blob: 3746ae8cfefe328489c9f711192939bce49f29fd [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Neil Booth and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include <cassert>
Neil Bootha30b0ee2007-10-03 22:26:02 +000016#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000017#include "llvm/ADT/APFloat.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000018#include "llvm/Support/MathExtras.h"
Chris Lattnerb39cdde2007-08-20 22:49:32 +000019
20using namespace llvm;
21
22#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
23
Neil Bootha30b0ee2007-10-03 22:26:02 +000024/* Assumed in hexadecimal significand parsing, and conversion to
25 hexadecimal strings. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +000026COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
27
28namespace llvm {
29
30 /* Represents floating point arithmetic semantics. */
31 struct fltSemantics {
32 /* The largest E such that 2^E is representable; this matches the
33 definition of IEEE 754. */
34 exponent_t maxExponent;
35
36 /* The smallest E such that 2^E is a normalized number; this
37 matches the definition of IEEE 754. */
38 exponent_t minExponent;
39
40 /* Number of bits in the significand. This includes the integer
41 bit. */
42 unsigned char precision;
43
44 /* If the target format has an implicit integer bit. */
45 bool implicitIntegerBit;
46 };
47
48 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
49 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
50 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
51 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
Dale Johannesena72a5a02007-09-20 23:47:58 +000052 const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
Chris Lattnerb39cdde2007-08-20 22:49:32 +000053}
54
55/* Put a bunch of private, handy routines in an anonymous namespace. */
56namespace {
57
58 inline unsigned int
59 partCountForBits(unsigned int bits)
60 {
61 return ((bits) + integerPartWidth - 1) / integerPartWidth;
62 }
63
64 unsigned int
65 digitValue(unsigned int c)
66 {
67 unsigned int r;
68
69 r = c - '0';
70 if(r <= 9)
71 return r;
72
73 return -1U;
74 }
75
76 unsigned int
77 hexDigitValue (unsigned int c)
78 {
79 unsigned int r;
80
81 r = c - '0';
82 if(r <= 9)
83 return r;
84
85 r = c - 'A';
86 if(r <= 5)
87 return r + 10;
88
89 r = c - 'a';
90 if(r <= 5)
91 return r + 10;
92
93 return -1U;
94 }
95
96 /* This is ugly and needs cleaning up, but I don't immediately see
97 how whilst remaining safe. */
98 static int
99 totalExponent(const char *p, int exponentAdjustment)
100 {
101 integerPart unsignedExponent;
102 bool negative, overflow;
103 long exponent;
104
105 /* Move past the exponent letter and sign to the digits. */
106 p++;
107 negative = *p == '-';
108 if(*p == '-' || *p == '+')
109 p++;
110
111 unsignedExponent = 0;
112 overflow = false;
113 for(;;) {
114 unsigned int value;
115
116 value = digitValue(*p);
117 if(value == -1U)
Neil Booth4f881702007-09-26 21:33:42 +0000118 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000119
120 p++;
121 unsignedExponent = unsignedExponent * 10 + value;
122 if(unsignedExponent > 65535)
Neil Booth4f881702007-09-26 21:33:42 +0000123 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000124 }
125
126 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
127 overflow = true;
128
129 if(!overflow) {
130 exponent = unsignedExponent;
131 if(negative)
Neil Booth4f881702007-09-26 21:33:42 +0000132 exponent = -exponent;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000133 exponent += exponentAdjustment;
134 if(exponent > 65535 || exponent < -65536)
Neil Booth4f881702007-09-26 21:33:42 +0000135 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000136 }
137
138 if(overflow)
139 exponent = negative ? -65536: 65535;
140
141 return exponent;
142 }
143
144 const char *
145 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
146 {
147 *dot = 0;
148 while(*p == '0')
149 p++;
150
151 if(*p == '.') {
152 *dot = p++;
153 while(*p == '0')
Neil Booth4f881702007-09-26 21:33:42 +0000154 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000155 }
156
157 return p;
158 }
159
160 /* Return the trailing fraction of a hexadecimal number.
161 DIGITVALUE is the first hex digit of the fraction, P points to
162 the next digit. */
163 lostFraction
164 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
165 {
166 unsigned int hexDigit;
167
168 /* If the first trailing digit isn't 0 or 8 we can work out the
169 fraction immediately. */
170 if(digitValue > 8)
171 return lfMoreThanHalf;
172 else if(digitValue < 8 && digitValue > 0)
173 return lfLessThanHalf;
174
175 /* Otherwise we need to find the first non-zero digit. */
176 while(*p == '0')
177 p++;
178
179 hexDigit = hexDigitValue(*p);
180
181 /* If we ran off the end it is exactly zero or one-half, otherwise
182 a little more. */
183 if(hexDigit == -1U)
184 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
185 else
186 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
187 }
188
Neil Boothb7dea4c2007-10-03 15:16:41 +0000189 /* Return the fraction lost were a bignum truncated losing the least
190 significant BITS bits. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000191 lostFraction
Neil Bootha30b0ee2007-10-03 22:26:02 +0000192 lostFractionThroughTruncation(const integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +0000193 unsigned int partCount,
194 unsigned int bits)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000195 {
196 unsigned int lsb;
197
198 lsb = APInt::tcLSB(parts, partCount);
199
200 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
201 if(bits <= lsb)
202 return lfExactlyZero;
203 if(bits == lsb + 1)
204 return lfExactlyHalf;
205 if(bits <= partCount * integerPartWidth
206 && APInt::tcExtractBit(parts, bits - 1))
207 return lfMoreThanHalf;
208
209 return lfLessThanHalf;
210 }
211
212 /* Shift DST right BITS bits noting lost fraction. */
213 lostFraction
214 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
215 {
216 lostFraction lost_fraction;
217
218 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
219
220 APInt::tcShiftRight(dst, parts, bits);
221
222 return lost_fraction;
223 }
Neil Bootha30b0ee2007-10-03 22:26:02 +0000224
225
226 /* Zero at the end to avoid modular arithmetic when adding one; used
227 when rounding up during hexadecimal output. */
228 static const char hexDigitsLower[] = "0123456789abcdef0";
229 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
230 static const char infinityL[] = "infinity";
231 static const char infinityU[] = "INFINITY";
232 static const char NaNL[] = "nan";
233 static const char NaNU[] = "NAN";
234
235 /* Write out an integerPart in hexadecimal, starting with the most
236 significant nibble. Write out exactly COUNT hexdigits, return
237 COUNT. */
238 static unsigned int
239 partAsHex (char *dst, integerPart part, unsigned int count,
240 const char *hexDigitChars)
241 {
242 unsigned int result = count;
243
244 assert (count != 0 && count <= integerPartWidth / 4);
245
246 part >>= (integerPartWidth - 4 * count);
247 while (count--) {
248 dst[count] = hexDigitChars[part & 0xf];
249 part >>= 4;
250 }
251
252 return result;
253 }
254
255 /* Write out a decimal exponent. */
256 static char *
257 writeDecimalExponent (char *dst, int exponent)
258 {
259 assert (exponent >= -65536 && exponent <= 65535);
260
261 if (exponent < 0) {
262 *dst++ = '-';
263 exponent = -exponent;
264 }
265
266 if (exponent == 0) {
267 *dst++ = '0';
268 } else {
269 char buff[12], *p;
270
271 p = buff;
272 while (exponent) {
273 *p++ = '0' + exponent % 10;
274 exponent /= 10;
275 }
276
277 do
278 *dst++ = *--p;
279 while (p != buff);
280 }
281
282 return dst;
283 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000284}
285
286/* Constructors. */
287void
288APFloat::initialize(const fltSemantics *ourSemantics)
289{
290 unsigned int count;
291
292 semantics = ourSemantics;
293 count = partCount();
294 if(count > 1)
295 significand.parts = new integerPart[count];
296}
297
298void
299APFloat::freeSignificand()
300{
301 if(partCount() > 1)
302 delete [] significand.parts;
303}
304
305void
306APFloat::assign(const APFloat &rhs)
307{
308 assert(semantics == rhs.semantics);
309
310 sign = rhs.sign;
311 category = rhs.category;
312 exponent = rhs.exponent;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000313 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000314 copySignificand(rhs);
315}
316
317void
318APFloat::copySignificand(const APFloat &rhs)
319{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000320 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000321 assert(rhs.partCount() >= partCount());
322
323 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000324 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000325}
326
327APFloat &
328APFloat::operator=(const APFloat &rhs)
329{
330 if(this != &rhs) {
331 if(semantics != rhs.semantics) {
332 freeSignificand();
333 initialize(rhs.semantics);
334 }
335 assign(rhs);
336 }
337
338 return *this;
339}
340
Dale Johannesen343e7702007-08-24 00:56:33 +0000341bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000342APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000343 if (this == &rhs)
344 return true;
345 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000346 category != rhs.category ||
347 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000348 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000349 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000350 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000351 else if (category==fcNormal && exponent!=rhs.exponent)
352 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000353 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000354 int i= partCount();
355 const integerPart* p=significandParts();
356 const integerPart* q=rhs.significandParts();
357 for (; i>0; i--, p++, q++) {
358 if (*p != *q)
359 return false;
360 }
361 return true;
362 }
363}
364
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000365APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
366{
367 initialize(&ourSemantics);
368 sign = 0;
369 zeroSignificand();
370 exponent = ourSemantics.precision - 1;
371 significandParts()[0] = value;
372 normalize(rmNearestTiesToEven, lfExactlyZero);
373}
374
375APFloat::APFloat(const fltSemantics &ourSemantics,
Neil Booth4f881702007-09-26 21:33:42 +0000376 fltCategory ourCategory, bool negative)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000377{
378 initialize(&ourSemantics);
379 category = ourCategory;
380 sign = negative;
381 if(category == fcNormal)
382 category = fcZero;
383}
384
385APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
386{
387 initialize(&ourSemantics);
388 convertFromString(text, rmNearestTiesToEven);
389}
390
391APFloat::APFloat(const APFloat &rhs)
392{
393 initialize(rhs.semantics);
394 assign(rhs);
395}
396
397APFloat::~APFloat()
398{
399 freeSignificand();
400}
401
402unsigned int
403APFloat::partCount() const
404{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000405 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000406}
407
408unsigned int
409APFloat::semanticsPrecision(const fltSemantics &semantics)
410{
411 return semantics.precision;
412}
413
414const integerPart *
415APFloat::significandParts() const
416{
417 return const_cast<APFloat *>(this)->significandParts();
418}
419
420integerPart *
421APFloat::significandParts()
422{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000423 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000424
425 if(partCount() > 1)
426 return significand.parts;
427 else
428 return &significand.part;
429}
430
431/* Combine the effect of two lost fractions. */
432lostFraction
433APFloat::combineLostFractions(lostFraction moreSignificant,
Neil Booth4f881702007-09-26 21:33:42 +0000434 lostFraction lessSignificant)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000435{
436 if(lessSignificant != lfExactlyZero) {
437 if(moreSignificant == lfExactlyZero)
438 moreSignificant = lfLessThanHalf;
439 else if(moreSignificant == lfExactlyHalf)
440 moreSignificant = lfMoreThanHalf;
441 }
442
443 return moreSignificant;
444}
445
446void
447APFloat::zeroSignificand()
448{
449 category = fcNormal;
450 APInt::tcSet(significandParts(), 0, partCount());
451}
452
453/* Increment an fcNormal floating point number's significand. */
454void
455APFloat::incrementSignificand()
456{
457 integerPart carry;
458
459 carry = APInt::tcIncrement(significandParts(), partCount());
460
461 /* Our callers should never cause us to overflow. */
462 assert(carry == 0);
463}
464
465/* Add the significand of the RHS. Returns the carry flag. */
466integerPart
467APFloat::addSignificand(const APFloat &rhs)
468{
469 integerPart *parts;
470
471 parts = significandParts();
472
473 assert(semantics == rhs.semantics);
474 assert(exponent == rhs.exponent);
475
476 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
477}
478
479/* Subtract the significand of the RHS with a borrow flag. Returns
480 the borrow flag. */
481integerPart
482APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
483{
484 integerPart *parts;
485
486 parts = significandParts();
487
488 assert(semantics == rhs.semantics);
489 assert(exponent == rhs.exponent);
490
491 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000492 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000493}
494
495/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
496 on to the full-precision result of the multiplication. Returns the
497 lost fraction. */
498lostFraction
499APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
500{
Neil Booth4f881702007-09-26 21:33:42 +0000501 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000502 unsigned int partsCount, newPartsCount, precision;
503 integerPart *lhsSignificand;
504 integerPart scratch[4];
505 integerPart *fullSignificand;
506 lostFraction lost_fraction;
507
508 assert(semantics == rhs.semantics);
509
510 precision = semantics->precision;
511 newPartsCount = partCountForBits(precision * 2);
512
513 if(newPartsCount > 4)
514 fullSignificand = new integerPart[newPartsCount];
515 else
516 fullSignificand = scratch;
517
518 lhsSignificand = significandParts();
519 partsCount = partCount();
520
521 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth4f881702007-09-26 21:33:42 +0000522 rhs.significandParts(), partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000523
524 lost_fraction = lfExactlyZero;
525 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
526 exponent += rhs.exponent;
527
528 if(addend) {
529 Significand savedSignificand = significand;
530 const fltSemantics *savedSemantics = semantics;
531 fltSemantics extendedSemantics;
532 opStatus status;
533 unsigned int extendedPrecision;
534
535 /* Normalize our MSB. */
536 extendedPrecision = precision + precision - 1;
537 if(omsb != extendedPrecision)
538 {
Neil Booth4f881702007-09-26 21:33:42 +0000539 APInt::tcShiftLeft(fullSignificand, newPartsCount,
540 extendedPrecision - omsb);
541 exponent -= extendedPrecision - omsb;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000542 }
543
544 /* Create new semantics. */
545 extendedSemantics = *semantics;
546 extendedSemantics.precision = extendedPrecision;
547
548 if(newPartsCount == 1)
549 significand.part = fullSignificand[0];
550 else
551 significand.parts = fullSignificand;
552 semantics = &extendedSemantics;
553
554 APFloat extendedAddend(*addend);
555 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
556 assert(status == opOK);
557 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
558
559 /* Restore our state. */
560 if(newPartsCount == 1)
561 fullSignificand[0] = significand.part;
562 significand = savedSignificand;
563 semantics = savedSemantics;
564
565 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
566 }
567
568 exponent -= (precision - 1);
569
570 if(omsb > precision) {
571 unsigned int bits, significantParts;
572 lostFraction lf;
573
574 bits = omsb - precision;
575 significantParts = partCountForBits(omsb);
576 lf = shiftRight(fullSignificand, significantParts, bits);
577 lost_fraction = combineLostFractions(lf, lost_fraction);
578 exponent += bits;
579 }
580
581 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
582
583 if(newPartsCount > 4)
584 delete [] fullSignificand;
585
586 return lost_fraction;
587}
588
589/* Multiply the significands of LHS and RHS to DST. */
590lostFraction
591APFloat::divideSignificand(const APFloat &rhs)
592{
593 unsigned int bit, i, partsCount;
594 const integerPart *rhsSignificand;
595 integerPart *lhsSignificand, *dividend, *divisor;
596 integerPart scratch[4];
597 lostFraction lost_fraction;
598
599 assert(semantics == rhs.semantics);
600
601 lhsSignificand = significandParts();
602 rhsSignificand = rhs.significandParts();
603 partsCount = partCount();
604
605 if(partsCount > 2)
606 dividend = new integerPart[partsCount * 2];
607 else
608 dividend = scratch;
609
610 divisor = dividend + partsCount;
611
612 /* Copy the dividend and divisor as they will be modified in-place. */
613 for(i = 0; i < partsCount; i++) {
614 dividend[i] = lhsSignificand[i];
615 divisor[i] = rhsSignificand[i];
616 lhsSignificand[i] = 0;
617 }
618
619 exponent -= rhs.exponent;
620
621 unsigned int precision = semantics->precision;
622
623 /* Normalize the divisor. */
624 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
625 if(bit) {
626 exponent += bit;
627 APInt::tcShiftLeft(divisor, partsCount, bit);
628 }
629
630 /* Normalize the dividend. */
631 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
632 if(bit) {
633 exponent -= bit;
634 APInt::tcShiftLeft(dividend, partsCount, bit);
635 }
636
637 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
638 exponent--;
639 APInt::tcShiftLeft(dividend, partsCount, 1);
640 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
641 }
642
643 /* Long division. */
644 for(bit = precision; bit; bit -= 1) {
645 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
646 APInt::tcSubtract(dividend, divisor, 0, partsCount);
647 APInt::tcSetBit(lhsSignificand, bit - 1);
648 }
649
650 APInt::tcShiftLeft(dividend, partsCount, 1);
651 }
652
653 /* Figure out the lost fraction. */
654 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
655
656 if(cmp > 0)
657 lost_fraction = lfMoreThanHalf;
658 else if(cmp == 0)
659 lost_fraction = lfExactlyHalf;
660 else if(APInt::tcIsZero(dividend, partsCount))
661 lost_fraction = lfExactlyZero;
662 else
663 lost_fraction = lfLessThanHalf;
664
665 if(partsCount > 2)
666 delete [] dividend;
667
668 return lost_fraction;
669}
670
671unsigned int
672APFloat::significandMSB() const
673{
674 return APInt::tcMSB(significandParts(), partCount());
675}
676
677unsigned int
678APFloat::significandLSB() const
679{
680 return APInt::tcLSB(significandParts(), partCount());
681}
682
683/* Note that a zero result is NOT normalized to fcZero. */
684lostFraction
685APFloat::shiftSignificandRight(unsigned int bits)
686{
687 /* Our exponent should not overflow. */
688 assert((exponent_t) (exponent + bits) >= exponent);
689
690 exponent += bits;
691
692 return shiftRight(significandParts(), partCount(), bits);
693}
694
695/* Shift the significand left BITS bits, subtract BITS from its exponent. */
696void
697APFloat::shiftSignificandLeft(unsigned int bits)
698{
699 assert(bits < semantics->precision);
700
701 if(bits) {
702 unsigned int partsCount = partCount();
703
704 APInt::tcShiftLeft(significandParts(), partsCount, bits);
705 exponent -= bits;
706
707 assert(!APInt::tcIsZero(significandParts(), partsCount));
708 }
709}
710
711APFloat::cmpResult
712APFloat::compareAbsoluteValue(const APFloat &rhs) const
713{
714 int compare;
715
716 assert(semantics == rhs.semantics);
717 assert(category == fcNormal);
718 assert(rhs.category == fcNormal);
719
720 compare = exponent - rhs.exponent;
721
722 /* If exponents are equal, do an unsigned bignum comparison of the
723 significands. */
724 if(compare == 0)
725 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000726 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000727
728 if(compare > 0)
729 return cmpGreaterThan;
730 else if(compare < 0)
731 return cmpLessThan;
732 else
733 return cmpEqual;
734}
735
736/* Handle overflow. Sign is preserved. We either become infinity or
737 the largest finite number. */
738APFloat::opStatus
739APFloat::handleOverflow(roundingMode rounding_mode)
740{
741 /* Infinity? */
742 if(rounding_mode == rmNearestTiesToEven
743 || rounding_mode == rmNearestTiesToAway
744 || (rounding_mode == rmTowardPositive && !sign)
745 || (rounding_mode == rmTowardNegative && sign))
746 {
747 category = fcInfinity;
748 return (opStatus) (opOverflow | opInexact);
749 }
750
751 /* Otherwise we become the largest finite number. */
752 category = fcNormal;
753 exponent = semantics->maxExponent;
754 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +0000755 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000756
757 return opInexact;
758}
759
Neil Boothb7dea4c2007-10-03 15:16:41 +0000760/* Returns TRUE if, when truncating the current number, with BIT the
761 new LSB, with the given lost fraction and rounding mode, the result
762 would need to be rounded away from zero (i.e., by increasing the
763 signficand). This routine must work for fcZero of both signs, and
764 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000765bool
766APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +0000767 lostFraction lost_fraction,
768 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000769{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000770 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000771 assert(category == fcNormal || category == fcZero);
772
Neil Boothb7dea4c2007-10-03 15:16:41 +0000773 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000774 assert(lost_fraction != lfExactlyZero);
775
776 switch(rounding_mode) {
777 default:
778 assert(0);
779
780 case rmNearestTiesToAway:
781 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
782
783 case rmNearestTiesToEven:
784 if(lost_fraction == lfMoreThanHalf)
785 return true;
786
787 /* Our zeroes don't have a significand to test. */
788 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +0000789 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000790
791 return false;
792
793 case rmTowardZero:
794 return false;
795
796 case rmTowardPositive:
797 return sign == false;
798
799 case rmTowardNegative:
800 return sign == true;
801 }
802}
803
804APFloat::opStatus
805APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +0000806 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000807{
Neil Booth4f881702007-09-26 21:33:42 +0000808 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000809 int exponentChange;
810
811 if(category != fcNormal)
812 return opOK;
813
814 /* Before rounding normalize the exponent of fcNormal numbers. */
815 omsb = significandMSB() + 1;
816
817 if(omsb) {
818 /* OMSB is numbered from 1. We want to place it in the integer
819 bit numbered PRECISON if possible, with a compensating change in
820 the exponent. */
821 exponentChange = omsb - semantics->precision;
822
823 /* If the resulting exponent is too high, overflow according to
824 the rounding mode. */
825 if(exponent + exponentChange > semantics->maxExponent)
826 return handleOverflow(rounding_mode);
827
828 /* Subnormal numbers have exponent minExponent, and their MSB
829 is forced based on that. */
830 if(exponent + exponentChange < semantics->minExponent)
831 exponentChange = semantics->minExponent - exponent;
832
833 /* Shifting left is easy as we don't lose precision. */
834 if(exponentChange < 0) {
835 assert(lost_fraction == lfExactlyZero);
836
837 shiftSignificandLeft(-exponentChange);
838
839 return opOK;
840 }
841
842 if(exponentChange > 0) {
843 lostFraction lf;
844
845 /* Shift right and capture any new lost fraction. */
846 lf = shiftSignificandRight(exponentChange);
847
848 lost_fraction = combineLostFractions(lf, lost_fraction);
849
850 /* Keep OMSB up-to-date. */
851 if(omsb > (unsigned) exponentChange)
Neil Booth4f881702007-09-26 21:33:42 +0000852 omsb -= (unsigned) exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000853 else
Neil Booth4f881702007-09-26 21:33:42 +0000854 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000855 }
856 }
857
858 /* Now round the number according to rounding_mode given the lost
859 fraction. */
860
861 /* As specified in IEEE 754, since we do not trap we do not report
862 underflow for exact results. */
863 if(lost_fraction == lfExactlyZero) {
864 /* Canonicalize zeroes. */
865 if(omsb == 0)
866 category = fcZero;
867
868 return opOK;
869 }
870
871 /* Increment the significand if we're rounding away from zero. */
Neil Boothb7dea4c2007-10-03 15:16:41 +0000872 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000873 if(omsb == 0)
874 exponent = semantics->minExponent;
875
876 incrementSignificand();
877 omsb = significandMSB() + 1;
878
879 /* Did the significand increment overflow? */
880 if(omsb == (unsigned) semantics->precision + 1) {
881 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +0000882 significand right one. However if we already have the
883 maximum exponent we overflow to infinity. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000884 if(exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +0000885 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000886
Neil Booth4f881702007-09-26 21:33:42 +0000887 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000888 }
889
890 shiftSignificandRight(1);
891
892 return opInexact;
893 }
894 }
895
896 /* The normal case - we were and are not denormal, and any
897 significand increment above didn't overflow. */
898 if(omsb == semantics->precision)
899 return opInexact;
900
901 /* We have a non-zero denormal. */
902 assert(omsb < semantics->precision);
903 assert(exponent == semantics->minExponent);
904
905 /* Canonicalize zeroes. */
906 if(omsb == 0)
907 category = fcZero;
908
909 /* The fcZero case is a denormal that underflowed to zero. */
910 return (opStatus) (opUnderflow | opInexact);
911}
912
913APFloat::opStatus
914APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
915{
916 switch(convolve(category, rhs.category)) {
917 default:
918 assert(0);
919
Dale Johanneseneaf08942007-08-31 04:03:46 +0000920 case convolve(fcNaN, fcZero):
921 case convolve(fcNaN, fcNormal):
922 case convolve(fcNaN, fcInfinity):
923 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000924 case convolve(fcNormal, fcZero):
925 case convolve(fcInfinity, fcNormal):
926 case convolve(fcInfinity, fcZero):
927 return opOK;
928
Dale Johanneseneaf08942007-08-31 04:03:46 +0000929 case convolve(fcZero, fcNaN):
930 case convolve(fcNormal, fcNaN):
931 case convolve(fcInfinity, fcNaN):
932 category = fcNaN;
933 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000934 return opOK;
935
936 case convolve(fcNormal, fcInfinity):
937 case convolve(fcZero, fcInfinity):
938 category = fcInfinity;
939 sign = rhs.sign ^ subtract;
940 return opOK;
941
942 case convolve(fcZero, fcNormal):
943 assign(rhs);
944 sign = rhs.sign ^ subtract;
945 return opOK;
946
947 case convolve(fcZero, fcZero):
948 /* Sign depends on rounding mode; handled by caller. */
949 return opOK;
950
951 case convolve(fcInfinity, fcInfinity):
952 /* Differently signed infinities can only be validly
953 subtracted. */
954 if(sign ^ rhs.sign != subtract) {
Dale Johanneseneaf08942007-08-31 04:03:46 +0000955 category = fcNaN;
956 // Arbitrary but deterministic value for significand
957 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000958 return opInvalidOp;
959 }
960
961 return opOK;
962
963 case convolve(fcNormal, fcNormal):
964 return opDivByZero;
965 }
966}
967
968/* Add or subtract two normal numbers. */
969lostFraction
970APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
971{
972 integerPart carry;
973 lostFraction lost_fraction;
974 int bits;
975
976 /* Determine if the operation on the absolute values is effectively
977 an addition or subtraction. */
978 subtract ^= (sign ^ rhs.sign);
979
980 /* Are we bigger exponent-wise than the RHS? */
981 bits = exponent - rhs.exponent;
982
983 /* Subtraction is more subtle than one might naively expect. */
984 if(subtract) {
985 APFloat temp_rhs(rhs);
986 bool reverse;
987
Chris Lattnerada530b2007-08-24 03:02:34 +0000988 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000989 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
990 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +0000991 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000992 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
993 shiftSignificandLeft(1);
994 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +0000995 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000996 lost_fraction = shiftSignificandRight(-bits - 1);
997 temp_rhs.shiftSignificandLeft(1);
998 reverse = true;
999 }
1000
Chris Lattnerada530b2007-08-24 03:02:34 +00001001 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001002 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001003 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001004 copySignificand(temp_rhs);
1005 sign = !sign;
1006 } else {
1007 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001008 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001009 }
1010
1011 /* Invert the lost fraction - it was on the RHS and
1012 subtracted. */
1013 if(lost_fraction == lfLessThanHalf)
1014 lost_fraction = lfMoreThanHalf;
1015 else if(lost_fraction == lfMoreThanHalf)
1016 lost_fraction = lfLessThanHalf;
1017
1018 /* The code above is intended to ensure that no borrow is
1019 necessary. */
1020 assert(!carry);
1021 } else {
1022 if(bits > 0) {
1023 APFloat temp_rhs(rhs);
1024
1025 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1026 carry = addSignificand(temp_rhs);
1027 } else {
1028 lost_fraction = shiftSignificandRight(-bits);
1029 carry = addSignificand(rhs);
1030 }
1031
1032 /* We have a guard bit; generating a carry cannot happen. */
1033 assert(!carry);
1034 }
1035
1036 return lost_fraction;
1037}
1038
1039APFloat::opStatus
1040APFloat::multiplySpecials(const APFloat &rhs)
1041{
1042 switch(convolve(category, rhs.category)) {
1043 default:
1044 assert(0);
1045
Dale Johanneseneaf08942007-08-31 04:03:46 +00001046 case convolve(fcNaN, fcZero):
1047 case convolve(fcNaN, fcNormal):
1048 case convolve(fcNaN, fcInfinity):
1049 case convolve(fcNaN, fcNaN):
1050 return opOK;
1051
1052 case convolve(fcZero, fcNaN):
1053 case convolve(fcNormal, fcNaN):
1054 case convolve(fcInfinity, fcNaN):
1055 category = fcNaN;
1056 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001057 return opOK;
1058
1059 case convolve(fcNormal, fcInfinity):
1060 case convolve(fcInfinity, fcNormal):
1061 case convolve(fcInfinity, fcInfinity):
1062 category = fcInfinity;
1063 return opOK;
1064
1065 case convolve(fcZero, fcNormal):
1066 case convolve(fcNormal, fcZero):
1067 case convolve(fcZero, fcZero):
1068 category = fcZero;
1069 return opOK;
1070
1071 case convolve(fcZero, fcInfinity):
1072 case convolve(fcInfinity, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001073 category = fcNaN;
1074 // Arbitrary but deterministic value for significand
1075 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001076 return opInvalidOp;
1077
1078 case convolve(fcNormal, fcNormal):
1079 return opOK;
1080 }
1081}
1082
1083APFloat::opStatus
1084APFloat::divideSpecials(const APFloat &rhs)
1085{
1086 switch(convolve(category, rhs.category)) {
1087 default:
1088 assert(0);
1089
Dale Johanneseneaf08942007-08-31 04:03:46 +00001090 case convolve(fcNaN, fcZero):
1091 case convolve(fcNaN, fcNormal):
1092 case convolve(fcNaN, fcInfinity):
1093 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001094 case convolve(fcInfinity, fcZero):
1095 case convolve(fcInfinity, fcNormal):
1096 case convolve(fcZero, fcInfinity):
1097 case convolve(fcZero, fcNormal):
1098 return opOK;
1099
Dale Johanneseneaf08942007-08-31 04:03:46 +00001100 case convolve(fcZero, fcNaN):
1101 case convolve(fcNormal, fcNaN):
1102 case convolve(fcInfinity, fcNaN):
1103 category = fcNaN;
1104 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001105 return opOK;
1106
1107 case convolve(fcNormal, fcInfinity):
1108 category = fcZero;
1109 return opOK;
1110
1111 case convolve(fcNormal, fcZero):
1112 category = fcInfinity;
1113 return opDivByZero;
1114
1115 case convolve(fcInfinity, fcInfinity):
1116 case convolve(fcZero, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001117 category = fcNaN;
1118 // Arbitrary but deterministic value for significand
1119 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001120 return opInvalidOp;
1121
1122 case convolve(fcNormal, fcNormal):
1123 return opOK;
1124 }
1125}
1126
1127/* Change sign. */
1128void
1129APFloat::changeSign()
1130{
1131 /* Look mummy, this one's easy. */
1132 sign = !sign;
1133}
1134
Dale Johannesene15c2db2007-08-31 23:35:31 +00001135void
1136APFloat::clearSign()
1137{
1138 /* So is this one. */
1139 sign = 0;
1140}
1141
1142void
1143APFloat::copySign(const APFloat &rhs)
1144{
1145 /* And this one. */
1146 sign = rhs.sign;
1147}
1148
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001149/* Normalized addition or subtraction. */
1150APFloat::opStatus
1151APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001152 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001153{
1154 opStatus fs;
1155
1156 fs = addOrSubtractSpecials(rhs, subtract);
1157
1158 /* This return code means it was not a simple case. */
1159 if(fs == opDivByZero) {
1160 lostFraction lost_fraction;
1161
1162 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1163 fs = normalize(rounding_mode, lost_fraction);
1164
1165 /* Can only be zero if we lost no fraction. */
1166 assert(category != fcZero || lost_fraction == lfExactlyZero);
1167 }
1168
1169 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1170 positive zero unless rounding to minus infinity, except that
1171 adding two like-signed zeroes gives that zero. */
1172 if(category == fcZero) {
1173 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1174 sign = (rounding_mode == rmTowardNegative);
1175 }
1176
1177 return fs;
1178}
1179
1180/* Normalized addition. */
1181APFloat::opStatus
1182APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1183{
1184 return addOrSubtract(rhs, rounding_mode, false);
1185}
1186
1187/* Normalized subtraction. */
1188APFloat::opStatus
1189APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1190{
1191 return addOrSubtract(rhs, rounding_mode, true);
1192}
1193
1194/* Normalized multiply. */
1195APFloat::opStatus
1196APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1197{
1198 opStatus fs;
1199
1200 sign ^= rhs.sign;
1201 fs = multiplySpecials(rhs);
1202
1203 if(category == fcNormal) {
1204 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1205 fs = normalize(rounding_mode, lost_fraction);
1206 if(lost_fraction != lfExactlyZero)
1207 fs = (opStatus) (fs | opInexact);
1208 }
1209
1210 return fs;
1211}
1212
1213/* Normalized divide. */
1214APFloat::opStatus
1215APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1216{
1217 opStatus fs;
1218
1219 sign ^= rhs.sign;
1220 fs = divideSpecials(rhs);
1221
1222 if(category == fcNormal) {
1223 lostFraction lost_fraction = divideSignificand(rhs);
1224 fs = normalize(rounding_mode, lost_fraction);
1225 if(lost_fraction != lfExactlyZero)
1226 fs = (opStatus) (fs | opInexact);
1227 }
1228
1229 return fs;
1230}
1231
Neil Bootha30b0ee2007-10-03 22:26:02 +00001232/* Normalized remainder. This is not currently doing TRT. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001233APFloat::opStatus
1234APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1235{
1236 opStatus fs;
1237 APFloat V = *this;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001238 unsigned int origSign = sign;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001239 fs = V.divide(rhs, rmNearestTiesToEven);
1240 if (fs == opDivByZero)
1241 return fs;
1242
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001243 int parts = partCount();
1244 integerPart *x = new integerPart[parts];
Neil Booth4f881702007-09-26 21:33:42 +00001245 fs = V.convertToInteger(x, parts * integerPartWidth, true,
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001246 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001247 if (fs==opInvalidOp)
1248 return fs;
1249
Neil Booth4f881702007-09-26 21:33:42 +00001250 fs = V.convertFromInteger(x, parts * integerPartWidth, true,
Dale Johannesen910993e2007-09-21 22:09:37 +00001251 rmNearestTiesToEven);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001252 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001253
Dale Johannesene15c2db2007-08-31 23:35:31 +00001254 fs = V.multiply(rhs, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001255 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1256
Dale Johannesene15c2db2007-08-31 23:35:31 +00001257 fs = subtract(V, rounding_mode);
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001258 assert(fs==opOK || fs==opInexact); // likewise
1259
1260 if (isZero())
1261 sign = origSign; // IEEE754 requires this
1262 delete[] x;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001263 return fs;
1264}
1265
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001266/* Normalized fused-multiply-add. */
1267APFloat::opStatus
1268APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001269 const APFloat &addend,
1270 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001271{
1272 opStatus fs;
1273
1274 /* Post-multiplication sign, before addition. */
1275 sign ^= multiplicand.sign;
1276
1277 /* If and only if all arguments are normal do we need to do an
1278 extended-precision calculation. */
1279 if(category == fcNormal
1280 && multiplicand.category == fcNormal
1281 && addend.category == fcNormal) {
1282 lostFraction lost_fraction;
1283
1284 lost_fraction = multiplySignificand(multiplicand, &addend);
1285 fs = normalize(rounding_mode, lost_fraction);
1286 if(lost_fraction != lfExactlyZero)
1287 fs = (opStatus) (fs | opInexact);
1288
1289 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1290 positive zero unless rounding to minus infinity, except that
1291 adding two like-signed zeroes gives that zero. */
1292 if(category == fcZero && sign != addend.sign)
1293 sign = (rounding_mode == rmTowardNegative);
1294 } else {
1295 fs = multiplySpecials(multiplicand);
1296
1297 /* FS can only be opOK or opInvalidOp. There is no more work
1298 to do in the latter case. The IEEE-754R standard says it is
1299 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001300 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001301
1302 If we need to do the addition we can do so with normal
1303 precision. */
1304 if(fs == opOK)
1305 fs = addOrSubtract(addend, rounding_mode, false);
1306 }
1307
1308 return fs;
1309}
1310
1311/* Comparison requires normalized numbers. */
1312APFloat::cmpResult
1313APFloat::compare(const APFloat &rhs) const
1314{
1315 cmpResult result;
1316
1317 assert(semantics == rhs.semantics);
1318
1319 switch(convolve(category, rhs.category)) {
1320 default:
1321 assert(0);
1322
Dale Johanneseneaf08942007-08-31 04:03:46 +00001323 case convolve(fcNaN, fcZero):
1324 case convolve(fcNaN, fcNormal):
1325 case convolve(fcNaN, fcInfinity):
1326 case convolve(fcNaN, fcNaN):
1327 case convolve(fcZero, fcNaN):
1328 case convolve(fcNormal, fcNaN):
1329 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001330 return cmpUnordered;
1331
1332 case convolve(fcInfinity, fcNormal):
1333 case convolve(fcInfinity, fcZero):
1334 case convolve(fcNormal, fcZero):
1335 if(sign)
1336 return cmpLessThan;
1337 else
1338 return cmpGreaterThan;
1339
1340 case convolve(fcNormal, fcInfinity):
1341 case convolve(fcZero, fcInfinity):
1342 case convolve(fcZero, fcNormal):
1343 if(rhs.sign)
1344 return cmpGreaterThan;
1345 else
1346 return cmpLessThan;
1347
1348 case convolve(fcInfinity, fcInfinity):
1349 if(sign == rhs.sign)
1350 return cmpEqual;
1351 else if(sign)
1352 return cmpLessThan;
1353 else
1354 return cmpGreaterThan;
1355
1356 case convolve(fcZero, fcZero):
1357 return cmpEqual;
1358
1359 case convolve(fcNormal, fcNormal):
1360 break;
1361 }
1362
1363 /* Two normal numbers. Do they have the same sign? */
1364 if(sign != rhs.sign) {
1365 if(sign)
1366 result = cmpLessThan;
1367 else
1368 result = cmpGreaterThan;
1369 } else {
1370 /* Compare absolute values; invert result if negative. */
1371 result = compareAbsoluteValue(rhs);
1372
1373 if(sign) {
1374 if(result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001375 result = cmpGreaterThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001376 else if(result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001377 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001378 }
1379 }
1380
1381 return result;
1382}
1383
1384APFloat::opStatus
1385APFloat::convert(const fltSemantics &toSemantics,
Neil Booth4f881702007-09-26 21:33:42 +00001386 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001387{
Neil Boothc8db43d2007-09-22 02:56:19 +00001388 lostFraction lostFraction;
1389 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001390 opStatus fs;
Neil Booth4f881702007-09-26 21:33:42 +00001391
Neil Boothc8db43d2007-09-22 02:56:19 +00001392 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001393 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001394 oldPartCount = partCount();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001395
Neil Boothc8db43d2007-09-22 02:56:19 +00001396 /* Handle storage complications. If our new form is wider,
1397 re-allocate our bit pattern into wider storage. If it is
1398 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesen902ff942007-09-25 17:25:00 +00001399 single part we need to free the old storage.
1400 Be careful not to reference significandParts for zeroes
1401 and infinities, since it aborts. */
Neil Boothc8db43d2007-09-22 02:56:19 +00001402 if (newPartCount > oldPartCount) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001403 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001404 newParts = new integerPart[newPartCount];
1405 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001406 if (category==fcNormal || category==fcNaN)
1407 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001408 freeSignificand();
1409 significand.parts = newParts;
Neil Boothc8db43d2007-09-22 02:56:19 +00001410 } else if (newPartCount < oldPartCount) {
1411 /* Capture any lost fraction through truncation of parts so we get
1412 correct rounding whilst normalizing. */
Dale Johannesen902ff942007-09-25 17:25:00 +00001413 if (category==fcNormal)
1414 lostFraction = lostFractionThroughTruncation
1415 (significandParts(), oldPartCount, toSemantics.precision);
1416 if (newPartCount == 1) {
1417 integerPart newPart = 0;
Neil Booth4f881702007-09-26 21:33:42 +00001418 if (category==fcNormal || category==fcNaN)
Dale Johannesen902ff942007-09-25 17:25:00 +00001419 newPart = significandParts()[0];
1420 freeSignificand();
1421 significand.part = newPart;
1422 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001423 }
1424
1425 if(category == fcNormal) {
1426 /* Re-interpret our bit-pattern. */
1427 exponent += toSemantics.precision - semantics->precision;
1428 semantics = &toSemantics;
Neil Boothc8db43d2007-09-22 02:56:19 +00001429 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen902ff942007-09-25 17:25:00 +00001430 } else if (category == fcNaN) {
1431 int shift = toSemantics.precision - semantics->precision;
1432 // No normalization here, just truncate
1433 if (shift>0)
1434 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1435 else if (shift < 0)
1436 APInt::tcShiftRight(significandParts(), newPartCount, -shift);
1437 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1438 // does not give you back the same bits. This is dubious, and we
1439 // don't currently do it. You're really supposed to get
1440 // an invalid operation signal at runtime, but nobody does that.
1441 semantics = &toSemantics;
1442 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001443 } else {
1444 semantics = &toSemantics;
1445 fs = opOK;
1446 }
1447
1448 return fs;
1449}
1450
1451/* Convert a floating point number to an integer according to the
1452 rounding mode. If the rounded integer value is out of range this
1453 returns an invalid operation exception. If the rounded value is in
1454 range but the floating point number is not the exact integer, the C
1455 standard doesn't require an inexact exception to be raised. IEEE
1456 854 does require it so we do that.
1457
1458 Note that for conversions to integer type the C standard requires
1459 round-to-zero to always be used. */
1460APFloat::opStatus
1461APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00001462 bool isSigned,
1463 roundingMode rounding_mode) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001464{
1465 lostFraction lost_fraction;
1466 unsigned int msb, partsCount;
1467 int bits;
1468
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001469 partsCount = partCountForBits(width);
1470
Dale Johannesen0edc47a2007-09-25 23:07:07 +00001471 /* Handle the three special cases first. We produce
1472 a deterministic result even for the Invalid cases. */
1473 if (category == fcNaN) {
1474 // Neither sign nor isSigned affects this.
1475 APInt::tcSet(parts, 0, partsCount);
1476 return opInvalidOp;
1477 }
1478 if (category == fcInfinity) {
1479 if (!sign && isSigned)
1480 APInt::tcSetLeastSignificantBits(parts, partsCount, width-1);
1481 else if (!sign && !isSigned)
1482 APInt::tcSetLeastSignificantBits(parts, partsCount, width);
1483 else if (sign && isSigned) {
1484 APInt::tcSetLeastSignificantBits(parts, partsCount, 1);
1485 APInt::tcShiftLeft(parts, partsCount, width-1);
1486 } else // sign && !isSigned
1487 APInt::tcSet(parts, 0, partsCount);
1488 return opInvalidOp;
1489 }
1490 if (category == fcZero) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001491 APInt::tcSet(parts, 0, partsCount);
1492 return opOK;
1493 }
1494
1495 /* Shift the bit pattern so the fraction is lost. */
1496 APFloat tmp(*this);
1497
1498 bits = (int) semantics->precision - 1 - exponent;
1499
1500 if(bits > 0) {
1501 lost_fraction = tmp.shiftSignificandRight(bits);
1502 } else {
Dale Johannesen0edc47a2007-09-25 23:07:07 +00001503 if (-bits >= semantics->precision) {
1504 // Unrepresentably large.
1505 if (!sign && isSigned)
1506 APInt::tcSetLeastSignificantBits(parts, partsCount, width-1);
1507 else if (!sign && !isSigned)
1508 APInt::tcSetLeastSignificantBits(parts, partsCount, width);
1509 else if (sign && isSigned) {
1510 APInt::tcSetLeastSignificantBits(parts, partsCount, 1);
1511 APInt::tcShiftLeft(parts, partsCount, width-1);
1512 } else // sign && !isSigned
1513 APInt::tcSet(parts, 0, partsCount);
1514 return (opStatus)(opOverflow | opInexact);
1515 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001516 tmp.shiftSignificandLeft(-bits);
1517 lost_fraction = lfExactlyZero;
1518 }
1519
1520 if(lost_fraction != lfExactlyZero
Neil Boothb7dea4c2007-10-03 15:16:41 +00001521 && tmp.roundAwayFromZero(rounding_mode, lost_fraction, 0))
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001522 tmp.incrementSignificand();
1523
1524 msb = tmp.significandMSB();
1525
1526 /* Negative numbers cannot be represented as unsigned. */
1527 if(!isSigned && tmp.sign && msb != -1U)
1528 return opInvalidOp;
1529
1530 /* It takes exponent + 1 bits to represent the truncated floating
1531 point number without its sign. We lose a bit for the sign, but
1532 the maximally negative integer is a special case. */
Neil Booth4f881702007-09-26 21:33:42 +00001533 if(msb + 1 > width) /* !! Not same as msb >= width !! */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001534 return opInvalidOp;
1535
1536 if(isSigned && msb + 1 == width
1537 && (!tmp.sign || tmp.significandLSB() != msb))
1538 return opInvalidOp;
1539
1540 APInt::tcAssign(parts, tmp.significandParts(), partsCount);
1541
1542 if(tmp.sign)
1543 APInt::tcNegate(parts, partsCount);
1544
1545 if(lost_fraction == lfExactlyZero)
1546 return opOK;
1547 else
1548 return opInexact;
1549}
1550
1551APFloat::opStatus
1552APFloat::convertFromUnsignedInteger(integerPart *parts,
Neil Booth4f881702007-09-26 21:33:42 +00001553 unsigned int partCount,
1554 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001555{
1556 unsigned int msb, precision;
1557 lostFraction lost_fraction;
1558
1559 msb = APInt::tcMSB(parts, partCount) + 1;
1560 precision = semantics->precision;
1561
1562 category = fcNormal;
1563 exponent = precision - 1;
1564
1565 if(msb > precision) {
1566 exponent += (msb - precision);
1567 lost_fraction = shiftRight(parts, partCount, msb - precision);
1568 msb = precision;
1569 } else
1570 lost_fraction = lfExactlyZero;
1571
1572 /* Copy the bit image. */
1573 zeroSignificand();
1574 APInt::tcAssign(significandParts(), parts, partCountForBits(msb));
1575
1576 return normalize(rounding_mode, lost_fraction);
1577}
1578
1579APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00001580APFloat::convertFromInteger(const integerPart *parts, unsigned int width,
1581 bool isSigned, roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001582{
Dale Johannesen910993e2007-09-21 22:09:37 +00001583 unsigned int partCount = partCountForBits(width);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001584 opStatus status;
Dale Johannesen910993e2007-09-21 22:09:37 +00001585 APInt api = APInt(width, partCount, parts);
1586 integerPart *copy = new integerPart[partCount];
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001587
1588 sign = false;
Dale Johannesencce23a42007-09-30 18:17:01 +00001589 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
1590 sign = true;
1591 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001592 }
1593
Dale Johannesen910993e2007-09-21 22:09:37 +00001594 APInt::tcAssign(copy, api.getRawData(), partCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001595 status = convertFromUnsignedInteger(copy, partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001596 return status;
1597}
1598
1599APFloat::opStatus
1600APFloat::convertFromHexadecimalString(const char *p,
Neil Booth4f881702007-09-26 21:33:42 +00001601 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001602{
1603 lostFraction lost_fraction;
1604 integerPart *significand;
1605 unsigned int bitPos, partsCount;
1606 const char *dot, *firstSignificantDigit;
1607
1608 zeroSignificand();
1609 exponent = 0;
1610 category = fcNormal;
1611
1612 significand = significandParts();
1613 partsCount = partCount();
1614 bitPos = partsCount * integerPartWidth;
1615
1616 /* Skip leading zeroes and any(hexa)decimal point. */
1617 p = skipLeadingZeroesAndAnyDot(p, &dot);
1618 firstSignificantDigit = p;
1619
1620 for(;;) {
1621 integerPart hex_value;
1622
1623 if(*p == '.') {
1624 assert(dot == 0);
1625 dot = p++;
1626 }
1627
1628 hex_value = hexDigitValue(*p);
1629 if(hex_value == -1U) {
1630 lost_fraction = lfExactlyZero;
1631 break;
1632 }
1633
1634 p++;
1635
1636 /* Store the number whilst 4-bit nibbles remain. */
1637 if(bitPos) {
1638 bitPos -= 4;
1639 hex_value <<= bitPos % integerPartWidth;
1640 significand[bitPos / integerPartWidth] |= hex_value;
1641 } else {
1642 lost_fraction = trailingHexadecimalFraction(p, hex_value);
1643 while(hexDigitValue(*p) != -1U)
Neil Booth4f881702007-09-26 21:33:42 +00001644 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001645 break;
1646 }
1647 }
1648
1649 /* Hex floats require an exponent but not a hexadecimal point. */
1650 assert(*p == 'p' || *p == 'P');
1651
1652 /* Ignore the exponent if we are zero. */
1653 if(p != firstSignificantDigit) {
1654 int expAdjustment;
1655
1656 /* Implicit hexadecimal point? */
1657 if(!dot)
1658 dot = p;
1659
1660 /* Calculate the exponent adjustment implicit in the number of
1661 significant digits. */
1662 expAdjustment = dot - firstSignificantDigit;
1663 if(expAdjustment < 0)
1664 expAdjustment++;
1665 expAdjustment = expAdjustment * 4 - 1;
1666
1667 /* Adjust for writing the significand starting at the most
1668 significant nibble. */
1669 expAdjustment += semantics->precision;
1670 expAdjustment -= partsCount * integerPartWidth;
1671
1672 /* Adjust for the given exponent. */
1673 exponent = totalExponent(p, expAdjustment);
1674 }
1675
1676 return normalize(rounding_mode, lost_fraction);
1677}
1678
1679APFloat::opStatus
Neil Booth4f881702007-09-26 21:33:42 +00001680APFloat::convertFromString(const char *p, roundingMode rounding_mode)
1681{
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001682 /* Handle a leading minus sign. */
1683 if(*p == '-')
1684 sign = 1, p++;
1685 else
1686 sign = 0;
1687
1688 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
1689 return convertFromHexadecimalString(p + 2, rounding_mode);
Chris Lattnerada530b2007-08-24 03:02:34 +00001690
1691 assert(0 && "Decimal to binary conversions not yet implemented");
1692 abort();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001693}
Dale Johannesen343e7702007-08-24 00:56:33 +00001694
Neil Bootha30b0ee2007-10-03 22:26:02 +00001695/* Write out a hexadecimal representation of the floating point value
1696 to DST, which must be of sufficient size, in the C99 form
1697 [-]0xh.hhhhp[+-]d. Return the number of characters written,
1698 excluding the terminating NUL.
1699
1700 If UPPERCASE, the output is in upper case, otherwise in lower case.
1701
1702 HEXDIGITS digits appear altogether, rounding the value if
1703 necessary. If HEXDIGITS is 0, the minimal precision to display the
1704 number precisely is used instead. If nothing would appear after
1705 the decimal point it is suppressed.
1706
1707 The decimal exponent is always printed and has at least one digit.
1708 Zero values display an exponent of zero. Infinities and NaNs
1709 appear as "infinity" or "nan" respectively.
1710
1711 The above rules are as specified by C99. There is ambiguity about
1712 what the leading hexadecimal digit should be. This implementation
1713 uses whatever is necessary so that the exponent is displayed as
1714 stored. This implies the exponent will fall within the IEEE format
1715 range, and the leading hexadecimal digit will be 0 (for denormals),
1716 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
1717 any other digits zero).
1718*/
1719unsigned int
1720APFloat::convertToHexString(char *dst, unsigned int hexDigits,
1721 bool upperCase, roundingMode rounding_mode) const
1722{
1723 char *p;
1724
1725 p = dst;
1726 if (sign)
1727 *dst++ = '-';
1728
1729 switch (category) {
1730 case fcInfinity:
1731 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
1732 dst += sizeof infinityL - 1;
1733 break;
1734
1735 case fcNaN:
1736 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
1737 dst += sizeof NaNU - 1;
1738 break;
1739
1740 case fcZero:
1741 *dst++ = '0';
1742 *dst++ = upperCase ? 'X': 'x';
1743 *dst++ = '0';
1744 if (hexDigits > 1) {
1745 *dst++ = '.';
1746 memset (dst, '0', hexDigits - 1);
1747 dst += hexDigits - 1;
1748 }
1749 *dst++ = upperCase ? 'P': 'p';
1750 *dst++ = '0';
1751 break;
1752
1753 case fcNormal:
1754 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
1755 break;
1756 }
1757
1758 *dst = 0;
1759
1760 return dst - p;
1761}
1762
1763/* Does the hard work of outputting the correctly rounded hexadecimal
1764 form of a normal floating point number with the specified number of
1765 hexadecimal digits. If HEXDIGITS is zero the minimum number of
1766 digits necessary to print the value precisely is output. */
1767char *
1768APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
1769 bool upperCase,
1770 roundingMode rounding_mode) const
1771{
1772 unsigned int count, valueBits, shift, partsCount, outputDigits;
1773 const char *hexDigitChars;
1774 const integerPart *significand;
1775 char *p;
1776 bool roundUp;
1777
1778 *dst++ = '0';
1779 *dst++ = upperCase ? 'X': 'x';
1780
1781 roundUp = false;
1782 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
1783
1784 significand = significandParts();
1785 partsCount = partCount();
1786
1787 /* +3 because the first digit only uses the single integer bit, so
1788 we have 3 virtual zero most-significant-bits. */
1789 valueBits = semantics->precision + 3;
1790 shift = integerPartWidth - valueBits % integerPartWidth;
1791
1792 /* The natural number of digits required ignoring trailing
1793 insignificant zeroes. */
1794 outputDigits = (valueBits - significandLSB () + 3) / 4;
1795
1796 /* hexDigits of zero means use the required number for the
1797 precision. Otherwise, see if we are truncating. If we are,
1798 found out if we need to round away from zero. */
1799 if (hexDigits) {
1800 if (hexDigits < outputDigits) {
1801 /* We are dropping non-zero bits, so need to check how to round.
1802 "bits" is the number of dropped bits. */
1803 unsigned int bits;
1804 lostFraction fraction;
1805
1806 bits = valueBits - hexDigits * 4;
1807 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
1808 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
1809 }
1810 outputDigits = hexDigits;
1811 }
1812
1813 /* Write the digits consecutively, and start writing in the location
1814 of the hexadecimal point. We move the most significant digit
1815 left and add the hexadecimal point later. */
1816 p = ++dst;
1817
1818 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
1819
1820 while (outputDigits && count) {
1821 integerPart part;
1822
1823 /* Put the most significant integerPartWidth bits in "part". */
1824 if (--count == partsCount)
1825 part = 0; /* An imaginary higher zero part. */
1826 else
1827 part = significand[count] << shift;
1828
1829 if (count && shift)
1830 part |= significand[count - 1] >> (integerPartWidth - shift);
1831
1832 /* Convert as much of "part" to hexdigits as we can. */
1833 unsigned int curDigits = integerPartWidth / 4;
1834
1835 if (curDigits > outputDigits)
1836 curDigits = outputDigits;
1837 dst += partAsHex (dst, part, curDigits, hexDigitChars);
1838 outputDigits -= curDigits;
1839 }
1840
1841 if (roundUp) {
1842 char *q = dst;
1843
1844 /* Note that hexDigitChars has a trailing '0'. */
1845 do {
1846 q--;
1847 *q = hexDigitChars[hexDigitValue (*q) + 1];
1848 } while (*q == '0' && q > p);
1849 } else {
1850 /* Add trailing zeroes. */
1851 memset (dst, '0', outputDigits);
1852 dst += outputDigits;
1853 }
1854
1855 /* Move the most significant digit to before the point, and if there
1856 is something after the decimal point add it. This must come
1857 after rounding above. */
1858 p[-1] = p[0];
1859 if (dst -1 == p)
1860 dst--;
1861 else
1862 p[0] = '.';
1863
1864 /* Finally output the exponent. */
1865 *dst++ = upperCase ? 'P': 'p';
1866
1867 return writeDecimalExponent (dst, exponent);
1868}
1869
Dale Johannesen343e7702007-08-24 00:56:33 +00001870// For good performance it is desirable for different APFloats
1871// to produce different integers.
1872uint32_t
Neil Booth4f881702007-09-26 21:33:42 +00001873APFloat::getHashValue() const
1874{
Dale Johannesen343e7702007-08-24 00:56:33 +00001875 if (category==fcZero) return sign<<8 | semantics->precision ;
1876 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001877 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00001878 else {
1879 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
1880 const integerPart* p = significandParts();
1881 for (int i=partCount(); i>0; i--, p++)
1882 hash ^= ((uint32_t)*p) ^ (*p)>>32;
1883 return hash;
1884 }
1885}
1886
1887// Conversion from APFloat to/from host float/double. It may eventually be
1888// possible to eliminate these and have everybody deal with APFloats, but that
1889// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00001890// Current implementation requires integerPartWidth==64, which is correct at
1891// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00001892
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001893// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00001894// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001895
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001896APInt
Neil Booth4f881702007-09-26 21:33:42 +00001897APFloat::convertF80LongDoubleAPFloatToAPInt() const
1898{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001899 assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00001900 assert (partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001901
1902 uint64_t myexponent, mysignificand;
1903
1904 if (category==fcNormal) {
1905 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00001906 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001907 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
1908 myexponent = 0; // denormal
1909 } else if (category==fcZero) {
1910 myexponent = 0;
1911 mysignificand = 0;
1912 } else if (category==fcInfinity) {
1913 myexponent = 0x7fff;
1914 mysignificand = 0x8000000000000000ULL;
1915 } else if (category==fcNaN) {
1916 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00001917 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001918 } else
1919 assert(0);
1920
1921 uint64_t words[2];
Neil Booth4f881702007-09-26 21:33:42 +00001922 words[0] = (((uint64_t)sign & 1) << 63) |
1923 ((myexponent & 0x7fff) << 48) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001924 ((mysignificand >>16) & 0xffffffffffffLL);
1925 words[1] = mysignificand & 0xffff;
1926 APInt api(80, 2, words);
1927 return api;
1928}
1929
1930APInt
Neil Booth4f881702007-09-26 21:33:42 +00001931APFloat::convertDoubleAPFloatToAPInt() const
1932{
Dan Gohmancb648f92007-09-14 20:08:19 +00001933 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001934 assert (partCount()==1);
1935
Dale Johanneseneaf08942007-08-31 04:03:46 +00001936 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001937
1938 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001939 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001940 mysignificand = *significandParts();
1941 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
1942 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001943 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001944 myexponent = 0;
1945 mysignificand = 0;
1946 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001947 myexponent = 0x7ff;
1948 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001949 } else if (category==fcNaN) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001950 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001951 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001952 } else
1953 assert(0);
1954
Neil Booth4f881702007-09-26 21:33:42 +00001955 APInt api(64, (((((uint64_t)sign & 1) << 63) |
1956 ((myexponent & 0x7ff) << 52) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001957 (mysignificand & 0xfffffffffffffLL))));
1958 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001959}
1960
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001961APInt
Neil Booth4f881702007-09-26 21:33:42 +00001962APFloat::convertFloatAPFloatToAPInt() const
1963{
Dan Gohmancb648f92007-09-14 20:08:19 +00001964 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001965 assert (partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00001966
Dale Johanneseneaf08942007-08-31 04:03:46 +00001967 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001968
1969 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001970 myexponent = exponent+127; //bias
1971 mysignificand = *significandParts();
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001972 if (myexponent == 1 && !(mysignificand & 0x400000))
1973 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00001974 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001975 myexponent = 0;
1976 mysignificand = 0;
1977 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001978 myexponent = 0xff;
1979 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001980 } else if (category==fcNaN) {
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001981 myexponent = 0xff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001982 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001983 } else
1984 assert(0);
1985
Neil Booth4f881702007-09-26 21:33:42 +00001986 APInt api(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001987 (mysignificand & 0x7fffff)));
1988 return api;
Dale Johannesen343e7702007-08-24 00:56:33 +00001989}
1990
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001991APInt
Neil Booth4f881702007-09-26 21:33:42 +00001992APFloat::convertToAPInt() const
1993{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00001994 if (semantics == (const llvm::fltSemantics* const)&IEEEsingle)
1995 return convertFloatAPFloatToAPInt();
1996 else if (semantics == (const llvm::fltSemantics* const)&IEEEdouble)
1997 return convertDoubleAPFloatToAPInt();
1998 else if (semantics == (const llvm::fltSemantics* const)&x87DoubleExtended)
1999 return convertF80LongDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002000
2001 assert(0);
2002 abort();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002003}
2004
Neil Booth4f881702007-09-26 21:33:42 +00002005float
2006APFloat::convertToFloat() const
2007{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002008 assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
2009 APInt api = convertToAPInt();
2010 return api.bitsToFloat();
2011}
2012
Neil Booth4f881702007-09-26 21:33:42 +00002013double
2014APFloat::convertToDouble() const
2015{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002016 assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
2017 APInt api = convertToAPInt();
2018 return api.bitsToDouble();
2019}
2020
2021/// Integer bit is explicit in this format. Current Intel book does not
2022/// define meaning of:
2023/// exponent = all 1's, integer bit not set.
2024/// exponent = 0, integer bit set. (formerly "psuedodenormals")
2025/// exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
2026void
Neil Booth4f881702007-09-26 21:33:42 +00002027APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2028{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002029 assert(api.getBitWidth()==80);
2030 uint64_t i1 = api.getRawData()[0];
2031 uint64_t i2 = api.getRawData()[1];
2032 uint64_t myexponent = (i1 >> 48) & 0x7fff;
2033 uint64_t mysignificand = ((i1 << 16) & 0xffffffffffff0000ULL) |
2034 (i2 & 0xffff);
2035
2036 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002037 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002038
2039 sign = i1>>63;
2040 if (myexponent==0 && mysignificand==0) {
2041 // exponent, significand meaningless
2042 category = fcZero;
2043 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2044 // exponent, significand meaningless
2045 category = fcInfinity;
2046 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2047 // exponent meaningless
2048 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002049 significandParts()[0] = mysignificand;
2050 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002051 } else {
2052 category = fcNormal;
2053 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002054 significandParts()[0] = mysignificand;
2055 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002056 if (myexponent==0) // denormal
2057 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002058 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002059}
2060
2061void
Neil Booth4f881702007-09-26 21:33:42 +00002062APFloat::initFromDoubleAPInt(const APInt &api)
2063{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002064 assert(api.getBitWidth()==64);
2065 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002066 uint64_t myexponent = (i >> 52) & 0x7ff;
2067 uint64_t mysignificand = i & 0xfffffffffffffLL;
2068
Dale Johannesen343e7702007-08-24 00:56:33 +00002069 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00002070 assert(partCount()==1);
2071
Dale Johanneseneaf08942007-08-31 04:03:46 +00002072 sign = i>>63;
Dale Johannesen343e7702007-08-24 00:56:33 +00002073 if (myexponent==0 && mysignificand==0) {
2074 // exponent, significand meaningless
2075 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002076 } else if (myexponent==0x7ff && mysignificand==0) {
2077 // exponent, significand meaningless
2078 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002079 } else if (myexponent==0x7ff && mysignificand!=0) {
2080 // exponent meaningless
2081 category = fcNaN;
2082 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002083 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00002084 category = fcNormal;
2085 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002086 *significandParts() = mysignificand;
2087 if (myexponent==0) // denormal
2088 exponent = -1022;
2089 else
2090 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00002091 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002092}
2093
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002094void
Neil Booth4f881702007-09-26 21:33:42 +00002095APFloat::initFromFloatAPInt(const APInt & api)
2096{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002097 assert(api.getBitWidth()==32);
2098 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00002099 uint32_t myexponent = (i >> 23) & 0xff;
2100 uint32_t mysignificand = i & 0x7fffff;
2101
Dale Johannesen343e7702007-08-24 00:56:33 +00002102 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00002103 assert(partCount()==1);
2104
Dale Johanneseneaf08942007-08-31 04:03:46 +00002105 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00002106 if (myexponent==0 && mysignificand==0) {
2107 // exponent, significand meaningless
2108 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00002109 } else if (myexponent==0xff && mysignificand==0) {
2110 // exponent, significand meaningless
2111 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00002112 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002113 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00002114 category = fcNaN;
2115 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002116 } else {
2117 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00002118 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002119 *significandParts() = mysignificand;
2120 if (myexponent==0) // denormal
2121 exponent = -126;
2122 else
2123 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00002124 }
2125}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002126
2127/// Treat api as containing the bits of a floating point number. Currently
2128/// we infer the floating point type from the size of the APInt. FIXME: This
2129/// breaks when we get to PPC128 and IEEE128 (but both cannot exist in the
2130/// same compile...)
2131void
Neil Booth4f881702007-09-26 21:33:42 +00002132APFloat::initFromAPInt(const APInt& api)
2133{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002134 if (api.getBitWidth() == 32)
2135 return initFromFloatAPInt(api);
2136 else if (api.getBitWidth()==64)
2137 return initFromDoubleAPInt(api);
2138 else if (api.getBitWidth()==80)
2139 return initFromF80LongDoubleAPInt(api);
2140 else
2141 assert(0);
2142}
2143
Neil Booth4f881702007-09-26 21:33:42 +00002144APFloat::APFloat(const APInt& api)
2145{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002146 initFromAPInt(api);
2147}
2148
Neil Booth4f881702007-09-26 21:33:42 +00002149APFloat::APFloat(float f)
2150{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002151 APInt api = APInt(32, 0);
2152 initFromAPInt(api.floatToBits(f));
2153}
2154
Neil Booth4f881702007-09-26 21:33:42 +00002155APFloat::APFloat(double d)
2156{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002157 APInt api = APInt(64, 0);
2158 initFromAPInt(api.doubleToBits(d));
2159}