Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | 081ce94 | 2007-12-29 20:36:04 +0000 | [diff] [blame^] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the actual instruction interpreter. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "interpreter" |
| 15 | #include "Interpreter.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/DerivedTypes.h" |
| 18 | #include "llvm/Instructions.h" |
| 19 | #include "llvm/ParameterAttributes.h" |
| 20 | #include "llvm/CodeGen/IntrinsicLowering.h" |
| 21 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 22 | #include "llvm/ADT/APInt.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/Support/MathExtras.h" |
| 26 | #include <cmath> |
Gabor Greif | 7ee10f9 | 2007-10-11 19:40:35 +0000 | [diff] [blame] | 27 | #include <algorithm> |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 28 | using namespace llvm; |
| 29 | |
| 30 | STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); |
| 31 | static Interpreter *TheEE = 0; |
| 32 | |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | // Various Helper Functions |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) { |
| 38 | // Determine if the value is signed or not |
| 39 | bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0; |
| 40 | // If its signed, extend the sign bits |
| 41 | if (isSigned) |
| 42 | Val |= ~ITy->getBitMask(); |
| 43 | return Val; |
| 44 | } |
| 45 | |
| 46 | static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| 47 | SF.Values[V] = Val; |
| 48 | } |
| 49 | |
| 50 | void Interpreter::initializeExecutionEngine() { |
| 51 | TheEE = this; |
| 52 | } |
| 53 | |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | // Binary Instruction Implementations |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | |
| 58 | #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| 59 | case Type::TY##TyID: \ |
| 60 | Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ |
| 61 | break |
| 62 | |
| 63 | #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \ |
| 64 | case Type::IntegerTyID: { \ |
| 65 | Dest.IntVal = Src1.IntVal OP Src2.IntVal; \ |
| 66 | break; \ |
| 67 | } |
| 68 | |
| 69 | |
| 70 | static void executeAddInst(GenericValue &Dest, GenericValue Src1, |
| 71 | GenericValue Src2, const Type *Ty) { |
| 72 | switch (Ty->getTypeID()) { |
| 73 | IMPLEMENT_INTEGER_BINOP1(+, Ty); |
| 74 | IMPLEMENT_BINARY_OPERATOR(+, Float); |
| 75 | IMPLEMENT_BINARY_OPERATOR(+, Double); |
| 76 | default: |
| 77 | cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; |
| 78 | abort(); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | static void executeSubInst(GenericValue &Dest, GenericValue Src1, |
| 83 | GenericValue Src2, const Type *Ty) { |
| 84 | switch (Ty->getTypeID()) { |
| 85 | IMPLEMENT_INTEGER_BINOP1(-, Ty); |
| 86 | IMPLEMENT_BINARY_OPERATOR(-, Float); |
| 87 | IMPLEMENT_BINARY_OPERATOR(-, Double); |
| 88 | default: |
| 89 | cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; |
| 90 | abort(); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | static void executeMulInst(GenericValue &Dest, GenericValue Src1, |
| 95 | GenericValue Src2, const Type *Ty) { |
| 96 | switch (Ty->getTypeID()) { |
| 97 | IMPLEMENT_INTEGER_BINOP1(*, Ty); |
| 98 | IMPLEMENT_BINARY_OPERATOR(*, Float); |
| 99 | IMPLEMENT_BINARY_OPERATOR(*, Double); |
| 100 | default: |
| 101 | cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; |
| 102 | abort(); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | static void executeFDivInst(GenericValue &Dest, GenericValue Src1, |
| 107 | GenericValue Src2, const Type *Ty) { |
| 108 | switch (Ty->getTypeID()) { |
| 109 | IMPLEMENT_BINARY_OPERATOR(/, Float); |
| 110 | IMPLEMENT_BINARY_OPERATOR(/, Double); |
| 111 | default: |
| 112 | cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; |
| 113 | abort(); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | static void executeFRemInst(GenericValue &Dest, GenericValue Src1, |
| 118 | GenericValue Src2, const Type *Ty) { |
| 119 | switch (Ty->getTypeID()) { |
| 120 | case Type::FloatTyID: |
| 121 | Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); |
| 122 | break; |
| 123 | case Type::DoubleTyID: |
| 124 | Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); |
| 125 | break; |
| 126 | default: |
| 127 | cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; |
| 128 | abort(); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ |
| 133 | case Type::IntegerTyID: \ |
| 134 | Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ |
| 135 | break; |
| 136 | |
| 137 | // Handle pointers specially because they must be compared with only as much |
| 138 | // width as the host has. We _do not_ want to be comparing 64 bit values when |
| 139 | // running on a 32-bit target, otherwise the upper 32 bits might mess up |
| 140 | // comparisons if they contain garbage. |
| 141 | #define IMPLEMENT_POINTER_ICMP(OP) \ |
| 142 | case Type::PointerTyID: \ |
| 143 | Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ |
| 144 | (void*)(intptr_t)Src2.PointerVal); \ |
| 145 | break; |
| 146 | |
| 147 | static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, |
| 148 | const Type *Ty) { |
| 149 | GenericValue Dest; |
| 150 | switch (Ty->getTypeID()) { |
| 151 | IMPLEMENT_INTEGER_ICMP(eq,Ty); |
| 152 | IMPLEMENT_POINTER_ICMP(==); |
| 153 | default: |
| 154 | cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; |
| 155 | abort(); |
| 156 | } |
| 157 | return Dest; |
| 158 | } |
| 159 | |
| 160 | static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, |
| 161 | const Type *Ty) { |
| 162 | GenericValue Dest; |
| 163 | switch (Ty->getTypeID()) { |
| 164 | IMPLEMENT_INTEGER_ICMP(ne,Ty); |
| 165 | IMPLEMENT_POINTER_ICMP(!=); |
| 166 | default: |
| 167 | cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; |
| 168 | abort(); |
| 169 | } |
| 170 | return Dest; |
| 171 | } |
| 172 | |
| 173 | static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, |
| 174 | const Type *Ty) { |
| 175 | GenericValue Dest; |
| 176 | switch (Ty->getTypeID()) { |
| 177 | IMPLEMENT_INTEGER_ICMP(ult,Ty); |
| 178 | IMPLEMENT_POINTER_ICMP(<); |
| 179 | default: |
| 180 | cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; |
| 181 | abort(); |
| 182 | } |
| 183 | return Dest; |
| 184 | } |
| 185 | |
| 186 | static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, |
| 187 | const Type *Ty) { |
| 188 | GenericValue Dest; |
| 189 | switch (Ty->getTypeID()) { |
| 190 | IMPLEMENT_INTEGER_ICMP(slt,Ty); |
| 191 | IMPLEMENT_POINTER_ICMP(<); |
| 192 | default: |
| 193 | cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; |
| 194 | abort(); |
| 195 | } |
| 196 | return Dest; |
| 197 | } |
| 198 | |
| 199 | static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, |
| 200 | const Type *Ty) { |
| 201 | GenericValue Dest; |
| 202 | switch (Ty->getTypeID()) { |
| 203 | IMPLEMENT_INTEGER_ICMP(ugt,Ty); |
| 204 | IMPLEMENT_POINTER_ICMP(>); |
| 205 | default: |
| 206 | cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; |
| 207 | abort(); |
| 208 | } |
| 209 | return Dest; |
| 210 | } |
| 211 | |
| 212 | static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, |
| 213 | const Type *Ty) { |
| 214 | GenericValue Dest; |
| 215 | switch (Ty->getTypeID()) { |
| 216 | IMPLEMENT_INTEGER_ICMP(sgt,Ty); |
| 217 | IMPLEMENT_POINTER_ICMP(>); |
| 218 | default: |
| 219 | cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; |
| 220 | abort(); |
| 221 | } |
| 222 | return Dest; |
| 223 | } |
| 224 | |
| 225 | static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, |
| 226 | const Type *Ty) { |
| 227 | GenericValue Dest; |
| 228 | switch (Ty->getTypeID()) { |
| 229 | IMPLEMENT_INTEGER_ICMP(ule,Ty); |
| 230 | IMPLEMENT_POINTER_ICMP(<=); |
| 231 | default: |
| 232 | cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; |
| 233 | abort(); |
| 234 | } |
| 235 | return Dest; |
| 236 | } |
| 237 | |
| 238 | static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, |
| 239 | const Type *Ty) { |
| 240 | GenericValue Dest; |
| 241 | switch (Ty->getTypeID()) { |
| 242 | IMPLEMENT_INTEGER_ICMP(sle,Ty); |
| 243 | IMPLEMENT_POINTER_ICMP(<=); |
| 244 | default: |
| 245 | cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; |
| 246 | abort(); |
| 247 | } |
| 248 | return Dest; |
| 249 | } |
| 250 | |
| 251 | static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, |
| 252 | const Type *Ty) { |
| 253 | GenericValue Dest; |
| 254 | switch (Ty->getTypeID()) { |
| 255 | IMPLEMENT_INTEGER_ICMP(uge,Ty); |
| 256 | IMPLEMENT_POINTER_ICMP(>=); |
| 257 | default: |
| 258 | cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; |
| 259 | abort(); |
| 260 | } |
| 261 | return Dest; |
| 262 | } |
| 263 | |
| 264 | static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, |
| 265 | const Type *Ty) { |
| 266 | GenericValue Dest; |
| 267 | switch (Ty->getTypeID()) { |
| 268 | IMPLEMENT_INTEGER_ICMP(sge,Ty); |
| 269 | IMPLEMENT_POINTER_ICMP(>=); |
| 270 | default: |
| 271 | cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; |
| 272 | abort(); |
| 273 | } |
| 274 | return Dest; |
| 275 | } |
| 276 | |
| 277 | void Interpreter::visitICmpInst(ICmpInst &I) { |
| 278 | ExecutionContext &SF = ECStack.back(); |
| 279 | const Type *Ty = I.getOperand(0)->getType(); |
| 280 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 281 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 282 | GenericValue R; // Result |
| 283 | |
| 284 | switch (I.getPredicate()) { |
| 285 | case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; |
| 286 | case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; |
| 287 | case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; |
| 288 | case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; |
| 289 | case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; |
| 290 | case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; |
| 291 | case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; |
| 292 | case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; |
| 293 | case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; |
| 294 | case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; |
| 295 | default: |
| 296 | cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; |
| 297 | abort(); |
| 298 | } |
| 299 | |
| 300 | SetValue(&I, R, SF); |
| 301 | } |
| 302 | |
| 303 | #define IMPLEMENT_FCMP(OP, TY) \ |
| 304 | case Type::TY##TyID: \ |
| 305 | Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ |
| 306 | break |
| 307 | |
| 308 | static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, |
| 309 | const Type *Ty) { |
| 310 | GenericValue Dest; |
| 311 | switch (Ty->getTypeID()) { |
| 312 | IMPLEMENT_FCMP(==, Float); |
| 313 | IMPLEMENT_FCMP(==, Double); |
| 314 | default: |
| 315 | cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; |
| 316 | abort(); |
| 317 | } |
| 318 | return Dest; |
| 319 | } |
| 320 | |
| 321 | static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, |
| 322 | const Type *Ty) { |
| 323 | GenericValue Dest; |
| 324 | switch (Ty->getTypeID()) { |
| 325 | IMPLEMENT_FCMP(!=, Float); |
| 326 | IMPLEMENT_FCMP(!=, Double); |
| 327 | |
| 328 | default: |
| 329 | cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; |
| 330 | abort(); |
| 331 | } |
| 332 | return Dest; |
| 333 | } |
| 334 | |
| 335 | static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, |
| 336 | const Type *Ty) { |
| 337 | GenericValue Dest; |
| 338 | switch (Ty->getTypeID()) { |
| 339 | IMPLEMENT_FCMP(<=, Float); |
| 340 | IMPLEMENT_FCMP(<=, Double); |
| 341 | default: |
| 342 | cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; |
| 343 | abort(); |
| 344 | } |
| 345 | return Dest; |
| 346 | } |
| 347 | |
| 348 | static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, |
| 349 | const Type *Ty) { |
| 350 | GenericValue Dest; |
| 351 | switch (Ty->getTypeID()) { |
| 352 | IMPLEMENT_FCMP(>=, Float); |
| 353 | IMPLEMENT_FCMP(>=, Double); |
| 354 | default: |
| 355 | cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; |
| 356 | abort(); |
| 357 | } |
| 358 | return Dest; |
| 359 | } |
| 360 | |
| 361 | static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, |
| 362 | const Type *Ty) { |
| 363 | GenericValue Dest; |
| 364 | switch (Ty->getTypeID()) { |
| 365 | IMPLEMENT_FCMP(<, Float); |
| 366 | IMPLEMENT_FCMP(<, Double); |
| 367 | default: |
| 368 | cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; |
| 369 | abort(); |
| 370 | } |
| 371 | return Dest; |
| 372 | } |
| 373 | |
| 374 | static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, |
| 375 | const Type *Ty) { |
| 376 | GenericValue Dest; |
| 377 | switch (Ty->getTypeID()) { |
| 378 | IMPLEMENT_FCMP(>, Float); |
| 379 | IMPLEMENT_FCMP(>, Double); |
| 380 | default: |
| 381 | cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; |
| 382 | abort(); |
| 383 | } |
| 384 | return Dest; |
| 385 | } |
| 386 | |
| 387 | #define IMPLEMENT_UNORDERED(TY, X,Y) \ |
| 388 | if (TY == Type::FloatTy) \ |
| 389 | if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ |
| 390 | Dest.IntVal = APInt(1,true); \ |
| 391 | return Dest; \ |
| 392 | } \ |
| 393 | else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ |
| 394 | Dest.IntVal = APInt(1,true); \ |
| 395 | return Dest; \ |
| 396 | } |
| 397 | |
| 398 | |
| 399 | static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, |
| 400 | const Type *Ty) { |
| 401 | GenericValue Dest; |
| 402 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 403 | return executeFCMP_OEQ(Src1, Src2, Ty); |
| 404 | } |
| 405 | |
| 406 | static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, |
| 407 | const Type *Ty) { |
| 408 | GenericValue Dest; |
| 409 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 410 | return executeFCMP_ONE(Src1, Src2, Ty); |
| 411 | } |
| 412 | |
| 413 | static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, |
| 414 | const Type *Ty) { |
| 415 | GenericValue Dest; |
| 416 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 417 | return executeFCMP_OLE(Src1, Src2, Ty); |
| 418 | } |
| 419 | |
| 420 | static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, |
| 421 | const Type *Ty) { |
| 422 | GenericValue Dest; |
| 423 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 424 | return executeFCMP_OGE(Src1, Src2, Ty); |
| 425 | } |
| 426 | |
| 427 | static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, |
| 428 | const Type *Ty) { |
| 429 | GenericValue Dest; |
| 430 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 431 | return executeFCMP_OLT(Src1, Src2, Ty); |
| 432 | } |
| 433 | |
| 434 | static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, |
| 435 | const Type *Ty) { |
| 436 | GenericValue Dest; |
| 437 | IMPLEMENT_UNORDERED(Ty, Src1, Src2) |
| 438 | return executeFCMP_OGT(Src1, Src2, Ty); |
| 439 | } |
| 440 | |
| 441 | static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, |
| 442 | const Type *Ty) { |
| 443 | GenericValue Dest; |
| 444 | if (Ty == Type::FloatTy) |
| 445 | Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && |
| 446 | Src2.FloatVal == Src2.FloatVal)); |
| 447 | else |
| 448 | Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && |
| 449 | Src2.DoubleVal == Src2.DoubleVal)); |
| 450 | return Dest; |
| 451 | } |
| 452 | |
| 453 | static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, |
| 454 | const Type *Ty) { |
| 455 | GenericValue Dest; |
| 456 | if (Ty == Type::FloatTy) |
| 457 | Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || |
| 458 | Src2.FloatVal != Src2.FloatVal)); |
| 459 | else |
| 460 | Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || |
| 461 | Src2.DoubleVal != Src2.DoubleVal)); |
| 462 | return Dest; |
| 463 | } |
| 464 | |
| 465 | void Interpreter::visitFCmpInst(FCmpInst &I) { |
| 466 | ExecutionContext &SF = ECStack.back(); |
| 467 | const Type *Ty = I.getOperand(0)->getType(); |
| 468 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 469 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 470 | GenericValue R; // Result |
| 471 | |
| 472 | switch (I.getPredicate()) { |
| 473 | case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; |
| 474 | case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; |
| 475 | case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; |
| 476 | case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; |
| 477 | case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; |
| 478 | case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; |
| 479 | case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; |
| 480 | case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; |
| 481 | case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; |
| 482 | case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; |
| 483 | case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; |
| 484 | case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; |
| 485 | case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; |
| 486 | case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; |
| 487 | case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; |
| 488 | case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; |
| 489 | default: |
| 490 | cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; |
| 491 | abort(); |
| 492 | } |
| 493 | |
| 494 | SetValue(&I, R, SF); |
| 495 | } |
| 496 | |
| 497 | static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, |
| 498 | GenericValue Src2, const Type *Ty) { |
| 499 | GenericValue Result; |
| 500 | switch (predicate) { |
| 501 | case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); |
| 502 | case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); |
| 503 | case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); |
| 504 | case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); |
| 505 | case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); |
| 506 | case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); |
| 507 | case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); |
| 508 | case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); |
| 509 | case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); |
| 510 | case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); |
| 511 | case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); |
| 512 | case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); |
| 513 | case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); |
| 514 | case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); |
| 515 | case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); |
| 516 | case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); |
| 517 | case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); |
| 518 | case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); |
| 519 | case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); |
| 520 | case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); |
| 521 | case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); |
| 522 | case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); |
| 523 | case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); |
| 524 | case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); |
| 525 | case FCmpInst::FCMP_FALSE: { |
| 526 | GenericValue Result; |
| 527 | Result.IntVal = APInt(1, false); |
| 528 | return Result; |
| 529 | } |
| 530 | case FCmpInst::FCMP_TRUE: { |
| 531 | GenericValue Result; |
| 532 | Result.IntVal = APInt(1, true); |
| 533 | return Result; |
| 534 | } |
| 535 | default: |
| 536 | cerr << "Unhandled Cmp predicate\n"; |
| 537 | abort(); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | void Interpreter::visitBinaryOperator(BinaryOperator &I) { |
| 542 | ExecutionContext &SF = ECStack.back(); |
| 543 | const Type *Ty = I.getOperand(0)->getType(); |
| 544 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 545 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 546 | GenericValue R; // Result |
| 547 | |
| 548 | switch (I.getOpcode()) { |
| 549 | case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break; |
| 550 | case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break; |
| 551 | case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break; |
| 552 | case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break; |
| 553 | case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break; |
| 554 | case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; |
| 555 | case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; |
| 556 | case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; |
| 557 | case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; |
| 558 | case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; |
| 559 | case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; |
| 560 | case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; |
| 561 | default: |
| 562 | cerr << "Don't know how to handle this binary operator!\n-->" << I; |
| 563 | abort(); |
| 564 | } |
| 565 | |
| 566 | SetValue(&I, R, SF); |
| 567 | } |
| 568 | |
| 569 | static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, |
| 570 | GenericValue Src3) { |
| 571 | return Src1.IntVal == 0 ? Src3 : Src2; |
| 572 | } |
| 573 | |
| 574 | void Interpreter::visitSelectInst(SelectInst &I) { |
| 575 | ExecutionContext &SF = ECStack.back(); |
| 576 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 577 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 578 | GenericValue Src3 = getOperandValue(I.getOperand(2), SF); |
| 579 | GenericValue R = executeSelectInst(Src1, Src2, Src3); |
| 580 | SetValue(&I, R, SF); |
| 581 | } |
| 582 | |
| 583 | |
| 584 | //===----------------------------------------------------------------------===// |
| 585 | // Terminator Instruction Implementations |
| 586 | //===----------------------------------------------------------------------===// |
| 587 | |
| 588 | void Interpreter::exitCalled(GenericValue GV) { |
| 589 | // runAtExitHandlers() assumes there are no stack frames, but |
| 590 | // if exit() was called, then it had a stack frame. Blow away |
| 591 | // the stack before interpreting atexit handlers. |
| 592 | ECStack.clear (); |
| 593 | runAtExitHandlers (); |
| 594 | exit (GV.IntVal.zextOrTrunc(32).getZExtValue()); |
| 595 | } |
| 596 | |
| 597 | /// Pop the last stack frame off of ECStack and then copy the result |
| 598 | /// back into the result variable if we are not returning void. The |
| 599 | /// result variable may be the ExitValue, or the Value of the calling |
| 600 | /// CallInst if there was a previous stack frame. This method may |
| 601 | /// invalidate any ECStack iterators you have. This method also takes |
| 602 | /// care of switching to the normal destination BB, if we are returning |
| 603 | /// from an invoke. |
| 604 | /// |
| 605 | void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, |
| 606 | GenericValue Result) { |
| 607 | // Pop the current stack frame. |
| 608 | ECStack.pop_back(); |
| 609 | |
| 610 | if (ECStack.empty()) { // Finished main. Put result into exit code... |
| 611 | if (RetTy && RetTy->isInteger()) { // Nonvoid return type? |
| 612 | ExitValue = Result; // Capture the exit value of the program |
| 613 | } else { |
| 614 | memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); |
| 615 | } |
| 616 | } else { |
| 617 | // If we have a previous stack frame, and we have a previous call, |
| 618 | // fill in the return value... |
| 619 | ExecutionContext &CallingSF = ECStack.back(); |
| 620 | if (Instruction *I = CallingSF.Caller.getInstruction()) { |
| 621 | if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... |
| 622 | SetValue(I, Result, CallingSF); |
| 623 | if (InvokeInst *II = dyn_cast<InvokeInst> (I)) |
| 624 | SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); |
| 625 | CallingSF.Caller = CallSite(); // We returned from the call... |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | void Interpreter::visitReturnInst(ReturnInst &I) { |
| 631 | ExecutionContext &SF = ECStack.back(); |
| 632 | const Type *RetTy = Type::VoidTy; |
| 633 | GenericValue Result; |
| 634 | |
| 635 | // Save away the return value... (if we are not 'ret void') |
| 636 | if (I.getNumOperands()) { |
| 637 | RetTy = I.getReturnValue()->getType(); |
| 638 | Result = getOperandValue(I.getReturnValue(), SF); |
| 639 | } |
| 640 | |
| 641 | popStackAndReturnValueToCaller(RetTy, Result); |
| 642 | } |
| 643 | |
| 644 | void Interpreter::visitUnwindInst(UnwindInst &I) { |
| 645 | // Unwind stack |
| 646 | Instruction *Inst; |
| 647 | do { |
| 648 | ECStack.pop_back (); |
| 649 | if (ECStack.empty ()) |
| 650 | abort (); |
| 651 | Inst = ECStack.back ().Caller.getInstruction (); |
| 652 | } while (!(Inst && isa<InvokeInst> (Inst))); |
| 653 | |
| 654 | // Return from invoke |
| 655 | ExecutionContext &InvokingSF = ECStack.back (); |
| 656 | InvokingSF.Caller = CallSite (); |
| 657 | |
| 658 | // Go to exceptional destination BB of invoke instruction |
| 659 | SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); |
| 660 | } |
| 661 | |
| 662 | void Interpreter::visitUnreachableInst(UnreachableInst &I) { |
| 663 | cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; |
| 664 | abort(); |
| 665 | } |
| 666 | |
| 667 | void Interpreter::visitBranchInst(BranchInst &I) { |
| 668 | ExecutionContext &SF = ECStack.back(); |
| 669 | BasicBlock *Dest; |
| 670 | |
| 671 | Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... |
| 672 | if (!I.isUnconditional()) { |
| 673 | Value *Cond = I.getCondition(); |
| 674 | if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... |
| 675 | Dest = I.getSuccessor(1); |
| 676 | } |
| 677 | SwitchToNewBasicBlock(Dest, SF); |
| 678 | } |
| 679 | |
| 680 | void Interpreter::visitSwitchInst(SwitchInst &I) { |
| 681 | ExecutionContext &SF = ECStack.back(); |
| 682 | GenericValue CondVal = getOperandValue(I.getOperand(0), SF); |
| 683 | const Type *ElTy = I.getOperand(0)->getType(); |
| 684 | |
| 685 | // Check to see if any of the cases match... |
| 686 | BasicBlock *Dest = 0; |
| 687 | for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) |
| 688 | if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) |
| 689 | .IntVal != 0) { |
| 690 | Dest = cast<BasicBlock>(I.getOperand(i+1)); |
| 691 | break; |
| 692 | } |
| 693 | |
| 694 | if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default |
| 695 | SwitchToNewBasicBlock(Dest, SF); |
| 696 | } |
| 697 | |
| 698 | // SwitchToNewBasicBlock - This method is used to jump to a new basic block. |
| 699 | // This function handles the actual updating of block and instruction iterators |
| 700 | // as well as execution of all of the PHI nodes in the destination block. |
| 701 | // |
| 702 | // This method does this because all of the PHI nodes must be executed |
| 703 | // atomically, reading their inputs before any of the results are updated. Not |
| 704 | // doing this can cause problems if the PHI nodes depend on other PHI nodes for |
| 705 | // their inputs. If the input PHI node is updated before it is read, incorrect |
| 706 | // results can happen. Thus we use a two phase approach. |
| 707 | // |
| 708 | void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ |
| 709 | BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... |
| 710 | SF.CurBB = Dest; // Update CurBB to branch destination |
| 711 | SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| 712 | |
| 713 | if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do |
| 714 | |
| 715 | // Loop over all of the PHI nodes in the current block, reading their inputs. |
| 716 | std::vector<GenericValue> ResultValues; |
| 717 | |
| 718 | for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { |
| 719 | // Search for the value corresponding to this previous bb... |
| 720 | int i = PN->getBasicBlockIndex(PrevBB); |
| 721 | assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); |
| 722 | Value *IncomingValue = PN->getIncomingValue(i); |
| 723 | |
| 724 | // Save the incoming value for this PHI node... |
| 725 | ResultValues.push_back(getOperandValue(IncomingValue, SF)); |
| 726 | } |
| 727 | |
| 728 | // Now loop over all of the PHI nodes setting their values... |
| 729 | SF.CurInst = SF.CurBB->begin(); |
| 730 | for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { |
| 731 | PHINode *PN = cast<PHINode>(SF.CurInst); |
| 732 | SetValue(PN, ResultValues[i], SF); |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | //===----------------------------------------------------------------------===// |
| 737 | // Memory Instruction Implementations |
| 738 | //===----------------------------------------------------------------------===// |
| 739 | |
| 740 | void Interpreter::visitAllocationInst(AllocationInst &I) { |
| 741 | ExecutionContext &SF = ECStack.back(); |
| 742 | |
| 743 | const Type *Ty = I.getType()->getElementType(); // Type to be allocated |
| 744 | |
| 745 | // Get the number of elements being allocated by the array... |
| 746 | unsigned NumElements = |
| 747 | getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); |
| 748 | |
Duncan Sands | f99fdc6 | 2007-11-01 20:53:16 +0000 | [diff] [blame] | 749 | unsigned TypeSize = (size_t)TD.getABITypeSize(Ty); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 750 | |
Gabor Greif | 7ee10f9 | 2007-10-11 19:40:35 +0000 | [diff] [blame] | 751 | // Avoid malloc-ing zero bytes, use max()... |
| 752 | unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 753 | |
| 754 | // Allocate enough memory to hold the type... |
| 755 | void *Memory = malloc(MemToAlloc); |
| 756 | |
| 757 | DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " |
| 758 | << NumElements << " (Total: " << MemToAlloc << ") at " |
| 759 | << uintptr_t(Memory) << '\n'; |
| 760 | |
| 761 | GenericValue Result = PTOGV(Memory); |
| 762 | assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); |
| 763 | SetValue(&I, Result, SF); |
| 764 | |
| 765 | if (I.getOpcode() == Instruction::Alloca) |
| 766 | ECStack.back().Allocas.add(Memory); |
| 767 | } |
| 768 | |
| 769 | void Interpreter::visitFreeInst(FreeInst &I) { |
| 770 | ExecutionContext &SF = ECStack.back(); |
| 771 | assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); |
| 772 | GenericValue Value = getOperandValue(I.getOperand(0), SF); |
| 773 | // TODO: Check to make sure memory is allocated |
| 774 | free(GVTOP(Value)); // Free memory |
| 775 | } |
| 776 | |
| 777 | // getElementOffset - The workhorse for getelementptr. |
| 778 | // |
| 779 | GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, |
| 780 | gep_type_iterator E, |
| 781 | ExecutionContext &SF) { |
| 782 | assert(isa<PointerType>(Ptr->getType()) && |
| 783 | "Cannot getElementOffset of a nonpointer type!"); |
| 784 | |
| 785 | uint64_t Total = 0; |
| 786 | |
| 787 | for (; I != E; ++I) { |
| 788 | if (const StructType *STy = dyn_cast<StructType>(*I)) { |
| 789 | const StructLayout *SLO = TD.getStructLayout(STy); |
| 790 | |
| 791 | const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); |
| 792 | unsigned Index = unsigned(CPU->getZExtValue()); |
| 793 | |
| 794 | Total += SLO->getElementOffset(Index); |
| 795 | } else { |
| 796 | const SequentialType *ST = cast<SequentialType>(*I); |
| 797 | // Get the index number for the array... which must be long type... |
| 798 | GenericValue IdxGV = getOperandValue(I.getOperand(), SF); |
| 799 | |
| 800 | int64_t Idx; |
| 801 | unsigned BitWidth = |
| 802 | cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); |
| 803 | if (BitWidth == 32) |
| 804 | Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); |
| 805 | else if (BitWidth == 64) |
| 806 | Idx = (int64_t)IdxGV.IntVal.getZExtValue(); |
| 807 | else |
| 808 | assert(0 && "Invalid index type for getelementptr"); |
Duncan Sands | f99fdc6 | 2007-11-01 20:53:16 +0000 | [diff] [blame] | 809 | Total += TD.getABITypeSize(ST->getElementType())*Idx; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 810 | } |
| 811 | } |
| 812 | |
| 813 | GenericValue Result; |
| 814 | Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; |
| 815 | DOUT << "GEP Index " << Total << " bytes.\n"; |
| 816 | return Result; |
| 817 | } |
| 818 | |
| 819 | void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| 820 | ExecutionContext &SF = ECStack.back(); |
| 821 | SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), |
| 822 | gep_type_begin(I), gep_type_end(I), SF), SF); |
| 823 | } |
| 824 | |
| 825 | void Interpreter::visitLoadInst(LoadInst &I) { |
| 826 | ExecutionContext &SF = ECStack.back(); |
| 827 | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| 828 | GenericValue *Ptr = (GenericValue*)GVTOP(SRC); |
| 829 | GenericValue Result; |
| 830 | LoadValueFromMemory(Result, Ptr, I.getType()); |
| 831 | SetValue(&I, Result, SF); |
| 832 | } |
| 833 | |
| 834 | void Interpreter::visitStoreInst(StoreInst &I) { |
| 835 | ExecutionContext &SF = ECStack.back(); |
| 836 | GenericValue Val = getOperandValue(I.getOperand(0), SF); |
| 837 | GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| 838 | StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), |
| 839 | I.getOperand(0)->getType()); |
| 840 | } |
| 841 | |
| 842 | //===----------------------------------------------------------------------===// |
| 843 | // Miscellaneous Instruction Implementations |
| 844 | //===----------------------------------------------------------------------===// |
| 845 | |
| 846 | void Interpreter::visitCallSite(CallSite CS) { |
| 847 | ExecutionContext &SF = ECStack.back(); |
| 848 | |
| 849 | // Check to see if this is an intrinsic function call... |
| 850 | Function *F = CS.getCalledFunction(); |
| 851 | if (F && F->isDeclaration ()) |
| 852 | switch (F->getIntrinsicID()) { |
| 853 | case Intrinsic::not_intrinsic: |
| 854 | break; |
| 855 | case Intrinsic::vastart: { // va_start |
| 856 | GenericValue ArgIndex; |
| 857 | ArgIndex.UIntPairVal.first = ECStack.size() - 1; |
| 858 | ArgIndex.UIntPairVal.second = 0; |
| 859 | SetValue(CS.getInstruction(), ArgIndex, SF); |
| 860 | return; |
| 861 | } |
| 862 | case Intrinsic::vaend: // va_end is a noop for the interpreter |
| 863 | return; |
| 864 | case Intrinsic::vacopy: // va_copy: dest = src |
| 865 | SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); |
| 866 | return; |
| 867 | default: |
| 868 | // If it is an unknown intrinsic function, use the intrinsic lowering |
| 869 | // class to transform it into hopefully tasty LLVM code. |
| 870 | // |
| 871 | BasicBlock::iterator me(CS.getInstruction()); |
| 872 | BasicBlock *Parent = CS.getInstruction()->getParent(); |
| 873 | bool atBegin(Parent->begin() == me); |
| 874 | if (!atBegin) |
| 875 | --me; |
| 876 | IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); |
| 877 | |
| 878 | // Restore the CurInst pointer to the first instruction newly inserted, if |
| 879 | // any. |
| 880 | if (atBegin) { |
| 881 | SF.CurInst = Parent->begin(); |
| 882 | } else { |
| 883 | SF.CurInst = me; |
| 884 | ++SF.CurInst; |
| 885 | } |
| 886 | return; |
| 887 | } |
| 888 | |
| 889 | |
| 890 | SF.Caller = CS; |
| 891 | std::vector<GenericValue> ArgVals; |
| 892 | const unsigned NumArgs = SF.Caller.arg_size(); |
| 893 | ArgVals.reserve(NumArgs); |
| 894 | uint16_t pNum = 1; |
| 895 | for (CallSite::arg_iterator i = SF.Caller.arg_begin(), |
| 896 | e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { |
| 897 | Value *V = *i; |
| 898 | ArgVals.push_back(getOperandValue(V, SF)); |
Duncan Sands | 637ec55 | 2007-11-28 17:07:01 +0000 | [diff] [blame] | 899 | // Promote all integral types whose size is < sizeof(i32) into i32. |
| 900 | // We do this by zero or sign extending the value as appropriate |
| 901 | // according to the parameter attributes |
| 902 | const Type *Ty = V->getType(); |
| 903 | if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) |
| 904 | if (CS.paramHasAttr(pNum, ParamAttr::ZExt)) |
| 905 | ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32); |
| 906 | else if (CS.paramHasAttr(pNum, ParamAttr::SExt)) |
| 907 | ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 908 | } |
| 909 | |
| 910 | // To handle indirect calls, we must get the pointer value from the argument |
| 911 | // and treat it as a function pointer. |
| 912 | GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); |
| 913 | callFunction((Function*)GVTOP(SRC), ArgVals); |
| 914 | } |
| 915 | |
| 916 | void Interpreter::visitShl(BinaryOperator &I) { |
| 917 | ExecutionContext &SF = ECStack.back(); |
| 918 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 919 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 920 | GenericValue Dest; |
| 921 | Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); |
| 922 | SetValue(&I, Dest, SF); |
| 923 | } |
| 924 | |
| 925 | void Interpreter::visitLShr(BinaryOperator &I) { |
| 926 | ExecutionContext &SF = ECStack.back(); |
| 927 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 928 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 929 | GenericValue Dest; |
| 930 | Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); |
| 931 | SetValue(&I, Dest, SF); |
| 932 | } |
| 933 | |
| 934 | void Interpreter::visitAShr(BinaryOperator &I) { |
| 935 | ExecutionContext &SF = ECStack.back(); |
| 936 | GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| 937 | GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| 938 | GenericValue Dest; |
| 939 | Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); |
| 940 | SetValue(&I, Dest, SF); |
| 941 | } |
| 942 | |
| 943 | GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, |
| 944 | ExecutionContext &SF) { |
| 945 | const Type *SrcTy = SrcVal->getType(); |
| 946 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 947 | const IntegerType *DITy = cast<IntegerType>(DstTy); |
| 948 | const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| 949 | unsigned DBitWidth = DITy->getBitWidth(); |
| 950 | unsigned SBitWidth = SITy->getBitWidth(); |
| 951 | assert(SBitWidth > DBitWidth && "Invalid truncate"); |
| 952 | Dest.IntVal = Src.IntVal.trunc(DBitWidth); |
| 953 | return Dest; |
| 954 | } |
| 955 | |
| 956 | GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, |
| 957 | ExecutionContext &SF) { |
| 958 | const Type *SrcTy = SrcVal->getType(); |
| 959 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 960 | const IntegerType *DITy = cast<IntegerType>(DstTy); |
| 961 | const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| 962 | unsigned DBitWidth = DITy->getBitWidth(); |
| 963 | unsigned SBitWidth = SITy->getBitWidth(); |
| 964 | assert(SBitWidth < DBitWidth && "Invalid sign extend"); |
| 965 | Dest.IntVal = Src.IntVal.sext(DBitWidth); |
| 966 | return Dest; |
| 967 | } |
| 968 | |
| 969 | GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, |
| 970 | ExecutionContext &SF) { |
| 971 | const Type *SrcTy = SrcVal->getType(); |
| 972 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 973 | const IntegerType *DITy = cast<IntegerType>(DstTy); |
| 974 | const IntegerType *SITy = cast<IntegerType>(SrcTy); |
| 975 | unsigned DBitWidth = DITy->getBitWidth(); |
| 976 | unsigned SBitWidth = SITy->getBitWidth(); |
| 977 | assert(SBitWidth < DBitWidth && "Invalid sign extend"); |
| 978 | Dest.IntVal = Src.IntVal.zext(DBitWidth); |
| 979 | return Dest; |
| 980 | } |
| 981 | |
| 982 | GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, |
| 983 | ExecutionContext &SF) { |
| 984 | const Type *SrcTy = SrcVal->getType(); |
| 985 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 986 | assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy && |
| 987 | "Invalid FPTrunc instruction"); |
| 988 | Dest.FloatVal = (float) Src.DoubleVal; |
| 989 | return Dest; |
| 990 | } |
| 991 | |
| 992 | GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, |
| 993 | ExecutionContext &SF) { |
| 994 | const Type *SrcTy = SrcVal->getType(); |
| 995 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 996 | assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy && |
| 997 | "Invalid FPTrunc instruction"); |
| 998 | Dest.DoubleVal = (double) Src.FloatVal; |
| 999 | return Dest; |
| 1000 | } |
| 1001 | |
| 1002 | GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, |
| 1003 | ExecutionContext &SF) { |
| 1004 | const Type *SrcTy = SrcVal->getType(); |
| 1005 | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| 1006 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1007 | assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); |
| 1008 | |
| 1009 | if (SrcTy->getTypeID() == Type::FloatTyID) |
| 1010 | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| 1011 | else |
| 1012 | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| 1013 | return Dest; |
| 1014 | } |
| 1015 | |
| 1016 | GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, |
| 1017 | ExecutionContext &SF) { |
| 1018 | const Type *SrcTy = SrcVal->getType(); |
| 1019 | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| 1020 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1021 | assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); |
| 1022 | |
| 1023 | if (SrcTy->getTypeID() == Type::FloatTyID) |
| 1024 | Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); |
| 1025 | else |
| 1026 | Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); |
| 1027 | return Dest; |
| 1028 | } |
| 1029 | |
| 1030 | GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, |
| 1031 | ExecutionContext &SF) { |
| 1032 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1033 | assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); |
| 1034 | |
| 1035 | if (DstTy->getTypeID() == Type::FloatTyID) |
| 1036 | Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); |
| 1037 | else |
| 1038 | Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); |
| 1039 | return Dest; |
| 1040 | } |
| 1041 | |
| 1042 | GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, |
| 1043 | ExecutionContext &SF) { |
| 1044 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1045 | assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction"); |
| 1046 | |
| 1047 | if (DstTy->getTypeID() == Type::FloatTyID) |
| 1048 | Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); |
| 1049 | else |
| 1050 | Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); |
| 1051 | return Dest; |
| 1052 | |
| 1053 | } |
| 1054 | |
| 1055 | GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, |
| 1056 | ExecutionContext &SF) { |
| 1057 | const Type *SrcTy = SrcVal->getType(); |
| 1058 | uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); |
| 1059 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1060 | assert(isa<PointerType>(SrcTy) && "Invalid PtrToInt instruction"); |
| 1061 | |
| 1062 | Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); |
| 1063 | return Dest; |
| 1064 | } |
| 1065 | |
| 1066 | GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, |
| 1067 | ExecutionContext &SF) { |
| 1068 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1069 | assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction"); |
| 1070 | |
| 1071 | uint32_t PtrSize = TD.getPointerSizeInBits(); |
| 1072 | if (PtrSize != Src.IntVal.getBitWidth()) |
| 1073 | Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); |
| 1074 | |
| 1075 | Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); |
| 1076 | return Dest; |
| 1077 | } |
| 1078 | |
| 1079 | GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, |
| 1080 | ExecutionContext &SF) { |
| 1081 | |
| 1082 | const Type *SrcTy = SrcVal->getType(); |
| 1083 | GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| 1084 | if (isa<PointerType>(DstTy)) { |
| 1085 | assert(isa<PointerType>(SrcTy) && "Invalid BitCast"); |
| 1086 | Dest.PointerVal = Src.PointerVal; |
| 1087 | } else if (DstTy->isInteger()) { |
| 1088 | if (SrcTy == Type::FloatTy) { |
| 1089 | Dest.IntVal.zext(sizeof(Src.FloatVal) * 8); |
| 1090 | Dest.IntVal.floatToBits(Src.FloatVal); |
| 1091 | } else if (SrcTy == Type::DoubleTy) { |
| 1092 | Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8); |
| 1093 | Dest.IntVal.doubleToBits(Src.DoubleVal); |
| 1094 | } else if (SrcTy->isInteger()) { |
| 1095 | Dest.IntVal = Src.IntVal; |
| 1096 | } else |
| 1097 | assert(0 && "Invalid BitCast"); |
| 1098 | } else if (DstTy == Type::FloatTy) { |
| 1099 | if (SrcTy->isInteger()) |
| 1100 | Dest.FloatVal = Src.IntVal.bitsToFloat(); |
| 1101 | else |
| 1102 | Dest.FloatVal = Src.FloatVal; |
| 1103 | } else if (DstTy == Type::DoubleTy) { |
| 1104 | if (SrcTy->isInteger()) |
| 1105 | Dest.DoubleVal = Src.IntVal.bitsToDouble(); |
| 1106 | else |
| 1107 | Dest.DoubleVal = Src.DoubleVal; |
| 1108 | } else |
| 1109 | assert(0 && "Invalid Bitcast"); |
| 1110 | |
| 1111 | return Dest; |
| 1112 | } |
| 1113 | |
| 1114 | void Interpreter::visitTruncInst(TruncInst &I) { |
| 1115 | ExecutionContext &SF = ECStack.back(); |
| 1116 | SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| 1117 | } |
| 1118 | |
| 1119 | void Interpreter::visitSExtInst(SExtInst &I) { |
| 1120 | ExecutionContext &SF = ECStack.back(); |
| 1121 | SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); |
| 1122 | } |
| 1123 | |
| 1124 | void Interpreter::visitZExtInst(ZExtInst &I) { |
| 1125 | ExecutionContext &SF = ECStack.back(); |
| 1126 | SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); |
| 1127 | } |
| 1128 | |
| 1129 | void Interpreter::visitFPTruncInst(FPTruncInst &I) { |
| 1130 | ExecutionContext &SF = ECStack.back(); |
| 1131 | SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); |
| 1132 | } |
| 1133 | |
| 1134 | void Interpreter::visitFPExtInst(FPExtInst &I) { |
| 1135 | ExecutionContext &SF = ECStack.back(); |
| 1136 | SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); |
| 1137 | } |
| 1138 | |
| 1139 | void Interpreter::visitUIToFPInst(UIToFPInst &I) { |
| 1140 | ExecutionContext &SF = ECStack.back(); |
| 1141 | SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| 1142 | } |
| 1143 | |
| 1144 | void Interpreter::visitSIToFPInst(SIToFPInst &I) { |
| 1145 | ExecutionContext &SF = ECStack.back(); |
| 1146 | SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); |
| 1147 | } |
| 1148 | |
| 1149 | void Interpreter::visitFPToUIInst(FPToUIInst &I) { |
| 1150 | ExecutionContext &SF = ECStack.back(); |
| 1151 | SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); |
| 1152 | } |
| 1153 | |
| 1154 | void Interpreter::visitFPToSIInst(FPToSIInst &I) { |
| 1155 | ExecutionContext &SF = ECStack.back(); |
| 1156 | SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); |
| 1157 | } |
| 1158 | |
| 1159 | void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { |
| 1160 | ExecutionContext &SF = ECStack.back(); |
| 1161 | SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); |
| 1162 | } |
| 1163 | |
| 1164 | void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { |
| 1165 | ExecutionContext &SF = ECStack.back(); |
| 1166 | SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); |
| 1167 | } |
| 1168 | |
| 1169 | void Interpreter::visitBitCastInst(BitCastInst &I) { |
| 1170 | ExecutionContext &SF = ECStack.back(); |
| 1171 | SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); |
| 1172 | } |
| 1173 | |
| 1174 | #define IMPLEMENT_VAARG(TY) \ |
| 1175 | case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break |
| 1176 | |
| 1177 | void Interpreter::visitVAArgInst(VAArgInst &I) { |
| 1178 | ExecutionContext &SF = ECStack.back(); |
| 1179 | |
| 1180 | // Get the incoming valist parameter. LLI treats the valist as a |
| 1181 | // (ec-stack-depth var-arg-index) pair. |
| 1182 | GenericValue VAList = getOperandValue(I.getOperand(0), SF); |
| 1183 | GenericValue Dest; |
| 1184 | GenericValue Src = ECStack[VAList.UIntPairVal.first] |
| 1185 | .VarArgs[VAList.UIntPairVal.second]; |
| 1186 | const Type *Ty = I.getType(); |
| 1187 | switch (Ty->getTypeID()) { |
| 1188 | case Type::IntegerTyID: Dest.IntVal = Src.IntVal; |
| 1189 | IMPLEMENT_VAARG(Pointer); |
| 1190 | IMPLEMENT_VAARG(Float); |
| 1191 | IMPLEMENT_VAARG(Double); |
| 1192 | default: |
| 1193 | cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; |
| 1194 | abort(); |
| 1195 | } |
| 1196 | |
| 1197 | // Set the Value of this Instruction. |
| 1198 | SetValue(&I, Dest, SF); |
| 1199 | |
| 1200 | // Move the pointer to the next vararg. |
| 1201 | ++VAList.UIntPairVal.second; |
| 1202 | } |
| 1203 | |
| 1204 | GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, |
| 1205 | ExecutionContext &SF) { |
| 1206 | switch (CE->getOpcode()) { |
| 1207 | case Instruction::Trunc: |
| 1208 | return executeTruncInst(CE->getOperand(0), CE->getType(), SF); |
| 1209 | case Instruction::ZExt: |
| 1210 | return executeZExtInst(CE->getOperand(0), CE->getType(), SF); |
| 1211 | case Instruction::SExt: |
| 1212 | return executeSExtInst(CE->getOperand(0), CE->getType(), SF); |
| 1213 | case Instruction::FPTrunc: |
| 1214 | return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); |
| 1215 | case Instruction::FPExt: |
| 1216 | return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); |
| 1217 | case Instruction::UIToFP: |
| 1218 | return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| 1219 | case Instruction::SIToFP: |
| 1220 | return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); |
| 1221 | case Instruction::FPToUI: |
| 1222 | return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); |
| 1223 | case Instruction::FPToSI: |
| 1224 | return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); |
| 1225 | case Instruction::PtrToInt: |
| 1226 | return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); |
| 1227 | case Instruction::IntToPtr: |
| 1228 | return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); |
| 1229 | case Instruction::BitCast: |
| 1230 | return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); |
| 1231 | case Instruction::GetElementPtr: |
| 1232 | return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), |
| 1233 | gep_type_end(CE), SF); |
| 1234 | case Instruction::FCmp: |
| 1235 | case Instruction::ICmp: |
| 1236 | return executeCmpInst(CE->getPredicate(), |
| 1237 | getOperandValue(CE->getOperand(0), SF), |
| 1238 | getOperandValue(CE->getOperand(1), SF), |
| 1239 | CE->getOperand(0)->getType()); |
| 1240 | case Instruction::Select: |
| 1241 | return executeSelectInst(getOperandValue(CE->getOperand(0), SF), |
| 1242 | getOperandValue(CE->getOperand(1), SF), |
| 1243 | getOperandValue(CE->getOperand(2), SF)); |
| 1244 | default : |
| 1245 | break; |
| 1246 | } |
| 1247 | |
| 1248 | // The cases below here require a GenericValue parameter for the result |
| 1249 | // so we initialize one, compute it and then return it. |
| 1250 | GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); |
| 1251 | GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); |
| 1252 | GenericValue Dest; |
| 1253 | const Type * Ty = CE->getOperand(0)->getType(); |
| 1254 | switch (CE->getOpcode()) { |
| 1255 | case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break; |
| 1256 | case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break; |
| 1257 | case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break; |
| 1258 | case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; |
| 1259 | case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; |
| 1260 | case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; |
| 1261 | case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; |
| 1262 | case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; |
| 1263 | case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; |
| 1264 | case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break; |
| 1265 | case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break; |
| 1266 | case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break; |
| 1267 | case Instruction::Shl: |
| 1268 | Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); |
| 1269 | break; |
| 1270 | case Instruction::LShr: |
| 1271 | Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); |
| 1272 | break; |
| 1273 | case Instruction::AShr: |
| 1274 | Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); |
| 1275 | break; |
| 1276 | default: |
| 1277 | cerr << "Unhandled ConstantExpr: " << *CE << "\n"; |
| 1278 | abort(); |
| 1279 | return GenericValue(); |
| 1280 | } |
| 1281 | return Dest; |
| 1282 | } |
| 1283 | |
| 1284 | GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { |
| 1285 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| 1286 | return getConstantExprValue(CE, SF); |
| 1287 | } else if (Constant *CPV = dyn_cast<Constant>(V)) { |
| 1288 | return getConstantValue(CPV); |
| 1289 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 1290 | return PTOGV(getPointerToGlobal(GV)); |
| 1291 | } else { |
| 1292 | return SF.Values[V]; |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | //===----------------------------------------------------------------------===// |
| 1297 | // Dispatch and Execution Code |
| 1298 | //===----------------------------------------------------------------------===// |
| 1299 | |
| 1300 | //===----------------------------------------------------------------------===// |
| 1301 | // callFunction - Execute the specified function... |
| 1302 | // |
| 1303 | void Interpreter::callFunction(Function *F, |
| 1304 | const std::vector<GenericValue> &ArgVals) { |
| 1305 | assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || |
| 1306 | ECStack.back().Caller.arg_size() == ArgVals.size()) && |
| 1307 | "Incorrect number of arguments passed into function call!"); |
| 1308 | // Make a new stack frame... and fill it in. |
| 1309 | ECStack.push_back(ExecutionContext()); |
| 1310 | ExecutionContext &StackFrame = ECStack.back(); |
| 1311 | StackFrame.CurFunction = F; |
| 1312 | |
| 1313 | // Special handling for external functions. |
| 1314 | if (F->isDeclaration()) { |
| 1315 | GenericValue Result = callExternalFunction (F, ArgVals); |
| 1316 | // Simulate a 'ret' instruction of the appropriate type. |
| 1317 | popStackAndReturnValueToCaller (F->getReturnType (), Result); |
| 1318 | return; |
| 1319 | } |
| 1320 | |
| 1321 | // Get pointers to first LLVM BB & Instruction in function. |
| 1322 | StackFrame.CurBB = F->begin(); |
| 1323 | StackFrame.CurInst = StackFrame.CurBB->begin(); |
| 1324 | |
| 1325 | // Run through the function arguments and initialize their values... |
| 1326 | assert((ArgVals.size() == F->arg_size() || |
| 1327 | (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& |
| 1328 | "Invalid number of values passed to function invocation!"); |
| 1329 | |
| 1330 | // Handle non-varargs arguments... |
| 1331 | unsigned i = 0; |
| 1332 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| 1333 | AI != E; ++AI, ++i) |
| 1334 | SetValue(AI, ArgVals[i], StackFrame); |
| 1335 | |
| 1336 | // Handle varargs arguments... |
| 1337 | StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); |
| 1338 | } |
| 1339 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1340 | |
| 1341 | void Interpreter::run() { |
| 1342 | while (!ECStack.empty()) { |
| 1343 | // Interpret a single instruction & increment the "PC". |
| 1344 | ExecutionContext &SF = ECStack.back(); // Current stack frame |
| 1345 | Instruction &I = *SF.CurInst++; // Increment before execute |
| 1346 | |
| 1347 | // Track the number of dynamic instructions executed. |
| 1348 | ++NumDynamicInsts; |
| 1349 | |
| 1350 | DOUT << "About to interpret: " << I; |
| 1351 | visit(I); // Dispatch to one of the visit* methods... |
Chris Lattner | fc65a9f | 2007-09-21 18:30:39 +0000 | [diff] [blame] | 1352 | #if 0 |
| 1353 | // This is not safe, as visiting the instruction could lower it and free I. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1354 | #ifndef NDEBUG |
| 1355 | if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && |
| 1356 | I.getType() != Type::VoidTy) { |
| 1357 | DOUT << " --> "; |
Chris Lattner | fc65a9f | 2007-09-21 18:30:39 +0000 | [diff] [blame] | 1358 | const GenericValue &Val = SF.Values[&I]; |
| 1359 | switch (I.getType()->getTypeID()) { |
| 1360 | default: assert(0 && "Invalid GenericValue Type"); |
| 1361 | case Type::VoidTyID: DOUT << "void"; break; |
| 1362 | case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break; |
| 1363 | case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break; |
| 1364 | case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal); |
| 1365 | break; |
| 1366 | case Type::IntegerTyID: |
| 1367 | DOUT << "i" << Val.IntVal.getBitWidth() << " " |
| 1368 | << Val.IntVal.toStringUnsigned(10) |
| 1369 | << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; |
| 1370 | break; |
| 1371 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1372 | } |
| 1373 | #endif |
Chris Lattner | fc65a9f | 2007-09-21 18:30:39 +0000 | [diff] [blame] | 1374 | #endif |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1375 | } |
| 1376 | } |