blob: 155cf3b31341cbc11ae188356d283fc03e4e14e5 [file] [log] [blame]
Chris Lattner9fba49a2007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Support/Compiler.h"
20using namespace clang;
21using namespace CodeGen;
22using llvm::Value;
23
24//===----------------------------------------------------------------------===//
25// Scalar Expression Emitter
26//===----------------------------------------------------------------------===//
27
28struct BinOpInfo {
29 Value *LHS;
30 Value *RHS;
Chris Lattner660e31d2007-08-24 21:00:35 +000031 QualType Ty; // Computation Type.
Chris Lattner9fba49a2007-08-24 05:35:26 +000032 const BinaryOperator *E;
33};
34
35namespace {
36class VISIBILITY_HIDDEN ScalarExprEmitter
37 : public StmtVisitor<ScalarExprEmitter, Value*> {
38 CodeGenFunction &CGF;
39 llvm::LLVMBuilder &Builder;
40public:
41
42 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) {
43 }
44
45
46 //===--------------------------------------------------------------------===//
47 // Utilities
48 //===--------------------------------------------------------------------===//
49
50 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
51 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
52
53 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +000054 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +000055 }
56
57 /// EmitLoadOfLValue - Given an expression with complex type that represents a
58 /// value l-value, this method emits the address of the l-value, then loads
59 /// and returns the result.
60 Value *EmitLoadOfLValue(const Expr *E) {
61 // FIXME: Volatile
62 return EmitLoadOfLValue(EmitLValue(E), E->getType());
63 }
64
Chris Lattnerd8d44222007-08-26 16:42:57 +000065 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +000066 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +000067 Value *EmitConversionToBool(Value *Src, QualType DstTy);
68
Chris Lattner4e05d1e2007-08-26 06:48:56 +000069 /// EmitScalarConversion - Emit a conversion from the specified type to the
70 /// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +000071 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
72
73 /// EmitComplexToScalarConversion - Emit a conversion from the specified
74 /// complex type to the specified destination type, where the destination
75 /// type is an LLVM scalar type.
76 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
77 QualType SrcTy, QualType DstTy);
Chris Lattner4e05d1e2007-08-26 06:48:56 +000078
Chris Lattner9fba49a2007-08-24 05:35:26 +000079 //===--------------------------------------------------------------------===//
80 // Visitor Methods
81 //===--------------------------------------------------------------------===//
82
83 Value *VisitStmt(Stmt *S) {
Chris Lattner1aef6212007-09-13 01:17:29 +000084 S->dump(CGF.getContext().SourceMgr);
Chris Lattner9fba49a2007-08-24 05:35:26 +000085 assert(0 && "Stmt can't have complex result type!");
86 return 0;
87 }
88 Value *VisitExpr(Expr *S);
89 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
90
91 // Leaves.
92 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
93 return llvm::ConstantInt::get(E->getValue());
94 }
95 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattner7f298762007-09-22 18:47:25 +000096 return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
Chris Lattner9fba49a2007-08-24 05:35:26 +000097 }
98 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
99 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
100 }
101 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
102 return llvm::ConstantInt::get(ConvertType(E->getType()),
103 E->typesAreCompatible());
104 }
105 Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
106 return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
107 }
108
109 // l-values.
110 Value *VisitDeclRefExpr(DeclRefExpr *E) {
111 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
112 return llvm::ConstantInt::get(EC->getInitVal());
113 return EmitLoadOfLValue(E);
114 }
115 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
116 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
117 Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
118 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
119 Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
120
121 // FIXME: CompoundLiteralExpr
122 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
123 Value *VisitCastExpr(const CastExpr *E) {
124 return EmitCastExpr(E->getSubExpr(), E->getType());
125 }
126 Value *EmitCastExpr(const Expr *E, QualType T);
127
128 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000129 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000130 }
131
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000132 Value *VisitStmtExpr(const StmtExpr *E);
133
Chris Lattner9fba49a2007-08-24 05:35:26 +0000134 // Unary Operators.
135 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
136 Value *VisitUnaryPostDec(const UnaryOperator *E) {
137 return VisitPrePostIncDec(E, false, false);
138 }
139 Value *VisitUnaryPostInc(const UnaryOperator *E) {
140 return VisitPrePostIncDec(E, true, false);
141 }
142 Value *VisitUnaryPreDec(const UnaryOperator *E) {
143 return VisitPrePostIncDec(E, false, true);
144 }
145 Value *VisitUnaryPreInc(const UnaryOperator *E) {
146 return VisitPrePostIncDec(E, true, true);
147 }
148 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
149 return EmitLValue(E->getSubExpr()).getAddress();
150 }
151 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
152 Value *VisitUnaryPlus(const UnaryOperator *E) {
153 return Visit(E->getSubExpr());
154 }
155 Value *VisitUnaryMinus (const UnaryOperator *E);
156 Value *VisitUnaryNot (const UnaryOperator *E);
157 Value *VisitUnaryLNot (const UnaryOperator *E);
158 Value *VisitUnarySizeOf (const UnaryOperator *E) {
159 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
160 }
161 Value *VisitUnaryAlignOf (const UnaryOperator *E) {
162 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
163 }
164 Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
165 bool isSizeOf);
Chris Lattner01211af2007-08-24 21:20:17 +0000166 Value *VisitUnaryReal (const UnaryOperator *E);
167 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000168 Value *VisitUnaryExtension(const UnaryOperator *E) {
169 return Visit(E->getSubExpr());
170 }
171
172 // Binary Operators.
Chris Lattner9fba49a2007-08-24 05:35:26 +0000173 Value *EmitMul(const BinOpInfo &Ops) {
174 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
175 }
176 Value *EmitDiv(const BinOpInfo &Ops);
177 Value *EmitRem(const BinOpInfo &Ops);
178 Value *EmitAdd(const BinOpInfo &Ops);
179 Value *EmitSub(const BinOpInfo &Ops);
180 Value *EmitShl(const BinOpInfo &Ops);
181 Value *EmitShr(const BinOpInfo &Ops);
182 Value *EmitAnd(const BinOpInfo &Ops) {
183 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
184 }
185 Value *EmitXor(const BinOpInfo &Ops) {
186 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
187 }
188 Value *EmitOr (const BinOpInfo &Ops) {
189 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
190 }
191
Chris Lattner660e31d2007-08-24 21:00:35 +0000192 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner0d965302007-08-26 21:41:21 +0000193 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000194 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
195
196 // Binary operators and binary compound assignment operators.
197#define HANDLEBINOP(OP) \
Chris Lattner0d965302007-08-26 21:41:21 +0000198 Value *VisitBin ## OP(const BinaryOperator *E) { \
199 return Emit ## OP(EmitBinOps(E)); \
200 } \
201 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
202 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner660e31d2007-08-24 21:00:35 +0000203 }
204 HANDLEBINOP(Mul);
205 HANDLEBINOP(Div);
206 HANDLEBINOP(Rem);
207 HANDLEBINOP(Add);
208 // (Sub) - Sub is handled specially below for ptr-ptr subtract.
209 HANDLEBINOP(Shl);
210 HANDLEBINOP(Shr);
211 HANDLEBINOP(And);
212 HANDLEBINOP(Xor);
213 HANDLEBINOP(Or);
214#undef HANDLEBINOP
215 Value *VisitBinSub(const BinaryOperator *E);
Chris Lattner0d965302007-08-26 21:41:21 +0000216 Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
Chris Lattner660e31d2007-08-24 21:00:35 +0000217 return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
218 }
219
Chris Lattner9fba49a2007-08-24 05:35:26 +0000220 // Comparisons.
221 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
222 unsigned SICmpOpc, unsigned FCmpOpc);
223#define VISITCOMP(CODE, UI, SI, FP) \
224 Value *VisitBin##CODE(const BinaryOperator *E) { \
225 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
226 llvm::FCmpInst::FP); }
227 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
228 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
229 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
230 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
231 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
232 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
233#undef VISITCOMP
234
235 Value *VisitBinAssign (const BinaryOperator *E);
236
237 Value *VisitBinLAnd (const BinaryOperator *E);
238 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000239 Value *VisitBinComma (const BinaryOperator *E);
240
241 // Other Operators.
242 Value *VisitConditionalOperator(const ConditionalOperator *CO);
243 Value *VisitChooseExpr(ChooseExpr *CE);
244 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
245 return CGF.EmitObjCStringLiteral(E);
246 }
247};
248} // end anonymous namespace.
249
250//===----------------------------------------------------------------------===//
251// Utilities
252//===----------------------------------------------------------------------===//
253
Chris Lattnerd8d44222007-08-26 16:42:57 +0000254/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +0000255/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +0000256Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
257 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
258
259 if (SrcType->isRealFloatingType()) {
260 // Compare against 0.0 for fp scalars.
261 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattnerd8d44222007-08-26 16:42:57 +0000262 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
263 }
264
265 assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
266 "Unknown scalar type to convert");
267
268 // Because of the type rules of C, we often end up computing a logical value,
269 // then zero extending it to int, then wanting it as a logical value again.
270 // Optimize this common case.
271 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
272 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
273 Value *Result = ZI->getOperand(0);
274 ZI->eraseFromParent();
275 return Result;
276 }
277 }
278
279 // Compare against an integer or pointer null.
280 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
281 return Builder.CreateICmpNE(Src, Zero, "tobool");
282}
283
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000284/// EmitScalarConversion - Emit a conversion from the specified type to the
285/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000286Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
287 QualType DstType) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000288 SrcType = SrcType.getCanonicalType();
289 DstType = DstType.getCanonicalType();
290 if (SrcType == DstType) return Src;
Chris Lattnere133d7f2007-08-26 07:21:11 +0000291
292 if (DstType->isVoidType()) return 0;
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000293
294 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnerc39c3652007-08-26 16:52:28 +0000295 if (DstType->isBooleanType())
296 return EmitConversionToBool(Src, SrcType);
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000297
298 const llvm::Type *DstTy = ConvertType(DstType);
299
300 // Ignore conversions like int -> uint.
301 if (Src->getType() == DstTy)
302 return Src;
303
304 // Handle pointer conversions next: pointers can only be converted to/from
305 // other pointers and integers.
306 if (isa<PointerType>(DstType)) {
307 // The source value may be an integer, or a pointer.
308 if (isa<llvm::PointerType>(Src->getType()))
309 return Builder.CreateBitCast(Src, DstTy, "conv");
310 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
311 return Builder.CreateIntToPtr(Src, DstTy, "conv");
312 }
313
314 if (isa<PointerType>(SrcType)) {
315 // Must be an ptr to int cast.
316 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
317 return Builder.CreateIntToPtr(Src, DstTy, "conv");
318 }
319
320 // Finally, we have the arithmetic types: real int/float.
321 if (isa<llvm::IntegerType>(Src->getType())) {
322 bool InputSigned = SrcType->isSignedIntegerType();
323 if (isa<llvm::IntegerType>(DstTy))
324 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
325 else if (InputSigned)
326 return Builder.CreateSIToFP(Src, DstTy, "conv");
327 else
328 return Builder.CreateUIToFP(Src, DstTy, "conv");
329 }
330
331 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
332 if (isa<llvm::IntegerType>(DstTy)) {
333 if (DstType->isSignedIntegerType())
334 return Builder.CreateFPToSI(Src, DstTy, "conv");
335 else
336 return Builder.CreateFPToUI(Src, DstTy, "conv");
337 }
338
339 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
340 if (DstTy->getTypeID() < Src->getType()->getTypeID())
341 return Builder.CreateFPTrunc(Src, DstTy, "conv");
342 else
343 return Builder.CreateFPExt(Src, DstTy, "conv");
344}
345
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000346/// EmitComplexToScalarConversion - Emit a conversion from the specified
347/// complex type to the specified destination type, where the destination
348/// type is an LLVM scalar type.
349Value *ScalarExprEmitter::
350EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
351 QualType SrcTy, QualType DstTy) {
Chris Lattnerc39c3652007-08-26 16:52:28 +0000352 // Get the source element type.
353 SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
354
355 // Handle conversions to bool first, they are special: comparisons against 0.
356 if (DstTy->isBooleanType()) {
357 // Complex != 0 -> (Real != 0) | (Imag != 0)
358 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
359 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
360 return Builder.CreateOr(Src.first, Src.second, "tobool");
361 }
362
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000363 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
364 // the imaginary part of the complex value is discarded and the value of the
365 // real part is converted according to the conversion rules for the
366 // corresponding real type.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000367 return EmitScalarConversion(Src.first, SrcTy, DstTy);
368}
369
370
Chris Lattner9fba49a2007-08-24 05:35:26 +0000371//===----------------------------------------------------------------------===//
372// Visitor Methods
373//===----------------------------------------------------------------------===//
374
375Value *ScalarExprEmitter::VisitExpr(Expr *E) {
376 fprintf(stderr, "Unimplemented scalar expr!\n");
Chris Lattner1aef6212007-09-13 01:17:29 +0000377 E->dump(CGF.getContext().SourceMgr);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000378 if (E->getType()->isVoidType())
379 return 0;
380 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
381}
382
383Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
384 // Emit subscript expressions in rvalue context's. For most cases, this just
385 // loads the lvalue formed by the subscript expr. However, we have to be
386 // careful, because the base of a vector subscript is occasionally an rvalue,
387 // so we can't get it as an lvalue.
388 if (!E->getBase()->getType()->isVectorType())
389 return EmitLoadOfLValue(E);
390
391 // Handle the vector case. The base must be a vector, the index must be an
392 // integer value.
393 Value *Base = Visit(E->getBase());
394 Value *Idx = Visit(E->getIdx());
395
396 // FIXME: Convert Idx to i32 type.
397 return Builder.CreateExtractElement(Base, Idx, "vecext");
398}
399
400/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
401/// also handle things like function to pointer-to-function decay, and array to
402/// pointer decay.
403Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
404 const Expr *Op = E->getSubExpr();
405
406 // If this is due to array->pointer conversion, emit the array expression as
407 // an l-value.
408 if (Op->getType()->isArrayType()) {
409 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
410 // will not true when we add support for VLAs.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000411 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Chris Lattner9fba49a2007-08-24 05:35:26 +0000412
413 assert(isa<llvm::PointerType>(V->getType()) &&
414 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
415 ->getElementType()) &&
416 "Doesn't support VLAs yet!");
417 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Ted Kremenek7f6f4a42007-09-04 17:20:08 +0000418
419 llvm::Value *Ops[] = {Idx0, Idx0};
420 return Builder.CreateGEP(V, Ops, Ops+2, "arraydecay");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000421 }
422
423 return EmitCastExpr(Op, E->getType());
424}
425
426
427// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
428// have to handle a more broad range of conversions than explicit casts, as they
429// handle things like function to ptr-to-function decay etc.
430Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner82e10392007-08-26 07:26:12 +0000431 // Handle cases where the source is an non-complex type.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000432 if (!E->getType()->isComplexType()) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000433 Value *Src = Visit(const_cast<Expr*>(E));
434
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000435 // Use EmitScalarConversion to perform the conversion.
436 return EmitScalarConversion(Src, E->getType(), DestTy);
437 }
Chris Lattnerd579f7f2007-08-26 07:16:41 +0000438
Chris Lattner82e10392007-08-26 07:26:12 +0000439 // Handle cases where the source is a complex type.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000440 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
441 DestTy);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000442}
443
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000444Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000445 return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000446}
447
448
Chris Lattner9fba49a2007-08-24 05:35:26 +0000449//===----------------------------------------------------------------------===//
450// Unary Operators
451//===----------------------------------------------------------------------===//
452
453Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattner855e3d72007-08-24 16:24:49 +0000454 bool isInc, bool isPre) {
Chris Lattner9fba49a2007-08-24 05:35:26 +0000455 LValue LV = EmitLValue(E->getSubExpr());
456 // FIXME: Handle volatile!
Chris Lattner0dc11f62007-08-26 05:10:16 +0000457 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000458 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000459
460 int AmountVal = isInc ? 1 : -1;
461
462 Value *NextVal;
Chris Lattner0dc11f62007-08-26 05:10:16 +0000463 if (isa<llvm::PointerType>(InVal->getType())) {
464 // FIXME: This isn't right for VLAs.
465 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
466 NextVal = Builder.CreateGEP(InVal, NextVal);
467 } else {
468 // Add the inc/dec to the real part.
469 if (isa<llvm::IntegerType>(InVal->getType()))
470 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerb2a7dab2007-09-13 06:19:18 +0000471 else if (InVal->getType() == llvm::Type::FloatTy)
472 // FIXME: Handle long double.
473 NextVal = llvm::ConstantFP::get(InVal->getType(),
474 llvm::APFloat(static_cast<float>(AmountVal)));
475 else {
476 // FIXME: Handle long double.
477 assert(InVal->getType() == llvm::Type::DoubleTy);
478 NextVal = llvm::ConstantFP::get(InVal->getType(),
479 llvm::APFloat(static_cast<double>(AmountVal)));
480 }
Chris Lattner0dc11f62007-08-26 05:10:16 +0000481 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
482 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000483
484 // Store the updated result through the lvalue.
485 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
486 E->getSubExpr()->getType());
487
488 // If this is a postinc, return the value read from memory, otherwise use the
489 // updated value.
490 return isPre ? NextVal : InVal;
491}
492
493
494Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
495 Value *Op = Visit(E->getSubExpr());
496 return Builder.CreateNeg(Op, "neg");
497}
498
499Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
500 Value *Op = Visit(E->getSubExpr());
501 return Builder.CreateNot(Op, "neg");
502}
503
504Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
505 // Compare operand to zero.
506 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
507
508 // Invert value.
509 // TODO: Could dynamically modify easy computations here. For example, if
510 // the operand is an icmp ne, turn into icmp eq.
511 BoolVal = Builder.CreateNot(BoolVal, "lnot");
512
513 // ZExt result to int.
514 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
515}
516
517/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
518/// an integer (RetType).
519Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
Chris Lattner01211af2007-08-24 21:20:17 +0000520 QualType RetType,bool isSizeOf){
Chris Lattner9fba49a2007-08-24 05:35:26 +0000521 /// FIXME: This doesn't handle VLAs yet!
522 std::pair<uint64_t, unsigned> Info =
523 CGF.getContext().getTypeInfo(TypeToSize, SourceLocation());
524
525 uint64_t Val = isSizeOf ? Info.first : Info.second;
526 Val /= 8; // Return size in bytes, not bits.
527
528 assert(RetType->isIntegerType() && "Result type must be an integer!");
529
Chris Lattnera96e0d82007-09-04 02:34:27 +0000530 unsigned ResultWidth = static_cast<unsigned>(CGF.getContext().getTypeSize(RetType,SourceLocation()));
Chris Lattner9fba49a2007-08-24 05:35:26 +0000531 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
532}
533
Chris Lattner01211af2007-08-24 21:20:17 +0000534Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
535 Expr *Op = E->getSubExpr();
536 if (Op->getType()->isComplexType())
537 return CGF.EmitComplexExpr(Op).first;
538 return Visit(Op);
539}
540Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
541 Expr *Op = E->getSubExpr();
542 if (Op->getType()->isComplexType())
543 return CGF.EmitComplexExpr(Op).second;
Chris Lattnerdb8a6c92007-08-26 05:29:21 +0000544
545 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
546 // effects are evaluated.
547 CGF.EmitScalarExpr(Op);
548 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner01211af2007-08-24 21:20:17 +0000549}
550
551
Chris Lattner9fba49a2007-08-24 05:35:26 +0000552//===----------------------------------------------------------------------===//
553// Binary Operators
554//===----------------------------------------------------------------------===//
555
556BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
557 BinOpInfo Result;
558 Result.LHS = Visit(E->getLHS());
559 Result.RHS = Visit(E->getRHS());
Chris Lattner660e31d2007-08-24 21:00:35 +0000560 Result.Ty = E->getType();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000561 Result.E = E;
562 return Result;
563}
564
Chris Lattner0d965302007-08-26 21:41:21 +0000565Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000566 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
567 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
568
569 BinOpInfo OpInfo;
570
571 // Load the LHS and RHS operands.
572 LValue LHSLV = EmitLValue(E->getLHS());
573 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000574
575 // Determine the computation type. If the RHS is complex, then this is one of
576 // the add/sub/mul/div operators. All of these operators can be computed in
577 // with just their real component even though the computation domain really is
578 // complex.
Chris Lattner0d965302007-08-26 21:41:21 +0000579 QualType ComputeType = E->getComputationType();
Chris Lattner660e31d2007-08-24 21:00:35 +0000580
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000581 // If the computation type is complex, then the RHS is complex. Emit the RHS.
582 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
583 ComputeType = CT->getElementType();
584
585 // Emit the RHS, only keeping the real component.
586 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
587 RHSTy = RHSTy->getAsComplexType()->getElementType();
588 } else {
589 // Otherwise the RHS is a simple scalar value.
590 OpInfo.RHS = Visit(E->getRHS());
591 }
592
593 // Convert the LHS/RHS values to the computation type.
Chris Lattnerb1497062007-08-26 07:08:39 +0000594 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
Chris Lattner660e31d2007-08-24 21:00:35 +0000595
596 // Do not merge types for -= where the LHS is a pointer.
Chris Lattner42330c32007-08-25 21:56:20 +0000597 if (E->getOpcode() != BinaryOperator::SubAssign ||
598 !E->getLHS()->getType()->isPointerType()) {
Chris Lattnerb1497062007-08-26 07:08:39 +0000599 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
Chris Lattner660e31d2007-08-24 21:00:35 +0000600 }
601 OpInfo.Ty = ComputeType;
602 OpInfo.E = E;
603
604 // Expand the binary operator.
605 Value *Result = (this->*Func)(OpInfo);
606
607 // Truncate the result back to the LHS type.
Chris Lattnerb1497062007-08-26 07:08:39 +0000608 Result = EmitScalarConversion(Result, ComputeType, LHSTy);
Chris Lattner660e31d2007-08-24 21:00:35 +0000609
610 // Store the result value into the LHS lvalue.
611 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
612
613 return Result;
614}
615
616
Chris Lattner9fba49a2007-08-24 05:35:26 +0000617Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
618 if (Ops.LHS->getType()->isFloatingPoint())
619 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner660e31d2007-08-24 21:00:35 +0000620 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000621 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
622 else
623 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
624}
625
626Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
627 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner660e31d2007-08-24 21:00:35 +0000628 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000629 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
630 else
631 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
632}
633
634
635Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner660e31d2007-08-24 21:00:35 +0000636 if (!Ops.Ty->isPointerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000637 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner660e31d2007-08-24 21:00:35 +0000638
639 // FIXME: What about a pointer to a VLA?
Chris Lattner9fba49a2007-08-24 05:35:26 +0000640 if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int
641 return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr");
642 // int + pointer
643 return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr");
644}
645
646Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
647 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
648 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
649
Chris Lattner660e31d2007-08-24 21:00:35 +0000650 // pointer - int
651 assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
652 "ptr-ptr shouldn't get here");
653 // FIXME: The pointer could point to a VLA.
654 Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
655 return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr");
656}
657
658Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
659 // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In
660 // the compound assignment case it is invalid, so just handle it here.
661 if (!E->getRHS()->getType()->isPointerType())
662 return EmitSub(EmitBinOps(E));
Chris Lattner9fba49a2007-08-24 05:35:26 +0000663
664 // pointer - pointer
Chris Lattner660e31d2007-08-24 21:00:35 +0000665 Value *LHS = Visit(E->getLHS());
666 Value *RHS = Visit(E->getRHS());
667
668 const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType();
669 assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() &&
670 "Can't subtract different pointer types");
671
Chris Lattner9fba49a2007-08-24 05:35:26 +0000672 QualType LHSElementType = LHSPtrType->getPointeeType();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000673 uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType,
674 SourceLocation()) / 8;
Chris Lattner660e31d2007-08-24 21:00:35 +0000675
676 const llvm::Type *ResultType = ConvertType(E->getType());
677 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
678 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
679 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000680
681 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
682 // remainder. As such, we handle common power-of-two cases here to generate
683 // better code.
684 if (llvm::isPowerOf2_64(ElementSize)) {
685 Value *ShAmt =
686 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
687 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
688 }
Chris Lattner660e31d2007-08-24 21:00:35 +0000689
Chris Lattner9fba49a2007-08-24 05:35:26 +0000690 // Otherwise, do a full sdiv.
691 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
692 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
693}
694
Chris Lattner660e31d2007-08-24 21:00:35 +0000695
Chris Lattner9fba49a2007-08-24 05:35:26 +0000696Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
697 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
698 // RHS to the same size as the LHS.
699 Value *RHS = Ops.RHS;
700 if (Ops.LHS->getType() != RHS->getType())
701 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
702
703 return Builder.CreateShl(Ops.LHS, RHS, "shl");
704}
705
706Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
707 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
708 // RHS to the same size as the LHS.
709 Value *RHS = Ops.RHS;
710 if (Ops.LHS->getType() != RHS->getType())
711 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
712
Chris Lattner660e31d2007-08-24 21:00:35 +0000713 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000714 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
715 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
716}
717
718Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
719 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000720 Value *Result;
Chris Lattner9fba49a2007-08-24 05:35:26 +0000721 QualType LHSTy = E->getLHS()->getType();
722 if (!LHSTy->isComplexType()) {
723 Value *LHS = Visit(E->getLHS());
724 Value *RHS = Visit(E->getRHS());
725
726 if (LHS->getType()->isFloatingPoint()) {
727 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
728 LHS, RHS, "cmp");
729 } else if (LHSTy->isUnsignedIntegerType()) {
730 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
731 LHS, RHS, "cmp");
732 } else {
733 // Signed integers and pointers.
734 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
735 LHS, RHS, "cmp");
736 }
737 } else {
738 // Complex Comparison: can only be an equality comparison.
739 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
740 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
741
742 QualType CETy =
743 cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
744
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000745 Value *ResultR, *ResultI;
Chris Lattner9fba49a2007-08-24 05:35:26 +0000746 if (CETy->isRealFloatingType()) {
747 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
748 LHS.first, RHS.first, "cmp.r");
749 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
750 LHS.second, RHS.second, "cmp.i");
751 } else {
752 // Complex comparisons can only be equality comparisons. As such, signed
753 // and unsigned opcodes are the same.
754 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
755 LHS.first, RHS.first, "cmp.r");
756 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
757 LHS.second, RHS.second, "cmp.i");
758 }
759
760 if (E->getOpcode() == BinaryOperator::EQ) {
761 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
762 } else {
763 assert(E->getOpcode() == BinaryOperator::NE &&
764 "Complex comparison other than == or != ?");
765 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
766 }
767 }
768
769 // ZExt result to int.
770 return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
771}
772
773Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
774 LValue LHS = EmitLValue(E->getLHS());
775 Value *RHS = Visit(E->getRHS());
776
777 // Store the value into the LHS.
778 // FIXME: Volatility!
779 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
780
781 // Return the RHS.
782 return RHS;
783}
784
785Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
786 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
787
788 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
789 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
790
791 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
792 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
793
794 CGF.EmitBlock(RHSBlock);
795 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
796
797 // Reaquire the RHS block, as there may be subblocks inserted.
798 RHSBlock = Builder.GetInsertBlock();
799 CGF.EmitBlock(ContBlock);
800
801 // Create a PHI node. If we just evaluted the LHS condition, the result is
802 // false. If we evaluated both, the result is the RHS condition.
803 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
804 PN->reserveOperandSpace(2);
805 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
806 PN->addIncoming(RHSCond, RHSBlock);
807
808 // ZExt result to int.
809 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
810}
811
812Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
813 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
814
815 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
816 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
817
818 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
819 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
820
821 CGF.EmitBlock(RHSBlock);
822 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
823
824 // Reaquire the RHS block, as there may be subblocks inserted.
825 RHSBlock = Builder.GetInsertBlock();
826 CGF.EmitBlock(ContBlock);
827
828 // Create a PHI node. If we just evaluted the LHS condition, the result is
829 // true. If we evaluated both, the result is the RHS condition.
830 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
831 PN->reserveOperandSpace(2);
832 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
833 PN->addIncoming(RHSCond, RHSBlock);
834
835 // ZExt result to int.
836 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
837}
838
839Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
840 CGF.EmitStmt(E->getLHS());
841 return Visit(E->getRHS());
842}
843
844//===----------------------------------------------------------------------===//
845// Other Operators
846//===----------------------------------------------------------------------===//
847
848Value *ScalarExprEmitter::
849VisitConditionalOperator(const ConditionalOperator *E) {
850 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
851 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
852 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
853
854 Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
855 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
856
857 CGF.EmitBlock(LHSBlock);
858
859 // Handle the GNU extension for missing LHS.
860 Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond;
861 Builder.CreateBr(ContBlock);
862 LHSBlock = Builder.GetInsertBlock();
863
864 CGF.EmitBlock(RHSBlock);
865
866 Value *RHS = Visit(E->getRHS());
867 Builder.CreateBr(ContBlock);
868 RHSBlock = Builder.GetInsertBlock();
869
870 CGF.EmitBlock(ContBlock);
871
872 // Create a PHI node for the real part.
873 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
874 PN->reserveOperandSpace(2);
875 PN->addIncoming(LHS, LHSBlock);
876 PN->addIncoming(RHS, RHSBlock);
877 return PN;
878}
879
880Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
881 llvm::APSInt CondVal(32);
882 bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext());
883 assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
884
885 // Emit the LHS or RHS as appropriate.
886 return Visit(CondVal != 0 ? E->getLHS() : E->getRHS());
887}
888
889//===----------------------------------------------------------------------===//
890// Entry Point into this File
891//===----------------------------------------------------------------------===//
892
893/// EmitComplexExpr - Emit the computation of the specified expression of
894/// complex type, ignoring the result.
895Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
896 assert(E && !hasAggregateLLVMType(E->getType()) &&
897 "Invalid scalar expression to emit");
898
899 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
900}
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000901
902/// EmitScalarConversion - Emit a conversion from the specified type to the
903/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000904Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
905 QualType DstTy) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000906 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
907 "Invalid scalar expression to emit");
908 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
909}
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000910
911/// EmitComplexToScalarConversion - Emit a conversion from the specified
912/// complex type to the specified destination type, where the destination
913/// type is an LLVM scalar type.
914Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
915 QualType SrcTy,
916 QualType DstTy) {
917 assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) &&
918 "Invalid complex -> scalar conversion");
919 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
920 DstTy);
921}