blob: 9dfcd7d5eab08f760f71402a6c25b0368e9b1fb0 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/Expr.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Lex/LiteralSupport.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
25using namespace clang;
26
27/// ParseStringLiteral - The specified tokens were lexed as pasted string
28/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
29/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
30/// multiple tokens. However, the common case is that StringToks points to one
31/// string.
32///
33Action::ExprResult
34Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) {
35 assert(NumStringToks && "Must have at least one string!");
36
37 StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
38 if (Literal.hadError)
39 return ExprResult(true);
40
41 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
42 for (unsigned i = 0; i != NumStringToks; ++i)
43 StringTokLocs.push_back(StringToks[i].getLocation());
44
45 // FIXME: handle wchar_t
46 QualType t = Context.getPointerType(Context.CharTy);
47
48 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
49 return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
50 Literal.AnyWide, t, StringToks[0].getLocation(),
51 StringToks[NumStringToks-1].getLocation());
52}
53
54
55/// ParseIdentifierExpr - The parser read an identifier in expression context,
56/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
57/// identifier is used in an function call context.
58Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc,
59 IdentifierInfo &II,
60 bool HasTrailingLParen) {
61 // Could be enum-constant or decl.
62 Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
63 if (D == 0) {
64 // Otherwise, this could be an implicitly declared function reference (legal
65 // in C90, extension in C99).
66 if (HasTrailingLParen &&
67 // Not in C++.
68 !getLangOptions().CPlusPlus)
69 D = ImplicitlyDefineFunction(Loc, II, S);
70 else {
71 // If this name wasn't predeclared and if this is not a function call,
72 // diagnose the problem.
73 return Diag(Loc, diag::err_undeclared_var_use, II.getName());
74 }
75 }
76
77 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
78 return new DeclRefExpr(VD, VD->getType(), Loc);
79 if (isa<TypedefDecl>(D))
80 return Diag(Loc, diag::err_unexpected_typedef, II.getName());
81
82 assert(0 && "Invalid decl");
83 abort();
84}
85
86Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc,
87 tok::TokenKind Kind) {
88 PreDefinedExpr::IdentType IT;
89
90 switch (Kind) {
91 default:
92 assert(0 && "Unknown simple primary expr!");
93 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
94 IT = PreDefinedExpr::Func;
95 break;
96 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
97 IT = PreDefinedExpr::Function;
98 break;
99 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
100 IT = PreDefinedExpr::PrettyFunction;
101 break;
102 }
103
104 // Pre-defined identifiers are always of type char *.
105 return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT);
106}
107
108Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) {
109 llvm::SmallString<16> CharBuffer;
110 CharBuffer.resize(Tok.getLength());
111 const char *ThisTokBegin = &CharBuffer[0];
112 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
113
114 CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
115 Tok.getLocation(), PP);
116 if (Literal.hadError())
117 return ExprResult(true);
118 return new CharacterLiteral(Literal.getValue(), Context.IntTy,
119 Tok.getLocation());
120}
121
122Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) {
123 // fast path for a single digit (which is quite common). A single digit
124 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
125 if (Tok.getLength() == 1) {
126 const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
127
128 unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation());
129 return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
130 Context.IntTy,
131 Tok.getLocation()));
132 }
133 llvm::SmallString<512> IntegerBuffer;
134 IntegerBuffer.resize(Tok.getLength());
135 const char *ThisTokBegin = &IntegerBuffer[0];
136
137 // Get the spelling of the token, which eliminates trigraphs, etc.
138 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
139 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
140 Tok.getLocation(), PP);
141 if (Literal.hadError)
142 return ExprResult(true);
143
144 if (Literal.isIntegerLiteral()) {
145 QualType t;
146
147 // Get the value in the widest-possible width.
148 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0);
149
150 if (Literal.GetIntegerValue(ResultVal)) {
151 // If this value didn't fit into uintmax_t, warn and force to ull.
152 Diag(Tok.getLocation(), diag::warn_integer_too_large);
153 t = Context.UnsignedLongLongTy;
154 assert(Context.getTypeSize(t, Tok.getLocation()) ==
155 ResultVal.getBitWidth() && "long long is not intmax_t?");
156 } else {
157 // If this value fits into a ULL, try to figure out what else it fits into
158 // according to the rules of C99 6.4.4.1p5.
159
160 // Octal, Hexadecimal, and integers with a U suffix are allowed to
161 // be an unsigned int.
162 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
163
164 // Check from smallest to largest, picking the smallest type we can.
165 if (!Literal.isLong) { // Are int/unsigned possibilities?
166 unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation());
167 // Does it fit in a unsigned int?
168 if (ResultVal.isIntN(IntSize)) {
169 // Does it fit in a signed int?
170 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
171 t = Context.IntTy;
172 else if (AllowUnsigned)
173 t = Context.UnsignedIntTy;
174 }
175
176 if (!t.isNull())
177 ResultVal.trunc(IntSize);
178 }
179
180 // Are long/unsigned long possibilities?
181 if (t.isNull() && !Literal.isLongLong) {
182 unsigned LongSize = Context.getTypeSize(Context.LongTy,
183 Tok.getLocation());
184
185 // Does it fit in a unsigned long?
186 if (ResultVal.isIntN(LongSize)) {
187 // Does it fit in a signed long?
188 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
189 t = Context.LongTy;
190 else if (AllowUnsigned)
191 t = Context.UnsignedLongTy;
192 }
193 if (!t.isNull())
194 ResultVal.trunc(LongSize);
195 }
196
197 // Finally, check long long if needed.
198 if (t.isNull()) {
199 unsigned LongLongSize =
200 Context.getTypeSize(Context.LongLongTy, Tok.getLocation());
201
202 // Does it fit in a unsigned long long?
203 if (ResultVal.isIntN(LongLongSize)) {
204 // Does it fit in a signed long long?
205 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
206 t = Context.LongLongTy;
207 else if (AllowUnsigned)
208 t = Context.UnsignedLongLongTy;
209 }
210 }
211
212 // If we still couldn't decide a type, we probably have something that
213 // does not fit in a signed long long, but has no U suffix.
214 if (t.isNull()) {
215 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
216 t = Context.UnsignedLongLongTy;
217 }
218 }
219
220 return new IntegerLiteral(ResultVal, t, Tok.getLocation());
221 } else if (Literal.isFloatingLiteral()) {
222 // FIXME: handle float values > 32 (including compute the real type...).
223 return new FloatingLiteral(Literal.GetFloatValue(), Context.FloatTy,
224 Tok.getLocation());
225 }
226 return ExprResult(true);
227}
228
229Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R,
230 ExprTy *Val) {
231 Expr *e = (Expr *)Val;
232 assert((e != 0) && "ParseParenExpr() missing expr");
233 return new ParenExpr(L, R, e);
234}
235
236/// The UsualUnaryConversions() function is *not* called by this routine.
237/// See C99 6.3.2.1p[2-4] for more details.
238QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
239 SourceLocation OpLoc, bool isSizeof) {
240 // C99 6.5.3.4p1:
241 if (isa<FunctionType>(exprType) && isSizeof)
242 // alignof(function) is allowed.
243 Diag(OpLoc, diag::ext_sizeof_function_type);
244 else if (exprType->isVoidType())
245 Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
246 else if (exprType->isIncompleteType()) {
247 Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
248 diag::err_alignof_incomplete_type,
249 exprType.getAsString());
250 return QualType(); // error
251 }
252 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
253 return Context.getSizeType();
254}
255
256Action::ExprResult Sema::
257ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
258 SourceLocation LPLoc, TypeTy *Ty,
259 SourceLocation RPLoc) {
260 // If error parsing type, ignore.
261 if (Ty == 0) return true;
262
263 // Verify that this is a valid expression.
264 QualType ArgTy = QualType::getFromOpaquePtr(Ty);
265
266 QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
267
268 if (resultType.isNull())
269 return true;
270 return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
271}
272
273
274Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc,
275 tok::TokenKind Kind,
276 ExprTy *Input) {
277 UnaryOperator::Opcode Opc;
278 switch (Kind) {
279 default: assert(0 && "Unknown unary op!");
280 case tok::plusplus: Opc = UnaryOperator::PostInc; break;
281 case tok::minusminus: Opc = UnaryOperator::PostDec; break;
282 }
283 QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
284 if (result.isNull())
285 return true;
286 return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
287}
288
289Action::ExprResult Sema::
290ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
291 ExprTy *Idx, SourceLocation RLoc) {
292 Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
293
294 // Perform default conversions.
295 DefaultFunctionArrayConversion(LHSExp);
296 DefaultFunctionArrayConversion(RHSExp);
297
298 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
299
300 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
301 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
302 // in the subscript position. As a result, we need to derive the array base
303 // and index from the expression types.
304 Expr *BaseExpr, *IndexExpr;
305 QualType ResultType;
Chris Lattner7931f4a2007-07-31 16:53:04 +0000306 if (const PointerType *PTy = LHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000307 BaseExpr = LHSExp;
308 IndexExpr = RHSExp;
309 // FIXME: need to deal with const...
310 ResultType = PTy->getPointeeType();
Chris Lattner7931f4a2007-07-31 16:53:04 +0000311 } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000312 // Handle the uncommon case of "123[Ptr]".
313 BaseExpr = RHSExp;
314 IndexExpr = LHSExp;
315 // FIXME: need to deal with const...
316 ResultType = PTy->getPointeeType();
Chris Lattnere35a1042007-07-31 19:29:30 +0000317 } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
318 BaseExpr = LHSExp; // vectors: V[123]
Chris Lattner4b009652007-07-25 00:24:17 +0000319 IndexExpr = RHSExp;
Steve Naroff89345522007-08-03 22:40:33 +0000320
321 // Component access limited to variables (reject vec4.rg[1]).
322 if (!isa<DeclRefExpr>(BaseExpr))
323 return Diag(LLoc, diag::err_ocuvector_component_access,
324 SourceRange(LLoc, RLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000325 // FIXME: need to deal with const...
326 ResultType = VTy->getElementType();
327 } else {
328 return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
329 RHSExp->getSourceRange());
330 }
331 // C99 6.5.2.1p1
332 if (!IndexExpr->getType()->isIntegerType())
333 return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
334 IndexExpr->getSourceRange());
335
336 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
337 // the following check catches trying to index a pointer to a function (e.g.
338 // void (*)(int)). Functions are not objects in C99.
339 if (!ResultType->isObjectType())
340 return Diag(BaseExpr->getLocStart(),
341 diag::err_typecheck_subscript_not_object,
342 BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
343
344 return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
345}
346
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000347QualType Sema::
348CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
349 IdentifierInfo &CompName, SourceLocation CompLoc) {
Chris Lattnere35a1042007-07-31 19:29:30 +0000350 const OCUVectorType *vecType = baseType->getAsOCUVectorType();
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000351
352 // The vector accessor can't exceed the number of elements.
353 const char *compStr = CompName.getName();
354 if (strlen(compStr) > vecType->getNumElements()) {
355 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
356 baseType.getAsString(), SourceRange(CompLoc));
357 return QualType();
358 }
359 // The component names must come from the same set.
Chris Lattner9096b792007-08-02 22:33:49 +0000360 if (vecType->getPointAccessorIdx(*compStr) != -1) {
361 do
362 compStr++;
363 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
364 } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
365 do
366 compStr++;
367 while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
368 } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
369 do
370 compStr++;
371 while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
372 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000373
374 if (*compStr) {
375 // We didn't get to the end of the string. This means the component names
376 // didn't come from the same set *or* we encountered an illegal name.
377 Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
378 std::string(compStr,compStr+1), SourceRange(CompLoc));
379 return QualType();
380 }
381 // Each component accessor can't exceed the vector type.
382 compStr = CompName.getName();
383 while (*compStr) {
384 if (vecType->isAccessorWithinNumElements(*compStr))
385 compStr++;
386 else
387 break;
388 }
389 if (*compStr) {
390 // We didn't get to the end of the string. This means a component accessor
391 // exceeds the number of elements in the vector.
392 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
393 baseType.getAsString(), SourceRange(CompLoc));
394 return QualType();
395 }
396 // The component accessor looks fine - now we need to compute the actual type.
397 // The vector type is implied by the component accessor. For example,
398 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
399 unsigned CompSize = strlen(CompName.getName());
400 if (CompSize == 1)
401 return vecType->getElementType();
Steve Naroff82113e32007-07-29 16:33:31 +0000402
403 QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
404 // Now look up the TypeDefDecl from the vector type. Without this,
405 // diagostics look bad. We want OCU vector types to appear built-in.
406 for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
407 if (OCUVectorDecls[i]->getUnderlyingType() == VT)
408 return Context.getTypedefType(OCUVectorDecls[i]);
409 }
410 return VT; // should never get here (a typedef type should always be found).
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000411}
412
Chris Lattner4b009652007-07-25 00:24:17 +0000413Action::ExprResult Sema::
414ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
415 tok::TokenKind OpKind, SourceLocation MemberLoc,
416 IdentifierInfo &Member) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000417 Expr *BaseExpr = static_cast<Expr *>(Base);
418 assert(BaseExpr && "no record expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000419
Steve Naroff2cb66382007-07-26 03:11:44 +0000420 QualType BaseType = BaseExpr->getType();
421 assert(!BaseType.isNull() && "no type for member expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000422
Chris Lattner4b009652007-07-25 00:24:17 +0000423 if (OpKind == tok::arrow) {
Chris Lattner7931f4a2007-07-31 16:53:04 +0000424 if (const PointerType *PT = BaseType->getAsPointerType())
Steve Naroff2cb66382007-07-26 03:11:44 +0000425 BaseType = PT->getPointeeType();
426 else
427 return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
428 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000429 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000430 // The base type is either a record or an OCUVectorType.
Chris Lattnere35a1042007-07-31 19:29:30 +0000431 if (const RecordType *RTy = BaseType->getAsRecordType()) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000432 RecordDecl *RDecl = RTy->getDecl();
433 if (RTy->isIncompleteType())
434 return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
435 BaseExpr->getSourceRange());
436 // The record definition is complete, now make sure the member is valid.
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000437 FieldDecl *MemberDecl = RDecl->getMember(&Member);
438 if (!MemberDecl)
Steve Naroff2cb66382007-07-26 03:11:44 +0000439 return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
440 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000441 return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
442 } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
Steve Naroff89345522007-08-03 22:40:33 +0000443 // Component access limited to variables (reject vec4.rg.g).
444 if (!isa<DeclRefExpr>(BaseExpr))
445 return Diag(OpLoc, diag::err_ocuvector_component_access,
446 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000447 QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
448 if (ret.isNull())
449 return true;
Chris Lattnera0d03a72007-08-03 17:31:20 +0000450 return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
Steve Naroff2cb66382007-07-26 03:11:44 +0000451 } else
452 return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
453 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000454}
455
456/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
457/// This provides the location of the left/right parens and a list of comma
458/// locations.
459Action::ExprResult Sema::
460ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc,
461 ExprTy **args, unsigned NumArgsInCall,
462 SourceLocation *CommaLocs, SourceLocation RParenLoc) {
463 Expr *Fn = static_cast<Expr *>(fn);
464 Expr **Args = reinterpret_cast<Expr**>(args);
465 assert(Fn && "no function call expression");
466
467 UsualUnaryConversions(Fn);
468 QualType funcType = Fn->getType();
469
470 // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
471 // type pointer to function".
Chris Lattner71225142007-07-31 21:27:01 +0000472 const PointerType *PT = funcType->getAsPointerType();
Chris Lattner4b009652007-07-25 00:24:17 +0000473 if (PT == 0)
474 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
475 SourceRange(Fn->getLocStart(), RParenLoc));
476
Chris Lattner71225142007-07-31 21:27:01 +0000477 const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType();
Chris Lattner4b009652007-07-25 00:24:17 +0000478 if (funcT == 0)
479 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
480 SourceRange(Fn->getLocStart(), RParenLoc));
481
482 // If a prototype isn't declared, the parser implicitly defines a func decl
483 QualType resultType = funcT->getResultType();
484
485 if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) {
486 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
487 // assignment, to the types of the corresponding parameter, ...
488
489 unsigned NumArgsInProto = proto->getNumArgs();
490 unsigned NumArgsToCheck = NumArgsInCall;
491
492 if (NumArgsInCall < NumArgsInProto)
493 Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
494 Fn->getSourceRange());
495 else if (NumArgsInCall > NumArgsInProto) {
496 if (!proto->isVariadic()) {
497 Diag(Args[NumArgsInProto]->getLocStart(),
498 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
499 SourceRange(Args[NumArgsInProto]->getLocStart(),
500 Args[NumArgsInCall-1]->getLocEnd()));
501 }
502 NumArgsToCheck = NumArgsInProto;
503 }
504 // Continue to check argument types (even if we have too few/many args).
505 for (unsigned i = 0; i < NumArgsToCheck; i++) {
506 Expr *argExpr = Args[i];
507 assert(argExpr && "ParseCallExpr(): missing argument expression");
508
509 QualType lhsType = proto->getArgType(i);
510 QualType rhsType = argExpr->getType();
511
Steve Naroff75644062007-07-25 20:45:33 +0000512 // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
Chris Lattnere35a1042007-07-31 19:29:30 +0000513 if (const ArrayType *ary = lhsType->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000514 lhsType = Context.getPointerType(ary->getElementType());
Steve Naroff75644062007-07-25 20:45:33 +0000515 else if (lhsType->isFunctionType())
Chris Lattner4b009652007-07-25 00:24:17 +0000516 lhsType = Context.getPointerType(lhsType);
517
518 AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
519 argExpr);
520 SourceLocation l = argExpr->getLocStart();
521
522 // decode the result (notice that AST's are still created for extensions).
523 switch (result) {
524 case Compatible:
525 break;
526 case PointerFromInt:
527 // check for null pointer constant (C99 6.3.2.3p3)
528 if (!argExpr->isNullPointerConstant(Context)) {
529 Diag(l, diag::ext_typecheck_passing_pointer_int,
530 lhsType.getAsString(), rhsType.getAsString(),
531 Fn->getSourceRange(), argExpr->getSourceRange());
532 }
533 break;
534 case IntFromPointer:
535 Diag(l, diag::ext_typecheck_passing_pointer_int,
536 lhsType.getAsString(), rhsType.getAsString(),
537 Fn->getSourceRange(), argExpr->getSourceRange());
538 break;
539 case IncompatiblePointer:
540 Diag(l, diag::ext_typecheck_passing_incompatible_pointer,
541 rhsType.getAsString(), lhsType.getAsString(),
542 Fn->getSourceRange(), argExpr->getSourceRange());
543 break;
544 case CompatiblePointerDiscardsQualifiers:
545 Diag(l, diag::ext_typecheck_passing_discards_qualifiers,
546 rhsType.getAsString(), lhsType.getAsString(),
547 Fn->getSourceRange(), argExpr->getSourceRange());
548 break;
549 case Incompatible:
550 return Diag(l, diag::err_typecheck_passing_incompatible,
551 rhsType.getAsString(), lhsType.getAsString(),
552 Fn->getSourceRange(), argExpr->getSourceRange());
553 }
554 }
555 // Even if the types checked, bail if we had the wrong number of arguments.
556 if (NumArgsInCall != NumArgsInProto && !proto->isVariadic())
557 return true;
558 }
559 return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc);
560}
561
562Action::ExprResult Sema::
563ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
564 SourceLocation RParenLoc, ExprTy *InitExpr) {
565 assert((Ty != 0) && "ParseCompoundLiteral(): missing type");
566 QualType literalType = QualType::getFromOpaquePtr(Ty);
567 // FIXME: put back this assert when initializers are worked out.
568 //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression");
569 Expr *literalExpr = static_cast<Expr*>(InitExpr);
570
571 // FIXME: add semantic analysis (C99 6.5.2.5).
572 return new CompoundLiteralExpr(literalType, literalExpr);
573}
574
575Action::ExprResult Sema::
576ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit,
577 SourceLocation RParenLoc) {
578 // FIXME: add semantic analysis (C99 6.7.8). This involves
579 // knowledge of the object being intialized. As a result, the code for
580 // doing the semantic analysis will likely be located elsewhere (i.e. in
581 // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral).
582 return false; // FIXME instantiate an InitListExpr.
583}
584
585Action::ExprResult Sema::
586ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
587 SourceLocation RParenLoc, ExprTy *Op) {
588 assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr");
589
590 Expr *castExpr = static_cast<Expr*>(Op);
591 QualType castType = QualType::getFromOpaquePtr(Ty);
592
593 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
594 // type needs to be scalar.
595 if (!castType->isScalarType() && !castType->isVoidType()) {
596 return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
597 castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
598 }
599 if (!castExpr->getType()->isScalarType()) {
600 return Diag(castExpr->getLocStart(),
601 diag::err_typecheck_expect_scalar_operand,
602 castExpr->getType().getAsString(), castExpr->getSourceRange());
603 }
604 return new CastExpr(castType, castExpr, LParenLoc);
605}
606
607inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
608 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
609 UsualUnaryConversions(cond);
610 UsualUnaryConversions(lex);
611 UsualUnaryConversions(rex);
612 QualType condT = cond->getType();
613 QualType lexT = lex->getType();
614 QualType rexT = rex->getType();
615
616 // first, check the condition.
617 if (!condT->isScalarType()) { // C99 6.5.15p2
618 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
619 condT.getAsString());
620 return QualType();
621 }
622 // now check the two expressions.
623 if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5
624 UsualArithmeticConversions(lex, rex);
625 return lex->getType();
626 }
Chris Lattner71225142007-07-31 21:27:01 +0000627 if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
628 if (const RecordType *RHSRT = rexT->getAsRecordType()) {
629
630 if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier())
631 return lexT;
632
Chris Lattner4b009652007-07-25 00:24:17 +0000633 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
634 lexT.getAsString(), rexT.getAsString(),
635 lex->getSourceRange(), rex->getSourceRange());
636 return QualType();
637 }
638 }
639 // C99 6.5.15p3
640 if (lexT->isPointerType() && rex->isNullPointerConstant(Context))
641 return lexT;
642 if (rexT->isPointerType() && lex->isNullPointerConstant(Context))
643 return rexT;
644
Chris Lattner71225142007-07-31 21:27:01 +0000645 if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
646 if (const PointerType *RHSPT = rexT->getAsPointerType()) {
647 // get the "pointed to" types
648 QualType lhptee = LHSPT->getPointeeType();
649 QualType rhptee = RHSPT->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000650
Chris Lattner71225142007-07-31 21:27:01 +0000651 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
652 if (lhptee->isVoidType() &&
653 (rhptee->isObjectType() || rhptee->isIncompleteType()))
654 return lexT;
655 if (rhptee->isVoidType() &&
656 (lhptee->isObjectType() || lhptee->isIncompleteType()))
657 return rexT;
Chris Lattner4b009652007-07-25 00:24:17 +0000658
Chris Lattner71225142007-07-31 21:27:01 +0000659 if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
660 rhptee.getUnqualifiedType())) {
661 Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
662 lexT.getAsString(), rexT.getAsString(),
663 lex->getSourceRange(), rex->getSourceRange());
664 return lexT; // FIXME: this is an _ext - is this return o.k?
665 }
666 // The pointer types are compatible.
667 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
668 // differently qualified versions of compatible types, the result type is a
669 // pointer to an appropriately qualified version of the *composite* type.
670 return lexT; // FIXME: Need to return the composite type.
Chris Lattner4b009652007-07-25 00:24:17 +0000671 }
Chris Lattner4b009652007-07-25 00:24:17 +0000672 }
Chris Lattner71225142007-07-31 21:27:01 +0000673
Chris Lattner4b009652007-07-25 00:24:17 +0000674 if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3
675 return lexT;
676
677 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
678 lexT.getAsString(), rexT.getAsString(),
679 lex->getSourceRange(), rex->getSourceRange());
680 return QualType();
681}
682
683/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
684/// in the case of a the GNU conditional expr extension.
685Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc,
686 SourceLocation ColonLoc,
687 ExprTy *Cond, ExprTy *LHS,
688 ExprTy *RHS) {
689 Expr *CondExpr = (Expr *) Cond;
690 Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
691 QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
692 RHSExpr, QuestionLoc);
693 if (result.isNull())
694 return true;
695 return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result);
696}
697
698// promoteExprToType - a helper function to ensure we create exactly one
699// ImplicitCastExpr. As a convenience (to the caller), we return the type.
700static void promoteExprToType(Expr *&expr, QualType type) {
701 if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr))
702 impCast->setType(type);
703 else
704 expr = new ImplicitCastExpr(type, expr);
705 return;
706}
707
708/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
709void Sema::DefaultFunctionArrayConversion(Expr *&e) {
710 QualType t = e->getType();
711 assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
712
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000713 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000714 promoteExprToType(e, ref->getReferenceeType()); // C++ [expr]
715 t = e->getType();
716 }
717 if (t->isFunctionType())
718 promoteExprToType(e, Context.getPointerType(t));
Chris Lattnere35a1042007-07-31 19:29:30 +0000719 else if (const ArrayType *ary = t->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000720 promoteExprToType(e, Context.getPointerType(ary->getElementType()));
721}
722
723/// UsualUnaryConversion - Performs various conversions that are common to most
724/// operators (C99 6.3). The conversions of array and function types are
725/// sometimes surpressed. For example, the array->pointer conversion doesn't
726/// apply if the array is an argument to the sizeof or address (&) operators.
727/// In these instances, this routine should *not* be called.
728void Sema::UsualUnaryConversions(Expr *&expr) {
729 QualType t = expr->getType();
730 assert(!t.isNull() && "UsualUnaryConversions - missing type");
731
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000732 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000733 promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr]
734 t = expr->getType();
735 }
736 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
737 promoteExprToType(expr, Context.IntTy);
738 else
739 DefaultFunctionArrayConversion(expr);
740}
741
742/// UsualArithmeticConversions - Performs various conversions that are common to
743/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
744/// routine returns the first non-arithmetic type found. The client is
745/// responsible for emitting appropriate error diagnostics.
746void Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr) {
747 UsualUnaryConversions(lhsExpr);
748 UsualUnaryConversions(rhsExpr);
749
750 QualType lhs = lhsExpr->getType();
751 QualType rhs = rhsExpr->getType();
752
753 // If both types are identical, no conversion is needed.
754 if (lhs == rhs)
755 return;
756
757 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
758 // The caller can deal with this (e.g. pointer + int).
759 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
760 return;
761
762 // At this point, we have two different arithmetic types.
763
764 // Handle complex types first (C99 6.3.1.8p1).
765 if (lhs->isComplexType() || rhs->isComplexType()) {
766 // if we have an integer operand, the result is the complex type.
767 if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type.
768 promoteExprToType(rhsExpr, lhs);
769 return;
770 }
771 if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type.
772 promoteExprToType(lhsExpr, rhs);
773 return;
774 }
775 // Two complex types. Convert the smaller operand to the bigger result.
776 if (Context.maxComplexType(lhs, rhs) == lhs) { // convert the rhs
777 promoteExprToType(rhsExpr, lhs);
778 return;
779 }
780 promoteExprToType(lhsExpr, rhs); // convert the lhs
781 return;
782 }
783 // Now handle "real" floating types (i.e. float, double, long double).
784 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
785 // if we have an integer operand, the result is the real floating type.
786 if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type.
787 promoteExprToType(rhsExpr, lhs);
788 return;
789 }
790 if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type.
791 promoteExprToType(lhsExpr, rhs);
792 return;
793 }
794 // We have two real floating types, float/complex combos were handled above.
795 // Convert the smaller operand to the bigger result.
796 if (Context.maxFloatingType(lhs, rhs) == lhs) { // convert the rhs
797 promoteExprToType(rhsExpr, lhs);
798 return;
799 }
800 promoteExprToType(lhsExpr, rhs); // convert the lhs
801 return;
802 }
803 // Finally, we have two differing integer types.
804 if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
805 promoteExprToType(rhsExpr, lhs);
806 return;
807 }
808 promoteExprToType(lhsExpr, rhs); // convert the lhs
809 return;
810}
811
812// CheckPointerTypesForAssignment - This is a very tricky routine (despite
813// being closely modeled after the C99 spec:-). The odd characteristic of this
814// routine is it effectively iqnores the qualifiers on the top level pointee.
815// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
816// FIXME: add a couple examples in this comment.
817Sema::AssignmentCheckResult
818Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
819 QualType lhptee, rhptee;
820
821 // get the "pointed to" type (ignoring qualifiers at the top level)
Chris Lattner71225142007-07-31 21:27:01 +0000822 lhptee = lhsType->getAsPointerType()->getPointeeType();
823 rhptee = rhsType->getAsPointerType()->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000824
825 // make sure we operate on the canonical type
826 lhptee = lhptee.getCanonicalType();
827 rhptee = rhptee.getCanonicalType();
828
829 AssignmentCheckResult r = Compatible;
830
831 // C99 6.5.16.1p1: This following citation is common to constraints
832 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
833 // qualifiers of the type *pointed to* by the right;
834 if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
835 rhptee.getQualifiers())
836 r = CompatiblePointerDiscardsQualifiers;
837
838 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
839 // incomplete type and the other is a pointer to a qualified or unqualified
840 // version of void...
841 if (lhptee.getUnqualifiedType()->isVoidType() &&
842 (rhptee->isObjectType() || rhptee->isIncompleteType()))
843 ;
844 else if (rhptee.getUnqualifiedType()->isVoidType() &&
845 (lhptee->isObjectType() || lhptee->isIncompleteType()))
846 ;
847 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
848 // unqualified versions of compatible types, ...
849 else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
850 rhptee.getUnqualifiedType()))
851 r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
852 return r;
853}
854
855/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
856/// has code to accommodate several GCC extensions when type checking
857/// pointers. Here are some objectionable examples that GCC considers warnings:
858///
859/// int a, *pint;
860/// short *pshort;
861/// struct foo *pfoo;
862///
863/// pint = pshort; // warning: assignment from incompatible pointer type
864/// a = pint; // warning: assignment makes integer from pointer without a cast
865/// pint = a; // warning: assignment makes pointer from integer without a cast
866/// pint = pfoo; // warning: assignment from incompatible pointer type
867///
868/// As a result, the code for dealing with pointers is more complex than the
869/// C99 spec dictates.
870/// Note: the warning above turn into errors when -pedantic-errors is enabled.
871///
872Sema::AssignmentCheckResult
873Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
874 if (lhsType == rhsType) // common case, fast path...
875 return Compatible;
876
877 if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) {
878 if (lhsType->isVectorType() || rhsType->isVectorType()) {
879 if (lhsType.getCanonicalType() != rhsType.getCanonicalType())
880 return Incompatible;
881 }
882 return Compatible;
883 } else if (lhsType->isPointerType()) {
884 if (rhsType->isIntegerType())
885 return PointerFromInt;
886
887 if (rhsType->isPointerType())
888 return CheckPointerTypesForAssignment(lhsType, rhsType);
889 } else if (rhsType->isPointerType()) {
890 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
891 if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
892 return IntFromPointer;
893
894 if (lhsType->isPointerType())
895 return CheckPointerTypesForAssignment(lhsType, rhsType);
896 } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
897 if (Type::tagTypesAreCompatible(lhsType, rhsType))
898 return Compatible;
899 } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
900 if (Type::referenceTypesAreCompatible(lhsType, rhsType))
901 return Compatible;
902 }
903 return Incompatible;
904}
905
906Sema::AssignmentCheckResult
907Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
908 // This check seems unnatural, however it is necessary to insure the proper
909 // conversion of functions/arrays. If the conversion were done for all
910 // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary
911 // expressions that surpress this implicit conversion (&, sizeof).
912 DefaultFunctionArrayConversion(rExpr);
913
914 return CheckAssignmentConstraints(lhsType, rExpr->getType());
915}
916
917Sema::AssignmentCheckResult
918Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
919 return CheckAssignmentConstraints(lhsType, rhsType);
920}
921
922inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
923 Diag(loc, diag::err_typecheck_invalid_operands,
924 lex->getType().getAsString(), rex->getType().getAsString(),
925 lex->getSourceRange(), rex->getSourceRange());
926}
927
928inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
929 Expr *&rex) {
930 QualType lhsType = lex->getType(), rhsType = rex->getType();
931
932 // make sure the vector types are identical.
933 if (lhsType == rhsType)
934 return lhsType;
935 // You cannot convert between vector values of different size.
936 Diag(loc, diag::err_typecheck_vector_not_convertable,
937 lex->getType().getAsString(), rex->getType().getAsString(),
938 lex->getSourceRange(), rex->getSourceRange());
939 return QualType();
940}
941
942inline QualType Sema::CheckMultiplyDivideOperands(
943 Expr *&lex, Expr *&rex, SourceLocation loc)
944{
945 QualType lhsType = lex->getType(), rhsType = rex->getType();
946
947 if (lhsType->isVectorType() || rhsType->isVectorType())
948 return CheckVectorOperands(loc, lex, rex);
949
950 UsualArithmeticConversions(lex, rex);
951
952 // handle the common case first (both operands are arithmetic).
953 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
954 return lex->getType();
955 InvalidOperands(loc, lex, rex);
956 return QualType();
957}
958
959inline QualType Sema::CheckRemainderOperands(
960 Expr *&lex, Expr *&rex, SourceLocation loc)
961{
962 QualType lhsType = lex->getType(), rhsType = rex->getType();
963
964 UsualArithmeticConversions(lex, rex);
965
966 // handle the common case first (both operands are arithmetic).
967 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
968 return lex->getType();
969 InvalidOperands(loc, lex, rex);
970 return QualType();
971}
972
973inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
974 Expr *&lex, Expr *&rex, SourceLocation loc)
975{
976 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
977 return CheckVectorOperands(loc, lex, rex);
978
979 UsualArithmeticConversions(lex, rex);
980
981 // handle the common case first (both operands are arithmetic).
982 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
983 return lex->getType();
984
985 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
986 return lex->getType();
987 if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
988 return rex->getType();
989 InvalidOperands(loc, lex, rex);
990 return QualType();
991}
992
993inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
994 Expr *&lex, Expr *&rex, SourceLocation loc)
995{
996 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
997 return CheckVectorOperands(loc, lex, rex);
998
999 UsualArithmeticConversions(lex, rex);
1000
1001 // handle the common case first (both operands are arithmetic).
1002 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1003 return lex->getType();
1004
1005 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1006 return lex->getType();
1007 if (lex->getType()->isPointerType() && rex->getType()->isPointerType())
1008 return Context.getPointerDiffType();
1009 InvalidOperands(loc, lex, rex);
1010 return QualType();
1011}
1012
1013inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1014 Expr *&lex, Expr *&rex, SourceLocation loc)
1015{
1016 // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong
1017 // for int << longlong -> the result type should be int, not long long.
1018 UsualArithmeticConversions(lex, rex);
1019
1020 // handle the common case first (both operands are arithmetic).
1021 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1022 return lex->getType();
1023 InvalidOperands(loc, lex, rex);
1024 return QualType();
1025}
1026
1027inline QualType Sema::CheckRelationalOperands( // C99 6.5.8
1028 Expr *&lex, Expr *&rex, SourceLocation loc)
1029{
1030 UsualUnaryConversions(lex);
1031 UsualUnaryConversions(rex);
1032 QualType lType = lex->getType();
1033 QualType rType = rex->getType();
1034
1035 if (lType->isRealType() && rType->isRealType())
1036 return Context.IntTy;
1037
1038 if (lType->isPointerType()) {
1039 if (rType->isPointerType())
1040 return Context.IntTy;
1041 if (rType->isIntegerType()) {
1042 if (!rex->isNullPointerConstant(Context))
1043 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1044 lex->getSourceRange(), rex->getSourceRange());
1045 return Context.IntTy; // the previous diagnostic is a GCC extension.
1046 }
1047 } else if (rType->isPointerType()) {
1048 if (lType->isIntegerType()) {
1049 if (!lex->isNullPointerConstant(Context))
1050 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1051 lex->getSourceRange(), rex->getSourceRange());
1052 return Context.IntTy; // the previous diagnostic is a GCC extension.
1053 }
1054 }
1055 InvalidOperands(loc, lex, rex);
1056 return QualType();
1057}
1058
1059inline QualType Sema::CheckEqualityOperands( // C99 6.5.9
1060 Expr *&lex, Expr *&rex, SourceLocation loc)
1061{
1062 UsualUnaryConversions(lex);
1063 UsualUnaryConversions(rex);
1064 QualType lType = lex->getType();
1065 QualType rType = rex->getType();
1066
1067 if (lType->isArithmeticType() && rType->isArithmeticType())
1068 return Context.IntTy;
1069
1070 if (lType->isPointerType()) {
1071 if (rType->isPointerType())
1072 return Context.IntTy;
1073 if (rType->isIntegerType()) {
1074 if (!rex->isNullPointerConstant(Context))
1075 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1076 lex->getSourceRange(), rex->getSourceRange());
1077 return Context.IntTy; // the previous diagnostic is a GCC extension.
1078 }
1079 } else if (rType->isPointerType()) {
1080 if (lType->isIntegerType()) {
1081 if (!lex->isNullPointerConstant(Context))
1082 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1083 lex->getSourceRange(), rex->getSourceRange());
1084 return Context.IntTy; // the previous diagnostic is a GCC extension.
1085 }
1086 }
1087 InvalidOperands(loc, lex, rex);
1088 return QualType();
1089}
1090
1091inline QualType Sema::CheckBitwiseOperands(
1092 Expr *&lex, Expr *&rex, SourceLocation loc)
1093{
1094 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1095 return CheckVectorOperands(loc, lex, rex);
1096
1097 UsualArithmeticConversions(lex, rex);
1098
1099 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1100 return lex->getType();
1101 InvalidOperands(loc, lex, rex);
1102 return QualType();
1103}
1104
1105inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1106 Expr *&lex, Expr *&rex, SourceLocation loc)
1107{
1108 UsualUnaryConversions(lex);
1109 UsualUnaryConversions(rex);
1110
1111 if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1112 return Context.IntTy;
1113 InvalidOperands(loc, lex, rex);
1114 return QualType();
1115}
1116
1117inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1118 Expr *lex, Expr *rex, SourceLocation loc, QualType compoundType)
1119{
1120 QualType lhsType = lex->getType();
1121 QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1122 bool hadError = false;
1123 Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1124
1125 switch (mlval) { // C99 6.5.16p2
1126 case Expr::MLV_Valid:
1127 break;
1128 case Expr::MLV_ConstQualified:
1129 Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1130 hadError = true;
1131 break;
1132 case Expr::MLV_ArrayType:
1133 Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1134 lhsType.getAsString(), lex->getSourceRange());
1135 return QualType();
1136 case Expr::MLV_NotObjectType:
1137 Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1138 lhsType.getAsString(), lex->getSourceRange());
1139 return QualType();
1140 case Expr::MLV_InvalidExpression:
1141 Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1142 lex->getSourceRange());
1143 return QualType();
1144 case Expr::MLV_IncompleteType:
1145 case Expr::MLV_IncompleteVoidType:
1146 Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1147 lhsType.getAsString(), lex->getSourceRange());
1148 return QualType();
Steve Naroffba67f692007-07-30 03:29:09 +00001149 case Expr::MLV_DuplicateVectorComponents:
1150 Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1151 lex->getSourceRange());
1152 return QualType();
Chris Lattner4b009652007-07-25 00:24:17 +00001153 }
1154 AssignmentCheckResult result;
1155
1156 if (compoundType.isNull())
1157 result = CheckSingleAssignmentConstraints(lhsType, rex);
1158 else
1159 result = CheckCompoundAssignmentConstraints(lhsType, rhsType);
Steve Naroff7cbb1462007-07-31 12:34:36 +00001160
Chris Lattner4b009652007-07-25 00:24:17 +00001161 // decode the result (notice that extensions still return a type).
1162 switch (result) {
1163 case Compatible:
1164 break;
1165 case Incompatible:
1166 Diag(loc, diag::err_typecheck_assign_incompatible,
1167 lhsType.getAsString(), rhsType.getAsString(),
1168 lex->getSourceRange(), rex->getSourceRange());
1169 hadError = true;
1170 break;
1171 case PointerFromInt:
1172 // check for null pointer constant (C99 6.3.2.3p3)
1173 if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) {
1174 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1175 lhsType.getAsString(), rhsType.getAsString(),
1176 lex->getSourceRange(), rex->getSourceRange());
1177 }
1178 break;
1179 case IntFromPointer:
1180 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1181 lhsType.getAsString(), rhsType.getAsString(),
1182 lex->getSourceRange(), rex->getSourceRange());
1183 break;
1184 case IncompatiblePointer:
1185 Diag(loc, diag::ext_typecheck_assign_incompatible_pointer,
1186 lhsType.getAsString(), rhsType.getAsString(),
1187 lex->getSourceRange(), rex->getSourceRange());
1188 break;
1189 case CompatiblePointerDiscardsQualifiers:
1190 Diag(loc, diag::ext_typecheck_assign_discards_qualifiers,
1191 lhsType.getAsString(), rhsType.getAsString(),
1192 lex->getSourceRange(), rex->getSourceRange());
1193 break;
1194 }
1195 // C99 6.5.16p3: The type of an assignment expression is the type of the
1196 // left operand unless the left operand has qualified type, in which case
1197 // it is the unqualified version of the type of the left operand.
1198 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1199 // is converted to the type of the assignment expression (above).
1200 // C++ 5.17p1: the type of the assignment expression is that of its left oprdu.
1201 return hadError ? QualType() : lhsType.getUnqualifiedType();
1202}
1203
1204inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1205 Expr *&lex, Expr *&rex, SourceLocation loc) {
1206 UsualUnaryConversions(rex);
1207 return rex->getType();
1208}
1209
1210/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1211/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1212QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1213 QualType resType = op->getType();
1214 assert(!resType.isNull() && "no type for increment/decrement expression");
1215
1216 // C99 6.5.2.4p1
1217 if (const PointerType *pt = dyn_cast<PointerType>(resType)) {
1218 if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1219 Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1220 resType.getAsString(), op->getSourceRange());
1221 return QualType();
1222 }
1223 } else if (!resType->isRealType()) {
1224 // FIXME: Allow Complex as a GCC extension.
1225 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1226 resType.getAsString(), op->getSourceRange());
1227 return QualType();
1228 }
1229 // At this point, we know we have a real or pointer type. Now make sure
1230 // the operand is a modifiable lvalue.
1231 Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1232 if (mlval != Expr::MLV_Valid) {
1233 // FIXME: emit a more precise diagnostic...
1234 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1235 op->getSourceRange());
1236 return QualType();
1237 }
1238 return resType;
1239}
1240
1241/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
1242/// This routine allows us to typecheck complex/recursive expressions
1243/// where the declaration is needed for type checking. Here are some
1244/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1245static Decl *getPrimaryDeclaration(Expr *e) {
1246 switch (e->getStmtClass()) {
1247 case Stmt::DeclRefExprClass:
1248 return cast<DeclRefExpr>(e)->getDecl();
1249 case Stmt::MemberExprClass:
1250 return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
1251 case Stmt::ArraySubscriptExprClass:
1252 return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
1253 case Stmt::CallExprClass:
1254 return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee());
1255 case Stmt::UnaryOperatorClass:
1256 return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
1257 case Stmt::ParenExprClass:
1258 return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
1259 default:
1260 return 0;
1261 }
1262}
1263
1264/// CheckAddressOfOperand - The operand of & must be either a function
1265/// designator or an lvalue designating an object. If it is an lvalue, the
1266/// object cannot be declared with storage class register or be a bit field.
1267/// Note: The usual conversions are *not* applied to the operand of the &
1268/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1269QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1270 Decl *dcl = getPrimaryDeclaration(op);
1271 Expr::isLvalueResult lval = op->isLvalue();
1272
1273 if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1274 if (dcl && isa<FunctionDecl>(dcl)) // allow function designators
1275 ;
1276 else { // FIXME: emit more specific diag...
1277 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1278 op->getSourceRange());
1279 return QualType();
1280 }
1281 } else if (dcl) {
1282 // We have an lvalue with a decl. Make sure the decl is not declared
1283 // with the register storage-class specifier.
1284 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1285 if (vd->getStorageClass() == VarDecl::Register) {
1286 Diag(OpLoc, diag::err_typecheck_address_of_register,
1287 op->getSourceRange());
1288 return QualType();
1289 }
1290 } else
1291 assert(0 && "Unknown/unexpected decl type");
1292
1293 // FIXME: add check for bitfields!
1294 }
1295 // If the operand has type "type", the result has type "pointer to type".
1296 return Context.getPointerType(op->getType());
1297}
1298
1299QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1300 UsualUnaryConversions(op);
1301 QualType qType = op->getType();
1302
Chris Lattner7931f4a2007-07-31 16:53:04 +00001303 if (const PointerType *PT = qType->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001304 QualType ptype = PT->getPointeeType();
1305 // C99 6.5.3.2p4. "if it points to an object,...".
1306 if (ptype->isIncompleteType()) { // An incomplete type is not an object
1307 // GCC compat: special case 'void *' (treat as warning).
1308 if (ptype->isVoidType()) {
1309 Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void,
1310 qType.getAsString(), op->getSourceRange());
1311 } else {
1312 Diag(OpLoc, diag::err_typecheck_deref_incomplete_type,
1313 ptype.getAsString(), op->getSourceRange());
1314 return QualType();
1315 }
1316 }
1317 return ptype;
1318 }
1319 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1320 qType.getAsString(), op->getSourceRange());
1321 return QualType();
1322}
1323
1324static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1325 tok::TokenKind Kind) {
1326 BinaryOperator::Opcode Opc;
1327 switch (Kind) {
1328 default: assert(0 && "Unknown binop!");
1329 case tok::star: Opc = BinaryOperator::Mul; break;
1330 case tok::slash: Opc = BinaryOperator::Div; break;
1331 case tok::percent: Opc = BinaryOperator::Rem; break;
1332 case tok::plus: Opc = BinaryOperator::Add; break;
1333 case tok::minus: Opc = BinaryOperator::Sub; break;
1334 case tok::lessless: Opc = BinaryOperator::Shl; break;
1335 case tok::greatergreater: Opc = BinaryOperator::Shr; break;
1336 case tok::lessequal: Opc = BinaryOperator::LE; break;
1337 case tok::less: Opc = BinaryOperator::LT; break;
1338 case tok::greaterequal: Opc = BinaryOperator::GE; break;
1339 case tok::greater: Opc = BinaryOperator::GT; break;
1340 case tok::exclaimequal: Opc = BinaryOperator::NE; break;
1341 case tok::equalequal: Opc = BinaryOperator::EQ; break;
1342 case tok::amp: Opc = BinaryOperator::And; break;
1343 case tok::caret: Opc = BinaryOperator::Xor; break;
1344 case tok::pipe: Opc = BinaryOperator::Or; break;
1345 case tok::ampamp: Opc = BinaryOperator::LAnd; break;
1346 case tok::pipepipe: Opc = BinaryOperator::LOr; break;
1347 case tok::equal: Opc = BinaryOperator::Assign; break;
1348 case tok::starequal: Opc = BinaryOperator::MulAssign; break;
1349 case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
1350 case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
1351 case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
1352 case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
1353 case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
1354 case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
1355 case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
1356 case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
1357 case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
1358 case tok::comma: Opc = BinaryOperator::Comma; break;
1359 }
1360 return Opc;
1361}
1362
1363static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1364 tok::TokenKind Kind) {
1365 UnaryOperator::Opcode Opc;
1366 switch (Kind) {
1367 default: assert(0 && "Unknown unary op!");
1368 case tok::plusplus: Opc = UnaryOperator::PreInc; break;
1369 case tok::minusminus: Opc = UnaryOperator::PreDec; break;
1370 case tok::amp: Opc = UnaryOperator::AddrOf; break;
1371 case tok::star: Opc = UnaryOperator::Deref; break;
1372 case tok::plus: Opc = UnaryOperator::Plus; break;
1373 case tok::minus: Opc = UnaryOperator::Minus; break;
1374 case tok::tilde: Opc = UnaryOperator::Not; break;
1375 case tok::exclaim: Opc = UnaryOperator::LNot; break;
1376 case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
1377 case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1378 case tok::kw___real: Opc = UnaryOperator::Real; break;
1379 case tok::kw___imag: Opc = UnaryOperator::Imag; break;
1380 case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1381 }
1382 return Opc;
1383}
1384
1385// Binary Operators. 'Tok' is the token for the operator.
1386Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1387 ExprTy *LHS, ExprTy *RHS) {
1388 BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1389 Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1390
1391 assert((lhs != 0) && "ParseBinOp(): missing left expression");
1392 assert((rhs != 0) && "ParseBinOp(): missing right expression");
1393
1394 QualType ResultTy; // Result type of the binary operator.
1395 QualType CompTy; // Computation type for compound assignments (e.g. '+=')
1396
1397 switch (Opc) {
1398 default:
1399 assert(0 && "Unknown binary expr!");
1400 case BinaryOperator::Assign:
1401 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1402 break;
1403 case BinaryOperator::Mul:
1404 case BinaryOperator::Div:
1405 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1406 break;
1407 case BinaryOperator::Rem:
1408 ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1409 break;
1410 case BinaryOperator::Add:
1411 ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1412 break;
1413 case BinaryOperator::Sub:
1414 ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1415 break;
1416 case BinaryOperator::Shl:
1417 case BinaryOperator::Shr:
1418 ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1419 break;
1420 case BinaryOperator::LE:
1421 case BinaryOperator::LT:
1422 case BinaryOperator::GE:
1423 case BinaryOperator::GT:
1424 ResultTy = CheckRelationalOperands(lhs, rhs, TokLoc);
1425 break;
1426 case BinaryOperator::EQ:
1427 case BinaryOperator::NE:
1428 ResultTy = CheckEqualityOperands(lhs, rhs, TokLoc);
1429 break;
1430 case BinaryOperator::And:
1431 case BinaryOperator::Xor:
1432 case BinaryOperator::Or:
1433 ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1434 break;
1435 case BinaryOperator::LAnd:
1436 case BinaryOperator::LOr:
1437 ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1438 break;
1439 case BinaryOperator::MulAssign:
1440 case BinaryOperator::DivAssign:
1441 CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1442 if (!CompTy.isNull())
1443 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1444 break;
1445 case BinaryOperator::RemAssign:
1446 CompTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1447 if (!CompTy.isNull())
1448 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1449 break;
1450 case BinaryOperator::AddAssign:
1451 CompTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1452 if (!CompTy.isNull())
1453 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1454 break;
1455 case BinaryOperator::SubAssign:
1456 CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1457 if (!CompTy.isNull())
1458 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1459 break;
1460 case BinaryOperator::ShlAssign:
1461 case BinaryOperator::ShrAssign:
1462 CompTy = CheckShiftOperands(lhs, rhs, TokLoc);
1463 if (!CompTy.isNull())
1464 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1465 break;
1466 case BinaryOperator::AndAssign:
1467 case BinaryOperator::XorAssign:
1468 case BinaryOperator::OrAssign:
1469 CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1470 if (!CompTy.isNull())
1471 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1472 break;
1473 case BinaryOperator::Comma:
1474 ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1475 break;
1476 }
1477 if (ResultTy.isNull())
1478 return true;
1479 if (CompTy.isNull())
1480 return new BinaryOperator(lhs, rhs, Opc, ResultTy);
1481 else
1482 return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy);
1483}
1484
1485// Unary Operators. 'Tok' is the token for the operator.
1486Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1487 ExprTy *input) {
1488 Expr *Input = (Expr*)input;
1489 UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1490 QualType resultType;
1491 switch (Opc) {
1492 default:
1493 assert(0 && "Unimplemented unary expr!");
1494 case UnaryOperator::PreInc:
1495 case UnaryOperator::PreDec:
1496 resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1497 break;
1498 case UnaryOperator::AddrOf:
1499 resultType = CheckAddressOfOperand(Input, OpLoc);
1500 break;
1501 case UnaryOperator::Deref:
1502 resultType = CheckIndirectionOperand(Input, OpLoc);
1503 break;
1504 case UnaryOperator::Plus:
1505 case UnaryOperator::Minus:
1506 UsualUnaryConversions(Input);
1507 resultType = Input->getType();
1508 if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
1509 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1510 resultType.getAsString());
1511 break;
1512 case UnaryOperator::Not: // bitwise complement
1513 UsualUnaryConversions(Input);
1514 resultType = Input->getType();
1515 if (!resultType->isIntegerType()) // C99 6.5.3.3p1
1516 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1517 resultType.getAsString());
1518 break;
1519 case UnaryOperator::LNot: // logical negation
1520 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1521 DefaultFunctionArrayConversion(Input);
1522 resultType = Input->getType();
1523 if (!resultType->isScalarType()) // C99 6.5.3.3p1
1524 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1525 resultType.getAsString());
1526 // LNot always has type int. C99 6.5.3.3p5.
1527 resultType = Context.IntTy;
1528 break;
1529 case UnaryOperator::SizeOf:
1530 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1531 break;
1532 case UnaryOperator::AlignOf:
1533 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1534 break;
1535 case UnaryOperator::Extension:
1536 // FIXME: does __extension__ cause any promotions? I would think not.
1537 resultType = Input->getType();
1538 break;
1539 }
1540 if (resultType.isNull())
1541 return true;
1542 return new UnaryOperator(Input, Opc, resultType, OpLoc);
1543}
1544
1545/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
1546Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc,
1547 SourceLocation LabLoc,
1548 IdentifierInfo *LabelII) {
1549 // Look up the record for this label identifier.
1550 LabelStmt *&LabelDecl = LabelMap[LabelII];
1551
1552 // If we haven't seen this label yet, create a forward reference.
1553 if (LabelDecl == 0)
1554 LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
1555
1556 // Create the AST node. The address of a label always has type 'void*'.
Chris Lattnera0d03a72007-08-03 17:31:20 +00001557 return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
1558 Context.getPointerType(Context.VoidTy));
Chris Lattner4b009652007-07-25 00:24:17 +00001559}
1560
1561Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
1562 SourceLocation RPLoc) { // "({..})"
1563 Stmt *SubStmt = static_cast<Stmt*>(substmt);
1564 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
1565 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
1566
1567 // FIXME: there are a variety of strange constraints to enforce here, for
1568 // example, it is not possible to goto into a stmt expression apparently.
1569 // More semantic analysis is needed.
1570
1571 // FIXME: the last statement in the compount stmt has its value used. We
1572 // should not warn about it being unused.
1573
1574 // If there are sub stmts in the compound stmt, take the type of the last one
1575 // as the type of the stmtexpr.
1576 QualType Ty = Context.VoidTy;
1577
1578 if (!Compound->body_empty())
1579 if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
1580 Ty = LastExpr->getType();
1581
1582 return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
1583}
Steve Naroff63bad2d2007-08-01 22:05:33 +00001584
Steve Naroff5b528922007-08-01 23:45:51 +00001585Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
Steve Naroff63bad2d2007-08-01 22:05:33 +00001586 TypeTy *arg1, TypeTy *arg2,
1587 SourceLocation RPLoc) {
1588 QualType argT1 = QualType::getFromOpaquePtr(arg1);
1589 QualType argT2 = QualType::getFromOpaquePtr(arg2);
1590
1591 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
1592
Steve Naroff5b528922007-08-01 23:45:51 +00001593 return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc);
Steve Naroff63bad2d2007-08-01 22:05:33 +00001594}
1595
Steve Naroff93c53012007-08-03 21:21:27 +00001596Sema::ExprResult Sema::ParseChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
1597 ExprTy *expr1, ExprTy *expr2,
1598 SourceLocation RPLoc) {
1599 Expr *CondExpr = static_cast<Expr*>(cond);
1600 Expr *LHSExpr = static_cast<Expr*>(expr1);
1601 Expr *RHSExpr = static_cast<Expr*>(expr2);
1602
1603 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
1604
1605 // The conditional expression is required to be a constant expression.
1606 llvm::APSInt condEval(32);
1607 SourceLocation ExpLoc;
1608 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
1609 return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
1610 CondExpr->getSourceRange());
1611
1612 // If the condition is > zero, then the AST type is the same as the LSHExpr.
1613 QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
1614 RHSExpr->getType();
1615 return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
1616}
1617