| //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TwoAddress instruction pass which is used |
| // by most register allocators. Two-Address instructions are rewritten |
| // from: |
| // |
| // A = B op C |
| // |
| // to: |
| // |
| // A = B |
| // A op= C |
| // |
| // Note that if a register allocator chooses to use this pass, that it |
| // has to be capable of handling the non-SSA nature of these rewritten |
| // virtual registers. |
| // |
| // It is also worth noting that the duplicate operand of the two |
| // address instruction is removed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "twoaddrinstr" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "Support/Debug.h" |
| #include "Support/Statistic.h" |
| #include "Support/STLExtras.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> numTwoAddressInstrs("twoaddressinstruction", |
| "Number of two-address instructions"); |
| Statistic<> numInstrsAdded("twoaddressinstruction", |
| "Number of instructions added"); |
| |
| struct TwoAddressInstructionPass : public MachineFunctionPass |
| { |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| /// runOnMachineFunction - pass entry point |
| bool runOnMachineFunction(MachineFunction&); |
| }; |
| |
| RegisterPass<TwoAddressInstructionPass> X( |
| "twoaddressinstruction", "Two-Address instruction pass"); |
| }; |
| |
| const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo(); |
| |
| void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const |
| { |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreservedID(PHIEliminationID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// runOnMachineFunction - Reduce two-address instructions to two |
| /// operands. |
| /// |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { |
| DEBUG(std::cerr << "Machine Function\n"); |
| const TargetMachine &TM = MF.getTarget(); |
| const MRegisterInfo &MRI = *TM.getRegisterInfo(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| LiveVariables* LV = getAnalysisToUpdate<LiveVariables>(); |
| |
| bool MadeChange = false; |
| |
| DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n"); |
| DEBUG(std::cerr << "********** Function: " |
| << MF.getFunction()->getName() << '\n'); |
| |
| for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); |
| mbbi != mbbe; ++mbbi) { |
| for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); |
| mi != me; ++mi) { |
| unsigned opcode = mi->getOpcode(); |
| |
| // ignore if it is not a two-address instruction |
| if (!TII.isTwoAddrInstr(opcode)) |
| continue; |
| |
| ++numTwoAddressInstrs; |
| |
| DEBUG(std::cerr << '\t'; mi->print(std::cerr, TM)); |
| |
| assert(mi->getOperand(1).isRegister() && |
| mi->getOperand(1).getReg() && |
| mi->getOperand(1).isUse() && |
| "two address instruction invalid"); |
| |
| // if the two operands are the same we just remove the use |
| // and mark the def as def&use |
| if (mi->getOperand(0).getReg() == |
| mi->getOperand(1).getReg()) { |
| } |
| else { |
| MadeChange = true; |
| |
| // rewrite: |
| // a = b op c |
| // to: |
| // a = b |
| // a = a op c |
| unsigned regA = mi->getOperand(0).getReg(); |
| unsigned regB = mi->getOperand(1).getReg(); |
| |
| assert(MRegisterInfo::isVirtualRegister(regA) && |
| MRegisterInfo::isVirtualRegister(regB) && |
| "cannot update physical register live information"); |
| |
| // first make sure we do not have a use of a in the |
| // instruction (a = b + a for example) because our |
| // transformation will not work. This should never occur |
| // because we are in SSA form. |
| for (unsigned i = 1; i != mi->getNumOperands(); ++i) |
| assert(!mi->getOperand(i).isRegister() || |
| mi->getOperand(i).getReg() != regA); |
| |
| const TargetRegisterClass* rc = |
| MF.getSSARegMap()->getRegClass(regA); |
| unsigned Added = MRI.copyRegToReg(*mbbi, mi, regA, regB, rc); |
| numInstrsAdded += Added; |
| |
| MachineBasicBlock::iterator prevMi = prior(mi); |
| DEBUG(std::cerr << "\t\tprepend:\t"; |
| prevMi->print(std::cerr, TM)); |
| |
| if (LV) { |
| // update live variables for regA |
| assert(Added == 1 && |
| "Cannot handle multi-instruction copies yet!"); |
| LiveVariables::VarInfo& varInfo = LV->getVarInfo(regA); |
| varInfo.DefInst = prevMi; |
| |
| // update live variables for regB |
| if (LV->removeVirtualRegisterKilled(regB, &*mbbi, mi)) |
| LV->addVirtualRegisterKilled(regB, &*mbbi, prevMi); |
| |
| if (LV->removeVirtualRegisterDead(regB, &*mbbi, mi)) |
| LV->addVirtualRegisterDead(regB, &*mbbi, prevMi); |
| } |
| |
| // replace all occurences of regB with regA |
| for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) { |
| if (mi->getOperand(i).isRegister() && |
| mi->getOperand(i).getReg() == regB) |
| mi->SetMachineOperandReg(i, regA); |
| } |
| } |
| |
| assert(mi->getOperand(0).isDef()); |
| mi->getOperand(0).setUse(); |
| mi->RemoveOperand(1); |
| |
| DEBUG(std::cerr << "\t\trewrite to:\t"; |
| mi->print(std::cerr, TM)); |
| } |
| } |
| |
| return MadeChange; |
| } |