| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the pass that transforms the X86 machine instructions into |
| // relocatable machine code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-emitter" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "X86Relocations.h" |
| #include "X86.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Function.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| STATISTIC(NumEmitted, "Number of machine instructions emitted"); |
| |
| namespace { |
| class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass { |
| const X86InstrInfo *II; |
| const TargetData *TD; |
| TargetMachine &TM; |
| MachineCodeEmitter &MCE; |
| bool Is64BitMode; |
| public: |
| explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce) |
| : II(0), TD(0), TM(tm), MCE(mce), Is64BitMode(false) {} |
| Emitter(TargetMachine &tm, MachineCodeEmitter &mce, |
| const X86InstrInfo &ii, const TargetData &td, bool is64) |
| : II(&ii), TD(&td), TM(tm), MCE(mce), Is64BitMode(is64) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "X86 Machine Code Emitter"; |
| } |
| |
| void emitInstruction(const MachineInstr &MI); |
| |
| private: |
| void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); |
| void emitPCRelativeValue(intptr_t Address); |
| void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub); |
| void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc, |
| int Disp = 0, unsigned PCAdj = 0); |
| void emitExternalSymbolAddress(const char *ES, unsigned Reloc); |
| void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, |
| unsigned PCAdj = 0); |
| void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0); |
| |
| void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, |
| unsigned PCAdj = 0); |
| |
| void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); |
| void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); |
| void emitConstant(uint64_t Val, unsigned Size); |
| |
| void emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField, |
| unsigned PCAdj = 0); |
| |
| unsigned getX86RegNum(unsigned RegNo); |
| bool isX86_64ExtendedReg(const MachineOperand &MO); |
| unsigned determineREX(const MachineInstr &MI); |
| }; |
| } |
| |
| /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code |
| /// to the specified MCE object. |
| FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM, |
| MachineCodeEmitter &MCE) { |
| return new Emitter(TM, MCE); |
| } |
| |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) { |
| assert((MF.getTarget().getRelocationModel() != Reloc::Default || |
| MF.getTarget().getRelocationModel() != Reloc::Static) && |
| "JIT relocation model must be set to static or default!"); |
| II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo(); |
| TD = ((X86TargetMachine&)MF.getTarget()).getTargetData(); |
| Is64BitMode = |
| ((X86TargetMachine&)MF.getTarget()).getSubtarget<X86Subtarget>().is64Bit(); |
| |
| do { |
| MCE.startFunction(MF); |
| for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); |
| MBB != E; ++MBB) { |
| MCE.StartMachineBasicBlock(MBB); |
| for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) |
| emitInstruction(*I); |
| } |
| } while (MCE.finishFunction(MF)); |
| |
| return false; |
| } |
| |
| /// emitPCRelativeValue - Emit a PC relative address. |
| /// |
| void Emitter::emitPCRelativeValue(intptr_t Address) { |
| MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4); |
| } |
| |
| /// emitPCRelativeBlockAddress - This method keeps track of the information |
| /// necessary to resolve the address of this block later and emits a dummy |
| /// value. |
| /// |
| void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { |
| // Remember where this reference was and where it is to so we can |
| // deal with it later. |
| MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), |
| X86::reloc_pcrel_word, MBB)); |
| MCE.emitWordLE(0); |
| } |
| |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream |
| /// assuming this is part of a function call, which is PC relative. |
| /// |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) { |
| MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), |
| X86::reloc_pcrel_word, GV, 0, |
| DoesntNeedStub)); |
| MCE.emitWordLE(0); |
| } |
| |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming |
| /// this is part of a "take the address of a global" instruction. |
| /// |
| void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc, |
| int Disp /* = 0 */, |
| unsigned PCAdj /* = 0 */) { |
| MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, |
| GV, PCAdj)); |
| if (Reloc == X86::reloc_absolute_dword) |
| MCE.emitWordLE(0); |
| MCE.emitWordLE(Disp); // The relocated value will be added to the displacement |
| } |
| |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to |
| /// be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { |
| MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), |
| Reloc, ES)); |
| if (Reloc == X86::reloc_absolute_dword) |
| MCE.emitWordLE(0); |
| MCE.emitWordLE(0); |
| } |
| |
| /// emitConstPoolAddress - Arrange for the address of an constant pool |
| /// to be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, |
| int Disp /* = 0 */, |
| unsigned PCAdj /* = 0 */) { |
| MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), |
| Reloc, CPI, PCAdj)); |
| if (Reloc == X86::reloc_absolute_dword) |
| MCE.emitWordLE(0); |
| MCE.emitWordLE(Disp); // The relocated value will be added to the displacement |
| } |
| |
| /// emitJumpTableAddress - Arrange for the address of a jump table to |
| /// be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, |
| unsigned PCAdj /* = 0 */) { |
| MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), |
| Reloc, JTI, PCAdj)); |
| if (Reloc == X86::reloc_absolute_dword) |
| MCE.emitWordLE(0); |
| MCE.emitWordLE(0); // The relocated value will be added to the displacement |
| } |
| |
| /// N86 namespace - Native X86 Register numbers... used by X86 backend. |
| /// |
| namespace N86 { |
| enum { |
| EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 |
| }; |
| } |
| |
| // getX86RegNum - This function maps LLVM register identifiers to their X86 |
| // specific numbering, which is used in various places encoding instructions. |
| // |
| unsigned Emitter::getX86RegNum(unsigned RegNo) { |
| switch(RegNo) { |
| case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; |
| case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; |
| case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; |
| case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; |
| case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: |
| return N86::ESP; |
| case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: |
| return N86::EBP; |
| case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: |
| return N86::ESI; |
| case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: |
| return N86::EDI; |
| |
| case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: |
| return N86::EAX; |
| case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: |
| return N86::ECX; |
| case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: |
| return N86::EDX; |
| case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: |
| return N86::EBX; |
| case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: |
| return N86::ESP; |
| case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: |
| return N86::EBP; |
| case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: |
| return N86::ESI; |
| case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: |
| return N86::EDI; |
| |
| case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: |
| case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: |
| return RegNo-X86::ST0; |
| |
| case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: |
| case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: |
| return II->getRegisterInfo().getDwarfRegNum(RegNo) - |
| II->getRegisterInfo().getDwarfRegNum(X86::XMM0); |
| case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: |
| case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: |
| return II->getRegisterInfo().getDwarfRegNum(RegNo) - |
| II->getRegisterInfo().getDwarfRegNum(X86::XMM8); |
| |
| default: |
| assert(MRegisterInfo::isVirtualRegister(RegNo) && |
| "Unknown physical register!"); |
| assert(0 && "Register allocator hasn't allocated reg correctly yet!"); |
| return 0; |
| } |
| } |
| |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| unsigned RM) { |
| assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| return RM | (RegOpcode << 3) | (Mod << 6); |
| } |
| |
| void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ |
| MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); |
| } |
| |
| void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { |
| // SIB byte is in the same format as the ModRMByte... |
| MCE.emitByte(ModRMByte(SS, Index, Base)); |
| } |
| |
| void Emitter::emitConstant(uint64_t Val, unsigned Size) { |
| // Output the constant in little endian byte order... |
| for (unsigned i = 0; i != Size; ++i) { |
| MCE.emitByte(Val & 255); |
| Val >>= 8; |
| } |
| } |
| |
| /// isDisp8 - Return true if this signed displacement fits in a 8-bit |
| /// sign-extended field. |
| static bool isDisp8(int Value) { |
| return Value == (signed char)Value; |
| } |
| |
| void Emitter::emitDisplacementField(const MachineOperand *RelocOp, |
| int DispVal, unsigned PCAdj) { |
| // If this is a simple integer displacement that doesn't require a relocation, |
| // emit it now. |
| if (!RelocOp) { |
| emitConstant(DispVal, 4); |
| return; |
| } |
| |
| // Otherwise, this is something that requires a relocation. Emit it as such |
| // now. |
| if (RelocOp->isGlobalAddress()) { |
| // In 64-bit static small code model, we could potentially emit absolute. |
| // But it's probably not beneficial. |
| // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative |
| // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute |
| unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; |
| emitGlobalAddressForPtr(RelocOp->getGlobal(), rt, |
| RelocOp->getOffset(), PCAdj); |
| } else if (RelocOp->isConstantPoolIndex()) { |
| // Must be in 64-bit mode. |
| emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word, |
| RelocOp->getOffset(), PCAdj); |
| } else if (RelocOp->isJumpTableIndex()) { |
| // Must be in 64-bit mode. |
| emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word, |
| PCAdj); |
| } else { |
| assert(0 && "Unknown value to relocate!"); |
| } |
| } |
| |
| void Emitter::emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField, |
| unsigned PCAdj) { |
| const MachineOperand &Op3 = MI.getOperand(Op+3); |
| int DispVal = 0; |
| const MachineOperand *DispForReloc = 0; |
| |
| // Figure out what sort of displacement we have to handle here. |
| if (Op3.isGlobalAddress()) { |
| DispForReloc = &Op3; |
| } else if (Op3.isConstantPoolIndex()) { |
| if (Is64BitMode) { |
| DispForReloc = &Op3; |
| } else { |
| DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex()); |
| DispVal += Op3.getOffset(); |
| } |
| } else if (Op3.isJumpTableIndex()) { |
| if (Is64BitMode) { |
| DispForReloc = &Op3; |
| } else { |
| DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex()); |
| } |
| } else { |
| DispVal = Op3.getImm(); |
| } |
| |
| const MachineOperand &Base = MI.getOperand(Op); |
| const MachineOperand &Scale = MI.getOperand(Op+1); |
| const MachineOperand &IndexReg = MI.getOperand(Op+2); |
| |
| unsigned BaseReg = Base.getReg(); |
| |
| // Is a SIB byte needed? |
| if (IndexReg.getReg() == 0 && |
| (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) { |
| if (BaseReg == 0) { // Just a displacement? |
| // Emit special case [disp32] encoding |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); |
| |
| emitDisplacementField(DispForReloc, DispVal, PCAdj); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg); |
| if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { |
| // Emit simple indirect register encoding... [EAX] f.e. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); |
| } else if (!DispForReloc && isDisp8(DispVal)) { |
| // Emit the disp8 encoding... [REG+disp8] |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); |
| emitConstant(DispVal, 1); |
| } else { |
| // Emit the most general non-SIB encoding: [REG+disp32] |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); |
| emitDisplacementField(DispForReloc, DispVal, PCAdj); |
| } |
| } |
| |
| } else { // We need a SIB byte, so start by outputting the ModR/M byte first |
| assert(IndexReg.getReg() != X86::ESP && |
| IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); |
| |
| bool ForceDisp32 = false; |
| bool ForceDisp8 = false; |
| if (BaseReg == 0) { |
| // If there is no base register, we emit the special case SIB byte with |
| // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| ForceDisp32 = true; |
| } else if (DispForReloc) { |
| // Emit the normal disp32 encoding. |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); |
| ForceDisp32 = true; |
| } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) { |
| // Emit no displacement ModR/M byte |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| } else if (isDisp8(DispVal)) { |
| // Emit the disp8 encoding... |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); |
| ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| } else { |
| // Emit the normal disp32 encoding... |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); |
| } |
| |
| // Calculate what the SS field value should be... |
| static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| unsigned SS = SSTable[Scale.getImm()]; |
| |
| if (BaseReg == 0) { |
| // Handle the SIB byte for the case where there is no base. The |
| // displacement has already been output. |
| assert(IndexReg.getReg() && "Index register must be specified!"); |
| emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg); |
| unsigned IndexRegNo; |
| if (IndexReg.getReg()) |
| IndexRegNo = getX86RegNum(IndexReg.getReg()); |
| else |
| IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| emitSIBByte(SS, IndexRegNo, BaseRegNo); |
| } |
| |
| // Do we need to output a displacement? |
| if (ForceDisp8) { |
| emitConstant(DispVal, 1); |
| } else if (DispVal != 0 || ForceDisp32) { |
| emitDisplacementField(DispForReloc, DispVal, PCAdj); |
| } |
| } |
| } |
| |
| static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) { |
| switch (Desc->TSFlags & X86II::ImmMask) { |
| case X86II::Imm8: return 1; |
| case X86II::Imm16: return 2; |
| case X86II::Imm32: return 4; |
| case X86II::Imm64: return 8; |
| default: assert(0 && "Immediate size not set!"); |
| return 0; |
| } |
| } |
| |
| /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register? |
| /// e.g. r8, xmm8, etc. |
| bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) { |
| if (!MO.isRegister()) return false; |
| unsigned RegNo = MO.getReg(); |
| int DWNum = II->getRegisterInfo().getDwarfRegNum(RegNo); |
| if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::R8) && |
| DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::R15)) |
| return true; |
| if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::XMM8) && |
| DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::XMM15)) |
| return true; |
| return false; |
| } |
| |
| inline static bool isX86_64TruncToByte(unsigned oc) { |
| return (oc == X86::TRUNC_64to8 || oc == X86::TRUNC_32to8 || |
| oc == X86::TRUNC_16to8); |
| } |
| |
| |
| inline static bool isX86_64NonExtLowByteReg(unsigned reg) { |
| return (reg == X86::SPL || reg == X86::BPL || |
| reg == X86::SIL || reg == X86::DIL); |
| } |
| |
| /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand |
| /// size, and 3) use of X86-64 extended registers. |
| unsigned Emitter::determineREX(const MachineInstr &MI) { |
| unsigned REX = 0; |
| const TargetInstrDescriptor *Desc = MI.getInstrDescriptor(); |
| unsigned Opcode = Desc->Opcode; |
| |
| // Pseudo instructions do not need REX prefix byte. |
| if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo) |
| return 0; |
| if (Desc->TSFlags & X86II::REX_W) |
| REX |= 1 << 3; |
| |
| unsigned NumOps = Desc->numOperands; |
| if (NumOps) { |
| bool isTwoAddr = NumOps > 1 && |
| Desc->getOperandConstraint(1, TOI::TIED_TO) != -1; |
| |
| // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. |
| bool isTrunc8 = isX86_64TruncToByte(Opcode); |
| unsigned i = isTwoAddr ? 1 : 0; |
| for (unsigned e = NumOps; i != e; ++i) { |
| const MachineOperand& MO = MI.getOperand(i); |
| if (MO.isRegister()) { |
| unsigned Reg = MO.getReg(); |
| // Trunc to byte are actually movb. The real source operand is the low |
| // byte of the register. |
| if (isTrunc8 && i == 1) |
| Reg = getX86SubSuperRegister(Reg, MVT::i8); |
| if (isX86_64NonExtLowByteReg(Reg)) |
| REX |= 0x40; |
| } |
| } |
| |
| switch (Desc->TSFlags & X86II::FormMask) { |
| case X86II::MRMInitReg: |
| if (isX86_64ExtendedReg(MI.getOperand(0))) |
| REX |= (1 << 0) | (1 << 2); |
| break; |
| case X86II::MRMSrcReg: { |
| if (isX86_64ExtendedReg(MI.getOperand(0))) |
| REX |= 1 << 2; |
| i = isTwoAddr ? 2 : 1; |
| for (unsigned e = NumOps; i != e; ++i) { |
| const MachineOperand& MO = MI.getOperand(i); |
| if (isX86_64ExtendedReg(MO)) |
| REX |= 1 << 0; |
| } |
| break; |
| } |
| case X86II::MRMSrcMem: { |
| if (isX86_64ExtendedReg(MI.getOperand(0))) |
| REX |= 1 << 2; |
| unsigned Bit = 0; |
| i = isTwoAddr ? 2 : 1; |
| for (; i != NumOps; ++i) { |
| const MachineOperand& MO = MI.getOperand(i); |
| if (MO.isRegister()) { |
| if (isX86_64ExtendedReg(MO)) |
| REX |= 1 << Bit; |
| Bit++; |
| } |
| } |
| break; |
| } |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: |
| case X86II::MRMDestMem: { |
| unsigned e = isTwoAddr ? 5 : 4; |
| i = isTwoAddr ? 1 : 0; |
| if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e))) |
| REX |= 1 << 2; |
| unsigned Bit = 0; |
| for (; i != e; ++i) { |
| const MachineOperand& MO = MI.getOperand(i); |
| if (MO.isRegister()) { |
| if (isX86_64ExtendedReg(MO)) |
| REX |= 1 << Bit; |
| Bit++; |
| } |
| } |
| break; |
| } |
| default: { |
| if (isX86_64ExtendedReg(MI.getOperand(0))) |
| REX |= 1 << 0; |
| i = isTwoAddr ? 2 : 1; |
| for (unsigned e = NumOps; i != e; ++i) { |
| const MachineOperand& MO = MI.getOperand(i); |
| if (isX86_64ExtendedReg(MO)) |
| REX |= 1 << 2; |
| } |
| break; |
| } |
| } |
| } |
| return REX; |
| } |
| |
| void Emitter::emitInstruction(const MachineInstr &MI) { |
| NumEmitted++; // Keep track of the # of mi's emitted |
| |
| const TargetInstrDescriptor *Desc = MI.getInstrDescriptor(); |
| unsigned Opcode = Desc->Opcode; |
| |
| // Emit the repeat opcode prefix as needed. |
| if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); |
| |
| // Emit the operand size opcode prefix as needed. |
| if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66); |
| |
| // Emit the address size opcode prefix as needed. |
| if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67); |
| |
| bool Need0FPrefix = false; |
| switch (Desc->TSFlags & X86II::Op0Mask) { |
| case X86II::TB: |
| Need0FPrefix = true; // Two-byte opcode prefix |
| break; |
| case X86II::REP: break; // already handled. |
| case X86II::XS: // F3 0F |
| MCE.emitByte(0xF3); |
| Need0FPrefix = true; |
| break; |
| case X86II::XD: // F2 0F |
| MCE.emitByte(0xF2); |
| Need0FPrefix = true; |
| break; |
| case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: |
| case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: |
| MCE.emitByte(0xD8+ |
| (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) |
| >> X86II::Op0Shift)); |
| break; // Two-byte opcode prefix |
| default: assert(0 && "Invalid prefix!"); |
| case 0: break; // No prefix! |
| } |
| |
| if (Is64BitMode) { |
| // REX prefix |
| unsigned REX = determineREX(MI); |
| if (REX) |
| MCE.emitByte(0x40 | REX); |
| } |
| |
| // 0x0F escape code must be emitted just before the opcode. |
| if (Need0FPrefix) |
| MCE.emitByte(0x0F); |
| |
| // If this is a two-address instruction, skip one of the register operands. |
| unsigned NumOps = Desc->numOperands; |
| unsigned CurOp = 0; |
| if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) |
| CurOp++; |
| |
| unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc); |
| switch (Desc->TSFlags & X86II::FormMask) { |
| default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); |
| case X86II::Pseudo: |
| #ifndef NDEBUG |
| switch (Opcode) { |
| default: |
| assert(0 && "psuedo instructions should be removed before code emission"); |
| case TargetInstrInfo::INLINEASM: |
| assert(0 && "JIT does not support inline asm!\n"); |
| case X86::IMPLICIT_USE: |
| case X86::IMPLICIT_DEF: |
| case X86::IMPLICIT_DEF_GR8: |
| case X86::IMPLICIT_DEF_GR16: |
| case X86::IMPLICIT_DEF_GR32: |
| case X86::IMPLICIT_DEF_GR64: |
| case X86::IMPLICIT_DEF_FR32: |
| case X86::IMPLICIT_DEF_FR64: |
| case X86::IMPLICIT_DEF_VR64: |
| case X86::IMPLICIT_DEF_VR128: |
| case X86::FP_REG_KILL: |
| break; |
| } |
| #endif |
| CurOp = NumOps; |
| break; |
| |
| case X86II::RawFrm: |
| MCE.emitByte(BaseOpcode); |
| if (CurOp != NumOps) { |
| const MachineOperand &MO = MI.getOperand(CurOp++); |
| if (MO.isMachineBasicBlock()) { |
| emitPCRelativeBlockAddress(MO.getMachineBasicBlock()); |
| } else if (MO.isGlobalAddress()) { |
| bool isTailCall = Opcode == X86::TAILJMPd || |
| Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm; |
| emitGlobalAddressForCall(MO.getGlobal(), !isTailCall); |
| } else if (MO.isExternalSymbol()) { |
| emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); |
| } else if (MO.isImmediate()) { |
| emitConstant(MO.getImm(), sizeOfImm(Desc)); |
| } else { |
| assert(0 && "Unknown RawFrm operand!"); |
| } |
| } |
| break; |
| |
| case X86II::AddRegFrm: |
| MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); |
| |
| if (CurOp != NumOps) { |
| const MachineOperand &MO1 = MI.getOperand(CurOp++); |
| unsigned Size = sizeOfImm(Desc); |
| if (MO1.isImmediate()) |
| emitConstant(MO1.getImm(), Size); |
| else { |
| unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; |
| if (Opcode == X86::MOV64ri) |
| rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? |
| if (MO1.isGlobalAddress()) |
| emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset()); |
| else if (MO1.isExternalSymbol()) |
| emitExternalSymbolAddress(MO1.getSymbolName(), rt); |
| else if (MO1.isConstantPoolIndex()) |
| emitConstPoolAddress(MO1.getConstantPoolIndex(), rt); |
| else if (MO1.isJumpTableIndex()) |
| emitJumpTableAddress(MO1.getJumpTableIndex(), rt); |
| } |
| } |
| break; |
| |
| case X86II::MRMDestReg: { |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(CurOp).getReg(), |
| getX86RegNum(MI.getOperand(CurOp+1).getReg())); |
| CurOp += 2; |
| if (CurOp != NumOps) |
| emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); |
| break; |
| } |
| case X86II::MRMDestMem: { |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg())); |
| CurOp += 5; |
| if (CurOp != NumOps) |
| emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); |
| break; |
| } |
| |
| case X86II::MRMSrcReg: |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), |
| getX86RegNum(MI.getOperand(CurOp).getReg())); |
| CurOp += 2; |
| if (CurOp != NumOps) |
| emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); |
| break; |
| |
| case X86II::MRMSrcMem: { |
| unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0; |
| |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), |
| PCAdj); |
| CurOp += 5; |
| if (CurOp != NumOps) |
| emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); |
| break; |
| } |
| |
| case X86II::MRM0r: case X86II::MRM1r: |
| case X86II::MRM2r: case X86II::MRM3r: |
| case X86II::MRM4r: case X86II::MRM5r: |
| case X86II::MRM6r: case X86II::MRM7r: |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(CurOp++).getReg(), |
| (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); |
| |
| if (CurOp != NumOps) { |
| const MachineOperand &MO1 = MI.getOperand(CurOp++); |
| unsigned Size = sizeOfImm(Desc); |
| if (MO1.isImmediate()) |
| emitConstant(MO1.getImm(), Size); |
| else { |
| unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| : X86::reloc_absolute_word; |
| if (Opcode == X86::MOV64ri32) |
| rt = X86::reloc_absolute_word; // FIXME: add X86II flag? |
| if (MO1.isGlobalAddress()) |
| emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset()); |
| else if (MO1.isExternalSymbol()) |
| emitExternalSymbolAddress(MO1.getSymbolName(), rt); |
| else if (MO1.isConstantPoolIndex()) |
| emitConstPoolAddress(MO1.getConstantPoolIndex(), rt); |
| else if (MO1.isJumpTableIndex()) |
| emitJumpTableAddress(MO1.getJumpTableIndex(), rt); |
| } |
| } |
| break; |
| |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: { |
| unsigned PCAdj = (CurOp+4 != NumOps) ? |
| (MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0; |
| |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, |
| PCAdj); |
| CurOp += 4; |
| |
| if (CurOp != NumOps) { |
| const MachineOperand &MO = MI.getOperand(CurOp++); |
| unsigned Size = sizeOfImm(Desc); |
| if (MO.isImmediate()) |
| emitConstant(MO.getImm(), Size); |
| else { |
| unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| : X86::reloc_absolute_word; |
| if (Opcode == X86::MOV64mi32) |
| rt = X86::reloc_absolute_word; // FIXME: add X86II flag? |
| if (MO.isGlobalAddress()) |
| emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset()); |
| else if (MO.isExternalSymbol()) |
| emitExternalSymbolAddress(MO.getSymbolName(), rt); |
| else if (MO.isConstantPoolIndex()) |
| emitConstPoolAddress(MO.getConstantPoolIndex(), rt); |
| else if (MO.isJumpTableIndex()) |
| emitJumpTableAddress(MO.getJumpTableIndex(), rt); |
| } |
| } |
| break; |
| } |
| |
| case X86II::MRMInitReg: |
| MCE.emitByte(BaseOpcode); |
| // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). |
| emitRegModRMByte(MI.getOperand(CurOp).getReg(), |
| getX86RegNum(MI.getOperand(CurOp).getReg())); |
| ++CurOp; |
| break; |
| } |
| |
| assert((Desc->Flags & M_VARIABLE_OPS) != 0 || |
| CurOp == NumOps && "Unknown encoding!"); |
| } |