
924 intValue = Builder.CreateBitCast(value, inputIntTy);
925 }
926 }
927
928 // Otherwise, we need to go through memory.
929 } else {
930 // Put the r-value in memory.
931 llvm::Value *addr = atomics.materializeRValue(rvalue);
932
933 // Cast the temporary to the atomic int type and pull a value out.
934 addr = atomics.emitCastToAtomicIntPointer(addr);
935 intValue = Builder.CreateAlignedLoad(addr,
936 atomics.getAtomicAlignment().getQuantity());
937 }
938
939 // Do the atomic store.
940 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress());
941 llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
942
943 // Initializations don't need to be atomic.
944 if (!isInit) store->setAtomic(llvm::SequentiallyConsistent);
945
946 // Other decoration.
947 store->setAlignment(dest.getAlignment().getQuantity());
948 if (dest.isVolatileQualified())
949 store->setVolatile(true);
950 if (dest.getTBAAInfo())
951 CGM.DecorateInstruction(store, dest.getTBAAInfo());
952}
953
954void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
955 AtomicInfo atomics(*this, dest);
956
957 switch (atomics.getEvaluationKind()) {
958 case TEK_Scalar: {
959 llvm::Value *value = EmitScalarExpr(init);
960 atomics.emitCopyIntoMemory(RValue::get(value), dest);
961 return;
962 }
963
964 case TEK_Complex: {
965 ComplexPairTy value = EmitComplexExpr(init);
966 atomics.emitCopyIntoMemory(RValue::getComplex(value), dest);
967 return;
968 }
969
970 case TEK_Aggregate: {
Eli Friedman336d9df2013-07-11 01:32:21 +0000971 // Fix up the destination if the initializer isn't an expression
972 // of atomic type.
973 bool Zeroed = false;
John McCall9eda3ab2013-03-07 21:37:17 +0000974 if (!init->getType()->isAtomicType()) {
Eli Friedman336d9df2013-07-11 01:32:21 +0000975 Zeroed = atomics.emitMemSetZeroIfNecessary(dest);
John McCall9eda3ab2013-03-07 21:37:17 +0000976 dest = atomics.projectValue(dest);
977 }
978
979 // Evaluate the expression directly into the destination.
980 AggValueSlot slot = AggValueSlot::forLValue(dest,
981 AggValueSlot::IsNotDestructed,
982 AggValueSlot::DoesNotNeedGCBarriers,
Eli Friedman336d9df2013-07-11 01:32:21 +0000983 AggValueSlot::IsNotAliased,
984 Zeroed ? AggValueSlot::IsZeroed :
985 AggValueSlot::IsNotZeroed);
986
John McCall9eda3ab2013-03-07 21:37:17 +0000987 EmitAggExpr(init, slot);
988 return;
989 }
990 }
991 llvm_unreachable("bad evaluation kind");
992}