blob: 80bb9eda88690861d7167c97265ac579d8d934e8 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl07779722008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl07779722008-10-31 14:43:28 +0000538 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582
Douglas Gregor60d62c22008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000612 }
613
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
637 QualType PromoteTypes[4] = {
638 Context.IntTy, Context.UnsignedIntTy,
639 Context.LongTy, Context.UnsignedLongTy
640 };
Douglas Gregor447b69e2008-11-19 03:25:36 +0000641 for (int Idx = 0; Idx < 4; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643 if (FromSize < ToSize ||
644 (FromSize == ToSize &&
645 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646 // We found the type that we can promote to. If this is the
647 // type we wanted, we have a promotion. Otherwise, no
648 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000649 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000650 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651 }
652 }
653 }
654
655 // An rvalue for an integral bit-field (9.6) can be converted to an
656 // rvalue of type int if int can represent all the values of the
657 // bit-field; otherwise, it can be converted to unsigned int if
658 // unsigned int can represent all the values of the bit-field. If
659 // the bit-field is larger yet, no integral promotion applies to
660 // it. If the bit-field has an enumerated type, it is treated as any
661 // other value of that type for promotion purposes (C++ 4.5p3).
662 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663 using llvm::APSInt;
664 FieldDecl *MemberDecl = MemRef->getMemberDecl();
665 APSInt BitWidth;
666 if (MemberDecl->isBitField() &&
667 FromType->isIntegralType() && !FromType->isEnumeralType() &&
668 From->isIntegerConstantExpr(BitWidth, Context)) {
669 APSInt ToSize(Context.getTypeSize(ToType));
670
671 // Are we promoting to an int from a bitfield that fits in an int?
672 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000673 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000674 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000675 }
676
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000677 // Are we promoting to an unsigned int from an unsigned bitfield
678 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000679 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000680 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000681 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000682
683 return false;
684 }
685 }
686
687 // An rvalue of type bool can be converted to an rvalue of type int,
688 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000689 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000690 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000691 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692
693 return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701 /// An rvalue of type float can be converted to an rvalue of type
702 /// double. (C++ 4.6p1).
703 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705 if (FromBuiltin->getKind() == BuiltinType::Float &&
706 ToBuiltin->getKind() == BuiltinType::Double)
707 return true;
708
709 return false;
710}
711
Douglas Gregorcb7de522008-11-26 23:31:11 +0000712/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
713/// the pointer type FromPtr to a pointer to type ToPointee, with the
714/// same type qualifiers as FromPtr has on its pointee type. ToType,
715/// if non-empty, will be a pointer to ToType that may or may not have
716/// the right set of qualifiers on its pointee.
717static QualType
718BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
719 QualType ToPointee, QualType ToType,
720 ASTContext &Context) {
721 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
722 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
723 unsigned Quals = CanonFromPointee.getCVRQualifiers();
724
725 // Exact qualifier match -> return the pointer type we're converting to.
726 if (CanonToPointee.getCVRQualifiers() == Quals) {
727 // ToType is exactly what we need. Return it.
728 if (ToType.getTypePtr())
729 return ToType;
730
731 // Build a pointer to ToPointee. It has the right qualifiers
732 // already.
733 return Context.getPointerType(ToPointee);
734 }
735
736 // Just build a canonical type that has the right qualifiers.
737 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
738}
739
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000740/// IsPointerConversion - Determines whether the conversion of the
741/// expression From, which has the (possibly adjusted) type FromType,
742/// can be converted to the type ToType via a pointer conversion (C++
743/// 4.10). If so, returns true and places the converted type (that
744/// might differ from ToType in its cv-qualifiers at some level) into
745/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000746///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000747/// This routine also supports conversions to and from block pointers
748/// and conversions with Objective-C's 'id', 'id<protocols...>', and
749/// pointers to interfaces. FIXME: Once we've determined the
750/// appropriate overloading rules for Objective-C, we may want to
751/// split the Objective-C checks into a different routine; however,
752/// GCC seems to consider all of these conversions to be pointer
753/// conversions, so for now they live here.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000754bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
755 QualType& ConvertedType)
756{
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000757 // Blocks: Block pointers can be converted to void*.
758 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
759 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
760 ConvertedType = ToType;
761 return true;
762 }
763 // Blocks: A null pointer constant can be converted to a block
764 // pointer type.
765 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
766 ConvertedType = ToType;
767 return true;
768 }
769
Douglas Gregor7ca09762008-11-27 01:19:21 +0000770 // Conversions with Objective-C's id<...>.
771 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
772 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
773 ConvertedType = ToType;
774 return true;
775 }
776
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000777 const PointerType* ToTypePtr = ToType->getAsPointerType();
778 if (!ToTypePtr)
779 return false;
780
781 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
782 if (From->isNullPointerConstant(Context)) {
783 ConvertedType = ToType;
784 return true;
785 }
Sebastian Redl07779722008-10-31 14:43:28 +0000786
Douglas Gregorcb7de522008-11-26 23:31:11 +0000787 // Beyond this point, both types need to be pointers.
788 const PointerType *FromTypePtr = FromType->getAsPointerType();
789 if (!FromTypePtr)
790 return false;
791
792 QualType FromPointeeType = FromTypePtr->getPointeeType();
793 QualType ToPointeeType = ToTypePtr->getPointeeType();
794
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000795 // An rvalue of type "pointer to cv T," where T is an object type,
796 // can be converted to an rvalue of type "pointer to cv void" (C++
797 // 4.10p2).
Douglas Gregorcb7de522008-11-26 23:31:11 +0000798 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000799 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
800 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000801 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000802 return true;
803 }
804
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000805 // C++ [conv.ptr]p3:
806 //
807 // An rvalue of type "pointer to cv D," where D is a class type,
808 // can be converted to an rvalue of type "pointer to cv B," where
809 // B is a base class (clause 10) of D. If B is an inaccessible
810 // (clause 11) or ambiguous (10.2) base class of D, a program that
811 // necessitates this conversion is ill-formed. The result of the
812 // conversion is a pointer to the base class sub-object of the
813 // derived class object. The null pointer value is converted to
814 // the null pointer value of the destination type.
815 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000816 // Note that we do not check for ambiguity or inaccessibility
817 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000818 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
819 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000820 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
821 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000822 ToType, Context);
823 return true;
824 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000825
Douglas Gregorcb7de522008-11-26 23:31:11 +0000826 // Objective C++: We're able to convert from a pointer to an
827 // interface to a pointer to a different interface.
828 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
829 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
830 if (FromIface && ToIface &&
831 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000832 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
833 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000834 ToType, Context);
835 return true;
836 }
837
838 // Objective C++: We're able to convert between "id" and a pointer
839 // to any interface (in both directions).
840 if ((FromIface && Context.isObjCIdType(ToPointeeType))
841 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000842 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
843 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000844 ToType, Context);
845 return true;
846 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000847
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000848 return false;
849}
850
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000851/// CheckPointerConversion - Check the pointer conversion from the
852/// expression From to the type ToType. This routine checks for
853/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
854/// conversions for which IsPointerConversion has already returned
855/// true. It returns true and produces a diagnostic if there was an
856/// error, or returns false otherwise.
857bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
858 QualType FromType = From->getType();
859
860 if (const PointerType *FromPtrType = FromType->getAsPointerType())
861 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000862 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
863 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000864 QualType FromPointeeType = FromPtrType->getPointeeType(),
865 ToPointeeType = ToPtrType->getPointeeType();
866 if (FromPointeeType->isRecordType() &&
867 ToPointeeType->isRecordType()) {
868 // We must have a derived-to-base conversion. Check an
869 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +0000870 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
871 From->getExprLoc(),
872 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000873 }
874 }
875
876 return false;
877}
878
Douglas Gregor98cd5992008-10-21 23:43:52 +0000879/// IsQualificationConversion - Determines whether the conversion from
880/// an rvalue of type FromType to ToType is a qualification conversion
881/// (C++ 4.4).
882bool
883Sema::IsQualificationConversion(QualType FromType, QualType ToType)
884{
885 FromType = Context.getCanonicalType(FromType);
886 ToType = Context.getCanonicalType(ToType);
887
888 // If FromType and ToType are the same type, this is not a
889 // qualification conversion.
890 if (FromType == ToType)
891 return false;
892
893 // (C++ 4.4p4):
894 // A conversion can add cv-qualifiers at levels other than the first
895 // in multi-level pointers, subject to the following rules: [...]
896 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000897 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +0000898 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +0000899 // Within each iteration of the loop, we check the qualifiers to
900 // determine if this still looks like a qualification
901 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +0000902 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +0000903 // until there are no more pointers or pointers-to-members left to
904 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +0000905 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000906
907 // -- for every j > 0, if const is in cv 1,j then const is in cv
908 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +0000909 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +0000910 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000911
Douglas Gregor98cd5992008-10-21 23:43:52 +0000912 // -- if the cv 1,j and cv 2,j are different, then const is in
913 // every cv for 0 < k < j.
914 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +0000915 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +0000916 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000917
Douglas Gregor98cd5992008-10-21 23:43:52 +0000918 // Keep track of whether all prior cv-qualifiers in the "to" type
919 // include const.
920 PreviousToQualsIncludeConst
921 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +0000922 }
Douglas Gregor98cd5992008-10-21 23:43:52 +0000923
924 // We are left with FromType and ToType being the pointee types
925 // after unwrapping the original FromType and ToType the same number
926 // of types. If we unwrapped any pointers, and if FromType and
927 // ToType have the same unqualified type (since we checked
928 // qualifiers above), then this is a qualification conversion.
929 return UnwrappedAnyPointer &&
930 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
931}
932
Douglas Gregor60d62c22008-10-31 16:23:19 +0000933/// IsUserDefinedConversion - Determines whether there is a
934/// user-defined conversion sequence (C++ [over.ics.user]) that
935/// converts expression From to the type ToType. If such a conversion
936/// exists, User will contain the user-defined conversion sequence
937/// that performs such a conversion and this routine will return
938/// true. Otherwise, this routine returns false and User is
939/// unspecified.
940bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
941 UserDefinedConversionSequence& User)
942{
943 OverloadCandidateSet CandidateSet;
944 if (const CXXRecordType *ToRecordType
945 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
946 // C++ [over.match.ctor]p1:
947 // When objects of class type are direct-initialized (8.5), or
948 // copy-initialized from an expression of the same or a
949 // derived class type (8.5), overload resolution selects the
950 // constructor. [...] For copy-initialization, the candidate
951 // functions are all the converting constructors (12.3.1) of
952 // that class. The argument list is the expression-list within
953 // the parentheses of the initializer.
954 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
955 const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
956 for (OverloadedFunctionDecl::function_const_iterator func
957 = Constructors->function_begin();
958 func != Constructors->function_end(); ++func) {
959 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
960 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +0000961 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
962 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000963 }
964 }
965
Douglas Gregorf1991ea2008-11-07 22:36:19 +0000966 if (const CXXRecordType *FromRecordType
967 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
968 // Add all of the conversion functions as candidates.
969 // FIXME: Look for conversions in base classes!
970 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
971 OverloadedFunctionDecl *Conversions
972 = FromRecordDecl->getConversionFunctions();
973 for (OverloadedFunctionDecl::function_iterator Func
974 = Conversions->function_begin();
975 Func != Conversions->function_end(); ++Func) {
976 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
977 AddConversionCandidate(Conv, From, ToType, CandidateSet);
978 }
979 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000980
981 OverloadCandidateSet::iterator Best;
982 switch (BestViableFunction(CandidateSet, Best)) {
983 case OR_Success:
984 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000985 if (CXXConstructorDecl *Constructor
986 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
987 // C++ [over.ics.user]p1:
988 // If the user-defined conversion is specified by a
989 // constructor (12.3.1), the initial standard conversion
990 // sequence converts the source type to the type required by
991 // the argument of the constructor.
992 //
993 // FIXME: What about ellipsis conversions?
994 QualType ThisType = Constructor->getThisType(Context);
995 User.Before = Best->Conversions[0].Standard;
996 User.ConversionFunction = Constructor;
997 User.After.setAsIdentityConversion();
998 User.After.FromTypePtr
999 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1000 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1001 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001002 } else if (CXXConversionDecl *Conversion
1003 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1004 // C++ [over.ics.user]p1:
1005 //
1006 // [...] If the user-defined conversion is specified by a
1007 // conversion function (12.3.2), the initial standard
1008 // conversion sequence converts the source type to the
1009 // implicit object parameter of the conversion function.
1010 User.Before = Best->Conversions[0].Standard;
1011 User.ConversionFunction = Conversion;
1012
1013 // C++ [over.ics.user]p2:
1014 // The second standard conversion sequence converts the
1015 // result of the user-defined conversion to the target type
1016 // for the sequence. Since an implicit conversion sequence
1017 // is an initialization, the special rules for
1018 // initialization by user-defined conversion apply when
1019 // selecting the best user-defined conversion for a
1020 // user-defined conversion sequence (see 13.3.3 and
1021 // 13.3.3.1).
1022 User.After = Best->FinalConversion;
1023 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001024 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001025 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001026 return false;
1027 }
1028
1029 case OR_No_Viable_Function:
1030 // No conversion here! We're done.
1031 return false;
1032
1033 case OR_Ambiguous:
1034 // FIXME: See C++ [over.best.ics]p10 for the handling of
1035 // ambiguous conversion sequences.
1036 return false;
1037 }
1038
1039 return false;
1040}
1041
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001042/// CompareImplicitConversionSequences - Compare two implicit
1043/// conversion sequences to determine whether one is better than the
1044/// other or if they are indistinguishable (C++ 13.3.3.2).
1045ImplicitConversionSequence::CompareKind
1046Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1047 const ImplicitConversionSequence& ICS2)
1048{
1049 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1050 // conversion sequences (as defined in 13.3.3.1)
1051 // -- a standard conversion sequence (13.3.3.1.1) is a better
1052 // conversion sequence than a user-defined conversion sequence or
1053 // an ellipsis conversion sequence, and
1054 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1055 // conversion sequence than an ellipsis conversion sequence
1056 // (13.3.3.1.3).
1057 //
1058 if (ICS1.ConversionKind < ICS2.ConversionKind)
1059 return ImplicitConversionSequence::Better;
1060 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1061 return ImplicitConversionSequence::Worse;
1062
1063 // Two implicit conversion sequences of the same form are
1064 // indistinguishable conversion sequences unless one of the
1065 // following rules apply: (C++ 13.3.3.2p3):
1066 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1067 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1068 else if (ICS1.ConversionKind ==
1069 ImplicitConversionSequence::UserDefinedConversion) {
1070 // User-defined conversion sequence U1 is a better conversion
1071 // sequence than another user-defined conversion sequence U2 if
1072 // they contain the same user-defined conversion function or
1073 // constructor and if the second standard conversion sequence of
1074 // U1 is better than the second standard conversion sequence of
1075 // U2 (C++ 13.3.3.2p3).
1076 if (ICS1.UserDefined.ConversionFunction ==
1077 ICS2.UserDefined.ConversionFunction)
1078 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1079 ICS2.UserDefined.After);
1080 }
1081
1082 return ImplicitConversionSequence::Indistinguishable;
1083}
1084
1085/// CompareStandardConversionSequences - Compare two standard
1086/// conversion sequences to determine whether one is better than the
1087/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1088ImplicitConversionSequence::CompareKind
1089Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1090 const StandardConversionSequence& SCS2)
1091{
1092 // Standard conversion sequence S1 is a better conversion sequence
1093 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1094
1095 // -- S1 is a proper subsequence of S2 (comparing the conversion
1096 // sequences in the canonical form defined by 13.3.3.1.1,
1097 // excluding any Lvalue Transformation; the identity conversion
1098 // sequence is considered to be a subsequence of any
1099 // non-identity conversion sequence) or, if not that,
1100 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1101 // Neither is a proper subsequence of the other. Do nothing.
1102 ;
1103 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1104 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1105 (SCS1.Second == ICK_Identity &&
1106 SCS1.Third == ICK_Identity))
1107 // SCS1 is a proper subsequence of SCS2.
1108 return ImplicitConversionSequence::Better;
1109 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1110 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1111 (SCS2.Second == ICK_Identity &&
1112 SCS2.Third == ICK_Identity))
1113 // SCS2 is a proper subsequence of SCS1.
1114 return ImplicitConversionSequence::Worse;
1115
1116 // -- the rank of S1 is better than the rank of S2 (by the rules
1117 // defined below), or, if not that,
1118 ImplicitConversionRank Rank1 = SCS1.getRank();
1119 ImplicitConversionRank Rank2 = SCS2.getRank();
1120 if (Rank1 < Rank2)
1121 return ImplicitConversionSequence::Better;
1122 else if (Rank2 < Rank1)
1123 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001124
Douglas Gregor57373262008-10-22 14:17:15 +00001125 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1126 // are indistinguishable unless one of the following rules
1127 // applies:
1128
1129 // A conversion that is not a conversion of a pointer, or
1130 // pointer to member, to bool is better than another conversion
1131 // that is such a conversion.
1132 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1133 return SCS2.isPointerConversionToBool()
1134 ? ImplicitConversionSequence::Better
1135 : ImplicitConversionSequence::Worse;
1136
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001137 // C++ [over.ics.rank]p4b2:
1138 //
1139 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001140 // conversion of B* to A* is better than conversion of B* to
1141 // void*, and conversion of A* to void* is better than conversion
1142 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001143 bool SCS1ConvertsToVoid
1144 = SCS1.isPointerConversionToVoidPointer(Context);
1145 bool SCS2ConvertsToVoid
1146 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001147 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1148 // Exactly one of the conversion sequences is a conversion to
1149 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001150 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1151 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001152 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1153 // Neither conversion sequence converts to a void pointer; compare
1154 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001155 if (ImplicitConversionSequence::CompareKind DerivedCK
1156 = CompareDerivedToBaseConversions(SCS1, SCS2))
1157 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001158 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1159 // Both conversion sequences are conversions to void
1160 // pointers. Compare the source types to determine if there's an
1161 // inheritance relationship in their sources.
1162 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1163 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1164
1165 // Adjust the types we're converting from via the array-to-pointer
1166 // conversion, if we need to.
1167 if (SCS1.First == ICK_Array_To_Pointer)
1168 FromType1 = Context.getArrayDecayedType(FromType1);
1169 if (SCS2.First == ICK_Array_To_Pointer)
1170 FromType2 = Context.getArrayDecayedType(FromType2);
1171
1172 QualType FromPointee1
1173 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1174 QualType FromPointee2
1175 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1176
1177 if (IsDerivedFrom(FromPointee2, FromPointee1))
1178 return ImplicitConversionSequence::Better;
1179 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1180 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001181
1182 // Objective-C++: If one interface is more specific than the
1183 // other, it is the better one.
1184 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1185 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1186 if (FromIface1 && FromIface1) {
1187 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1188 return ImplicitConversionSequence::Better;
1189 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1190 return ImplicitConversionSequence::Worse;
1191 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001192 }
Douglas Gregor57373262008-10-22 14:17:15 +00001193
1194 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1195 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001196 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001197 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001198 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001199
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001200 // C++ [over.ics.rank]p3b4:
1201 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1202 // which the references refer are the same type except for
1203 // top-level cv-qualifiers, and the type to which the reference
1204 // initialized by S2 refers is more cv-qualified than the type
1205 // to which the reference initialized by S1 refers.
1206 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1207 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1208 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1209 T1 = Context.getCanonicalType(T1);
1210 T2 = Context.getCanonicalType(T2);
1211 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1212 if (T2.isMoreQualifiedThan(T1))
1213 return ImplicitConversionSequence::Better;
1214 else if (T1.isMoreQualifiedThan(T2))
1215 return ImplicitConversionSequence::Worse;
1216 }
1217 }
Douglas Gregor57373262008-10-22 14:17:15 +00001218
1219 return ImplicitConversionSequence::Indistinguishable;
1220}
1221
1222/// CompareQualificationConversions - Compares two standard conversion
1223/// sequences to determine whether they can be ranked based on their
1224/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1225ImplicitConversionSequence::CompareKind
1226Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1227 const StandardConversionSequence& SCS2)
1228{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001229 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001230 // -- S1 and S2 differ only in their qualification conversion and
1231 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1232 // cv-qualification signature of type T1 is a proper subset of
1233 // the cv-qualification signature of type T2, and S1 is not the
1234 // deprecated string literal array-to-pointer conversion (4.2).
1235 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1236 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1237 return ImplicitConversionSequence::Indistinguishable;
1238
1239 // FIXME: the example in the standard doesn't use a qualification
1240 // conversion (!)
1241 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1242 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1243 T1 = Context.getCanonicalType(T1);
1244 T2 = Context.getCanonicalType(T2);
1245
1246 // If the types are the same, we won't learn anything by unwrapped
1247 // them.
1248 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1249 return ImplicitConversionSequence::Indistinguishable;
1250
1251 ImplicitConversionSequence::CompareKind Result
1252 = ImplicitConversionSequence::Indistinguishable;
1253 while (UnwrapSimilarPointerTypes(T1, T2)) {
1254 // Within each iteration of the loop, we check the qualifiers to
1255 // determine if this still looks like a qualification
1256 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001257 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001258 // until there are no more pointers or pointers-to-members left
1259 // to unwrap. This essentially mimics what
1260 // IsQualificationConversion does, but here we're checking for a
1261 // strict subset of qualifiers.
1262 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1263 // The qualifiers are the same, so this doesn't tell us anything
1264 // about how the sequences rank.
1265 ;
1266 else if (T2.isMoreQualifiedThan(T1)) {
1267 // T1 has fewer qualifiers, so it could be the better sequence.
1268 if (Result == ImplicitConversionSequence::Worse)
1269 // Neither has qualifiers that are a subset of the other's
1270 // qualifiers.
1271 return ImplicitConversionSequence::Indistinguishable;
1272
1273 Result = ImplicitConversionSequence::Better;
1274 } else if (T1.isMoreQualifiedThan(T2)) {
1275 // T2 has fewer qualifiers, so it could be the better sequence.
1276 if (Result == ImplicitConversionSequence::Better)
1277 // Neither has qualifiers that are a subset of the other's
1278 // qualifiers.
1279 return ImplicitConversionSequence::Indistinguishable;
1280
1281 Result = ImplicitConversionSequence::Worse;
1282 } else {
1283 // Qualifiers are disjoint.
1284 return ImplicitConversionSequence::Indistinguishable;
1285 }
1286
1287 // If the types after this point are equivalent, we're done.
1288 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1289 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001290 }
1291
Douglas Gregor57373262008-10-22 14:17:15 +00001292 // Check that the winning standard conversion sequence isn't using
1293 // the deprecated string literal array to pointer conversion.
1294 switch (Result) {
1295 case ImplicitConversionSequence::Better:
1296 if (SCS1.Deprecated)
1297 Result = ImplicitConversionSequence::Indistinguishable;
1298 break;
1299
1300 case ImplicitConversionSequence::Indistinguishable:
1301 break;
1302
1303 case ImplicitConversionSequence::Worse:
1304 if (SCS2.Deprecated)
1305 Result = ImplicitConversionSequence::Indistinguishable;
1306 break;
1307 }
1308
1309 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001310}
1311
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001312/// CompareDerivedToBaseConversions - Compares two standard conversion
1313/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001314/// various kinds of derived-to-base conversions (C++
1315/// [over.ics.rank]p4b3). As part of these checks, we also look at
1316/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001317ImplicitConversionSequence::CompareKind
1318Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1319 const StandardConversionSequence& SCS2) {
1320 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1321 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1322 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1323 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1324
1325 // Adjust the types we're converting from via the array-to-pointer
1326 // conversion, if we need to.
1327 if (SCS1.First == ICK_Array_To_Pointer)
1328 FromType1 = Context.getArrayDecayedType(FromType1);
1329 if (SCS2.First == ICK_Array_To_Pointer)
1330 FromType2 = Context.getArrayDecayedType(FromType2);
1331
1332 // Canonicalize all of the types.
1333 FromType1 = Context.getCanonicalType(FromType1);
1334 ToType1 = Context.getCanonicalType(ToType1);
1335 FromType2 = Context.getCanonicalType(FromType2);
1336 ToType2 = Context.getCanonicalType(ToType2);
1337
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001338 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001339 //
1340 // If class B is derived directly or indirectly from class A and
1341 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001342 //
1343 // For Objective-C, we let A, B, and C also be Objective-C
1344 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001345
1346 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001347 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001348 SCS2.Second == ICK_Pointer_Conversion &&
1349 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1350 FromType1->isPointerType() && FromType2->isPointerType() &&
1351 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001352 QualType FromPointee1
1353 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1354 QualType ToPointee1
1355 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1356 QualType FromPointee2
1357 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1358 QualType ToPointee2
1359 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001360
1361 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1362 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1363 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1364 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1365
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001366 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001367 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1368 if (IsDerivedFrom(ToPointee1, ToPointee2))
1369 return ImplicitConversionSequence::Better;
1370 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1371 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001372
1373 if (ToIface1 && ToIface2) {
1374 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1375 return ImplicitConversionSequence::Better;
1376 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1377 return ImplicitConversionSequence::Worse;
1378 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001379 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001380
1381 // -- conversion of B* to A* is better than conversion of C* to A*,
1382 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1383 if (IsDerivedFrom(FromPointee2, FromPointee1))
1384 return ImplicitConversionSequence::Better;
1385 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1386 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001387
1388 if (FromIface1 && FromIface2) {
1389 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1390 return ImplicitConversionSequence::Better;
1391 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1392 return ImplicitConversionSequence::Worse;
1393 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001394 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001395 }
1396
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001397 // Compare based on reference bindings.
1398 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1399 SCS1.Second == ICK_Derived_To_Base) {
1400 // -- binding of an expression of type C to a reference of type
1401 // B& is better than binding an expression of type C to a
1402 // reference of type A&,
1403 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1404 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1405 if (IsDerivedFrom(ToType1, ToType2))
1406 return ImplicitConversionSequence::Better;
1407 else if (IsDerivedFrom(ToType2, ToType1))
1408 return ImplicitConversionSequence::Worse;
1409 }
1410
Douglas Gregor225c41e2008-11-03 19:09:14 +00001411 // -- binding of an expression of type B to a reference of type
1412 // A& is better than binding an expression of type C to a
1413 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001414 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1415 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1416 if (IsDerivedFrom(FromType2, FromType1))
1417 return ImplicitConversionSequence::Better;
1418 else if (IsDerivedFrom(FromType1, FromType2))
1419 return ImplicitConversionSequence::Worse;
1420 }
1421 }
1422
1423
1424 // FIXME: conversion of A::* to B::* is better than conversion of
1425 // A::* to C::*,
1426
1427 // FIXME: conversion of B::* to C::* is better than conversion of
1428 // A::* to C::*, and
1429
Douglas Gregor225c41e2008-11-03 19:09:14 +00001430 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1431 SCS1.Second == ICK_Derived_To_Base) {
1432 // -- conversion of C to B is better than conversion of C to A,
1433 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1434 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1435 if (IsDerivedFrom(ToType1, ToType2))
1436 return ImplicitConversionSequence::Better;
1437 else if (IsDerivedFrom(ToType2, ToType1))
1438 return ImplicitConversionSequence::Worse;
1439 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001440
Douglas Gregor225c41e2008-11-03 19:09:14 +00001441 // -- conversion of B to A is better than conversion of C to A.
1442 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1443 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1444 if (IsDerivedFrom(FromType2, FromType1))
1445 return ImplicitConversionSequence::Better;
1446 else if (IsDerivedFrom(FromType1, FromType2))
1447 return ImplicitConversionSequence::Worse;
1448 }
1449 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001450
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001451 return ImplicitConversionSequence::Indistinguishable;
1452}
1453
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001454/// TryCopyInitialization - Try to copy-initialize a value of type
1455/// ToType from the expression From. Return the implicit conversion
1456/// sequence required to pass this argument, which may be a bad
1457/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001458/// a parameter of this type). If @p SuppressUserConversions, then we
1459/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001460ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001461Sema::TryCopyInitialization(Expr *From, QualType ToType,
1462 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001463 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001464 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001465 AssignConvertType ConvTy =
1466 CheckSingleAssignmentConstraints(ToType, From);
1467 ImplicitConversionSequence ICS;
1468 if (getLangOptions().NoExtensions? ConvTy != Compatible
1469 : ConvTy == Incompatible)
1470 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1471 else
1472 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1473 return ICS;
1474 } else if (ToType->isReferenceType()) {
1475 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001476 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001477 return ICS;
1478 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001479 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001480 }
1481}
1482
1483/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1484/// type ToType. Returns true (and emits a diagnostic) if there was
1485/// an error, returns false if the initialization succeeded.
1486bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1487 const char* Flavor) {
1488 if (!getLangOptions().CPlusPlus) {
1489 // In C, argument passing is the same as performing an assignment.
1490 QualType FromType = From->getType();
1491 AssignConvertType ConvTy =
1492 CheckSingleAssignmentConstraints(ToType, From);
1493
1494 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1495 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001496 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001497
1498 if (ToType->isReferenceType())
1499 return CheckReferenceInit(From, ToType);
1500
1501 if (!PerformImplicitConversion(From, ToType))
1502 return false;
1503
1504 return Diag(From->getSourceRange().getBegin(),
1505 diag::err_typecheck_convert_incompatible)
1506 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001507}
1508
Douglas Gregor96176b32008-11-18 23:14:02 +00001509/// TryObjectArgumentInitialization - Try to initialize the object
1510/// parameter of the given member function (@c Method) from the
1511/// expression @p From.
1512ImplicitConversionSequence
1513Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1514 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1515 unsigned MethodQuals = Method->getTypeQualifiers();
1516 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1517
1518 // Set up the conversion sequence as a "bad" conversion, to allow us
1519 // to exit early.
1520 ImplicitConversionSequence ICS;
1521 ICS.Standard.setAsIdentityConversion();
1522 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1523
1524 // We need to have an object of class type.
1525 QualType FromType = From->getType();
1526 if (!FromType->isRecordType())
1527 return ICS;
1528
1529 // The implicit object parmeter is has the type "reference to cv X",
1530 // where X is the class of which the function is a member
1531 // (C++ [over.match.funcs]p4). However, when finding an implicit
1532 // conversion sequence for the argument, we are not allowed to
1533 // create temporaries or perform user-defined conversions
1534 // (C++ [over.match.funcs]p5). We perform a simplified version of
1535 // reference binding here, that allows class rvalues to bind to
1536 // non-constant references.
1537
1538 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1539 // with the implicit object parameter (C++ [over.match.funcs]p5).
1540 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1541 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1542 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1543 return ICS;
1544
1545 // Check that we have either the same type or a derived type. It
1546 // affects the conversion rank.
1547 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1548 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1549 ICS.Standard.Second = ICK_Identity;
1550 else if (IsDerivedFrom(FromType, ClassType))
1551 ICS.Standard.Second = ICK_Derived_To_Base;
1552 else
1553 return ICS;
1554
1555 // Success. Mark this as a reference binding.
1556 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1557 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1558 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1559 ICS.Standard.ReferenceBinding = true;
1560 ICS.Standard.DirectBinding = true;
1561 return ICS;
1562}
1563
1564/// PerformObjectArgumentInitialization - Perform initialization of
1565/// the implicit object parameter for the given Method with the given
1566/// expression.
1567bool
1568Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1569 QualType ImplicitParamType
1570 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1571 ImplicitConversionSequence ICS
1572 = TryObjectArgumentInitialization(From, Method);
1573 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1574 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001575 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001576 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001577
1578 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1579 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1580 From->getSourceRange().getBegin(),
1581 From->getSourceRange()))
1582 return true;
1583
1584 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1585 return false;
1586}
1587
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001588/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001589/// candidate functions, using the given function call arguments. If
1590/// @p SuppressUserConversions, then don't allow user-defined
1591/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001592void
1593Sema::AddOverloadCandidate(FunctionDecl *Function,
1594 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001595 OverloadCandidateSet& CandidateSet,
1596 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001597{
1598 const FunctionTypeProto* Proto
1599 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1600 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001601 assert(!isa<CXXConversionDecl>(Function) &&
1602 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001603
1604 // Add this candidate
1605 CandidateSet.push_back(OverloadCandidate());
1606 OverloadCandidate& Candidate = CandidateSet.back();
1607 Candidate.Function = Function;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001608 Candidate.IsSurrogate = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001609
1610 unsigned NumArgsInProto = Proto->getNumArgs();
1611
1612 // (C++ 13.3.2p2): A candidate function having fewer than m
1613 // parameters is viable only if it has an ellipsis in its parameter
1614 // list (8.3.5).
1615 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1616 Candidate.Viable = false;
1617 return;
1618 }
1619
1620 // (C++ 13.3.2p2): A candidate function having more than m parameters
1621 // is viable only if the (m+1)st parameter has a default argument
1622 // (8.3.6). For the purposes of overload resolution, the
1623 // parameter list is truncated on the right, so that there are
1624 // exactly m parameters.
1625 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1626 if (NumArgs < MinRequiredArgs) {
1627 // Not enough arguments.
1628 Candidate.Viable = false;
1629 return;
1630 }
1631
1632 // Determine the implicit conversion sequences for each of the
1633 // arguments.
1634 Candidate.Viable = true;
1635 Candidate.Conversions.resize(NumArgs);
1636 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1637 if (ArgIdx < NumArgsInProto) {
1638 // (C++ 13.3.2p3): for F to be a viable function, there shall
1639 // exist for each argument an implicit conversion sequence
1640 // (13.3.3.1) that converts that argument to the corresponding
1641 // parameter of F.
1642 QualType ParamType = Proto->getArgType(ArgIdx);
1643 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001644 = TryCopyInitialization(Args[ArgIdx], ParamType,
1645 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001646 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001647 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001648 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001649 break;
1650 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001651 } else {
1652 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1653 // argument for which there is no corresponding parameter is
1654 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1655 Candidate.Conversions[ArgIdx].ConversionKind
1656 = ImplicitConversionSequence::EllipsisConversion;
1657 }
1658 }
1659}
1660
Douglas Gregor96176b32008-11-18 23:14:02 +00001661/// AddMethodCandidate - Adds the given C++ member function to the set
1662/// of candidate functions, using the given function call arguments
1663/// and the object argument (@c Object). For example, in a call
1664/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1665/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1666/// allow user-defined conversions via constructors or conversion
1667/// operators.
1668void
1669Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1670 Expr **Args, unsigned NumArgs,
1671 OverloadCandidateSet& CandidateSet,
1672 bool SuppressUserConversions)
1673{
1674 const FunctionTypeProto* Proto
1675 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1676 assert(Proto && "Methods without a prototype cannot be overloaded");
1677 assert(!isa<CXXConversionDecl>(Method) &&
1678 "Use AddConversionCandidate for conversion functions");
1679
1680 // Add this candidate
1681 CandidateSet.push_back(OverloadCandidate());
1682 OverloadCandidate& Candidate = CandidateSet.back();
1683 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001684 Candidate.IsSurrogate = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001685
1686 unsigned NumArgsInProto = Proto->getNumArgs();
1687
1688 // (C++ 13.3.2p2): A candidate function having fewer than m
1689 // parameters is viable only if it has an ellipsis in its parameter
1690 // list (8.3.5).
1691 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1692 Candidate.Viable = false;
1693 return;
1694 }
1695
1696 // (C++ 13.3.2p2): A candidate function having more than m parameters
1697 // is viable only if the (m+1)st parameter has a default argument
1698 // (8.3.6). For the purposes of overload resolution, the
1699 // parameter list is truncated on the right, so that there are
1700 // exactly m parameters.
1701 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1702 if (NumArgs < MinRequiredArgs) {
1703 // Not enough arguments.
1704 Candidate.Viable = false;
1705 return;
1706 }
1707
1708 Candidate.Viable = true;
1709 Candidate.Conversions.resize(NumArgs + 1);
1710
1711 // Determine the implicit conversion sequence for the object
1712 // parameter.
1713 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1714 if (Candidate.Conversions[0].ConversionKind
1715 == ImplicitConversionSequence::BadConversion) {
1716 Candidate.Viable = false;
1717 return;
1718 }
1719
1720 // Determine the implicit conversion sequences for each of the
1721 // arguments.
1722 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1723 if (ArgIdx < NumArgsInProto) {
1724 // (C++ 13.3.2p3): for F to be a viable function, there shall
1725 // exist for each argument an implicit conversion sequence
1726 // (13.3.3.1) that converts that argument to the corresponding
1727 // parameter of F.
1728 QualType ParamType = Proto->getArgType(ArgIdx);
1729 Candidate.Conversions[ArgIdx + 1]
1730 = TryCopyInitialization(Args[ArgIdx], ParamType,
1731 SuppressUserConversions);
1732 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1733 == ImplicitConversionSequence::BadConversion) {
1734 Candidate.Viable = false;
1735 break;
1736 }
1737 } else {
1738 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1739 // argument for which there is no corresponding parameter is
1740 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1741 Candidate.Conversions[ArgIdx + 1].ConversionKind
1742 = ImplicitConversionSequence::EllipsisConversion;
1743 }
1744 }
1745}
1746
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001747/// AddConversionCandidate - Add a C++ conversion function as a
1748/// candidate in the candidate set (C++ [over.match.conv],
1749/// C++ [over.match.copy]). From is the expression we're converting from,
1750/// and ToType is the type that we're eventually trying to convert to
1751/// (which may or may not be the same type as the type that the
1752/// conversion function produces).
1753void
1754Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1755 Expr *From, QualType ToType,
1756 OverloadCandidateSet& CandidateSet) {
1757 // Add this candidate
1758 CandidateSet.push_back(OverloadCandidate());
1759 OverloadCandidate& Candidate = CandidateSet.back();
1760 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001761 Candidate.IsSurrogate = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001762 Candidate.FinalConversion.setAsIdentityConversion();
1763 Candidate.FinalConversion.FromTypePtr
1764 = Conversion->getConversionType().getAsOpaquePtr();
1765 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1766
Douglas Gregor96176b32008-11-18 23:14:02 +00001767 // Determine the implicit conversion sequence for the implicit
1768 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001769 Candidate.Viable = true;
1770 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001771 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001772
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001773 if (Candidate.Conversions[0].ConversionKind
1774 == ImplicitConversionSequence::BadConversion) {
1775 Candidate.Viable = false;
1776 return;
1777 }
1778
1779 // To determine what the conversion from the result of calling the
1780 // conversion function to the type we're eventually trying to
1781 // convert to (ToType), we need to synthesize a call to the
1782 // conversion function and attempt copy initialization from it. This
1783 // makes sure that we get the right semantics with respect to
1784 // lvalues/rvalues and the type. Fortunately, we can allocate this
1785 // call on the stack and we don't need its arguments to be
1786 // well-formed.
1787 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1788 SourceLocation());
1789 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001790 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001791 CallExpr Call(&ConversionFn, 0, 0,
1792 Conversion->getConversionType().getNonReferenceType(),
1793 SourceLocation());
1794 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1795 switch (ICS.ConversionKind) {
1796 case ImplicitConversionSequence::StandardConversion:
1797 Candidate.FinalConversion = ICS.Standard;
1798 break;
1799
1800 case ImplicitConversionSequence::BadConversion:
1801 Candidate.Viable = false;
1802 break;
1803
1804 default:
1805 assert(false &&
1806 "Can only end up with a standard conversion sequence or failure");
1807 }
1808}
1809
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001810/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1811/// converts the given @c Object to a function pointer via the
1812/// conversion function @c Conversion, and then attempts to call it
1813/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1814/// the type of function that we'll eventually be calling.
1815void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1816 const FunctionTypeProto *Proto,
1817 Expr *Object, Expr **Args, unsigned NumArgs,
1818 OverloadCandidateSet& CandidateSet) {
1819 CandidateSet.push_back(OverloadCandidate());
1820 OverloadCandidate& Candidate = CandidateSet.back();
1821 Candidate.Function = 0;
1822 Candidate.Surrogate = Conversion;
1823 Candidate.Viable = true;
1824 Candidate.IsSurrogate = true;
1825 Candidate.Conversions.resize(NumArgs + 1);
1826
1827 // Determine the implicit conversion sequence for the implicit
1828 // object parameter.
1829 ImplicitConversionSequence ObjectInit
1830 = TryObjectArgumentInitialization(Object, Conversion);
1831 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1832 Candidate.Viable = false;
1833 return;
1834 }
1835
1836 // The first conversion is actually a user-defined conversion whose
1837 // first conversion is ObjectInit's standard conversion (which is
1838 // effectively a reference binding). Record it as such.
1839 Candidate.Conversions[0].ConversionKind
1840 = ImplicitConversionSequence::UserDefinedConversion;
1841 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1842 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1843 Candidate.Conversions[0].UserDefined.After
1844 = Candidate.Conversions[0].UserDefined.Before;
1845 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1846
1847 // Find the
1848 unsigned NumArgsInProto = Proto->getNumArgs();
1849
1850 // (C++ 13.3.2p2): A candidate function having fewer than m
1851 // parameters is viable only if it has an ellipsis in its parameter
1852 // list (8.3.5).
1853 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1854 Candidate.Viable = false;
1855 return;
1856 }
1857
1858 // Function types don't have any default arguments, so just check if
1859 // we have enough arguments.
1860 if (NumArgs < NumArgsInProto) {
1861 // Not enough arguments.
1862 Candidate.Viable = false;
1863 return;
1864 }
1865
1866 // Determine the implicit conversion sequences for each of the
1867 // arguments.
1868 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1869 if (ArgIdx < NumArgsInProto) {
1870 // (C++ 13.3.2p3): for F to be a viable function, there shall
1871 // exist for each argument an implicit conversion sequence
1872 // (13.3.3.1) that converts that argument to the corresponding
1873 // parameter of F.
1874 QualType ParamType = Proto->getArgType(ArgIdx);
1875 Candidate.Conversions[ArgIdx + 1]
1876 = TryCopyInitialization(Args[ArgIdx], ParamType,
1877 /*SuppressUserConversions=*/false);
1878 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1879 == ImplicitConversionSequence::BadConversion) {
1880 Candidate.Viable = false;
1881 break;
1882 }
1883 } else {
1884 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1885 // argument for which there is no corresponding parameter is
1886 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1887 Candidate.Conversions[ArgIdx + 1].ConversionKind
1888 = ImplicitConversionSequence::EllipsisConversion;
1889 }
1890 }
1891}
1892
Douglas Gregor447b69e2008-11-19 03:25:36 +00001893/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1894/// an acceptable non-member overloaded operator for a call whose
1895/// arguments have types T1 (and, if non-empty, T2). This routine
1896/// implements the check in C++ [over.match.oper]p3b2 concerning
1897/// enumeration types.
1898static bool
1899IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1900 QualType T1, QualType T2,
1901 ASTContext &Context) {
1902 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1903 return true;
1904
1905 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1906 if (Proto->getNumArgs() < 1)
1907 return false;
1908
1909 if (T1->isEnumeralType()) {
1910 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1911 if (Context.getCanonicalType(T1).getUnqualifiedType()
1912 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1913 return true;
1914 }
1915
1916 if (Proto->getNumArgs() < 2)
1917 return false;
1918
1919 if (!T2.isNull() && T2->isEnumeralType()) {
1920 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1921 if (Context.getCanonicalType(T2).getUnqualifiedType()
1922 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1923 return true;
1924 }
1925
1926 return false;
1927}
1928
Douglas Gregor96176b32008-11-18 23:14:02 +00001929/// AddOperatorCandidates - Add the overloaded operator candidates for
1930/// the operator Op that was used in an operator expression such as "x
1931/// Op y". S is the scope in which the expression occurred (used for
1932/// name lookup of the operator), Args/NumArgs provides the operator
1933/// arguments, and CandidateSet will store the added overload
1934/// candidates. (C++ [over.match.oper]).
1935void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1936 Expr **Args, unsigned NumArgs,
1937 OverloadCandidateSet& CandidateSet) {
1938 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1939
1940 // C++ [over.match.oper]p3:
1941 // For a unary operator @ with an operand of a type whose
1942 // cv-unqualified version is T1, and for a binary operator @ with
1943 // a left operand of a type whose cv-unqualified version is T1 and
1944 // a right operand of a type whose cv-unqualified version is T2,
1945 // three sets of candidate functions, designated member
1946 // candidates, non-member candidates and built-in candidates, are
1947 // constructed as follows:
1948 QualType T1 = Args[0]->getType();
1949 QualType T2;
1950 if (NumArgs > 1)
1951 T2 = Args[1]->getType();
1952
1953 // -- If T1 is a class type, the set of member candidates is the
1954 // result of the qualified lookup of T1::operator@
1955 // (13.3.1.1.1); otherwise, the set of member candidates is
1956 // empty.
1957 if (const RecordType *T1Rec = T1->getAsRecordType()) {
1958 IdentifierResolver::iterator I
1959 = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1960 /*LookInParentCtx=*/false);
1961 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1962 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1963 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1964 /*SuppressUserConversions=*/false);
1965 else if (OverloadedFunctionDecl *Ovl
1966 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1967 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1968 FEnd = Ovl->function_end();
1969 F != FEnd; ++F) {
1970 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1971 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1972 /*SuppressUserConversions=*/false);
1973 }
1974 }
1975 }
1976
1977 // -- The set of non-member candidates is the result of the
1978 // unqualified lookup of operator@ in the context of the
1979 // expression according to the usual rules for name lookup in
1980 // unqualified function calls (3.4.2) except that all member
1981 // functions are ignored. However, if no operand has a class
1982 // type, only those non-member functions in the lookup set
1983 // that have a first parameter of type T1 or “reference to
1984 // (possibly cv-qualified) T1”, when T1 is an enumeration
1985 // type, or (if there is a right operand) a second parameter
1986 // of type T2 or “reference to (possibly cv-qualified) T2”,
1987 // when T2 is an enumeration type, are candidate functions.
1988 {
1989 NamedDecl *NonMemberOps = 0;
1990 for (IdentifierResolver::iterator I
1991 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1992 I != IdResolver.end(); ++I) {
1993 // We don't need to check the identifier namespace, because
1994 // operator names can only be ordinary identifiers.
1995
1996 // Ignore member functions.
1997 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1998 if (SD->getDeclContext()->isCXXRecord())
1999 continue;
2000 }
2001
2002 // We found something with this name. We're done.
2003 NonMemberOps = *I;
2004 break;
2005 }
2006
Douglas Gregor447b69e2008-11-19 03:25:36 +00002007 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2008 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2009 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2010 /*SuppressUserConversions=*/false);
2011 } else if (OverloadedFunctionDecl *Ovl
2012 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002013 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2014 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002015 F != FEnd; ++F) {
2016 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2017 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2018 /*SuppressUserConversions=*/false);
2019 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002020 }
2021 }
2022
2023 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002024 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002025}
2026
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002027/// AddBuiltinCandidate - Add a candidate for a built-in
2028/// operator. ResultTy and ParamTys are the result and parameter types
2029/// of the built-in candidate, respectively. Args and NumArgs are the
2030/// arguments being passed to the candidate.
2031void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2032 Expr **Args, unsigned NumArgs,
2033 OverloadCandidateSet& CandidateSet) {
2034 // Add this candidate
2035 CandidateSet.push_back(OverloadCandidate());
2036 OverloadCandidate& Candidate = CandidateSet.back();
2037 Candidate.Function = 0;
2038 Candidate.BuiltinTypes.ResultTy = ResultTy;
2039 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2040 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2041
2042 // Determine the implicit conversion sequences for each of the
2043 // arguments.
2044 Candidate.Viable = true;
2045 Candidate.Conversions.resize(NumArgs);
2046 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2047 Candidate.Conversions[ArgIdx]
2048 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2049 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002050 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002051 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002052 break;
2053 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002054 }
2055}
2056
2057/// BuiltinCandidateTypeSet - A set of types that will be used for the
2058/// candidate operator functions for built-in operators (C++
2059/// [over.built]). The types are separated into pointer types and
2060/// enumeration types.
2061class BuiltinCandidateTypeSet {
2062 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002063 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002064
2065 /// PointerTypes - The set of pointer types that will be used in the
2066 /// built-in candidates.
2067 TypeSet PointerTypes;
2068
2069 /// EnumerationTypes - The set of enumeration types that will be
2070 /// used in the built-in candidates.
2071 TypeSet EnumerationTypes;
2072
2073 /// Context - The AST context in which we will build the type sets.
2074 ASTContext &Context;
2075
2076 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2077
2078public:
2079 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002080 class iterator {
2081 TypeSet::iterator Base;
2082
2083 public:
2084 typedef QualType value_type;
2085 typedef QualType reference;
2086 typedef QualType pointer;
2087 typedef std::ptrdiff_t difference_type;
2088 typedef std::input_iterator_tag iterator_category;
2089
2090 iterator(TypeSet::iterator B) : Base(B) { }
2091
2092 iterator& operator++() {
2093 ++Base;
2094 return *this;
2095 }
2096
2097 iterator operator++(int) {
2098 iterator tmp(*this);
2099 ++(*this);
2100 return tmp;
2101 }
2102
2103 reference operator*() const {
2104 return QualType::getFromOpaquePtr(*Base);
2105 }
2106
2107 pointer operator->() const {
2108 return **this;
2109 }
2110
2111 friend bool operator==(iterator LHS, iterator RHS) {
2112 return LHS.Base == RHS.Base;
2113 }
2114
2115 friend bool operator!=(iterator LHS, iterator RHS) {
2116 return LHS.Base != RHS.Base;
2117 }
2118 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002119
2120 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2121
2122 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2123
2124 /// pointer_begin - First pointer type found;
2125 iterator pointer_begin() { return PointerTypes.begin(); }
2126
2127 /// pointer_end - Last pointer type found;
2128 iterator pointer_end() { return PointerTypes.end(); }
2129
2130 /// enumeration_begin - First enumeration type found;
2131 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2132
2133 /// enumeration_end - Last enumeration type found;
2134 iterator enumeration_end() { return EnumerationTypes.end(); }
2135};
2136
2137/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2138/// the set of pointer types along with any more-qualified variants of
2139/// that type. For example, if @p Ty is "int const *", this routine
2140/// will add "int const *", "int const volatile *", "int const
2141/// restrict *", and "int const volatile restrict *" to the set of
2142/// pointer types. Returns true if the add of @p Ty itself succeeded,
2143/// false otherwise.
2144bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2145 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002146 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002147 return false;
2148
2149 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2150 QualType PointeeTy = PointerTy->getPointeeType();
2151 // FIXME: Optimize this so that we don't keep trying to add the same types.
2152
2153 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2154 // with all pointer conversions that don't cast away constness?
2155 if (!PointeeTy.isConstQualified())
2156 AddWithMoreQualifiedTypeVariants
2157 (Context.getPointerType(PointeeTy.withConst()));
2158 if (!PointeeTy.isVolatileQualified())
2159 AddWithMoreQualifiedTypeVariants
2160 (Context.getPointerType(PointeeTy.withVolatile()));
2161 if (!PointeeTy.isRestrictQualified())
2162 AddWithMoreQualifiedTypeVariants
2163 (Context.getPointerType(PointeeTy.withRestrict()));
2164 }
2165
2166 return true;
2167}
2168
2169/// AddTypesConvertedFrom - Add each of the types to which the type @p
2170/// Ty can be implicit converted to the given set of @p Types. We're
2171/// primarily interested in pointer types, enumeration types,
2172void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2173 bool AllowUserConversions) {
2174 // Only deal with canonical types.
2175 Ty = Context.getCanonicalType(Ty);
2176
2177 // Look through reference types; they aren't part of the type of an
2178 // expression for the purposes of conversions.
2179 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2180 Ty = RefTy->getPointeeType();
2181
2182 // We don't care about qualifiers on the type.
2183 Ty = Ty.getUnqualifiedType();
2184
2185 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2186 QualType PointeeTy = PointerTy->getPointeeType();
2187
2188 // Insert our type, and its more-qualified variants, into the set
2189 // of types.
2190 if (!AddWithMoreQualifiedTypeVariants(Ty))
2191 return;
2192
2193 // Add 'cv void*' to our set of types.
2194 if (!Ty->isVoidType()) {
2195 QualType QualVoid
2196 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2197 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2198 }
2199
2200 // If this is a pointer to a class type, add pointers to its bases
2201 // (with the same level of cv-qualification as the original
2202 // derived class, of course).
2203 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2204 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2205 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2206 Base != ClassDecl->bases_end(); ++Base) {
2207 QualType BaseTy = Context.getCanonicalType(Base->getType());
2208 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2209
2210 // Add the pointer type, recursively, so that we get all of
2211 // the indirect base classes, too.
2212 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2213 }
2214 }
2215 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002216 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002217 } else if (AllowUserConversions) {
2218 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2219 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2220 // FIXME: Visit conversion functions in the base classes, too.
2221 OverloadedFunctionDecl *Conversions
2222 = ClassDecl->getConversionFunctions();
2223 for (OverloadedFunctionDecl::function_iterator Func
2224 = Conversions->function_begin();
2225 Func != Conversions->function_end(); ++Func) {
2226 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2227 AddTypesConvertedFrom(Conv->getConversionType(), false);
2228 }
2229 }
2230 }
2231}
2232
Douglas Gregor74253732008-11-19 15:42:04 +00002233/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2234/// operator overloads to the candidate set (C++ [over.built]), based
2235/// on the operator @p Op and the arguments given. For example, if the
2236/// operator is a binary '+', this routine might add "int
2237/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002238void
Douglas Gregor74253732008-11-19 15:42:04 +00002239Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2240 Expr **Args, unsigned NumArgs,
2241 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002242 // The set of "promoted arithmetic types", which are the arithmetic
2243 // types are that preserved by promotion (C++ [over.built]p2). Note
2244 // that the first few of these types are the promoted integral
2245 // types; these types need to be first.
2246 // FIXME: What about complex?
2247 const unsigned FirstIntegralType = 0;
2248 const unsigned LastIntegralType = 13;
2249 const unsigned FirstPromotedIntegralType = 7,
2250 LastPromotedIntegralType = 13;
2251 const unsigned FirstPromotedArithmeticType = 7,
2252 LastPromotedArithmeticType = 16;
2253 const unsigned NumArithmeticTypes = 16;
2254 QualType ArithmeticTypes[NumArithmeticTypes] = {
2255 Context.BoolTy, Context.CharTy, Context.WCharTy,
2256 Context.SignedCharTy, Context.ShortTy,
2257 Context.UnsignedCharTy, Context.UnsignedShortTy,
2258 Context.IntTy, Context.LongTy, Context.LongLongTy,
2259 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2260 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2261 };
2262
2263 // Find all of the types that the arguments can convert to, but only
2264 // if the operator we're looking at has built-in operator candidates
2265 // that make use of these types.
2266 BuiltinCandidateTypeSet CandidateTypes(Context);
2267 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2268 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002269 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002270 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002271 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2272 (Op == OO_Star && NumArgs == 1)) {
2273 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002274 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2275 }
2276
2277 bool isComparison = false;
2278 switch (Op) {
2279 case OO_None:
2280 case NUM_OVERLOADED_OPERATORS:
2281 assert(false && "Expected an overloaded operator");
2282 break;
2283
Douglas Gregor74253732008-11-19 15:42:04 +00002284 case OO_Star: // '*' is either unary or binary
2285 if (NumArgs == 1)
2286 goto UnaryStar;
2287 else
2288 goto BinaryStar;
2289 break;
2290
2291 case OO_Plus: // '+' is either unary or binary
2292 if (NumArgs == 1)
2293 goto UnaryPlus;
2294 else
2295 goto BinaryPlus;
2296 break;
2297
2298 case OO_Minus: // '-' is either unary or binary
2299 if (NumArgs == 1)
2300 goto UnaryMinus;
2301 else
2302 goto BinaryMinus;
2303 break;
2304
2305 case OO_Amp: // '&' is either unary or binary
2306 if (NumArgs == 1)
2307 goto UnaryAmp;
2308 else
2309 goto BinaryAmp;
2310
2311 case OO_PlusPlus:
2312 case OO_MinusMinus:
2313 // C++ [over.built]p3:
2314 //
2315 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2316 // is either volatile or empty, there exist candidate operator
2317 // functions of the form
2318 //
2319 // VQ T& operator++(VQ T&);
2320 // T operator++(VQ T&, int);
2321 //
2322 // C++ [over.built]p4:
2323 //
2324 // For every pair (T, VQ), where T is an arithmetic type other
2325 // than bool, and VQ is either volatile or empty, there exist
2326 // candidate operator functions of the form
2327 //
2328 // VQ T& operator--(VQ T&);
2329 // T operator--(VQ T&, int);
2330 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2331 Arith < NumArithmeticTypes; ++Arith) {
2332 QualType ArithTy = ArithmeticTypes[Arith];
2333 QualType ParamTypes[2]
2334 = { Context.getReferenceType(ArithTy), Context.IntTy };
2335
2336 // Non-volatile version.
2337 if (NumArgs == 1)
2338 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2339 else
2340 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2341
2342 // Volatile version
2343 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2344 if (NumArgs == 1)
2345 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2346 else
2347 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2348 }
2349
2350 // C++ [over.built]p5:
2351 //
2352 // For every pair (T, VQ), where T is a cv-qualified or
2353 // cv-unqualified object type, and VQ is either volatile or
2354 // empty, there exist candidate operator functions of the form
2355 //
2356 // T*VQ& operator++(T*VQ&);
2357 // T*VQ& operator--(T*VQ&);
2358 // T* operator++(T*VQ&, int);
2359 // T* operator--(T*VQ&, int);
2360 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2361 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2362 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002363 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002364 continue;
2365
2366 QualType ParamTypes[2] = {
2367 Context.getReferenceType(*Ptr), Context.IntTy
2368 };
2369
2370 // Without volatile
2371 if (NumArgs == 1)
2372 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2373 else
2374 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2375
2376 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2377 // With volatile
2378 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2379 if (NumArgs == 1)
2380 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2381 else
2382 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2383 }
2384 }
2385 break;
2386
2387 UnaryStar:
2388 // C++ [over.built]p6:
2389 // For every cv-qualified or cv-unqualified object type T, there
2390 // exist candidate operator functions of the form
2391 //
2392 // T& operator*(T*);
2393 //
2394 // C++ [over.built]p7:
2395 // For every function type T, there exist candidate operator
2396 // functions of the form
2397 // T& operator*(T*);
2398 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2399 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2400 QualType ParamTy = *Ptr;
2401 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2402 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2403 &ParamTy, Args, 1, CandidateSet);
2404 }
2405 break;
2406
2407 UnaryPlus:
2408 // C++ [over.built]p8:
2409 // For every type T, there exist candidate operator functions of
2410 // the form
2411 //
2412 // T* operator+(T*);
2413 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2414 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2415 QualType ParamTy = *Ptr;
2416 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2417 }
2418
2419 // Fall through
2420
2421 UnaryMinus:
2422 // C++ [over.built]p9:
2423 // For every promoted arithmetic type T, there exist candidate
2424 // operator functions of the form
2425 //
2426 // T operator+(T);
2427 // T operator-(T);
2428 for (unsigned Arith = FirstPromotedArithmeticType;
2429 Arith < LastPromotedArithmeticType; ++Arith) {
2430 QualType ArithTy = ArithmeticTypes[Arith];
2431 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2432 }
2433 break;
2434
2435 case OO_Tilde:
2436 // C++ [over.built]p10:
2437 // For every promoted integral type T, there exist candidate
2438 // operator functions of the form
2439 //
2440 // T operator~(T);
2441 for (unsigned Int = FirstPromotedIntegralType;
2442 Int < LastPromotedIntegralType; ++Int) {
2443 QualType IntTy = ArithmeticTypes[Int];
2444 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2445 }
2446 break;
2447
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002448 case OO_New:
2449 case OO_Delete:
2450 case OO_Array_New:
2451 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002452 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002453 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002454 break;
2455
2456 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002457 UnaryAmp:
2458 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002459 // C++ [over.match.oper]p3:
2460 // -- For the operator ',', the unary operator '&', or the
2461 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002462 break;
2463
2464 case OO_Less:
2465 case OO_Greater:
2466 case OO_LessEqual:
2467 case OO_GreaterEqual:
2468 case OO_EqualEqual:
2469 case OO_ExclaimEqual:
2470 // C++ [over.built]p15:
2471 //
2472 // For every pointer or enumeration type T, there exist
2473 // candidate operator functions of the form
2474 //
2475 // bool operator<(T, T);
2476 // bool operator>(T, T);
2477 // bool operator<=(T, T);
2478 // bool operator>=(T, T);
2479 // bool operator==(T, T);
2480 // bool operator!=(T, T);
2481 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2482 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2483 QualType ParamTypes[2] = { *Ptr, *Ptr };
2484 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2485 }
2486 for (BuiltinCandidateTypeSet::iterator Enum
2487 = CandidateTypes.enumeration_begin();
2488 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2489 QualType ParamTypes[2] = { *Enum, *Enum };
2490 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2491 }
2492
2493 // Fall through.
2494 isComparison = true;
2495
Douglas Gregor74253732008-11-19 15:42:04 +00002496 BinaryPlus:
2497 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002498 if (!isComparison) {
2499 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2500
2501 // C++ [over.built]p13:
2502 //
2503 // For every cv-qualified or cv-unqualified object type T
2504 // there exist candidate operator functions of the form
2505 //
2506 // T* operator+(T*, ptrdiff_t);
2507 // T& operator[](T*, ptrdiff_t); [BELOW]
2508 // T* operator-(T*, ptrdiff_t);
2509 // T* operator+(ptrdiff_t, T*);
2510 // T& operator[](ptrdiff_t, T*); [BELOW]
2511 //
2512 // C++ [over.built]p14:
2513 //
2514 // For every T, where T is a pointer to object type, there
2515 // exist candidate operator functions of the form
2516 //
2517 // ptrdiff_t operator-(T, T);
2518 for (BuiltinCandidateTypeSet::iterator Ptr
2519 = CandidateTypes.pointer_begin();
2520 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2521 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2522
2523 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2524 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2525
2526 if (Op == OO_Plus) {
2527 // T* operator+(ptrdiff_t, T*);
2528 ParamTypes[0] = ParamTypes[1];
2529 ParamTypes[1] = *Ptr;
2530 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2531 } else {
2532 // ptrdiff_t operator-(T, T);
2533 ParamTypes[1] = *Ptr;
2534 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2535 Args, 2, CandidateSet);
2536 }
2537 }
2538 }
2539 // Fall through
2540
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002541 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002542 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002543 // C++ [over.built]p12:
2544 //
2545 // For every pair of promoted arithmetic types L and R, there
2546 // exist candidate operator functions of the form
2547 //
2548 // LR operator*(L, R);
2549 // LR operator/(L, R);
2550 // LR operator+(L, R);
2551 // LR operator-(L, R);
2552 // bool operator<(L, R);
2553 // bool operator>(L, R);
2554 // bool operator<=(L, R);
2555 // bool operator>=(L, R);
2556 // bool operator==(L, R);
2557 // bool operator!=(L, R);
2558 //
2559 // where LR is the result of the usual arithmetic conversions
2560 // between types L and R.
2561 for (unsigned Left = FirstPromotedArithmeticType;
2562 Left < LastPromotedArithmeticType; ++Left) {
2563 for (unsigned Right = FirstPromotedArithmeticType;
2564 Right < LastPromotedArithmeticType; ++Right) {
2565 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2566 QualType Result
2567 = isComparison? Context.BoolTy
2568 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2569 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2570 }
2571 }
2572 break;
2573
2574 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002575 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002576 case OO_Caret:
2577 case OO_Pipe:
2578 case OO_LessLess:
2579 case OO_GreaterGreater:
2580 // C++ [over.built]p17:
2581 //
2582 // For every pair of promoted integral types L and R, there
2583 // exist candidate operator functions of the form
2584 //
2585 // LR operator%(L, R);
2586 // LR operator&(L, R);
2587 // LR operator^(L, R);
2588 // LR operator|(L, R);
2589 // L operator<<(L, R);
2590 // L operator>>(L, R);
2591 //
2592 // where LR is the result of the usual arithmetic conversions
2593 // between types L and R.
2594 for (unsigned Left = FirstPromotedIntegralType;
2595 Left < LastPromotedIntegralType; ++Left) {
2596 for (unsigned Right = FirstPromotedIntegralType;
2597 Right < LastPromotedIntegralType; ++Right) {
2598 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2599 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2600 ? LandR[0]
2601 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2602 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2603 }
2604 }
2605 break;
2606
2607 case OO_Equal:
2608 // C++ [over.built]p20:
2609 //
2610 // For every pair (T, VQ), where T is an enumeration or
2611 // (FIXME:) pointer to member type and VQ is either volatile or
2612 // empty, there exist candidate operator functions of the form
2613 //
2614 // VQ T& operator=(VQ T&, T);
2615 for (BuiltinCandidateTypeSet::iterator Enum
2616 = CandidateTypes.enumeration_begin();
2617 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2618 QualType ParamTypes[2];
2619
2620 // T& operator=(T&, T)
2621 ParamTypes[0] = Context.getReferenceType(*Enum);
2622 ParamTypes[1] = *Enum;
2623 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2624
Douglas Gregor74253732008-11-19 15:42:04 +00002625 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2626 // volatile T& operator=(volatile T&, T)
2627 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2628 ParamTypes[1] = *Enum;
2629 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2630 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002631 }
2632 // Fall through.
2633
2634 case OO_PlusEqual:
2635 case OO_MinusEqual:
2636 // C++ [over.built]p19:
2637 //
2638 // For every pair (T, VQ), where T is any type and VQ is either
2639 // volatile or empty, there exist candidate operator functions
2640 // of the form
2641 //
2642 // T*VQ& operator=(T*VQ&, T*);
2643 //
2644 // C++ [over.built]p21:
2645 //
2646 // For every pair (T, VQ), where T is a cv-qualified or
2647 // cv-unqualified object type and VQ is either volatile or
2648 // empty, there exist candidate operator functions of the form
2649 //
2650 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2651 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2652 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2653 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2654 QualType ParamTypes[2];
2655 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2656
2657 // non-volatile version
2658 ParamTypes[0] = Context.getReferenceType(*Ptr);
2659 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2660
Douglas Gregor74253732008-11-19 15:42:04 +00002661 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2662 // volatile version
2663 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2664 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2665 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002666 }
2667 // Fall through.
2668
2669 case OO_StarEqual:
2670 case OO_SlashEqual:
2671 // C++ [over.built]p18:
2672 //
2673 // For every triple (L, VQ, R), where L is an arithmetic type,
2674 // VQ is either volatile or empty, and R is a promoted
2675 // arithmetic type, there exist candidate operator functions of
2676 // the form
2677 //
2678 // VQ L& operator=(VQ L&, R);
2679 // VQ L& operator*=(VQ L&, R);
2680 // VQ L& operator/=(VQ L&, R);
2681 // VQ L& operator+=(VQ L&, R);
2682 // VQ L& operator-=(VQ L&, R);
2683 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2684 for (unsigned Right = FirstPromotedArithmeticType;
2685 Right < LastPromotedArithmeticType; ++Right) {
2686 QualType ParamTypes[2];
2687 ParamTypes[1] = ArithmeticTypes[Right];
2688
2689 // Add this built-in operator as a candidate (VQ is empty).
2690 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2691 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2692
2693 // Add this built-in operator as a candidate (VQ is 'volatile').
2694 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2695 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2696 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2697 }
2698 }
2699 break;
2700
2701 case OO_PercentEqual:
2702 case OO_LessLessEqual:
2703 case OO_GreaterGreaterEqual:
2704 case OO_AmpEqual:
2705 case OO_CaretEqual:
2706 case OO_PipeEqual:
2707 // C++ [over.built]p22:
2708 //
2709 // For every triple (L, VQ, R), where L is an integral type, VQ
2710 // is either volatile or empty, and R is a promoted integral
2711 // type, there exist candidate operator functions of the form
2712 //
2713 // VQ L& operator%=(VQ L&, R);
2714 // VQ L& operator<<=(VQ L&, R);
2715 // VQ L& operator>>=(VQ L&, R);
2716 // VQ L& operator&=(VQ L&, R);
2717 // VQ L& operator^=(VQ L&, R);
2718 // VQ L& operator|=(VQ L&, R);
2719 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2720 for (unsigned Right = FirstPromotedIntegralType;
2721 Right < LastPromotedIntegralType; ++Right) {
2722 QualType ParamTypes[2];
2723 ParamTypes[1] = ArithmeticTypes[Right];
2724
2725 // Add this built-in operator as a candidate (VQ is empty).
2726 // FIXME: We should be caching these declarations somewhere,
2727 // rather than re-building them every time.
2728 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2729 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2730
2731 // Add this built-in operator as a candidate (VQ is 'volatile').
2732 ParamTypes[0] = ArithmeticTypes[Left];
2733 ParamTypes[0].addVolatile();
2734 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2735 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2736 }
2737 }
2738 break;
2739
Douglas Gregor74253732008-11-19 15:42:04 +00002740 case OO_Exclaim: {
2741 // C++ [over.operator]p23:
2742 //
2743 // There also exist candidate operator functions of the form
2744 //
2745 // bool operator!(bool);
2746 // bool operator&&(bool, bool); [BELOW]
2747 // bool operator||(bool, bool); [BELOW]
2748 QualType ParamTy = Context.BoolTy;
2749 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2750 break;
2751 }
2752
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002753 case OO_AmpAmp:
2754 case OO_PipePipe: {
2755 // C++ [over.operator]p23:
2756 //
2757 // There also exist candidate operator functions of the form
2758 //
Douglas Gregor74253732008-11-19 15:42:04 +00002759 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002760 // bool operator&&(bool, bool);
2761 // bool operator||(bool, bool);
2762 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2763 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2764 break;
2765 }
2766
2767 case OO_Subscript:
2768 // C++ [over.built]p13:
2769 //
2770 // For every cv-qualified or cv-unqualified object type T there
2771 // exist candidate operator functions of the form
2772 //
2773 // T* operator+(T*, ptrdiff_t); [ABOVE]
2774 // T& operator[](T*, ptrdiff_t);
2775 // T* operator-(T*, ptrdiff_t); [ABOVE]
2776 // T* operator+(ptrdiff_t, T*); [ABOVE]
2777 // T& operator[](ptrdiff_t, T*);
2778 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2779 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2780 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2781 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2782 QualType ResultTy = Context.getReferenceType(PointeeType);
2783
2784 // T& operator[](T*, ptrdiff_t)
2785 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2786
2787 // T& operator[](ptrdiff_t, T*);
2788 ParamTypes[0] = ParamTypes[1];
2789 ParamTypes[1] = *Ptr;
2790 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2791 }
2792 break;
2793
2794 case OO_ArrowStar:
2795 // FIXME: No support for pointer-to-members yet.
2796 break;
2797 }
2798}
2799
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002800/// AddOverloadCandidates - Add all of the function overloads in Ovl
2801/// to the candidate set.
2802void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002803Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002804 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002805 OverloadCandidateSet& CandidateSet,
2806 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002807{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002808 for (OverloadedFunctionDecl::function_const_iterator Func
2809 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002810 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002811 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2812 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002813}
2814
2815/// isBetterOverloadCandidate - Determines whether the first overload
2816/// candidate is a better candidate than the second (C++ 13.3.3p1).
2817bool
2818Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2819 const OverloadCandidate& Cand2)
2820{
2821 // Define viable functions to be better candidates than non-viable
2822 // functions.
2823 if (!Cand2.Viable)
2824 return Cand1.Viable;
2825 else if (!Cand1.Viable)
2826 return false;
2827
2828 // FIXME: Deal with the implicit object parameter for static member
2829 // functions. (C++ 13.3.3p1).
2830
2831 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2832 // function than another viable function F2 if for all arguments i,
2833 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2834 // then...
2835 unsigned NumArgs = Cand1.Conversions.size();
2836 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2837 bool HasBetterConversion = false;
2838 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2839 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2840 Cand2.Conversions[ArgIdx])) {
2841 case ImplicitConversionSequence::Better:
2842 // Cand1 has a better conversion sequence.
2843 HasBetterConversion = true;
2844 break;
2845
2846 case ImplicitConversionSequence::Worse:
2847 // Cand1 can't be better than Cand2.
2848 return false;
2849
2850 case ImplicitConversionSequence::Indistinguishable:
2851 // Do nothing.
2852 break;
2853 }
2854 }
2855
2856 if (HasBetterConversion)
2857 return true;
2858
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002859 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2860 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002861
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002862 // C++ [over.match.best]p1b4:
2863 //
2864 // -- the context is an initialization by user-defined conversion
2865 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2866 // from the return type of F1 to the destination type (i.e.,
2867 // the type of the entity being initialized) is a better
2868 // conversion sequence than the standard conversion sequence
2869 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00002870 if (Cand1.Function && Cand2.Function &&
2871 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002872 isa<CXXConversionDecl>(Cand2.Function)) {
2873 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2874 Cand2.FinalConversion)) {
2875 case ImplicitConversionSequence::Better:
2876 // Cand1 has a better conversion sequence.
2877 return true;
2878
2879 case ImplicitConversionSequence::Worse:
2880 // Cand1 can't be better than Cand2.
2881 return false;
2882
2883 case ImplicitConversionSequence::Indistinguishable:
2884 // Do nothing
2885 break;
2886 }
2887 }
2888
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002889 return false;
2890}
2891
2892/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2893/// within an overload candidate set. If overloading is successful,
2894/// the result will be OR_Success and Best will be set to point to the
2895/// best viable function within the candidate set. Otherwise, one of
2896/// several kinds of errors will be returned; see
2897/// Sema::OverloadingResult.
2898Sema::OverloadingResult
2899Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2900 OverloadCandidateSet::iterator& Best)
2901{
2902 // Find the best viable function.
2903 Best = CandidateSet.end();
2904 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2905 Cand != CandidateSet.end(); ++Cand) {
2906 if (Cand->Viable) {
2907 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2908 Best = Cand;
2909 }
2910 }
2911
2912 // If we didn't find any viable functions, abort.
2913 if (Best == CandidateSet.end())
2914 return OR_No_Viable_Function;
2915
2916 // Make sure that this function is better than every other viable
2917 // function. If not, we have an ambiguity.
2918 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2919 Cand != CandidateSet.end(); ++Cand) {
2920 if (Cand->Viable &&
2921 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002922 !isBetterOverloadCandidate(*Best, *Cand)) {
2923 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002924 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002925 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002926 }
2927
2928 // Best is the best viable function.
2929 return OR_Success;
2930}
2931
2932/// PrintOverloadCandidates - When overload resolution fails, prints
2933/// diagnostic messages containing the candidates in the candidate
2934/// set. If OnlyViable is true, only viable candidates will be printed.
2935void
2936Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2937 bool OnlyViable)
2938{
2939 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2940 LastCand = CandidateSet.end();
2941 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002942 if (Cand->Viable || !OnlyViable) {
2943 if (Cand->Function) {
2944 // Normal function
2945 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002946 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00002947 // Desugar the type of the surrogate down to a function type,
2948 // retaining as many typedefs as possible while still showing
2949 // the function type (and, therefore, its parameter types).
2950 QualType FnType = Cand->Surrogate->getConversionType();
2951 bool isReference = false;
2952 bool isPointer = false;
2953 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2954 FnType = FnTypeRef->getPointeeType();
2955 isReference = true;
2956 }
2957 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2958 FnType = FnTypePtr->getPointeeType();
2959 isPointer = true;
2960 }
2961 // Desugar down to a function type.
2962 FnType = QualType(FnType->getAsFunctionType(), 0);
2963 // Reconstruct the pointer/reference as appropriate.
2964 if (isPointer) FnType = Context.getPointerType(FnType);
2965 if (isReference) FnType = Context.getReferenceType(FnType);
2966
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002967 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00002968 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002969 } else {
2970 // FIXME: We need to get the identifier in here
2971 // FIXME: Do we want the error message to point at the
2972 // operator? (built-ins won't have a location)
2973 QualType FnType
2974 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2975 Cand->BuiltinTypes.ParamTypes,
2976 Cand->Conversions.size(),
2977 false, 0);
2978
Chris Lattnerd1625842008-11-24 06:25:27 +00002979 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002980 }
2981 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002982 }
2983}
2984
Douglas Gregor904eed32008-11-10 20:40:00 +00002985/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2986/// an overloaded function (C++ [over.over]), where @p From is an
2987/// expression with overloaded function type and @p ToType is the type
2988/// we're trying to resolve to. For example:
2989///
2990/// @code
2991/// int f(double);
2992/// int f(int);
2993///
2994/// int (*pfd)(double) = f; // selects f(double)
2995/// @endcode
2996///
2997/// This routine returns the resulting FunctionDecl if it could be
2998/// resolved, and NULL otherwise. When @p Complain is true, this
2999/// routine will emit diagnostics if there is an error.
3000FunctionDecl *
3001Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3002 bool Complain) {
3003 QualType FunctionType = ToType;
3004 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3005 FunctionType = ToTypePtr->getPointeeType();
3006
3007 // We only look at pointers or references to functions.
3008 if (!FunctionType->isFunctionType())
3009 return 0;
3010
3011 // Find the actual overloaded function declaration.
3012 OverloadedFunctionDecl *Ovl = 0;
3013
3014 // C++ [over.over]p1:
3015 // [...] [Note: any redundant set of parentheses surrounding the
3016 // overloaded function name is ignored (5.1). ]
3017 Expr *OvlExpr = From->IgnoreParens();
3018
3019 // C++ [over.over]p1:
3020 // [...] The overloaded function name can be preceded by the &
3021 // operator.
3022 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3023 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3024 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3025 }
3026
3027 // Try to dig out the overloaded function.
3028 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3029 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3030
3031 // If there's no overloaded function declaration, we're done.
3032 if (!Ovl)
3033 return 0;
3034
3035 // Look through all of the overloaded functions, searching for one
3036 // whose type matches exactly.
3037 // FIXME: When templates or using declarations come along, we'll actually
3038 // have to deal with duplicates, partial ordering, etc. For now, we
3039 // can just do a simple search.
3040 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3041 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3042 Fun != Ovl->function_end(); ++Fun) {
3043 // C++ [over.over]p3:
3044 // Non-member functions and static member functions match
3045 // targets of type “pointer-to-function”or
3046 // “reference-to-function.”
3047 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3048 if (!Method->isStatic())
3049 continue;
3050
3051 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3052 return *Fun;
3053 }
3054
3055 return 0;
3056}
3057
Douglas Gregorf6b89692008-11-26 05:54:23 +00003058/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3059/// (which eventually refers to the set of overloaded functions in
3060/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3061/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003062/// succeeds, returns the function declaration produced by overload
3063/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003064/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003065FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3066 SourceLocation LParenLoc,
3067 Expr **Args, unsigned NumArgs,
3068 SourceLocation *CommaLocs,
3069 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003070 OverloadCandidateSet CandidateSet;
3071 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3072 OverloadCandidateSet::iterator Best;
3073 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003074 case OR_Success:
3075 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003076
3077 case OR_No_Viable_Function:
3078 Diag(Fn->getSourceRange().getBegin(),
3079 diag::err_ovl_no_viable_function_in_call)
3080 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3081 << Fn->getSourceRange();
3082 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3083 break;
3084
3085 case OR_Ambiguous:
3086 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3087 << Ovl->getDeclName() << Fn->getSourceRange();
3088 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3089 break;
3090 }
3091
3092 // Overload resolution failed. Destroy all of the subexpressions and
3093 // return NULL.
3094 Fn->Destroy(Context);
3095 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3096 Args[Arg]->Destroy(Context);
3097 return 0;
3098}
3099
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003100/// BuildCallToObjectOfClassType - Build a call to an object of class
3101/// type (C++ [over.call.object]), which can end up invoking an
3102/// overloaded function call operator (@c operator()) or performing a
3103/// user-defined conversion on the object argument.
3104Action::ExprResult
3105Sema::BuildCallToObjectOfClassType(Expr *Object, SourceLocation LParenLoc,
3106 Expr **Args, unsigned NumArgs,
3107 SourceLocation *CommaLocs,
3108 SourceLocation RParenLoc) {
3109 assert(Object->getType()->isRecordType() && "Requires object type argument");
3110 const RecordType *Record = Object->getType()->getAsRecordType();
3111
3112 // C++ [over.call.object]p1:
3113 // If the primary-expression E in the function call syntax
3114 // evaluates to a class object of type “cv T”, then the set of
3115 // candidate functions includes at least the function call
3116 // operators of T. The function call operators of T are obtained by
3117 // ordinary lookup of the name operator() in the context of
3118 // (E).operator().
3119 OverloadCandidateSet CandidateSet;
3120 IdentifierResolver::iterator I
3121 = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
3122 cast<CXXRecordType>(Record)->getDecl(),
3123 /*LookInParentCtx=*/false);
3124 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3125 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3126 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3127 /*SuppressUserConversions=*/false);
3128 else if (OverloadedFunctionDecl *Ovl
3129 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3130 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3131 FEnd = Ovl->function_end();
3132 F != FEnd; ++F) {
3133 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3134 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3135 /*SuppressUserConversions=*/false);
3136 }
3137 }
3138
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003139 // C++ [over.call.object]p2:
3140 // In addition, for each conversion function declared in T of the
3141 // form
3142 //
3143 // operator conversion-type-id () cv-qualifier;
3144 //
3145 // where cv-qualifier is the same cv-qualification as, or a
3146 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003147 // denotes the type "pointer to function of (P1,...,Pn) returning
3148 // R", or the type "reference to pointer to function of
3149 // (P1,...,Pn) returning R", or the type "reference to function
3150 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003151 // is also considered as a candidate function. Similarly,
3152 // surrogate call functions are added to the set of candidate
3153 // functions for each conversion function declared in an
3154 // accessible base class provided the function is not hidden
3155 // within T by another intervening declaration.
3156 //
3157 // FIXME: Look in base classes for more conversion operators!
3158 OverloadedFunctionDecl *Conversions
3159 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003160 for (OverloadedFunctionDecl::function_iterator
3161 Func = Conversions->function_begin(),
3162 FuncEnd = Conversions->function_end();
3163 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003164 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3165
3166 // Strip the reference type (if any) and then the pointer type (if
3167 // any) to get down to what might be a function type.
3168 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3169 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3170 ConvType = ConvPtrType->getPointeeType();
3171
3172 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3173 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3174 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003175
3176 // Perform overload resolution.
3177 OverloadCandidateSet::iterator Best;
3178 switch (BestViableFunction(CandidateSet, Best)) {
3179 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003180 // Overload resolution succeeded; we'll build the appropriate call
3181 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003182 break;
3183
3184 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003185 Diag(Object->getSourceRange().getBegin(),
3186 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003187 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003188 << Object->getSourceRange();
3189 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003190 break;
3191
3192 case OR_Ambiguous:
3193 Diag(Object->getSourceRange().getBegin(),
3194 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003195 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003196 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3197 break;
3198 }
3199
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003200 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003201 // We had an error; delete all of the subexpressions and return
3202 // the error.
3203 delete Object;
3204 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3205 delete Args[ArgIdx];
3206 return true;
3207 }
3208
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003209 if (Best->Function == 0) {
3210 // Since there is no function declaration, this is one of the
3211 // surrogate candidates. Dig out the conversion function.
3212 CXXConversionDecl *Conv
3213 = cast<CXXConversionDecl>(
3214 Best->Conversions[0].UserDefined.ConversionFunction);
3215
3216 // We selected one of the surrogate functions that converts the
3217 // object parameter to a function pointer. Perform the conversion
3218 // on the object argument, then let ActOnCallExpr finish the job.
3219 // FIXME: Represent the user-defined conversion in the AST!
3220 ImpCastExprToType(Object,
3221 Conv->getConversionType().getNonReferenceType(),
3222 Conv->getConversionType()->isReferenceType());
3223 return ActOnCallExpr((ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3224 CommaLocs, RParenLoc);
3225 }
3226
3227 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3228 // that calls this method, using Object for the implicit object
3229 // parameter and passing along the remaining arguments.
3230 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003231 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3232
3233 unsigned NumArgsInProto = Proto->getNumArgs();
3234 unsigned NumArgsToCheck = NumArgs;
3235
3236 // Build the full argument list for the method call (the
3237 // implicit object parameter is placed at the beginning of the
3238 // list).
3239 Expr **MethodArgs;
3240 if (NumArgs < NumArgsInProto) {
3241 NumArgsToCheck = NumArgsInProto;
3242 MethodArgs = new Expr*[NumArgsInProto + 1];
3243 } else {
3244 MethodArgs = new Expr*[NumArgs + 1];
3245 }
3246 MethodArgs[0] = Object;
3247 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3248 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3249
3250 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3251 SourceLocation());
3252 UsualUnaryConversions(NewFn);
3253
3254 // Once we've built TheCall, all of the expressions are properly
3255 // owned.
3256 QualType ResultTy = Method->getResultType().getNonReferenceType();
3257 llvm::OwningPtr<CXXOperatorCallExpr>
3258 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3259 ResultTy, RParenLoc));
3260 delete [] MethodArgs;
3261
3262 // Initialize the implicit object parameter.
3263 if (!PerformObjectArgumentInitialization(Object, Method))
3264 return true;
3265 TheCall->setArg(0, Object);
3266
3267 // Check the argument types.
3268 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3269 QualType ProtoArgType = Proto->getArgType(i);
3270
3271 Expr *Arg;
3272 if (i < NumArgs)
3273 Arg = Args[i];
3274 else
3275 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3276 QualType ArgType = Arg->getType();
3277
3278 // Pass the argument.
3279 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3280 return true;
3281
3282 TheCall->setArg(i + 1, Arg);
3283 }
3284
3285 // If this is a variadic call, handle args passed through "...".
3286 if (Proto->isVariadic()) {
3287 // Promote the arguments (C99 6.5.2.2p7).
3288 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3289 Expr *Arg = Args[i];
3290 DefaultArgumentPromotion(Arg);
3291 TheCall->setArg(i + 1, Arg);
3292 }
3293 }
3294
3295 return CheckFunctionCall(Method, TheCall.take());
3296}
3297
Douglas Gregor8ba10742008-11-20 16:27:02 +00003298/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3299/// (if one exists), where @c Base is an expression of class type and
3300/// @c Member is the name of the member we're trying to find.
3301Action::ExprResult
3302Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3303 SourceLocation MemberLoc,
3304 IdentifierInfo &Member) {
3305 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3306
3307 // C++ [over.ref]p1:
3308 //
3309 // [...] An expression x->m is interpreted as (x.operator->())->m
3310 // for a class object x of type T if T::operator->() exists and if
3311 // the operator is selected as the best match function by the
3312 // overload resolution mechanism (13.3).
3313 // FIXME: look in base classes.
3314 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3315 OverloadCandidateSet CandidateSet;
3316 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3317 IdentifierResolver::iterator I
3318 = IdResolver.begin(OpName, cast<CXXRecordType>(BaseRecord)->getDecl(),
3319 /*LookInParentCtx=*/false);
3320 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3321 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3322 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3323 /*SuppressUserConversions=*/false);
3324 else if (OverloadedFunctionDecl *Ovl
3325 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3326 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3327 FEnd = Ovl->function_end();
3328 F != FEnd; ++F) {
3329 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3330 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3331 /*SuppressUserConversions=*/false);
3332 }
3333 }
3334
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003335 llvm::OwningPtr<Expr> BasePtr(Base);
3336
Douglas Gregor8ba10742008-11-20 16:27:02 +00003337 // Perform overload resolution.
3338 OverloadCandidateSet::iterator Best;
3339 switch (BestViableFunction(CandidateSet, Best)) {
3340 case OR_Success:
3341 // Overload resolution succeeded; we'll build the call below.
3342 break;
3343
3344 case OR_No_Viable_Function:
3345 if (CandidateSet.empty())
3346 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003347 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003348 else
3349 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003350 << "operator->" << (unsigned)CandidateSet.size()
3351 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003352 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003353 return true;
3354
3355 case OR_Ambiguous:
3356 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003357 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003358 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003359 return true;
3360 }
3361
3362 // Convert the object parameter.
3363 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003364 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003365 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003366
3367 // No concerns about early exits now.
3368 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003369
3370 // Build the operator call.
3371 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3372 UsualUnaryConversions(FnExpr);
3373 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3374 Method->getResultType().getNonReferenceType(),
3375 OpLoc);
3376 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3377}
3378
Douglas Gregor904eed32008-11-10 20:40:00 +00003379/// FixOverloadedFunctionReference - E is an expression that refers to
3380/// a C++ overloaded function (possibly with some parentheses and
3381/// perhaps a '&' around it). We have resolved the overloaded function
3382/// to the function declaration Fn, so patch up the expression E to
3383/// refer (possibly indirectly) to Fn.
3384void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3385 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3386 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3387 E->setType(PE->getSubExpr()->getType());
3388 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3389 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3390 "Can only take the address of an overloaded function");
3391 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3392 E->setType(Context.getPointerType(E->getType()));
3393 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3394 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3395 "Expected overloaded function");
3396 DR->setDecl(Fn);
3397 E->setType(Fn->getType());
3398 } else {
3399 assert(false && "Invalid reference to overloaded function");
3400 }
3401}
3402
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003403} // end namespace clang