| //===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // LiveIntervalUnion represents a coalesced set of live intervals. This may be |
| // used during coalescing to represent a congruence class, or during register |
| // allocation to model liveness of a physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "LiveIntervalUnion.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| // Find the first segment in the range [SegBegin,Segments.end()) that |
| // intersects with LS. If no intersection is found, return the first SI |
| // such that SI.start >= LS.End. |
| // |
| // This logic is tied to the underlying LiveSegments data structure. For now, we |
| // use set::upper_bound to find the nearest starting position, |
| // then reverse iterate to find the first overlap. |
| // |
| // Upon entry we have SegBegin.Start < LS.End |
| // SegBegin |--... |
| // \ . |
| // LS ...-| |
| // |
| // After set::upper_bound, we have SI.start >= LS.start: |
| // SI |--... |
| // / |
| // LS |--... |
| // |
| // Assuming intervals are disjoint, if an intersection exists, it must be the |
| // segment found or the one immediately preceeding it. We continue reverse |
| // iterating to return the first overlapping segment. |
| LiveIntervalUnion::SegmentIter |
| LiveIntervalUnion::upperBound(SegmentIter SegBegin, |
| const LiveSegment &LS) { |
| assert(LS.End > SegBegin->Start && "segment iterator precondition"); |
| |
| // Get the next LIU segment such that segI->Start is not less than seg.Start |
| // |
| // FIXME: Once we have a B+tree, we can make good use of SegBegin as a hint to |
| // upper_bound. For now, we're forced to search again from the root each time. |
| SegmentIter SI = Segments.upper_bound(LS); |
| while (SI != SegBegin) { |
| --SI; |
| if (LS.Start >= SI->End) |
| return ++SI; |
| } |
| return SI; |
| } |
| |
| // Merge a LiveInterval's segments. Guarantee no overlaps. |
| // |
| // After implementing B+tree, segments will be coalesced. |
| void LiveIntervalUnion::unify(LiveInterval &VirtReg) { |
| |
| // Insert each of the virtual register's live segments into the map. |
| SegmentIter SegPos = Segments.begin(); |
| for (LiveInterval::iterator VirtRegI = VirtReg.begin(), |
| VirtRegEnd = VirtReg.end(); |
| VirtRegI != VirtRegEnd; ++VirtRegI ) { |
| |
| LiveSegment Seg(*VirtRegI, &VirtReg); |
| SegPos = Segments.insert(SegPos, Seg); |
| |
| assert(*SegPos == Seg && "need equal val for equal key"); |
| #ifndef NDEBUG |
| // Check for overlap (inductively). |
| if (SegPos != Segments.begin()) { |
| assert(llvm::prior(SegPos)->End <= Seg.Start && "overlapping segments" ); |
| } |
| SegmentIter NextPos = llvm::next(SegPos); |
| if (NextPos != Segments.end()) |
| assert(Seg.End <= NextPos->Start && "overlapping segments" ); |
| #endif // NDEBUG |
| } |
| } |
| |
| // Remove a live virtual register's segments from this union. |
| void LiveIntervalUnion::extract(const LiveInterval &VirtReg) { |
| |
| // Remove each of the virtual register's live segments from the map. |
| SegmentIter SegPos = Segments.begin(); |
| for (LiveInterval::const_iterator VirtRegI = VirtReg.begin(), |
| VirtRegEnd = VirtReg.end(); |
| VirtRegI != VirtRegEnd; ++VirtRegI) { |
| |
| LiveSegment Seg(*VirtRegI, const_cast<LiveInterval*>(&VirtReg)); |
| SegPos = upperBound(SegPos, Seg); |
| assert(SegPos != Segments.end() && "missing VirtReg segment"); |
| |
| Segments.erase(SegPos++); |
| } |
| } |
| |
| raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveSegment &LS) { |
| return OS << '[' << LS.Start << ',' << LS.End << ':' << |
| LS.VirtReg->reg << ")"; |
| } |
| |
| void LiveSegment::dump() const { |
| dbgs() << *this << "\n"; |
| } |
| |
| void |
| LiveIntervalUnion::print(raw_ostream &OS, |
| const AbstractRegisterDescription *RegDesc) const { |
| OS << "LIU "; |
| if (RegDesc != NULL) |
| OS << RegDesc->getName(RepReg); |
| else { |
| OS << RepReg; |
| } |
| for (LiveSegments::const_iterator SI = Segments.begin(), |
| SegEnd = Segments.end(); SI != SegEnd; ++SI) { |
| dbgs() << " " << *SI; |
| } |
| OS << "\n"; |
| } |
| |
| void LiveIntervalUnion::dump(const AbstractRegisterDescription *RegDesc) const { |
| print(dbgs(), RegDesc); |
| } |
| |
| #ifndef NDEBUG |
| // Verify the live intervals in this union and add them to the visited set. |
| void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) { |
| SegmentIter SI = Segments.begin(); |
| SegmentIter SegEnd = Segments.end(); |
| if (SI == SegEnd) return; |
| VisitedVRegs.set(SI->VirtReg->reg); |
| for (++SI; SI != SegEnd; ++SI) { |
| VisitedVRegs.set(SI->VirtReg->reg); |
| assert(llvm::prior(SI)->End <= SI->Start && "overlapping segments" ); |
| } |
| } |
| #endif //!NDEBUG |
| |
| // Private interface accessed by Query. |
| // |
| // Find a pair of segments that intersect, one in the live virtual register |
| // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) |
| // is responsible for advancing the LiveIntervalUnion segments to find a |
| // "notable" intersection, which requires query-specific logic. |
| // |
| // This design assumes only a fast mechanism for intersecting a single live |
| // virtual register segment with a set of LiveIntervalUnion segments. This may |
| // be ok since most VIRTREGs have very few segments. If we had a data |
| // structure that optimizd MxN intersection of segments, then we would bypass |
| // the loop that advances within the LiveInterval. |
| // |
| // If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first |
| // segment whose start point is greater than LiveInterval's end point. |
| // |
| // Assumes that segments are sorted by start position in both |
| // LiveInterval and LiveSegments. |
| void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const { |
| |
| // Search until reaching the end of the LiveUnion segments. |
| LiveInterval::iterator VirtRegEnd = VirtReg->end(); |
| SegmentIter LiveUnionEnd = LiveUnion->end(); |
| while (IR.LiveUnionI != LiveUnionEnd) { |
| |
| // Slowly advance the live virtual reg iterator until we surpass the next |
| // segment in LiveUnion. |
| // |
| // Note: If this is ever used for coalescing of fixed registers and we have |
| // a live vreg with thousands of segments, then change this code to use |
| // upperBound instead. |
| while (IR.VirtRegI != VirtRegEnd && |
| IR.VirtRegI->end <= IR.LiveUnionI->Start) |
| ++IR.VirtRegI; |
| if (IR.VirtRegI == VirtRegEnd) |
| break; // Retain current (nonoverlapping) LiveUnionI |
| |
| // VirtRegI may have advanced far beyond LiveUnionI, |
| // do a fast intersection test to "catch up" |
| LiveSegment Seg(*IR.VirtRegI, VirtReg); |
| IR.LiveUnionI = LiveUnion->upperBound(IR.LiveUnionI, Seg); |
| |
| // Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end |
| if (IR.LiveUnionI == LiveUnionEnd) |
| break; |
| if (IR.LiveUnionI->Start < IR.VirtRegI->end) { |
| assert(overlap(*IR.VirtRegI, *IR.LiveUnionI) && |
| "upperBound postcondition"); |
| break; |
| } |
| } |
| if (IR.LiveUnionI == LiveUnionEnd) |
| IR.VirtRegI = VirtRegEnd; |
| } |
| |
| // Find the first intersection, and cache interference info |
| // (retain segment iterators into both VirtReg and LiveUnion). |
| LiveIntervalUnion::InterferenceResult |
| LiveIntervalUnion::Query::firstInterference() { |
| if (FirstInterference != LiveIntervalUnion::InterferenceResult()) { |
| return FirstInterference; |
| } |
| FirstInterference = InterferenceResult(VirtReg->begin(), LiveUnion->begin()); |
| findIntersection(FirstInterference); |
| return FirstInterference; |
| } |
| |
| // Treat the result as an iterator and advance to the next interfering pair |
| // of segments. This is a plain iterator with no filter. |
| bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const { |
| assert(isInterference(IR) && "iteration past end of interferences"); |
| |
| // Advance either the VirtReg or LiveUnion segment to ensure that we visit all |
| // unique overlapping pairs. |
| if (IR.VirtRegI->end < IR.LiveUnionI->End) { |
| if (++IR.VirtRegI == VirtReg->end()) |
| return false; |
| } |
| else { |
| if (++IR.LiveUnionI == LiveUnion->end()) { |
| IR.VirtRegI = VirtReg->end(); |
| return false; |
| } |
| } |
| // Short-circuit findIntersection() if possible. |
| if (overlap(*IR.VirtRegI, *IR.LiveUnionI)) |
| return true; |
| |
| // Find the next intersection. |
| findIntersection(IR); |
| return isInterference(IR); |
| } |
| |
| // Scan the vector of interfering virtual registers in this union. Assume it's |
| // quite small. |
| bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const { |
| SmallVectorImpl<LiveInterval*>::const_iterator I = |
| std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg); |
| return I != InterferingVRegs.end(); |
| } |
| |
| // Count the number of virtual registers in this union that interfere with this |
| // query's live virtual register. |
| // |
| // The number of times that we either advance IR.VirtRegI or call |
| // LiveUnion.upperBound() will be no more than the number of holes in |
| // VirtReg. So each invocation of collectInterferingVRegs() takes |
| // time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()). |
| // |
| // For comments on how to speed it up, see Query::findIntersection(). |
| unsigned LiveIntervalUnion::Query:: |
| collectInterferingVRegs(unsigned MaxInterferingRegs) { |
| InterferenceResult IR = firstInterference(); |
| LiveInterval::iterator VirtRegEnd = VirtReg->end(); |
| SegmentIter LiveUnionEnd = LiveUnion->end(); |
| LiveInterval *RecentInterferingVReg = NULL; |
| while (IR.LiveUnionI != LiveUnionEnd) { |
| // Advance the union's iterator to reach an unseen interfering vreg. |
| do { |
| if (IR.LiveUnionI->VirtReg == RecentInterferingVReg) |
| continue; |
| |
| if (!isSeenInterference(IR.LiveUnionI->VirtReg)) |
| break; |
| |
| // Cache the most recent interfering vreg to bypass isSeenInterference. |
| RecentInterferingVReg = IR.LiveUnionI->VirtReg; |
| |
| } while( ++IR.LiveUnionI != LiveUnionEnd); |
| if (IR.LiveUnionI == LiveUnionEnd) |
| break; |
| |
| // Advance the VirtReg iterator until surpassing the next segment in |
| // LiveUnion. |
| // |
| // Note: If this is ever used for coalescing of fixed registers and we have |
| // a live virtual register with thousands of segments, then use upperBound |
| // instead. |
| while (IR.VirtRegI != VirtRegEnd && |
| IR.VirtRegI->end <= IR.LiveUnionI->Start) |
| ++IR.VirtRegI; |
| if (IR.VirtRegI == VirtRegEnd) |
| break; |
| |
| // Check for intersection with the union's segment. |
| if (overlap(*IR.VirtRegI, *IR.LiveUnionI)) { |
| |
| if (!IR.LiveUnionI->VirtReg->isSpillable()) |
| SeenUnspillableVReg = true; |
| |
| InterferingVRegs.push_back(IR.LiveUnionI->VirtReg); |
| if (InterferingVRegs.size() == MaxInterferingRegs) |
| return MaxInterferingRegs; |
| |
| // Cache the most recent interfering vreg to bypass isSeenInterference. |
| RecentInterferingVReg = IR.LiveUnionI->VirtReg; |
| ++IR.LiveUnionI; |
| continue; |
| } |
| // VirtRegI may have advanced far beyond LiveUnionI, |
| // do a fast intersection test to "catch up" |
| LiveSegment Seg(*IR.VirtRegI, VirtReg); |
| IR.LiveUnionI = LiveUnion->upperBound(IR.LiveUnionI, Seg); |
| } |
| SeenAllInterferences = true; |
| return InterferingVRegs.size(); |
| } |