| //===-- APFloat.cpp - Implement APFloat class -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Neil Booth and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a class to represent arbitrary precision floating |
| // point values and provide a variety of arithmetic operations on them. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <cassert> |
| #include <cstring> |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| using namespace llvm; |
| |
| #define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) |
| |
| /* Assumed in hexadecimal significand parsing, and conversion to |
| hexadecimal strings. */ |
| COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); |
| |
| namespace llvm { |
| |
| /* Represents floating point arithmetic semantics. */ |
| struct fltSemantics { |
| /* The largest E such that 2^E is representable; this matches the |
| definition of IEEE 754. */ |
| exponent_t maxExponent; |
| |
| /* The smallest E such that 2^E is a normalized number; this |
| matches the definition of IEEE 754. */ |
| exponent_t minExponent; |
| |
| /* Number of bits in the significand. This includes the integer |
| bit. */ |
| unsigned char precision; |
| |
| /* If the target format has an implicit integer bit. */ |
| bool implicitIntegerBit; |
| }; |
| |
| const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; |
| const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; |
| const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; |
| const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false }; |
| const fltSemantics APFloat::Bogus = { 0, 0, 0, false }; |
| } |
| |
| /* Put a bunch of private, handy routines in an anonymous namespace. */ |
| namespace { |
| |
| inline unsigned int |
| partCountForBits(unsigned int bits) |
| { |
| return ((bits) + integerPartWidth - 1) / integerPartWidth; |
| } |
| |
| unsigned int |
| digitValue(unsigned int c) |
| { |
| unsigned int r; |
| |
| r = c - '0'; |
| if(r <= 9) |
| return r; |
| |
| return -1U; |
| } |
| |
| unsigned int |
| hexDigitValue (unsigned int c) |
| { |
| unsigned int r; |
| |
| r = c - '0'; |
| if(r <= 9) |
| return r; |
| |
| r = c - 'A'; |
| if(r <= 5) |
| return r + 10; |
| |
| r = c - 'a'; |
| if(r <= 5) |
| return r + 10; |
| |
| return -1U; |
| } |
| |
| /* This is ugly and needs cleaning up, but I don't immediately see |
| how whilst remaining safe. */ |
| static int |
| totalExponent(const char *p, int exponentAdjustment) |
| { |
| integerPart unsignedExponent; |
| bool negative, overflow; |
| long exponent; |
| |
| /* Move past the exponent letter and sign to the digits. */ |
| p++; |
| negative = *p == '-'; |
| if(*p == '-' || *p == '+') |
| p++; |
| |
| unsignedExponent = 0; |
| overflow = false; |
| for(;;) { |
| unsigned int value; |
| |
| value = digitValue(*p); |
| if(value == -1U) |
| break; |
| |
| p++; |
| unsignedExponent = unsignedExponent * 10 + value; |
| if(unsignedExponent > 65535) |
| overflow = true; |
| } |
| |
| if(exponentAdjustment > 65535 || exponentAdjustment < -65536) |
| overflow = true; |
| |
| if(!overflow) { |
| exponent = unsignedExponent; |
| if(negative) |
| exponent = -exponent; |
| exponent += exponentAdjustment; |
| if(exponent > 65535 || exponent < -65536) |
| overflow = true; |
| } |
| |
| if(overflow) |
| exponent = negative ? -65536: 65535; |
| |
| return exponent; |
| } |
| |
| const char * |
| skipLeadingZeroesAndAnyDot(const char *p, const char **dot) |
| { |
| *dot = 0; |
| while(*p == '0') |
| p++; |
| |
| if(*p == '.') { |
| *dot = p++; |
| while(*p == '0') |
| p++; |
| } |
| |
| return p; |
| } |
| |
| /* Return the trailing fraction of a hexadecimal number. |
| DIGITVALUE is the first hex digit of the fraction, P points to |
| the next digit. */ |
| lostFraction |
| trailingHexadecimalFraction(const char *p, unsigned int digitValue) |
| { |
| unsigned int hexDigit; |
| |
| /* If the first trailing digit isn't 0 or 8 we can work out the |
| fraction immediately. */ |
| if(digitValue > 8) |
| return lfMoreThanHalf; |
| else if(digitValue < 8 && digitValue > 0) |
| return lfLessThanHalf; |
| |
| /* Otherwise we need to find the first non-zero digit. */ |
| while(*p == '0') |
| p++; |
| |
| hexDigit = hexDigitValue(*p); |
| |
| /* If we ran off the end it is exactly zero or one-half, otherwise |
| a little more. */ |
| if(hexDigit == -1U) |
| return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; |
| else |
| return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; |
| } |
| |
| /* Return the fraction lost were a bignum truncated losing the least |
| significant BITS bits. */ |
| lostFraction |
| lostFractionThroughTruncation(const integerPart *parts, |
| unsigned int partCount, |
| unsigned int bits) |
| { |
| unsigned int lsb; |
| |
| lsb = APInt::tcLSB(parts, partCount); |
| |
| /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ |
| if(bits <= lsb) |
| return lfExactlyZero; |
| if(bits == lsb + 1) |
| return lfExactlyHalf; |
| if(bits <= partCount * integerPartWidth |
| && APInt::tcExtractBit(parts, bits - 1)) |
| return lfMoreThanHalf; |
| |
| return lfLessThanHalf; |
| } |
| |
| /* Shift DST right BITS bits noting lost fraction. */ |
| lostFraction |
| shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) |
| { |
| lostFraction lost_fraction; |
| |
| lost_fraction = lostFractionThroughTruncation(dst, parts, bits); |
| |
| APInt::tcShiftRight(dst, parts, bits); |
| |
| return lost_fraction; |
| } |
| |
| |
| /* Zero at the end to avoid modular arithmetic when adding one; used |
| when rounding up during hexadecimal output. */ |
| static const char hexDigitsLower[] = "0123456789abcdef0"; |
| static const char hexDigitsUpper[] = "0123456789ABCDEF0"; |
| static const char infinityL[] = "infinity"; |
| static const char infinityU[] = "INFINITY"; |
| static const char NaNL[] = "nan"; |
| static const char NaNU[] = "NAN"; |
| |
| /* Write out an integerPart in hexadecimal, starting with the most |
| significant nibble. Write out exactly COUNT hexdigits, return |
| COUNT. */ |
| static unsigned int |
| partAsHex (char *dst, integerPart part, unsigned int count, |
| const char *hexDigitChars) |
| { |
| unsigned int result = count; |
| |
| assert (count != 0 && count <= integerPartWidth / 4); |
| |
| part >>= (integerPartWidth - 4 * count); |
| while (count--) { |
| dst[count] = hexDigitChars[part & 0xf]; |
| part >>= 4; |
| } |
| |
| return result; |
| } |
| |
| /* Write out a decimal exponent. */ |
| static char * |
| writeDecimalExponent (char *dst, int exponent) |
| { |
| assert (exponent >= -65536 && exponent <= 65535); |
| |
| if (exponent < 0) { |
| *dst++ = '-'; |
| exponent = -exponent; |
| } |
| |
| if (exponent == 0) { |
| *dst++ = '0'; |
| } else { |
| char buff[12], *p; |
| |
| p = buff; |
| while (exponent) { |
| *p++ = '0' + exponent % 10; |
| exponent /= 10; |
| } |
| |
| do |
| *dst++ = *--p; |
| while (p != buff); |
| } |
| |
| return dst; |
| } |
| } |
| |
| /* Constructors. */ |
| void |
| APFloat::initialize(const fltSemantics *ourSemantics) |
| { |
| unsigned int count; |
| |
| semantics = ourSemantics; |
| count = partCount(); |
| if(count > 1) |
| significand.parts = new integerPart[count]; |
| } |
| |
| void |
| APFloat::freeSignificand() |
| { |
| if(partCount() > 1) |
| delete [] significand.parts; |
| } |
| |
| void |
| APFloat::assign(const APFloat &rhs) |
| { |
| assert(semantics == rhs.semantics); |
| |
| sign = rhs.sign; |
| category = rhs.category; |
| exponent = rhs.exponent; |
| if(category == fcNormal || category == fcNaN) |
| copySignificand(rhs); |
| } |
| |
| void |
| APFloat::copySignificand(const APFloat &rhs) |
| { |
| assert(category == fcNormal || category == fcNaN); |
| assert(rhs.partCount() >= partCount()); |
| |
| APInt::tcAssign(significandParts(), rhs.significandParts(), |
| partCount()); |
| } |
| |
| APFloat & |
| APFloat::operator=(const APFloat &rhs) |
| { |
| if(this != &rhs) { |
| if(semantics != rhs.semantics) { |
| freeSignificand(); |
| initialize(rhs.semantics); |
| } |
| assign(rhs); |
| } |
| |
| return *this; |
| } |
| |
| bool |
| APFloat::bitwiseIsEqual(const APFloat &rhs) const { |
| if (this == &rhs) |
| return true; |
| if (semantics != rhs.semantics || |
| category != rhs.category || |
| sign != rhs.sign) |
| return false; |
| if (category==fcZero || category==fcInfinity) |
| return true; |
| else if (category==fcNormal && exponent!=rhs.exponent) |
| return false; |
| else { |
| int i= partCount(); |
| const integerPart* p=significandParts(); |
| const integerPart* q=rhs.significandParts(); |
| for (; i>0; i--, p++, q++) { |
| if (*p != *q) |
| return false; |
| } |
| return true; |
| } |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) |
| { |
| initialize(&ourSemantics); |
| sign = 0; |
| zeroSignificand(); |
| exponent = ourSemantics.precision - 1; |
| significandParts()[0] = value; |
| normalize(rmNearestTiesToEven, lfExactlyZero); |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, |
| fltCategory ourCategory, bool negative) |
| { |
| initialize(&ourSemantics); |
| category = ourCategory; |
| sign = negative; |
| if(category == fcNormal) |
| category = fcZero; |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, const char *text) |
| { |
| initialize(&ourSemantics); |
| convertFromString(text, rmNearestTiesToEven); |
| } |
| |
| APFloat::APFloat(const APFloat &rhs) |
| { |
| initialize(rhs.semantics); |
| assign(rhs); |
| } |
| |
| APFloat::~APFloat() |
| { |
| freeSignificand(); |
| } |
| |
| unsigned int |
| APFloat::partCount() const |
| { |
| return partCountForBits(semantics->precision + 1); |
| } |
| |
| unsigned int |
| APFloat::semanticsPrecision(const fltSemantics &semantics) |
| { |
| return semantics.precision; |
| } |
| |
| const integerPart * |
| APFloat::significandParts() const |
| { |
| return const_cast<APFloat *>(this)->significandParts(); |
| } |
| |
| integerPart * |
| APFloat::significandParts() |
| { |
| assert(category == fcNormal || category == fcNaN); |
| |
| if(partCount() > 1) |
| return significand.parts; |
| else |
| return &significand.part; |
| } |
| |
| /* Combine the effect of two lost fractions. */ |
| lostFraction |
| APFloat::combineLostFractions(lostFraction moreSignificant, |
| lostFraction lessSignificant) |
| { |
| if(lessSignificant != lfExactlyZero) { |
| if(moreSignificant == lfExactlyZero) |
| moreSignificant = lfLessThanHalf; |
| else if(moreSignificant == lfExactlyHalf) |
| moreSignificant = lfMoreThanHalf; |
| } |
| |
| return moreSignificant; |
| } |
| |
| void |
| APFloat::zeroSignificand() |
| { |
| category = fcNormal; |
| APInt::tcSet(significandParts(), 0, partCount()); |
| } |
| |
| /* Increment an fcNormal floating point number's significand. */ |
| void |
| APFloat::incrementSignificand() |
| { |
| integerPart carry; |
| |
| carry = APInt::tcIncrement(significandParts(), partCount()); |
| |
| /* Our callers should never cause us to overflow. */ |
| assert(carry == 0); |
| } |
| |
| /* Add the significand of the RHS. Returns the carry flag. */ |
| integerPart |
| APFloat::addSignificand(const APFloat &rhs) |
| { |
| integerPart *parts; |
| |
| parts = significandParts(); |
| |
| assert(semantics == rhs.semantics); |
| assert(exponent == rhs.exponent); |
| |
| return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); |
| } |
| |
| /* Subtract the significand of the RHS with a borrow flag. Returns |
| the borrow flag. */ |
| integerPart |
| APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) |
| { |
| integerPart *parts; |
| |
| parts = significandParts(); |
| |
| assert(semantics == rhs.semantics); |
| assert(exponent == rhs.exponent); |
| |
| return APInt::tcSubtract(parts, rhs.significandParts(), borrow, |
| partCount()); |
| } |
| |
| /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it |
| on to the full-precision result of the multiplication. Returns the |
| lost fraction. */ |
| lostFraction |
| APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) |
| { |
| unsigned int omsb; // One, not zero, based MSB. |
| unsigned int partsCount, newPartsCount, precision; |
| integerPart *lhsSignificand; |
| integerPart scratch[4]; |
| integerPart *fullSignificand; |
| lostFraction lost_fraction; |
| |
| assert(semantics == rhs.semantics); |
| |
| precision = semantics->precision; |
| newPartsCount = partCountForBits(precision * 2); |
| |
| if(newPartsCount > 4) |
| fullSignificand = new integerPart[newPartsCount]; |
| else |
| fullSignificand = scratch; |
| |
| lhsSignificand = significandParts(); |
| partsCount = partCount(); |
| |
| APInt::tcFullMultiply(fullSignificand, lhsSignificand, |
| rhs.significandParts(), partsCount); |
| |
| lost_fraction = lfExactlyZero; |
| omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| exponent += rhs.exponent; |
| |
| if(addend) { |
| Significand savedSignificand = significand; |
| const fltSemantics *savedSemantics = semantics; |
| fltSemantics extendedSemantics; |
| opStatus status; |
| unsigned int extendedPrecision; |
| |
| /* Normalize our MSB. */ |
| extendedPrecision = precision + precision - 1; |
| if(omsb != extendedPrecision) |
| { |
| APInt::tcShiftLeft(fullSignificand, newPartsCount, |
| extendedPrecision - omsb); |
| exponent -= extendedPrecision - omsb; |
| } |
| |
| /* Create new semantics. */ |
| extendedSemantics = *semantics; |
| extendedSemantics.precision = extendedPrecision; |
| |
| if(newPartsCount == 1) |
| significand.part = fullSignificand[0]; |
| else |
| significand.parts = fullSignificand; |
| semantics = &extendedSemantics; |
| |
| APFloat extendedAddend(*addend); |
| status = extendedAddend.convert(extendedSemantics, rmTowardZero); |
| assert(status == opOK); |
| lost_fraction = addOrSubtractSignificand(extendedAddend, false); |
| |
| /* Restore our state. */ |
| if(newPartsCount == 1) |
| fullSignificand[0] = significand.part; |
| significand = savedSignificand; |
| semantics = savedSemantics; |
| |
| omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| } |
| |
| exponent -= (precision - 1); |
| |
| if(omsb > precision) { |
| unsigned int bits, significantParts; |
| lostFraction lf; |
| |
| bits = omsb - precision; |
| significantParts = partCountForBits(omsb); |
| lf = shiftRight(fullSignificand, significantParts, bits); |
| lost_fraction = combineLostFractions(lf, lost_fraction); |
| exponent += bits; |
| } |
| |
| APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); |
| |
| if(newPartsCount > 4) |
| delete [] fullSignificand; |
| |
| return lost_fraction; |
| } |
| |
| /* Multiply the significands of LHS and RHS to DST. */ |
| lostFraction |
| APFloat::divideSignificand(const APFloat &rhs) |
| { |
| unsigned int bit, i, partsCount; |
| const integerPart *rhsSignificand; |
| integerPart *lhsSignificand, *dividend, *divisor; |
| integerPart scratch[4]; |
| lostFraction lost_fraction; |
| |
| assert(semantics == rhs.semantics); |
| |
| lhsSignificand = significandParts(); |
| rhsSignificand = rhs.significandParts(); |
| partsCount = partCount(); |
| |
| if(partsCount > 2) |
| dividend = new integerPart[partsCount * 2]; |
| else |
| dividend = scratch; |
| |
| divisor = dividend + partsCount; |
| |
| /* Copy the dividend and divisor as they will be modified in-place. */ |
| for(i = 0; i < partsCount; i++) { |
| dividend[i] = lhsSignificand[i]; |
| divisor[i] = rhsSignificand[i]; |
| lhsSignificand[i] = 0; |
| } |
| |
| exponent -= rhs.exponent; |
| |
| unsigned int precision = semantics->precision; |
| |
| /* Normalize the divisor. */ |
| bit = precision - APInt::tcMSB(divisor, partsCount) - 1; |
| if(bit) { |
| exponent += bit; |
| APInt::tcShiftLeft(divisor, partsCount, bit); |
| } |
| |
| /* Normalize the dividend. */ |
| bit = precision - APInt::tcMSB(dividend, partsCount) - 1; |
| if(bit) { |
| exponent -= bit; |
| APInt::tcShiftLeft(dividend, partsCount, bit); |
| } |
| |
| if(APInt::tcCompare(dividend, divisor, partsCount) < 0) { |
| exponent--; |
| APInt::tcShiftLeft(dividend, partsCount, 1); |
| assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); |
| } |
| |
| /* Long division. */ |
| for(bit = precision; bit; bit -= 1) { |
| if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) { |
| APInt::tcSubtract(dividend, divisor, 0, partsCount); |
| APInt::tcSetBit(lhsSignificand, bit - 1); |
| } |
| |
| APInt::tcShiftLeft(dividend, partsCount, 1); |
| } |
| |
| /* Figure out the lost fraction. */ |
| int cmp = APInt::tcCompare(dividend, divisor, partsCount); |
| |
| if(cmp > 0) |
| lost_fraction = lfMoreThanHalf; |
| else if(cmp == 0) |
| lost_fraction = lfExactlyHalf; |
| else if(APInt::tcIsZero(dividend, partsCount)) |
| lost_fraction = lfExactlyZero; |
| else |
| lost_fraction = lfLessThanHalf; |
| |
| if(partsCount > 2) |
| delete [] dividend; |
| |
| return lost_fraction; |
| } |
| |
| unsigned int |
| APFloat::significandMSB() const |
| { |
| return APInt::tcMSB(significandParts(), partCount()); |
| } |
| |
| unsigned int |
| APFloat::significandLSB() const |
| { |
| return APInt::tcLSB(significandParts(), partCount()); |
| } |
| |
| /* Note that a zero result is NOT normalized to fcZero. */ |
| lostFraction |
| APFloat::shiftSignificandRight(unsigned int bits) |
| { |
| /* Our exponent should not overflow. */ |
| assert((exponent_t) (exponent + bits) >= exponent); |
| |
| exponent += bits; |
| |
| return shiftRight(significandParts(), partCount(), bits); |
| } |
| |
| /* Shift the significand left BITS bits, subtract BITS from its exponent. */ |
| void |
| APFloat::shiftSignificandLeft(unsigned int bits) |
| { |
| assert(bits < semantics->precision); |
| |
| if(bits) { |
| unsigned int partsCount = partCount(); |
| |
| APInt::tcShiftLeft(significandParts(), partsCount, bits); |
| exponent -= bits; |
| |
| assert(!APInt::tcIsZero(significandParts(), partsCount)); |
| } |
| } |
| |
| APFloat::cmpResult |
| APFloat::compareAbsoluteValue(const APFloat &rhs) const |
| { |
| int compare; |
| |
| assert(semantics == rhs.semantics); |
| assert(category == fcNormal); |
| assert(rhs.category == fcNormal); |
| |
| compare = exponent - rhs.exponent; |
| |
| /* If exponents are equal, do an unsigned bignum comparison of the |
| significands. */ |
| if(compare == 0) |
| compare = APInt::tcCompare(significandParts(), rhs.significandParts(), |
| partCount()); |
| |
| if(compare > 0) |
| return cmpGreaterThan; |
| else if(compare < 0) |
| return cmpLessThan; |
| else |
| return cmpEqual; |
| } |
| |
| /* Handle overflow. Sign is preserved. We either become infinity or |
| the largest finite number. */ |
| APFloat::opStatus |
| APFloat::handleOverflow(roundingMode rounding_mode) |
| { |
| /* Infinity? */ |
| if(rounding_mode == rmNearestTiesToEven |
| || rounding_mode == rmNearestTiesToAway |
| || (rounding_mode == rmTowardPositive && !sign) |
| || (rounding_mode == rmTowardNegative && sign)) |
| { |
| category = fcInfinity; |
| return (opStatus) (opOverflow | opInexact); |
| } |
| |
| /* Otherwise we become the largest finite number. */ |
| category = fcNormal; |
| exponent = semantics->maxExponent; |
| APInt::tcSetLeastSignificantBits(significandParts(), partCount(), |
| semantics->precision); |
| |
| return opInexact; |
| } |
| |
| /* Returns TRUE if, when truncating the current number, with BIT the |
| new LSB, with the given lost fraction and rounding mode, the result |
| would need to be rounded away from zero (i.e., by increasing the |
| signficand). This routine must work for fcZero of both signs, and |
| fcNormal numbers. */ |
| bool |
| APFloat::roundAwayFromZero(roundingMode rounding_mode, |
| lostFraction lost_fraction, |
| unsigned int bit) const |
| { |
| /* NaNs and infinities should not have lost fractions. */ |
| assert(category == fcNormal || category == fcZero); |
| |
| /* Current callers never pass this so we don't handle it. */ |
| assert(lost_fraction != lfExactlyZero); |
| |
| switch(rounding_mode) { |
| default: |
| assert(0); |
| |
| case rmNearestTiesToAway: |
| return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; |
| |
| case rmNearestTiesToEven: |
| if(lost_fraction == lfMoreThanHalf) |
| return true; |
| |
| /* Our zeroes don't have a significand to test. */ |
| if(lost_fraction == lfExactlyHalf && category != fcZero) |
| return APInt::tcExtractBit(significandParts(), bit); |
| |
| return false; |
| |
| case rmTowardZero: |
| return false; |
| |
| case rmTowardPositive: |
| return sign == false; |
| |
| case rmTowardNegative: |
| return sign == true; |
| } |
| } |
| |
| APFloat::opStatus |
| APFloat::normalize(roundingMode rounding_mode, |
| lostFraction lost_fraction) |
| { |
| unsigned int omsb; /* One, not zero, based MSB. */ |
| int exponentChange; |
| |
| if(category != fcNormal) |
| return opOK; |
| |
| /* Before rounding normalize the exponent of fcNormal numbers. */ |
| omsb = significandMSB() + 1; |
| |
| if(omsb) { |
| /* OMSB is numbered from 1. We want to place it in the integer |
| bit numbered PRECISON if possible, with a compensating change in |
| the exponent. */ |
| exponentChange = omsb - semantics->precision; |
| |
| /* If the resulting exponent is too high, overflow according to |
| the rounding mode. */ |
| if(exponent + exponentChange > semantics->maxExponent) |
| return handleOverflow(rounding_mode); |
| |
| /* Subnormal numbers have exponent minExponent, and their MSB |
| is forced based on that. */ |
| if(exponent + exponentChange < semantics->minExponent) |
| exponentChange = semantics->minExponent - exponent; |
| |
| /* Shifting left is easy as we don't lose precision. */ |
| if(exponentChange < 0) { |
| assert(lost_fraction == lfExactlyZero); |
| |
| shiftSignificandLeft(-exponentChange); |
| |
| return opOK; |
| } |
| |
| if(exponentChange > 0) { |
| lostFraction lf; |
| |
| /* Shift right and capture any new lost fraction. */ |
| lf = shiftSignificandRight(exponentChange); |
| |
| lost_fraction = combineLostFractions(lf, lost_fraction); |
| |
| /* Keep OMSB up-to-date. */ |
| if(omsb > (unsigned) exponentChange) |
| omsb -= (unsigned) exponentChange; |
| else |
| omsb = 0; |
| } |
| } |
| |
| /* Now round the number according to rounding_mode given the lost |
| fraction. */ |
| |
| /* As specified in IEEE 754, since we do not trap we do not report |
| underflow for exact results. */ |
| if(lost_fraction == lfExactlyZero) { |
| /* Canonicalize zeroes. */ |
| if(omsb == 0) |
| category = fcZero; |
| |
| return opOK; |
| } |
| |
| /* Increment the significand if we're rounding away from zero. */ |
| if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) { |
| if(omsb == 0) |
| exponent = semantics->minExponent; |
| |
| incrementSignificand(); |
| omsb = significandMSB() + 1; |
| |
| /* Did the significand increment overflow? */ |
| if(omsb == (unsigned) semantics->precision + 1) { |
| /* Renormalize by incrementing the exponent and shifting our |
| significand right one. However if we already have the |
| maximum exponent we overflow to infinity. */ |
| if(exponent == semantics->maxExponent) { |
| category = fcInfinity; |
| |
| return (opStatus) (opOverflow | opInexact); |
| } |
| |
| shiftSignificandRight(1); |
| |
| return opInexact; |
| } |
| } |
| |
| /* The normal case - we were and are not denormal, and any |
| significand increment above didn't overflow. */ |
| if(omsb == semantics->precision) |
| return opInexact; |
| |
| /* We have a non-zero denormal. */ |
| assert(omsb < semantics->precision); |
| assert(exponent == semantics->minExponent); |
| |
| /* Canonicalize zeroes. */ |
| if(omsb == 0) |
| category = fcZero; |
| |
| /* The fcZero case is a denormal that underflowed to zero. */ |
| return (opStatus) (opUnderflow | opInexact); |
| } |
| |
| APFloat::opStatus |
| APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) |
| { |
| switch(convolve(category, rhs.category)) { |
| default: |
| assert(0); |
| |
| case convolve(fcNaN, fcZero): |
| case convolve(fcNaN, fcNormal): |
| case convolve(fcNaN, fcInfinity): |
| case convolve(fcNaN, fcNaN): |
| case convolve(fcNormal, fcZero): |
| case convolve(fcInfinity, fcNormal): |
| case convolve(fcInfinity, fcZero): |
| return opOK; |
| |
| case convolve(fcZero, fcNaN): |
| case convolve(fcNormal, fcNaN): |
| case convolve(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case convolve(fcNormal, fcInfinity): |
| case convolve(fcZero, fcInfinity): |
| category = fcInfinity; |
| sign = rhs.sign ^ subtract; |
| return opOK; |
| |
| case convolve(fcZero, fcNormal): |
| assign(rhs); |
| sign = rhs.sign ^ subtract; |
| return opOK; |
| |
| case convolve(fcZero, fcZero): |
| /* Sign depends on rounding mode; handled by caller. */ |
| return opOK; |
| |
| case convolve(fcInfinity, fcInfinity): |
| /* Differently signed infinities can only be validly |
| subtracted. */ |
| if(sign ^ rhs.sign != subtract) { |
| category = fcNaN; |
| // Arbitrary but deterministic value for significand |
| APInt::tcSet(significandParts(), ~0U, partCount()); |
| return opInvalidOp; |
| } |
| |
| return opOK; |
| |
| case convolve(fcNormal, fcNormal): |
| return opDivByZero; |
| } |
| } |
| |
| /* Add or subtract two normal numbers. */ |
| lostFraction |
| APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) |
| { |
| integerPart carry; |
| lostFraction lost_fraction; |
| int bits; |
| |
| /* Determine if the operation on the absolute values is effectively |
| an addition or subtraction. */ |
| subtract ^= (sign ^ rhs.sign); |
| |
| /* Are we bigger exponent-wise than the RHS? */ |
| bits = exponent - rhs.exponent; |
| |
| /* Subtraction is more subtle than one might naively expect. */ |
| if(subtract) { |
| APFloat temp_rhs(rhs); |
| bool reverse; |
| |
| if (bits == 0) { |
| reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; |
| lost_fraction = lfExactlyZero; |
| } else if (bits > 0) { |
| lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); |
| shiftSignificandLeft(1); |
| reverse = false; |
| } else { |
| lost_fraction = shiftSignificandRight(-bits - 1); |
| temp_rhs.shiftSignificandLeft(1); |
| reverse = true; |
| } |
| |
| if (reverse) { |
| carry = temp_rhs.subtractSignificand |
| (*this, lost_fraction != lfExactlyZero); |
| copySignificand(temp_rhs); |
| sign = !sign; |
| } else { |
| carry = subtractSignificand |
| (temp_rhs, lost_fraction != lfExactlyZero); |
| } |
| |
| /* Invert the lost fraction - it was on the RHS and |
| subtracted. */ |
| if(lost_fraction == lfLessThanHalf) |
| lost_fraction = lfMoreThanHalf; |
| else if(lost_fraction == lfMoreThanHalf) |
| lost_fraction = lfLessThanHalf; |
| |
| /* The code above is intended to ensure that no borrow is |
| necessary. */ |
| assert(!carry); |
| } else { |
| if(bits > 0) { |
| APFloat temp_rhs(rhs); |
| |
| lost_fraction = temp_rhs.shiftSignificandRight(bits); |
| carry = addSignificand(temp_rhs); |
| } else { |
| lost_fraction = shiftSignificandRight(-bits); |
| carry = addSignificand(rhs); |
| } |
| |
| /* We have a guard bit; generating a carry cannot happen. */ |
| assert(!carry); |
| } |
| |
| return lost_fraction; |
| } |
| |
| APFloat::opStatus |
| APFloat::multiplySpecials(const APFloat &rhs) |
| { |
| switch(convolve(category, rhs.category)) { |
| default: |
| assert(0); |
| |
| case convolve(fcNaN, fcZero): |
| case convolve(fcNaN, fcNormal): |
| case convolve(fcNaN, fcInfinity): |
| case convolve(fcNaN, fcNaN): |
| return opOK; |
| |
| case convolve(fcZero, fcNaN): |
| case convolve(fcNormal, fcNaN): |
| case convolve(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case convolve(fcNormal, fcInfinity): |
| case convolve(fcInfinity, fcNormal): |
| case convolve(fcInfinity, fcInfinity): |
| category = fcInfinity; |
| return opOK; |
| |
| case convolve(fcZero, fcNormal): |
| case convolve(fcNormal, fcZero): |
| case convolve(fcZero, fcZero): |
| category = fcZero; |
| return opOK; |
| |
| case convolve(fcZero, fcInfinity): |
| case convolve(fcInfinity, fcZero): |
| category = fcNaN; |
| // Arbitrary but deterministic value for significand |
| APInt::tcSet(significandParts(), ~0U, partCount()); |
| return opInvalidOp; |
| |
| case convolve(fcNormal, fcNormal): |
| return opOK; |
| } |
| } |
| |
| APFloat::opStatus |
| APFloat::divideSpecials(const APFloat &rhs) |
| { |
| switch(convolve(category, rhs.category)) { |
| default: |
| assert(0); |
| |
| case convolve(fcNaN, fcZero): |
| case convolve(fcNaN, fcNormal): |
| case convolve(fcNaN, fcInfinity): |
| case convolve(fcNaN, fcNaN): |
| case convolve(fcInfinity, fcZero): |
| case convolve(fcInfinity, fcNormal): |
| case convolve(fcZero, fcInfinity): |
| case convolve(fcZero, fcNormal): |
| return opOK; |
| |
| case convolve(fcZero, fcNaN): |
| case convolve(fcNormal, fcNaN): |
| case convolve(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case convolve(fcNormal, fcInfinity): |
| category = fcZero; |
| return opOK; |
| |
| case convolve(fcNormal, fcZero): |
| category = fcInfinity; |
| return opDivByZero; |
| |
| case convolve(fcInfinity, fcInfinity): |
| case convolve(fcZero, fcZero): |
| category = fcNaN; |
| // Arbitrary but deterministic value for significand |
| APInt::tcSet(significandParts(), ~0U, partCount()); |
| return opInvalidOp; |
| |
| case convolve(fcNormal, fcNormal): |
| return opOK; |
| } |
| } |
| |
| /* Change sign. */ |
| void |
| APFloat::changeSign() |
| { |
| /* Look mummy, this one's easy. */ |
| sign = !sign; |
| } |
| |
| void |
| APFloat::clearSign() |
| { |
| /* So is this one. */ |
| sign = 0; |
| } |
| |
| void |
| APFloat::copySign(const APFloat &rhs) |
| { |
| /* And this one. */ |
| sign = rhs.sign; |
| } |
| |
| /* Normalized addition or subtraction. */ |
| APFloat::opStatus |
| APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, |
| bool subtract) |
| { |
| opStatus fs; |
| |
| fs = addOrSubtractSpecials(rhs, subtract); |
| |
| /* This return code means it was not a simple case. */ |
| if(fs == opDivByZero) { |
| lostFraction lost_fraction; |
| |
| lost_fraction = addOrSubtractSignificand(rhs, subtract); |
| fs = normalize(rounding_mode, lost_fraction); |
| |
| /* Can only be zero if we lost no fraction. */ |
| assert(category != fcZero || lost_fraction == lfExactlyZero); |
| } |
| |
| /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| positive zero unless rounding to minus infinity, except that |
| adding two like-signed zeroes gives that zero. */ |
| if(category == fcZero) { |
| if(rhs.category != fcZero || (sign == rhs.sign) == subtract) |
| sign = (rounding_mode == rmTowardNegative); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized addition. */ |
| APFloat::opStatus |
| APFloat::add(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| return addOrSubtract(rhs, rounding_mode, false); |
| } |
| |
| /* Normalized subtraction. */ |
| APFloat::opStatus |
| APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| return addOrSubtract(rhs, rounding_mode, true); |
| } |
| |
| /* Normalized multiply. */ |
| APFloat::opStatus |
| APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| sign ^= rhs.sign; |
| fs = multiplySpecials(rhs); |
| |
| if(category == fcNormal) { |
| lostFraction lost_fraction = multiplySignificand(rhs, 0); |
| fs = normalize(rounding_mode, lost_fraction); |
| if(lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized divide. */ |
| APFloat::opStatus |
| APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| sign ^= rhs.sign; |
| fs = divideSpecials(rhs); |
| |
| if(category == fcNormal) { |
| lostFraction lost_fraction = divideSignificand(rhs); |
| fs = normalize(rounding_mode, lost_fraction); |
| if(lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized remainder. This is not currently doing TRT. */ |
| APFloat::opStatus |
| APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| APFloat V = *this; |
| unsigned int origSign = sign; |
| fs = V.divide(rhs, rmNearestTiesToEven); |
| if (fs == opDivByZero) |
| return fs; |
| |
| int parts = partCount(); |
| integerPart *x = new integerPart[parts]; |
| fs = V.convertToInteger(x, parts * integerPartWidth, true, |
| rmNearestTiesToEven); |
| if (fs==opInvalidOp) |
| return fs; |
| |
| fs = V.convertFromInteger(x, parts * integerPartWidth, true, |
| rmNearestTiesToEven); |
| assert(fs==opOK); // should always work |
| |
| fs = V.multiply(rhs, rounding_mode); |
| assert(fs==opOK || fs==opInexact); // should not overflow or underflow |
| |
| fs = subtract(V, rounding_mode); |
| assert(fs==opOK || fs==opInexact); // likewise |
| |
| if (isZero()) |
| sign = origSign; // IEEE754 requires this |
| delete[] x; |
| return fs; |
| } |
| |
| /* Normalized fused-multiply-add. */ |
| APFloat::opStatus |
| APFloat::fusedMultiplyAdd(const APFloat &multiplicand, |
| const APFloat &addend, |
| roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| /* Post-multiplication sign, before addition. */ |
| sign ^= multiplicand.sign; |
| |
| /* If and only if all arguments are normal do we need to do an |
| extended-precision calculation. */ |
| if(category == fcNormal |
| && multiplicand.category == fcNormal |
| && addend.category == fcNormal) { |
| lostFraction lost_fraction; |
| |
| lost_fraction = multiplySignificand(multiplicand, &addend); |
| fs = normalize(rounding_mode, lost_fraction); |
| if(lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| |
| /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| positive zero unless rounding to minus infinity, except that |
| adding two like-signed zeroes gives that zero. */ |
| if(category == fcZero && sign != addend.sign) |
| sign = (rounding_mode == rmTowardNegative); |
| } else { |
| fs = multiplySpecials(multiplicand); |
| |
| /* FS can only be opOK or opInvalidOp. There is no more work |
| to do in the latter case. The IEEE-754R standard says it is |
| implementation-defined in this case whether, if ADDEND is a |
| quiet NaN, we raise invalid op; this implementation does so. |
| |
| If we need to do the addition we can do so with normal |
| precision. */ |
| if(fs == opOK) |
| fs = addOrSubtract(addend, rounding_mode, false); |
| } |
| |
| return fs; |
| } |
| |
| /* Comparison requires normalized numbers. */ |
| APFloat::cmpResult |
| APFloat::compare(const APFloat &rhs) const |
| { |
| cmpResult result; |
| |
| assert(semantics == rhs.semantics); |
| |
| switch(convolve(category, rhs.category)) { |
| default: |
| assert(0); |
| |
| case convolve(fcNaN, fcZero): |
| case convolve(fcNaN, fcNormal): |
| case convolve(fcNaN, fcInfinity): |
| case convolve(fcNaN, fcNaN): |
| case convolve(fcZero, fcNaN): |
| case convolve(fcNormal, fcNaN): |
| case convolve(fcInfinity, fcNaN): |
| return cmpUnordered; |
| |
| case convolve(fcInfinity, fcNormal): |
| case convolve(fcInfinity, fcZero): |
| case convolve(fcNormal, fcZero): |
| if(sign) |
| return cmpLessThan; |
| else |
| return cmpGreaterThan; |
| |
| case convolve(fcNormal, fcInfinity): |
| case convolve(fcZero, fcInfinity): |
| case convolve(fcZero, fcNormal): |
| if(rhs.sign) |
| return cmpGreaterThan; |
| else |
| return cmpLessThan; |
| |
| case convolve(fcInfinity, fcInfinity): |
| if(sign == rhs.sign) |
| return cmpEqual; |
| else if(sign) |
| return cmpLessThan; |
| else |
| return cmpGreaterThan; |
| |
| case convolve(fcZero, fcZero): |
| return cmpEqual; |
| |
| case convolve(fcNormal, fcNormal): |
| break; |
| } |
| |
| /* Two normal numbers. Do they have the same sign? */ |
| if(sign != rhs.sign) { |
| if(sign) |
| result = cmpLessThan; |
| else |
| result = cmpGreaterThan; |
| } else { |
| /* Compare absolute values; invert result if negative. */ |
| result = compareAbsoluteValue(rhs); |
| |
| if(sign) { |
| if(result == cmpLessThan) |
| result = cmpGreaterThan; |
| else if(result == cmpGreaterThan) |
| result = cmpLessThan; |
| } |
| } |
| |
| return result; |
| } |
| |
| APFloat::opStatus |
| APFloat::convert(const fltSemantics &toSemantics, |
| roundingMode rounding_mode) |
| { |
| lostFraction lostFraction; |
| unsigned int newPartCount, oldPartCount; |
| opStatus fs; |
| |
| lostFraction = lfExactlyZero; |
| newPartCount = partCountForBits(toSemantics.precision + 1); |
| oldPartCount = partCount(); |
| |
| /* Handle storage complications. If our new form is wider, |
| re-allocate our bit pattern into wider storage. If it is |
| narrower, we ignore the excess parts, but if narrowing to a |
| single part we need to free the old storage. |
| Be careful not to reference significandParts for zeroes |
| and infinities, since it aborts. */ |
| if (newPartCount > oldPartCount) { |
| integerPart *newParts; |
| newParts = new integerPart[newPartCount]; |
| APInt::tcSet(newParts, 0, newPartCount); |
| if (category==fcNormal || category==fcNaN) |
| APInt::tcAssign(newParts, significandParts(), oldPartCount); |
| freeSignificand(); |
| significand.parts = newParts; |
| } else if (newPartCount < oldPartCount) { |
| /* Capture any lost fraction through truncation of parts so we get |
| correct rounding whilst normalizing. */ |
| if (category==fcNormal) |
| lostFraction = lostFractionThroughTruncation |
| (significandParts(), oldPartCount, toSemantics.precision); |
| if (newPartCount == 1) { |
| integerPart newPart = 0; |
| if (category==fcNormal || category==fcNaN) |
| newPart = significandParts()[0]; |
| freeSignificand(); |
| significand.part = newPart; |
| } |
| } |
| |
| if(category == fcNormal) { |
| /* Re-interpret our bit-pattern. */ |
| exponent += toSemantics.precision - semantics->precision; |
| semantics = &toSemantics; |
| fs = normalize(rounding_mode, lostFraction); |
| } else if (category == fcNaN) { |
| int shift = toSemantics.precision - semantics->precision; |
| // No normalization here, just truncate |
| if (shift>0) |
| APInt::tcShiftLeft(significandParts(), newPartCount, shift); |
| else if (shift < 0) |
| APInt::tcShiftRight(significandParts(), newPartCount, -shift); |
| // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) |
| // does not give you back the same bits. This is dubious, and we |
| // don't currently do it. You're really supposed to get |
| // an invalid operation signal at runtime, but nobody does that. |
| semantics = &toSemantics; |
| fs = opOK; |
| } else { |
| semantics = &toSemantics; |
| fs = opOK; |
| } |
| |
| return fs; |
| } |
| |
| /* Convert a floating point number to an integer according to the |
| rounding mode. If the rounded integer value is out of range this |
| returns an invalid operation exception. If the rounded value is in |
| range but the floating point number is not the exact integer, the C |
| standard doesn't require an inexact exception to be raised. IEEE |
| 854 does require it so we do that. |
| |
| Note that for conversions to integer type the C standard requires |
| round-to-zero to always be used. */ |
| APFloat::opStatus |
| APFloat::convertToInteger(integerPart *parts, unsigned int width, |
| bool isSigned, |
| roundingMode rounding_mode) const |
| { |
| lostFraction lost_fraction; |
| unsigned int msb, partsCount; |
| int bits; |
| |
| partsCount = partCountForBits(width); |
| |
| /* Handle the three special cases first. We produce |
| a deterministic result even for the Invalid cases. */ |
| if (category == fcNaN) { |
| // Neither sign nor isSigned affects this. |
| APInt::tcSet(parts, 0, partsCount); |
| return opInvalidOp; |
| } |
| if (category == fcInfinity) { |
| if (!sign && isSigned) |
| APInt::tcSetLeastSignificantBits(parts, partsCount, width-1); |
| else if (!sign && !isSigned) |
| APInt::tcSetLeastSignificantBits(parts, partsCount, width); |
| else if (sign && isSigned) { |
| APInt::tcSetLeastSignificantBits(parts, partsCount, 1); |
| APInt::tcShiftLeft(parts, partsCount, width-1); |
| } else // sign && !isSigned |
| APInt::tcSet(parts, 0, partsCount); |
| return opInvalidOp; |
| } |
| if (category == fcZero) { |
| APInt::tcSet(parts, 0, partsCount); |
| return opOK; |
| } |
| |
| /* Shift the bit pattern so the fraction is lost. */ |
| APFloat tmp(*this); |
| |
| bits = (int) semantics->precision - 1 - exponent; |
| |
| if(bits > 0) { |
| lost_fraction = tmp.shiftSignificandRight(bits); |
| } else { |
| if (-bits >= semantics->precision) { |
| // Unrepresentably large. |
| if (!sign && isSigned) |
| APInt::tcSetLeastSignificantBits(parts, partsCount, width-1); |
| else if (!sign && !isSigned) |
| APInt::tcSetLeastSignificantBits(parts, partsCount, width); |
| else if (sign && isSigned) { |
| APInt::tcSetLeastSignificantBits(parts, partsCount, 1); |
| APInt::tcShiftLeft(parts, partsCount, width-1); |
| } else // sign && !isSigned |
| APInt::tcSet(parts, 0, partsCount); |
| return (opStatus)(opOverflow | opInexact); |
| } |
| tmp.shiftSignificandLeft(-bits); |
| lost_fraction = lfExactlyZero; |
| } |
| |
| if(lost_fraction != lfExactlyZero |
| && tmp.roundAwayFromZero(rounding_mode, lost_fraction, 0)) |
| tmp.incrementSignificand(); |
| |
| msb = tmp.significandMSB(); |
| |
| /* Negative numbers cannot be represented as unsigned. */ |
| if(!isSigned && tmp.sign && msb != -1U) |
| return opInvalidOp; |
| |
| /* It takes exponent + 1 bits to represent the truncated floating |
| point number without its sign. We lose a bit for the sign, but |
| the maximally negative integer is a special case. */ |
| if(msb + 1 > width) /* !! Not same as msb >= width !! */ |
| return opInvalidOp; |
| |
| if(isSigned && msb + 1 == width |
| && (!tmp.sign || tmp.significandLSB() != msb)) |
| return opInvalidOp; |
| |
| APInt::tcAssign(parts, tmp.significandParts(), partsCount); |
| |
| if(tmp.sign) |
| APInt::tcNegate(parts, partsCount); |
| |
| if(lost_fraction == lfExactlyZero) |
| return opOK; |
| else |
| return opInexact; |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromUnsignedInteger(integerPart *parts, |
| unsigned int partCount, |
| roundingMode rounding_mode) |
| { |
| unsigned int msb, precision; |
| lostFraction lost_fraction; |
| |
| msb = APInt::tcMSB(parts, partCount) + 1; |
| precision = semantics->precision; |
| |
| category = fcNormal; |
| exponent = precision - 1; |
| |
| if(msb > precision) { |
| exponent += (msb - precision); |
| lost_fraction = shiftRight(parts, partCount, msb - precision); |
| msb = precision; |
| } else |
| lost_fraction = lfExactlyZero; |
| |
| /* Copy the bit image. */ |
| zeroSignificand(); |
| APInt::tcAssign(significandParts(), parts, partCountForBits(msb)); |
| |
| return normalize(rounding_mode, lost_fraction); |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromInteger(const integerPart *parts, unsigned int width, |
| bool isSigned, roundingMode rounding_mode) |
| { |
| unsigned int partCount = partCountForBits(width); |
| opStatus status; |
| APInt api = APInt(width, partCount, parts); |
| integerPart *copy = new integerPart[partCount]; |
| |
| sign = false; |
| if(isSigned && APInt::tcExtractBit(parts, width - 1)) { |
| sign = true; |
| api = -api; |
| } |
| |
| APInt::tcAssign(copy, api.getRawData(), partCount); |
| status = convertFromUnsignedInteger(copy, partCount, rounding_mode); |
| return status; |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromHexadecimalString(const char *p, |
| roundingMode rounding_mode) |
| { |
| lostFraction lost_fraction; |
| integerPart *significand; |
| unsigned int bitPos, partsCount; |
| const char *dot, *firstSignificantDigit; |
| |
| zeroSignificand(); |
| exponent = 0; |
| category = fcNormal; |
| |
| significand = significandParts(); |
| partsCount = partCount(); |
| bitPos = partsCount * integerPartWidth; |
| |
| /* Skip leading zeroes and any(hexa)decimal point. */ |
| p = skipLeadingZeroesAndAnyDot(p, &dot); |
| firstSignificantDigit = p; |
| |
| for(;;) { |
| integerPart hex_value; |
| |
| if(*p == '.') { |
| assert(dot == 0); |
| dot = p++; |
| } |
| |
| hex_value = hexDigitValue(*p); |
| if(hex_value == -1U) { |
| lost_fraction = lfExactlyZero; |
| break; |
| } |
| |
| p++; |
| |
| /* Store the number whilst 4-bit nibbles remain. */ |
| if(bitPos) { |
| bitPos -= 4; |
| hex_value <<= bitPos % integerPartWidth; |
| significand[bitPos / integerPartWidth] |= hex_value; |
| } else { |
| lost_fraction = trailingHexadecimalFraction(p, hex_value); |
| while(hexDigitValue(*p) != -1U) |
| p++; |
| break; |
| } |
| } |
| |
| /* Hex floats require an exponent but not a hexadecimal point. */ |
| assert(*p == 'p' || *p == 'P'); |
| |
| /* Ignore the exponent if we are zero. */ |
| if(p != firstSignificantDigit) { |
| int expAdjustment; |
| |
| /* Implicit hexadecimal point? */ |
| if(!dot) |
| dot = p; |
| |
| /* Calculate the exponent adjustment implicit in the number of |
| significant digits. */ |
| expAdjustment = dot - firstSignificantDigit; |
| if(expAdjustment < 0) |
| expAdjustment++; |
| expAdjustment = expAdjustment * 4 - 1; |
| |
| /* Adjust for writing the significand starting at the most |
| significant nibble. */ |
| expAdjustment += semantics->precision; |
| expAdjustment -= partsCount * integerPartWidth; |
| |
| /* Adjust for the given exponent. */ |
| exponent = totalExponent(p, expAdjustment); |
| } |
| |
| return normalize(rounding_mode, lost_fraction); |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromString(const char *p, roundingMode rounding_mode) |
| { |
| /* Handle a leading minus sign. */ |
| if(*p == '-') |
| sign = 1, p++; |
| else |
| sign = 0; |
| |
| if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) |
| return convertFromHexadecimalString(p + 2, rounding_mode); |
| |
| assert(0 && "Decimal to binary conversions not yet implemented"); |
| abort(); |
| } |
| |
| /* Write out a hexadecimal representation of the floating point value |
| to DST, which must be of sufficient size, in the C99 form |
| [-]0xh.hhhhp[+-]d. Return the number of characters written, |
| excluding the terminating NUL. |
| |
| If UPPERCASE, the output is in upper case, otherwise in lower case. |
| |
| HEXDIGITS digits appear altogether, rounding the value if |
| necessary. If HEXDIGITS is 0, the minimal precision to display the |
| number precisely is used instead. If nothing would appear after |
| the decimal point it is suppressed. |
| |
| The decimal exponent is always printed and has at least one digit. |
| Zero values display an exponent of zero. Infinities and NaNs |
| appear as "infinity" or "nan" respectively. |
| |
| The above rules are as specified by C99. There is ambiguity about |
| what the leading hexadecimal digit should be. This implementation |
| uses whatever is necessary so that the exponent is displayed as |
| stored. This implies the exponent will fall within the IEEE format |
| range, and the leading hexadecimal digit will be 0 (for denormals), |
| 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with |
| any other digits zero). |
| */ |
| unsigned int |
| APFloat::convertToHexString(char *dst, unsigned int hexDigits, |
| bool upperCase, roundingMode rounding_mode) const |
| { |
| char *p; |
| |
| p = dst; |
| if (sign) |
| *dst++ = '-'; |
| |
| switch (category) { |
| case fcInfinity: |
| memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); |
| dst += sizeof infinityL - 1; |
| break; |
| |
| case fcNaN: |
| memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); |
| dst += sizeof NaNU - 1; |
| break; |
| |
| case fcZero: |
| *dst++ = '0'; |
| *dst++ = upperCase ? 'X': 'x'; |
| *dst++ = '0'; |
| if (hexDigits > 1) { |
| *dst++ = '.'; |
| memset (dst, '0', hexDigits - 1); |
| dst += hexDigits - 1; |
| } |
| *dst++ = upperCase ? 'P': 'p'; |
| *dst++ = '0'; |
| break; |
| |
| case fcNormal: |
| dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); |
| break; |
| } |
| |
| *dst = 0; |
| |
| return dst - p; |
| } |
| |
| /* Does the hard work of outputting the correctly rounded hexadecimal |
| form of a normal floating point number with the specified number of |
| hexadecimal digits. If HEXDIGITS is zero the minimum number of |
| digits necessary to print the value precisely is output. */ |
| char * |
| APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, |
| bool upperCase, |
| roundingMode rounding_mode) const |
| { |
| unsigned int count, valueBits, shift, partsCount, outputDigits; |
| const char *hexDigitChars; |
| const integerPart *significand; |
| char *p; |
| bool roundUp; |
| |
| *dst++ = '0'; |
| *dst++ = upperCase ? 'X': 'x'; |
| |
| roundUp = false; |
| hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; |
| |
| significand = significandParts(); |
| partsCount = partCount(); |
| |
| /* +3 because the first digit only uses the single integer bit, so |
| we have 3 virtual zero most-significant-bits. */ |
| valueBits = semantics->precision + 3; |
| shift = integerPartWidth - valueBits % integerPartWidth; |
| |
| /* The natural number of digits required ignoring trailing |
| insignificant zeroes. */ |
| outputDigits = (valueBits - significandLSB () + 3) / 4; |
| |
| /* hexDigits of zero means use the required number for the |
| precision. Otherwise, see if we are truncating. If we are, |
| found out if we need to round away from zero. */ |
| if (hexDigits) { |
| if (hexDigits < outputDigits) { |
| /* We are dropping non-zero bits, so need to check how to round. |
| "bits" is the number of dropped bits. */ |
| unsigned int bits; |
| lostFraction fraction; |
| |
| bits = valueBits - hexDigits * 4; |
| fraction = lostFractionThroughTruncation (significand, partsCount, bits); |
| roundUp = roundAwayFromZero(rounding_mode, fraction, bits); |
| } |
| outputDigits = hexDigits; |
| } |
| |
| /* Write the digits consecutively, and start writing in the location |
| of the hexadecimal point. We move the most significant digit |
| left and add the hexadecimal point later. */ |
| p = ++dst; |
| |
| count = (valueBits + integerPartWidth - 1) / integerPartWidth; |
| |
| while (outputDigits && count) { |
| integerPart part; |
| |
| /* Put the most significant integerPartWidth bits in "part". */ |
| if (--count == partsCount) |
| part = 0; /* An imaginary higher zero part. */ |
| else |
| part = significand[count] << shift; |
| |
| if (count && shift) |
| part |= significand[count - 1] >> (integerPartWidth - shift); |
| |
| /* Convert as much of "part" to hexdigits as we can. */ |
| unsigned int curDigits = integerPartWidth / 4; |
| |
| if (curDigits > outputDigits) |
| curDigits = outputDigits; |
| dst += partAsHex (dst, part, curDigits, hexDigitChars); |
| outputDigits -= curDigits; |
| } |
| |
| if (roundUp) { |
| char *q = dst; |
| |
| /* Note that hexDigitChars has a trailing '0'. */ |
| do { |
| q--; |
| *q = hexDigitChars[hexDigitValue (*q) + 1]; |
| } while (*q == '0' && q > p); |
| } else { |
| /* Add trailing zeroes. */ |
| memset (dst, '0', outputDigits); |
| dst += outputDigits; |
| } |
| |
| /* Move the most significant digit to before the point, and if there |
| is something after the decimal point add it. This must come |
| after rounding above. */ |
| p[-1] = p[0]; |
| if (dst -1 == p) |
| dst--; |
| else |
| p[0] = '.'; |
| |
| /* Finally output the exponent. */ |
| *dst++ = upperCase ? 'P': 'p'; |
| |
| return writeDecimalExponent (dst, exponent); |
| } |
| |
| // For good performance it is desirable for different APFloats |
| // to produce different integers. |
| uint32_t |
| APFloat::getHashValue() const |
| { |
| if (category==fcZero) return sign<<8 | semantics->precision ; |
| else if (category==fcInfinity) return sign<<9 | semantics->precision; |
| else if (category==fcNaN) return 1<<10 | semantics->precision; |
| else { |
| uint32_t hash = sign<<11 | semantics->precision | exponent<<12; |
| const integerPart* p = significandParts(); |
| for (int i=partCount(); i>0; i--, p++) |
| hash ^= ((uint32_t)*p) ^ (*p)>>32; |
| return hash; |
| } |
| } |
| |
| // Conversion from APFloat to/from host float/double. It may eventually be |
| // possible to eliminate these and have everybody deal with APFloats, but that |
| // will take a while. This approach will not easily extend to long double. |
| // Current implementation requires integerPartWidth==64, which is correct at |
| // the moment but could be made more general. |
| |
| // Denormals have exponent minExponent in APFloat, but minExponent-1 in |
| // the actual IEEE respresentations. We compensate for that here. |
| |
| APInt |
| APFloat::convertF80LongDoubleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended); |
| assert (partCount()==2); |
| |
| uint64_t myexponent, mysignificand; |
| |
| if (category==fcNormal) { |
| myexponent = exponent+16383; //bias |
| mysignificand = significandParts()[0]; |
| if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x7fff; |
| mysignificand = 0x8000000000000000ULL; |
| } else if (category==fcNaN) { |
| myexponent = 0x7fff; |
| mysignificand = significandParts()[0]; |
| } else |
| assert(0); |
| |
| uint64_t words[2]; |
| words[0] = (((uint64_t)sign & 1) << 63) | |
| ((myexponent & 0x7fff) << 48) | |
| ((mysignificand >>16) & 0xffffffffffffLL); |
| words[1] = mysignificand & 0xffff; |
| APInt api(80, 2, words); |
| return api; |
| } |
| |
| APInt |
| APFloat::convertDoubleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEdouble); |
| assert (partCount()==1); |
| |
| uint64_t myexponent, mysignificand; |
| |
| if (category==fcNormal) { |
| myexponent = exponent+1023; //bias |
| mysignificand = *significandParts(); |
| if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x7ff; |
| mysignificand = 0; |
| } else if (category==fcNaN) { |
| myexponent = 0x7ff; |
| mysignificand = *significandParts(); |
| } else |
| assert(0); |
| |
| APInt api(64, (((((uint64_t)sign & 1) << 63) | |
| ((myexponent & 0x7ff) << 52) | |
| (mysignificand & 0xfffffffffffffLL)))); |
| return api; |
| } |
| |
| APInt |
| APFloat::convertFloatAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEsingle); |
| assert (partCount()==1); |
| |
| uint32_t myexponent, mysignificand; |
| |
| if (category==fcNormal) { |
| myexponent = exponent+127; //bias |
| mysignificand = *significandParts(); |
| if (myexponent == 1 && !(mysignificand & 0x400000)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0xff; |
| mysignificand = 0; |
| } else if (category==fcNaN) { |
| myexponent = 0xff; |
| mysignificand = *significandParts(); |
| } else |
| assert(0); |
| |
| APInt api(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | |
| (mysignificand & 0x7fffff))); |
| return api; |
| } |
| |
| APInt |
| APFloat::convertToAPInt() const |
| { |
| if (semantics == (const llvm::fltSemantics* const)&IEEEsingle) |
| return convertFloatAPFloatToAPInt(); |
| else if (semantics == (const llvm::fltSemantics* const)&IEEEdouble) |
| return convertDoubleAPFloatToAPInt(); |
| else if (semantics == (const llvm::fltSemantics* const)&x87DoubleExtended) |
| return convertF80LongDoubleAPFloatToAPInt(); |
| |
| assert(0); |
| abort(); |
| } |
| |
| float |
| APFloat::convertToFloat() const |
| { |
| assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle); |
| APInt api = convertToAPInt(); |
| return api.bitsToFloat(); |
| } |
| |
| double |
| APFloat::convertToDouble() const |
| { |
| assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble); |
| APInt api = convertToAPInt(); |
| return api.bitsToDouble(); |
| } |
| |
| /// Integer bit is explicit in this format. Current Intel book does not |
| /// define meaning of: |
| /// exponent = all 1's, integer bit not set. |
| /// exponent = 0, integer bit set. (formerly "psuedodenormals") |
| /// exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals") |
| void |
| APFloat::initFromF80LongDoubleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==80); |
| uint64_t i1 = api.getRawData()[0]; |
| uint64_t i2 = api.getRawData()[1]; |
| uint64_t myexponent = (i1 >> 48) & 0x7fff; |
| uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) | |
| (i2 & 0xffff); |
| |
| initialize(&APFloat::x87DoubleExtended); |
| assert(partCount()==2); |
| |
| sign = i1>>63; |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) { |
| // exponent meaningless |
| category = fcNaN; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = 0; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 16383; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = 0; |
| if (myexponent==0) // denormal |
| exponent = -16382; |
| } |
| } |
| |
| void |
| APFloat::initFromDoubleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==64); |
| uint64_t i = *api.getRawData(); |
| uint64_t myexponent = (i >> 52) & 0x7ff; |
| uint64_t mysignificand = i & 0xfffffffffffffLL; |
| |
| initialize(&APFloat::IEEEdouble); |
| assert(partCount()==1); |
| |
| sign = i>>63; |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x7ff && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x7ff && mysignificand!=0) { |
| // exponent meaningless |
| category = fcNaN; |
| *significandParts() = mysignificand; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 1023; |
| *significandParts() = mysignificand; |
| if (myexponent==0) // denormal |
| exponent = -1022; |
| else |
| *significandParts() |= 0x10000000000000LL; // integer bit |
| } |
| } |
| |
| void |
| APFloat::initFromFloatAPInt(const APInt & api) |
| { |
| assert(api.getBitWidth()==32); |
| uint32_t i = (uint32_t)*api.getRawData(); |
| uint32_t myexponent = (i >> 23) & 0xff; |
| uint32_t mysignificand = i & 0x7fffff; |
| |
| initialize(&APFloat::IEEEsingle); |
| assert(partCount()==1); |
| |
| sign = i >> 31; |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0xff && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0xff && mysignificand!=0) { |
| // sign, exponent, significand meaningless |
| category = fcNaN; |
| *significandParts() = mysignificand; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 127; //bias |
| *significandParts() = mysignificand; |
| if (myexponent==0) // denormal |
| exponent = -126; |
| else |
| *significandParts() |= 0x800000; // integer bit |
| } |
| } |
| |
| /// Treat api as containing the bits of a floating point number. Currently |
| /// we infer the floating point type from the size of the APInt. FIXME: This |
| /// breaks when we get to PPC128 and IEEE128 (but both cannot exist in the |
| /// same compile...) |
| void |
| APFloat::initFromAPInt(const APInt& api) |
| { |
| if (api.getBitWidth() == 32) |
| return initFromFloatAPInt(api); |
| else if (api.getBitWidth()==64) |
| return initFromDoubleAPInt(api); |
| else if (api.getBitWidth()==80) |
| return initFromF80LongDoubleAPInt(api); |
| else |
| assert(0); |
| } |
| |
| APFloat::APFloat(const APInt& api) |
| { |
| initFromAPInt(api); |
| } |
| |
| APFloat::APFloat(float f) |
| { |
| APInt api = APInt(32, 0); |
| initFromAPInt(api.floatToBits(f)); |
| } |
| |
| APFloat::APFloat(double d) |
| { |
| APInt api = APInt(64, 0); |
| initFromAPInt(api.doubleToBits(d)); |
| } |