| //===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=// |
| // |
| // This interface is used to identify and classify induction variables that |
| // exist in the program. Induction variables must contain a PHI node that |
| // exists in a loop header. Because of this, they are identified an managed by |
| // this PHI node. |
| // |
| // Induction variables are classified into a type. Knowing that an induction |
| // variable is of a specific type can constrain the values of the start and |
| // step. For example, a SimpleLinear induction variable must have a start and |
| // step values that are constants. |
| // |
| // Induction variables can be created with or without loop information. If no |
| // loop information is available, induction variables cannot be recognized to be |
| // more than SimpleLinear variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InductionVariable.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/InstrTypes.h" |
| #include "llvm/Type.h" |
| #include "llvm/ConstantVals.h" |
| |
| using analysis::ExprType; |
| |
| |
| static bool isLoopInvariant(const Value *V, const Loop *L) { |
| if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V)) |
| return true; |
| |
| Instruction *I = cast<Instruction>(V); |
| BasicBlock *BB = I->getParent(); |
| |
| return !L->contains(BB); |
| } |
| |
| enum InductionVariable::iType |
| InductionVariable::Classify(const Value *Start, const Value *Step, |
| const Loop *L = 0) { |
| // Check for cannonical and simple linear expressions now... |
| if (ConstantInt *CStart = dyn_cast<ConstantInt>(Start)) |
| if (ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) { |
| if (CStart->equalsInt(0) && CStep->equalsInt(1)) |
| return Cannonical; |
| else |
| return SimpleLinear; |
| } |
| |
| // Without loop information, we cannot do any better, so bail now... |
| if (L == 0) return Unknown; |
| |
| if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L)) |
| return Linear; |
| return Unknown; |
| } |
| |
| // Create an induction variable for the specified value. If it is a PHI, and |
| // if it's recognizable, classify it and fill in instance variables. |
| // |
| InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) { |
| InductionType = Unknown; // Assume the worst |
| Phi = P; |
| |
| // If the PHI node has more than two predecessors, we don't know how to |
| // handle it. |
| // |
| if (Phi->getNumIncomingValues() != 2) return; |
| |
| // FIXME: Handle FP induction variables. |
| if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy) |
| return; |
| |
| // If we have loop information, make sure that this PHI node is in the header |
| // of a loop... |
| // |
| const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; |
| if (L && L->getHeader() != Phi->getParent()) |
| return; |
| |
| Value *V1 = Phi->getIncomingValue(0); |
| Value *V2 = Phi->getIncomingValue(1); |
| |
| if (L == 0) { // No loop information? Base everything on expression analysis |
| ExprType E1 = analysis::ClassifyExpression(V1); |
| ExprType E2 = analysis::ClassifyExpression(V2); |
| |
| if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression |
| std::swap(E1, E2); |
| |
| // E1 must be a constant incoming value, and E2 must be a linear expression |
| // with respect to the PHI node. |
| // |
| if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear || |
| E2.Var != Phi) |
| return; |
| |
| // Okay, we have found an induction variable. Save the start and step values |
| const Type *ETy = Phi->getType(); |
| if (ETy->isPointerType()) ETy = Type::ULongTy; |
| |
| Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0)); |
| Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0)); |
| } else { |
| // Okay, at this point, we know that we have loop information... |
| |
| // Make sure that V1 is the incoming value, and V2 is from the backedge of |
| // the loop. |
| if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now. |
| std::swap(V1, V2); |
| |
| Start = V1; // We know that Start has to be loop invariant... |
| Step = 0; |
| |
| if (V2 == Phi) { // referencing the PHI directly? Must have zero step |
| Step = Constant::getNullValue(Phi->getType()); |
| } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) { |
| // TODO: This could be much better... |
| if (I->getOpcode() == Instruction::Add) { |
| if (I->getOperand(0) == Phi) |
| Step = I->getOperand(1); |
| else if (I->getOperand(1) == Phi) |
| Step = I->getOperand(0); |
| } |
| } |
| |
| if (Step == 0) { // Unrecognized step value... |
| ExprType StepE = analysis::ClassifyExpression(V2); |
| if (StepE.ExprTy != ExprType::Linear || |
| StepE.Var != Phi) return; |
| |
| const Type *ETy = Phi->getType(); |
| if (ETy->isPointerType()) ETy = Type::ULongTy; |
| Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0)); |
| } else { // We were able to get a step value, simplify with expr analysis |
| ExprType StepE = analysis::ClassifyExpression(Step); |
| if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) { |
| // No offset from variable? Grab the variable |
| Step = StepE.Var; |
| } else if (StepE.ExprTy == ExprType::Constant) { |
| if (StepE.Offset) |
| Step = (Value*)StepE.Offset; |
| else |
| Step = Constant::getNullValue(Step->getType()); |
| const Type *ETy = Phi->getType(); |
| if (ETy->isPointerType()) ETy = Type::ULongTy; |
| Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0)); |
| } |
| } |
| } |
| |
| // Classify the induction variable type now... |
| InductionType = InductionVariable::Classify(Start, Step, L); |
| } |