| //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a value numbering pass that value #'s load instructions. |
| // To do this, it finds lexically identical load instructions, and uses alias |
| // analysis to determine which loads are guaranteed to produce the same value. |
| // |
| // This pass builds off of another value numbering pass to implement value |
| // numbering for non-load instructions. It uses Alias Analysis so that it can |
| // disambiguate the load instructions. The more powerful these base analyses |
| // are, the more powerful the resultant analysis will be. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoadValueNumbering.h" |
| #include "llvm/Analysis/ValueNumbering.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Type.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Support/CFG.h" |
| #include <set> |
| using namespace llvm; |
| |
| namespace { |
| // FIXME: This should not be a FunctionPass. |
| struct LoadVN : public FunctionPass, public ValueNumbering { |
| |
| /// Pass Implementation stuff. This doesn't do any analysis. |
| /// |
| bool runOnFunction(Function &) { return false; } |
| |
| /// getAnalysisUsage - Does not modify anything. It uses Value Numbering |
| /// and Alias Analysis. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| /// getEqualNumberNodes - Return nodes with the same value number as the |
| /// specified Value. This fills in the argument vector with any equal |
| /// values. |
| /// |
| virtual void getEqualNumberNodes(Value *V1, |
| std::vector<Value*> &RetVals) const; |
| }; |
| |
| // Register this pass... |
| RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); |
| |
| // Declare that we implement the ValueNumbering interface |
| RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; |
| } |
| |
| Pass *llvm::createLoadValueNumberingPass() { return new LoadVN(); } |
| |
| |
| /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and |
| /// Alias Analysis. |
| /// |
| void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<ValueNumbering>(); |
| AU.addRequired<DominatorSet>(); |
| AU.addRequired<TargetData>(); |
| } |
| |
| static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom, |
| Value *Ptr, unsigned Size, AliasAnalysis &AA, |
| std::set<BasicBlock*> &Visited, |
| std::map<BasicBlock*, bool> &TransparentBlocks){ |
| // If we have already checked out this path, or if we reached our destination, |
| // stop searching, returning success. |
| if (CurBlock == Dom || !Visited.insert(CurBlock).second) |
| return true; |
| |
| // Check whether this block is known transparent or not. |
| std::map<BasicBlock*, bool>::iterator TBI = |
| TransparentBlocks.lower_bound(CurBlock); |
| |
| if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) { |
| // If this basic block can modify the memory location, then the path is not |
| // transparent! |
| if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) { |
| TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false)); |
| return false; |
| } |
| TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true)); |
| } else if (!TBI->second) |
| // This block is known non-transparent, so that path can't be either. |
| return false; |
| |
| // The current block is known to be transparent. The entire path is |
| // transparent if all of the predecessors paths to the parent is also |
| // transparent to the memory location. |
| for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock); |
| PI != E; ++PI) |
| if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited, |
| TransparentBlocks)) |
| return false; |
| return true; |
| } |
| |
| |
| // getEqualNumberNodes - Return nodes with the same value number as the |
| // specified Value. This fills in the argument vector with any equal values. |
| // |
| void LoadVN::getEqualNumberNodes(Value *V, |
| std::vector<Value*> &RetVals) const { |
| // If the alias analysis has any must alias information to share with us, we |
| // can definitely use it. |
| if (isa<PointerType>(V->getType())) |
| getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals); |
| |
| if (!isa<LoadInst>(V)) { |
| // Not a load instruction? Just chain to the base value numbering |
| // implementation to satisfy the request... |
| assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && |
| "getAnalysis() returned this!"); |
| |
| return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); |
| } |
| |
| // Volatile loads cannot be replaced with the value of other loads. |
| LoadInst *LI = cast<LoadInst>(V); |
| if (LI->isVolatile()) |
| return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); |
| |
| // If we have a load instruction, find all of the load and store instructions |
| // that use the same source operand. We implement this recursively, because |
| // there could be a load of a load of a load that are all identical. We are |
| // guaranteed that this cannot be an infinite recursion because load |
| // instructions would have to pass through a PHI node in order for there to be |
| // a cycle. The PHI node would be handled by the else case here, breaking the |
| // infinite recursion. |
| // |
| std::vector<Value*> PointerSources; |
| getEqualNumberNodes(LI->getOperand(0), PointerSources); |
| PointerSources.push_back(LI->getOperand(0)); |
| |
| BasicBlock *LoadBB = LI->getParent(); |
| Function *F = LoadBB->getParent(); |
| |
| // Now that we know the set of equivalent source pointers for the load |
| // instruction, look to see if there are any load or store candidates that are |
| // identical. |
| // |
| std::map<BasicBlock*, std::vector<LoadInst*> > CandidateLoads; |
| std::map<BasicBlock*, std::vector<StoreInst*> > CandidateStores; |
| |
| while (!PointerSources.empty()) { |
| Value *Source = PointerSources.back(); |
| PointerSources.pop_back(); // Get a source pointer... |
| |
| for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); |
| UI != UE; ++UI) |
| if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source? |
| if (Cand->getParent()->getParent() == F && // In the same function? |
| Cand != LI && !Cand->isVolatile()) // Not LI itself? |
| CandidateLoads[Cand->getParent()].push_back(Cand); // Got one... |
| } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) { |
| if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && |
| Cand->getOperand(1) == Source) // It's a store THROUGH the ptr... |
| CandidateStores[Cand->getParent()].push_back(Cand); |
| } |
| } |
| |
| // Get alias analysis & dominators. |
| AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); |
| DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); |
| Value *LoadPtr = LI->getOperand(0); |
| // Find out how many bytes of memory are loaded by the load instruction... |
| unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType()); |
| |
| // Find all of the candidate loads and stores that are in the same block as |
| // the defining instruction. |
| std::set<Instruction*> Instrs; |
| Instrs.insert(CandidateLoads[LoadBB].begin(), CandidateLoads[LoadBB].end()); |
| CandidateLoads.erase(LoadBB); |
| Instrs.insert(CandidateStores[LoadBB].begin(), CandidateStores[LoadBB].end()); |
| CandidateStores.erase(LoadBB); |
| |
| // Figure out if the load is invalidated from the entry of the block it is in |
| // until the actual instruction. This scans the block backwards from LI. If |
| // we see any candidate load or store instructions, then we know that the |
| // candidates have the same value # as LI. |
| bool LoadInvalidatedInBBBefore = false; |
| for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) { |
| --I; |
| // If this instruction is a candidate load before LI, we know there are no |
| // invalidating instructions between it and LI, so they have the same value |
| // number. |
| if (isa<LoadInst>(I) && Instrs.count(I)) { |
| RetVals.push_back(I); |
| Instrs.erase(I); |
| } |
| |
| if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { |
| // If the invalidating instruction is a store, and its in our candidate |
| // set, then we can do store-load forwarding: the load has the same value |
| // # as the stored value. |
| if (isa<StoreInst>(I) && Instrs.count(I)) { |
| Instrs.erase(I); |
| RetVals.push_back(I->getOperand(0)); |
| } |
| |
| LoadInvalidatedInBBBefore = true; |
| break; |
| } |
| } |
| |
| // Figure out if the load is invalidated between the load and the exit of the |
| // block it is defined in. While we are scanning the current basic block, if |
| // we see any candidate loads, then we know they have the same value # as LI. |
| // |
| bool LoadInvalidatedInBBAfter = false; |
| for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) { |
| // If this instruction is a load, then this instruction returns the same |
| // value as LI. |
| if (isa<LoadInst>(I) && Instrs.count(I)) { |
| RetVals.push_back(I); |
| Instrs.erase(I); |
| } |
| |
| if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { |
| LoadInvalidatedInBBAfter = true; |
| break; |
| } |
| } |
| |
| // If there is anything left in the Instrs set, it could not possibly equal |
| // LI. |
| Instrs.clear(); |
| |
| // TransparentBlocks - For each basic block the load/store is alive across, |
| // figure out if the pointer is invalidated or not. If it is invalidated, the |
| // boolean is set to false, if it's not it is set to true. If we don't know |
| // yet, the entry is not in the map. |
| std::map<BasicBlock*, bool> TransparentBlocks; |
| |
| // Loop over all of the basic blocks that also load the value. If the value |
| // is live across the CFG from the source to destination blocks, and if the |
| // value is not invalidated in either the source or destination blocks, add it |
| // to the equivalence sets. |
| for (std::map<BasicBlock*, std::vector<LoadInst*> >::iterator |
| I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) { |
| bool CantEqual = false; |
| |
| // Right now we only can handle cases where one load dominates the other. |
| // FIXME: generalize this! |
| BasicBlock *BB1 = I->first, *BB2 = LoadBB; |
| if (DomSetInfo.dominates(BB1, BB2)) { |
| // The other load dominates LI. If the loaded value is killed entering |
| // the LoadBB block, we know the load is not live. |
| if (LoadInvalidatedInBBBefore) |
| CantEqual = true; |
| } else if (DomSetInfo.dominates(BB2, BB1)) { |
| std::swap(BB1, BB2); // Canonicalize |
| // LI dominates the other load. If the loaded value is killed exiting |
| // the LoadBB block, we know the load is not live. |
| if (LoadInvalidatedInBBAfter) |
| CantEqual = true; |
| } else { |
| // None of these loads can VN the same. |
| CantEqual = true; |
| } |
| |
| if (!CantEqual) { |
| // Ok, at this point, we know that BB1 dominates BB2, and that there is |
| // nothing in the LI block that kills the loaded value. Check to see if |
| // the value is live across the CFG. |
| std::set<BasicBlock*> Visited; |
| for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI) |
| if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA, |
| Visited, TransparentBlocks)) { |
| // None of these loads can VN the same. |
| CantEqual = true; |
| break; |
| } |
| } |
| |
| // If the loads can equal so far, scan the basic block that contains the |
| // loads under consideration to see if they are invalidated in the block. |
| // For any loads that are not invalidated, add them to the equivalence |
| // set! |
| if (!CantEqual) { |
| Instrs.insert(I->second.begin(), I->second.end()); |
| if (BB1 == LoadBB) { |
| // If LI dominates the block in question, check to see if any of the |
| // loads in this block are invalidated before they are reached. |
| for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) { |
| if (isa<LoadInst>(BBI) && Instrs.count(BBI)) { |
| // The load is in the set! |
| RetVals.push_back(BBI); |
| Instrs.erase(BBI); |
| if (Instrs.empty()) break; |
| } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) |
| & AliasAnalysis::Mod) { |
| // If there is a modifying instruction, nothing below it will value |
| // # the same. |
| break; |
| } |
| } |
| } else { |
| // If the block dominates LI, make sure that the loads in the block are |
| // not invalidated before the block ends. |
| BasicBlock::iterator BBI = I->first->end(); |
| while (1) { |
| --BBI; |
| if (isa<LoadInst>(BBI) && Instrs.count(BBI)) { |
| // The load is in the set! |
| RetVals.push_back(BBI); |
| Instrs.erase(BBI); |
| if (Instrs.empty()) break; |
| } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) |
| & AliasAnalysis::Mod) { |
| // If there is a modifying instruction, nothing above it will value |
| // # the same. |
| break; |
| } |
| } |
| } |
| |
| Instrs.clear(); |
| } |
| } |
| |
| // Handle candidate stores. If the loaded location is clobbered on entrance |
| // to the LoadBB, no store outside of the LoadBB can value number equal, so |
| // quick exit. |
| if (LoadInvalidatedInBBBefore) |
| return; |
| |
| for (std::map<BasicBlock*, std::vector<StoreInst*> >::iterator |
| I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I) |
| if (DomSetInfo.dominates(I->first, LoadBB)) { |
| // Check to see if the path from the store to the load is transparent |
| // w.r.t. the memory location. |
| bool CantEqual = false; |
| std::set<BasicBlock*> Visited; |
| for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); |
| PI != E; ++PI) |
| if (!isPathTransparentTo(*PI, I->first, LoadPtr, LoadSize, AA, |
| Visited, TransparentBlocks)) { |
| // None of these stores can VN the same. |
| CantEqual = true; |
| break; |
| } |
| Visited.clear(); |
| if (!CantEqual) { |
| // Okay, the path from the store block to the load block is clear, and |
| // we know that there are no invalidating instructions from the start |
| // of the load block to the load itself. Now we just scan the store |
| // block. |
| |
| BasicBlock::iterator BBI = I->first->end(); |
| while (1) { |
| --BBI; |
| if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)& AliasAnalysis::Mod){ |
| // If the invalidating instruction is one of the candidates, |
| // then it provides the value the load loads. |
| if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) |
| if (std::find(I->second.begin(), I->second.end(), SI) != |
| I->second.end()) |
| RetVals.push_back(SI->getOperand(0)); |
| break; |
| } |
| } |
| } |
| } |
| } |