Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 1 | //===- ValueTracking.cpp - Walk computations to compute properties --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains routines that help analyze properties that chains of |
| 11 | // computations have. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/ValueTracking.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/Instructions.h" |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 18 | #include "llvm/GlobalVariable.h" |
Dan Gohman | 307a7c4 | 2009-09-15 16:14:44 +0000 | [diff] [blame] | 19 | #include "llvm/GlobalAlias.h" |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 20 | #include "llvm/IntrinsicInst.h" |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 21 | #include "llvm/LLVMContext.h" |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 22 | #include "llvm/Operator.h" |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 23 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 24 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 25 | #include "llvm/Support/MathExtras.h" |
Eric Christopher | 25ec483 | 2010-03-05 06:58:57 +0000 | [diff] [blame] | 26 | #include "llvm/ADT/SmallPtrSet.h" |
Chris Lattner | 32a9e7a | 2008-06-04 04:46:14 +0000 | [diff] [blame] | 27 | #include <cstring> |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 28 | using namespace llvm; |
| 29 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 30 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 31 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 32 | /// bit sets. This code only analyzes bits in Mask, in order to short-circuit |
| 33 | /// processing. |
| 34 | /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that |
| 35 | /// we cannot optimize based on the assumption that it is zero without changing |
| 36 | /// it to be an explicit zero. If we don't change it to zero, other code could |
| 37 | /// optimized based on the contradictory assumption that it is non-zero. |
| 38 | /// Because instcombine aggressively folds operations with undef args anyway, |
| 39 | /// this won't lose us code quality. |
Chris Lattner | cf5128e | 2009-09-08 00:06:16 +0000 | [diff] [blame] | 40 | /// |
| 41 | /// This function is defined on values with integer type, values with pointer |
| 42 | /// type (but only if TD is non-null), and vectors of integers. In the case |
| 43 | /// where V is a vector, the mask, known zero, and known one values are the |
| 44 | /// same width as the vector element, and the bit is set only if it is true |
| 45 | /// for all of the elements in the vector. |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 46 | void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, |
| 47 | APInt &KnownZero, APInt &KnownOne, |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 48 | const TargetData *TD, unsigned Depth) { |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 49 | const unsigned MaxDepth = 6; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 50 | assert(V && "No Value?"); |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 51 | assert(Depth <= MaxDepth && "Limit Search Depth"); |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 52 | unsigned BitWidth = Mask.getBitWidth(); |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 53 | assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 54 | && "Not integer or pointer type!"); |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 55 | assert((!TD || |
| 56 | TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 57 | (!V->getType()->isIntOrIntVectorTy() || |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 58 | V->getType()->getScalarSizeInBits() == BitWidth) && |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 59 | KnownZero.getBitWidth() == BitWidth && |
| 60 | KnownOne.getBitWidth() == BitWidth && |
| 61 | "V, Mask, KnownOne and KnownZero should have same BitWidth"); |
| 62 | |
| 63 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| 64 | // We know all of the bits for a constant! |
| 65 | KnownOne = CI->getValue() & Mask; |
| 66 | KnownZero = ~KnownOne & Mask; |
| 67 | return; |
| 68 | } |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 69 | // Null and aggregate-zero are all-zeros. |
| 70 | if (isa<ConstantPointerNull>(V) || |
| 71 | isa<ConstantAggregateZero>(V)) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 72 | KnownOne.clear(); |
| 73 | KnownZero = Mask; |
| 74 | return; |
| 75 | } |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 76 | // Handle a constant vector by taking the intersection of the known bits of |
| 77 | // each element. |
| 78 | if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
| 79 | KnownZero.set(); KnownOne.set(); |
| 80 | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| 81 | APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); |
| 82 | ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, |
| 83 | TD, Depth); |
| 84 | KnownZero &= KnownZero2; |
| 85 | KnownOne &= KnownOne2; |
| 86 | } |
| 87 | return; |
| 88 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 89 | // The address of an aligned GlobalValue has trailing zeros. |
| 90 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 91 | unsigned Align = GV->getAlignment(); |
Dan Gohman | 0040725 | 2009-08-11 15:50:03 +0000 | [diff] [blame] | 92 | if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { |
| 93 | const Type *ObjectType = GV->getType()->getElementType(); |
| 94 | // If the object is defined in the current Module, we'll be giving |
| 95 | // it the preferred alignment. Otherwise, we have to assume that it |
| 96 | // may only have the minimum ABI alignment. |
| 97 | if (!GV->isDeclaration() && !GV->mayBeOverridden()) |
| 98 | Align = TD->getPrefTypeAlignment(ObjectType); |
| 99 | else |
| 100 | Align = TD->getABITypeAlignment(ObjectType); |
| 101 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 102 | if (Align > 0) |
| 103 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 104 | CountTrailingZeros_32(Align)); |
| 105 | else |
| 106 | KnownZero.clear(); |
| 107 | KnownOne.clear(); |
| 108 | return; |
| 109 | } |
Dan Gohman | 307a7c4 | 2009-09-15 16:14:44 +0000 | [diff] [blame] | 110 | // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has |
| 111 | // the bits of its aliasee. |
| 112 | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| 113 | if (GA->mayBeOverridden()) { |
| 114 | KnownZero.clear(); KnownOne.clear(); |
| 115 | } else { |
| 116 | ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, |
| 117 | TD, Depth+1); |
| 118 | } |
| 119 | return; |
| 120 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 121 | |
| 122 | KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. |
| 123 | |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 124 | if (Depth == MaxDepth || Mask == 0) |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 125 | return; // Limit search depth. |
| 126 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 127 | Operator *I = dyn_cast<Operator>(V); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 128 | if (!I) return; |
| 129 | |
| 130 | APInt KnownZero2(KnownZero), KnownOne2(KnownOne); |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 131 | switch (I->getOpcode()) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 132 | default: break; |
| 133 | case Instruction::And: { |
| 134 | // If either the LHS or the RHS are Zero, the result is zero. |
| 135 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 136 | APInt Mask2(Mask & ~KnownZero); |
| 137 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 138 | Depth+1); |
| 139 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 140 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 141 | |
| 142 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 143 | KnownOne &= KnownOne2; |
| 144 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 145 | KnownZero |= KnownZero2; |
| 146 | return; |
| 147 | } |
| 148 | case Instruction::Or: { |
| 149 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 150 | APInt Mask2(Mask & ~KnownOne); |
| 151 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 152 | Depth+1); |
| 153 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 154 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 155 | |
| 156 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 157 | KnownZero &= KnownZero2; |
| 158 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 159 | KnownOne |= KnownOne2; |
| 160 | return; |
| 161 | } |
| 162 | case Instruction::Xor: { |
| 163 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 164 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, |
| 165 | Depth+1); |
| 166 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 167 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 168 | |
| 169 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 170 | APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 171 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 172 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 173 | KnownZero = KnownZeroOut; |
| 174 | return; |
| 175 | } |
| 176 | case Instruction::Mul: { |
| 177 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 178 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); |
| 179 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 180 | Depth+1); |
| 181 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 182 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 183 | |
| 184 | // If low bits are zero in either operand, output low known-0 bits. |
| 185 | // Also compute a conserative estimate for high known-0 bits. |
| 186 | // More trickiness is possible, but this is sufficient for the |
| 187 | // interesting case of alignment computation. |
| 188 | KnownOne.clear(); |
| 189 | unsigned TrailZ = KnownZero.countTrailingOnes() + |
| 190 | KnownZero2.countTrailingOnes(); |
| 191 | unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + |
| 192 | KnownZero2.countLeadingOnes(), |
| 193 | BitWidth) - BitWidth; |
| 194 | |
| 195 | TrailZ = std::min(TrailZ, BitWidth); |
| 196 | LeadZ = std::min(LeadZ, BitWidth); |
| 197 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | |
| 198 | APInt::getHighBitsSet(BitWidth, LeadZ); |
| 199 | KnownZero &= Mask; |
| 200 | return; |
| 201 | } |
| 202 | case Instruction::UDiv: { |
| 203 | // For the purposes of computing leading zeros we can conservatively |
| 204 | // treat a udiv as a logical right shift by the power of 2 known to |
| 205 | // be less than the denominator. |
| 206 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 207 | ComputeMaskedBits(I->getOperand(0), |
| 208 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 209 | unsigned LeadZ = KnownZero2.countLeadingOnes(); |
| 210 | |
| 211 | KnownOne2.clear(); |
| 212 | KnownZero2.clear(); |
| 213 | ComputeMaskedBits(I->getOperand(1), |
| 214 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 215 | unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); |
| 216 | if (RHSUnknownLeadingOnes != BitWidth) |
| 217 | LeadZ = std::min(BitWidth, |
| 218 | LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); |
| 219 | |
| 220 | KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; |
| 221 | return; |
| 222 | } |
| 223 | case Instruction::Select: |
| 224 | ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 225 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, |
| 226 | Depth+1); |
| 227 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 228 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 229 | |
| 230 | // Only known if known in both the LHS and RHS. |
| 231 | KnownOne &= KnownOne2; |
| 232 | KnownZero &= KnownZero2; |
| 233 | return; |
| 234 | case Instruction::FPTrunc: |
| 235 | case Instruction::FPExt: |
| 236 | case Instruction::FPToUI: |
| 237 | case Instruction::FPToSI: |
| 238 | case Instruction::SIToFP: |
| 239 | case Instruction::UIToFP: |
| 240 | return; // Can't work with floating point. |
| 241 | case Instruction::PtrToInt: |
| 242 | case Instruction::IntToPtr: |
| 243 | // We can't handle these if we don't know the pointer size. |
| 244 | if (!TD) return; |
| 245 | // FALL THROUGH and handle them the same as zext/trunc. |
| 246 | case Instruction::ZExt: |
| 247 | case Instruction::Trunc: { |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 248 | const Type *SrcTy = I->getOperand(0)->getType(); |
| 249 | |
| 250 | unsigned SrcBitWidth; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 251 | // Note that we handle pointer operands here because of inttoptr/ptrtoint |
| 252 | // which fall through here. |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 253 | if (SrcTy->isPointerTy()) |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 254 | SrcBitWidth = TD->getTypeSizeInBits(SrcTy); |
| 255 | else |
| 256 | SrcBitWidth = SrcTy->getScalarSizeInBits(); |
| 257 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 258 | APInt MaskIn(Mask); |
| 259 | MaskIn.zextOrTrunc(SrcBitWidth); |
| 260 | KnownZero.zextOrTrunc(SrcBitWidth); |
| 261 | KnownOne.zextOrTrunc(SrcBitWidth); |
| 262 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 263 | Depth+1); |
| 264 | KnownZero.zextOrTrunc(BitWidth); |
| 265 | KnownOne.zextOrTrunc(BitWidth); |
| 266 | // Any top bits are known to be zero. |
| 267 | if (BitWidth > SrcBitWidth) |
| 268 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 269 | return; |
| 270 | } |
| 271 | case Instruction::BitCast: { |
| 272 | const Type *SrcTy = I->getOperand(0)->getType(); |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 273 | if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && |
Chris Lattner | 0dabb0b | 2009-07-02 16:04:08 +0000 | [diff] [blame] | 274 | // TODO: For now, not handling conversions like: |
| 275 | // (bitcast i64 %x to <2 x i32>) |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 276 | !I->getType()->isVectorTy()) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 277 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 278 | Depth+1); |
| 279 | return; |
| 280 | } |
| 281 | break; |
| 282 | } |
| 283 | case Instruction::SExt: { |
| 284 | // Compute the bits in the result that are not present in the input. |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 285 | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 286 | |
| 287 | APInt MaskIn(Mask); |
| 288 | MaskIn.trunc(SrcBitWidth); |
| 289 | KnownZero.trunc(SrcBitWidth); |
| 290 | KnownOne.trunc(SrcBitWidth); |
| 291 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 292 | Depth+1); |
| 293 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 294 | KnownZero.zext(BitWidth); |
| 295 | KnownOne.zext(BitWidth); |
| 296 | |
| 297 | // If the sign bit of the input is known set or clear, then we know the |
| 298 | // top bits of the result. |
| 299 | if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero |
| 300 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 301 | else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set |
| 302 | KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 303 | return; |
| 304 | } |
| 305 | case Instruction::Shl: |
| 306 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 307 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 308 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 309 | APInt Mask2(Mask.lshr(ShiftAmt)); |
| 310 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 311 | Depth+1); |
| 312 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 313 | KnownZero <<= ShiftAmt; |
| 314 | KnownOne <<= ShiftAmt; |
| 315 | KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 |
| 316 | return; |
| 317 | } |
| 318 | break; |
| 319 | case Instruction::LShr: |
| 320 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 321 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 322 | // Compute the new bits that are at the top now. |
| 323 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 324 | |
| 325 | // Unsigned shift right. |
| 326 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 327 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, |
| 328 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 329 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 330 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 331 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 332 | // high bits known zero. |
| 333 | KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); |
| 334 | return; |
| 335 | } |
| 336 | break; |
| 337 | case Instruction::AShr: |
| 338 | // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 339 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 340 | // Compute the new bits that are at the top now. |
| 341 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 342 | |
| 343 | // Signed shift right. |
| 344 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 345 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 346 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 347 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 348 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 349 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 350 | |
| 351 | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); |
| 352 | if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. |
| 353 | KnownZero |= HighBits; |
| 354 | else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. |
| 355 | KnownOne |= HighBits; |
| 356 | return; |
| 357 | } |
| 358 | break; |
| 359 | case Instruction::Sub: { |
| 360 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { |
| 361 | // We know that the top bits of C-X are clear if X contains less bits |
| 362 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
| 363 | // positive if we can prove that X is >= 0 and < 16. |
| 364 | if (!CLHS->getValue().isNegative()) { |
| 365 | unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); |
| 366 | // NLZ can't be BitWidth with no sign bit |
| 367 | APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| 368 | ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, |
| 369 | TD, Depth+1); |
| 370 | |
| 371 | // If all of the MaskV bits are known to be zero, then we know the |
| 372 | // output top bits are zero, because we now know that the output is |
| 373 | // from [0-C]. |
| 374 | if ((KnownZero2 & MaskV) == MaskV) { |
| 375 | unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); |
| 376 | // Top bits known zero. |
| 377 | KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | // fall through |
| 383 | case Instruction::Add: { |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 384 | // If one of the operands has trailing zeros, then the bits that the |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 385 | // other operand has in those bit positions will be preserved in the |
| 386 | // result. For an add, this works with either operand. For a subtract, |
| 387 | // this only works if the known zeros are in the right operand. |
| 388 | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); |
| 389 | APInt Mask2 = APInt::getLowBitsSet(BitWidth, |
| 390 | BitWidth - Mask.countLeadingZeros()); |
| 391 | ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 392 | Depth+1); |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 393 | assert((LHSKnownZero & LHSKnownOne) == 0 && |
| 394 | "Bits known to be one AND zero?"); |
| 395 | unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 396 | |
| 397 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, |
| 398 | Depth+1); |
| 399 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 400 | unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 401 | |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 402 | // Determine which operand has more trailing zeros, and use that |
| 403 | // many bits from the other operand. |
| 404 | if (LHSKnownZeroOut > RHSKnownZeroOut) { |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 405 | if (I->getOpcode() == Instruction::Add) { |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 406 | APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); |
| 407 | KnownZero |= KnownZero2 & Mask; |
| 408 | KnownOne |= KnownOne2 & Mask; |
| 409 | } else { |
| 410 | // If the known zeros are in the left operand for a subtract, |
| 411 | // fall back to the minimum known zeros in both operands. |
| 412 | KnownZero |= APInt::getLowBitsSet(BitWidth, |
| 413 | std::min(LHSKnownZeroOut, |
| 414 | RHSKnownZeroOut)); |
| 415 | } |
| 416 | } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { |
| 417 | APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); |
| 418 | KnownZero |= LHSKnownZero & Mask; |
| 419 | KnownOne |= LHSKnownOne & Mask; |
| 420 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 421 | return; |
| 422 | } |
| 423 | case Instruction::SRem: |
| 424 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame] | 425 | APInt RA = Rem->getValue().abs(); |
| 426 | if (RA.isPowerOf2()) { |
| 427 | APInt LowBits = RA - 1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 428 | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| 429 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 430 | Depth+1); |
| 431 | |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame] | 432 | // The low bits of the first operand are unchanged by the srem. |
| 433 | KnownZero = KnownZero2 & LowBits; |
| 434 | KnownOne = KnownOne2 & LowBits; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 435 | |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame] | 436 | // If the first operand is non-negative or has all low bits zero, then |
| 437 | // the upper bits are all zero. |
| 438 | if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) |
| 439 | KnownZero |= ~LowBits; |
| 440 | |
| 441 | // If the first operand is negative and not all low bits are zero, then |
| 442 | // the upper bits are all one. |
| 443 | if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) |
| 444 | KnownOne |= ~LowBits; |
| 445 | |
| 446 | KnownZero &= Mask; |
| 447 | KnownOne &= Mask; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 448 | |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 449 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 450 | } |
| 451 | } |
| 452 | break; |
| 453 | case Instruction::URem: { |
| 454 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 455 | APInt RA = Rem->getValue(); |
| 456 | if (RA.isPowerOf2()) { |
| 457 | APInt LowBits = (RA - 1); |
| 458 | APInt Mask2 = LowBits & Mask; |
| 459 | KnownZero |= ~LowBits & Mask; |
| 460 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 461 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 462 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 463 | break; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | // Since the result is less than or equal to either operand, any leading |
| 468 | // zero bits in either operand must also exist in the result. |
| 469 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 470 | ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, |
| 471 | TD, Depth+1); |
| 472 | ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, |
| 473 | TD, Depth+1); |
| 474 | |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 475 | unsigned Leaders = std::max(KnownZero.countLeadingOnes(), |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 476 | KnownZero2.countLeadingOnes()); |
| 477 | KnownOne.clear(); |
| 478 | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; |
| 479 | break; |
| 480 | } |
| 481 | |
Victor Hernandez | a276c60 | 2009-10-17 01:18:07 +0000 | [diff] [blame] | 482 | case Instruction::Alloca: { |
Victor Hernandez | 7b929da | 2009-10-23 21:09:37 +0000 | [diff] [blame] | 483 | AllocaInst *AI = cast<AllocaInst>(V); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 484 | unsigned Align = AI->getAlignment(); |
Victor Hernandez | a276c60 | 2009-10-17 01:18:07 +0000 | [diff] [blame] | 485 | if (Align == 0 && TD) |
| 486 | Align = TD->getABITypeAlignment(AI->getType()->getElementType()); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 487 | |
| 488 | if (Align > 0) |
| 489 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 490 | CountTrailingZeros_32(Align)); |
| 491 | break; |
| 492 | } |
| 493 | case Instruction::GetElementPtr: { |
| 494 | // Analyze all of the subscripts of this getelementptr instruction |
| 495 | // to determine if we can prove known low zero bits. |
| 496 | APInt LocalMask = APInt::getAllOnesValue(BitWidth); |
| 497 | APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); |
| 498 | ComputeMaskedBits(I->getOperand(0), LocalMask, |
| 499 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 500 | unsigned TrailZ = LocalKnownZero.countTrailingOnes(); |
| 501 | |
| 502 | gep_type_iterator GTI = gep_type_begin(I); |
| 503 | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { |
| 504 | Value *Index = I->getOperand(i); |
| 505 | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 506 | // Handle struct member offset arithmetic. |
| 507 | if (!TD) return; |
| 508 | const StructLayout *SL = TD->getStructLayout(STy); |
| 509 | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); |
| 510 | uint64_t Offset = SL->getElementOffset(Idx); |
| 511 | TrailZ = std::min(TrailZ, |
| 512 | CountTrailingZeros_64(Offset)); |
| 513 | } else { |
| 514 | // Handle array index arithmetic. |
| 515 | const Type *IndexedTy = GTI.getIndexedType(); |
| 516 | if (!IndexedTy->isSized()) return; |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 517 | unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); |
Duncan Sands | 777d230 | 2009-05-09 07:06:46 +0000 | [diff] [blame] | 518 | uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 519 | LocalMask = APInt::getAllOnesValue(GEPOpiBits); |
| 520 | LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); |
| 521 | ComputeMaskedBits(Index, LocalMask, |
| 522 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 523 | TrailZ = std::min(TrailZ, |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 524 | unsigned(CountTrailingZeros_64(TypeSize) + |
| 525 | LocalKnownZero.countTrailingOnes())); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 526 | } |
| 527 | } |
| 528 | |
| 529 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; |
| 530 | break; |
| 531 | } |
| 532 | case Instruction::PHI: { |
| 533 | PHINode *P = cast<PHINode>(I); |
| 534 | // Handle the case of a simple two-predecessor recurrence PHI. |
| 535 | // There's a lot more that could theoretically be done here, but |
| 536 | // this is sufficient to catch some interesting cases. |
| 537 | if (P->getNumIncomingValues() == 2) { |
| 538 | for (unsigned i = 0; i != 2; ++i) { |
| 539 | Value *L = P->getIncomingValue(i); |
| 540 | Value *R = P->getIncomingValue(!i); |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 541 | Operator *LU = dyn_cast<Operator>(L); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 542 | if (!LU) |
| 543 | continue; |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 544 | unsigned Opcode = LU->getOpcode(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 545 | // Check for operations that have the property that if |
| 546 | // both their operands have low zero bits, the result |
| 547 | // will have low zero bits. |
| 548 | if (Opcode == Instruction::Add || |
| 549 | Opcode == Instruction::Sub || |
| 550 | Opcode == Instruction::And || |
| 551 | Opcode == Instruction::Or || |
| 552 | Opcode == Instruction::Mul) { |
| 553 | Value *LL = LU->getOperand(0); |
| 554 | Value *LR = LU->getOperand(1); |
| 555 | // Find a recurrence. |
| 556 | if (LL == I) |
| 557 | L = LR; |
| 558 | else if (LR == I) |
| 559 | L = LL; |
| 560 | else |
| 561 | break; |
| 562 | // Ok, we have a PHI of the form L op= R. Check for low |
| 563 | // zero bits. |
| 564 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 565 | ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); |
| 566 | Mask2 = APInt::getLowBitsSet(BitWidth, |
| 567 | KnownZero2.countTrailingOnes()); |
David Greene | c714f13 | 2008-10-27 23:24:03 +0000 | [diff] [blame] | 568 | |
| 569 | // We need to take the minimum number of known bits |
| 570 | APInt KnownZero3(KnownZero), KnownOne3(KnownOne); |
| 571 | ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); |
| 572 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 573 | KnownZero = Mask & |
| 574 | APInt::getLowBitsSet(BitWidth, |
David Greene | c714f13 | 2008-10-27 23:24:03 +0000 | [diff] [blame] | 575 | std::min(KnownZero2.countTrailingOnes(), |
| 576 | KnownZero3.countTrailingOnes())); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 577 | break; |
| 578 | } |
| 579 | } |
| 580 | } |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 581 | |
| 582 | // Otherwise take the unions of the known bit sets of the operands, |
| 583 | // taking conservative care to avoid excessive recursion. |
| 584 | if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { |
| 585 | KnownZero = APInt::getAllOnesValue(BitWidth); |
| 586 | KnownOne = APInt::getAllOnesValue(BitWidth); |
| 587 | for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { |
| 588 | // Skip direct self references. |
| 589 | if (P->getIncomingValue(i) == P) continue; |
| 590 | |
| 591 | KnownZero2 = APInt(BitWidth, 0); |
| 592 | KnownOne2 = APInt(BitWidth, 0); |
| 593 | // Recurse, but cap the recursion to one level, because we don't |
| 594 | // want to waste time spinning around in loops. |
| 595 | ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, |
| 596 | KnownZero2, KnownOne2, TD, MaxDepth-1); |
| 597 | KnownZero &= KnownZero2; |
| 598 | KnownOne &= KnownOne2; |
| 599 | // If all bits have been ruled out, there's no need to check |
| 600 | // more operands. |
| 601 | if (!KnownZero && !KnownOne) |
| 602 | break; |
| 603 | } |
| 604 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 605 | break; |
| 606 | } |
| 607 | case Instruction::Call: |
| 608 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 609 | switch (II->getIntrinsicID()) { |
| 610 | default: break; |
| 611 | case Intrinsic::ctpop: |
| 612 | case Intrinsic::ctlz: |
| 613 | case Intrinsic::cttz: { |
| 614 | unsigned LowBits = Log2_32(BitWidth)+1; |
| 615 | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); |
| 616 | break; |
| 617 | } |
| 618 | } |
| 619 | } |
| 620 | break; |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 625 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 626 | /// for bits that V cannot have. |
Chris Lattner | cf5128e | 2009-09-08 00:06:16 +0000 | [diff] [blame] | 627 | /// |
| 628 | /// This function is defined on values with integer type, values with pointer |
| 629 | /// type (but only if TD is non-null), and vectors of integers. In the case |
| 630 | /// where V is a vector, the mask, known zero, and known one values are the |
| 631 | /// same width as the vector element, and the bit is set only if it is true |
| 632 | /// for all of the elements in the vector. |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 633 | bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 634 | const TargetData *TD, unsigned Depth) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 635 | APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); |
| 636 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 637 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 638 | return (KnownZero & Mask) == Mask; |
| 639 | } |
| 640 | |
| 641 | |
| 642 | |
| 643 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 644 | /// register is replicated into the other bits. We know that at least 1 bit |
| 645 | /// is always equal to the sign bit (itself), but other cases can give us |
| 646 | /// information. For example, immediately after an "ashr X, 2", we know that |
| 647 | /// the top 3 bits are all equal to each other, so we return 3. |
| 648 | /// |
| 649 | /// 'Op' must have a scalar integer type. |
| 650 | /// |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 651 | unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, |
| 652 | unsigned Depth) { |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 653 | assert((TD || V->getType()->isIntOrIntVectorTy()) && |
Dan Gohman | bd5ce52 | 2009-06-22 22:02:32 +0000 | [diff] [blame] | 654 | "ComputeNumSignBits requires a TargetData object to operate " |
| 655 | "on non-integer values!"); |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 656 | const Type *Ty = V->getType(); |
Dan Gohman | bd5ce52 | 2009-06-22 22:02:32 +0000 | [diff] [blame] | 657 | unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : |
| 658 | Ty->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 659 | unsigned Tmp, Tmp2; |
| 660 | unsigned FirstAnswer = 1; |
| 661 | |
Chris Lattner | d82e511 | 2008-06-02 18:39:07 +0000 | [diff] [blame] | 662 | // Note that ConstantInt is handled by the general ComputeMaskedBits case |
| 663 | // below. |
| 664 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 665 | if (Depth == 6) |
| 666 | return 1; // Limit search depth. |
| 667 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 668 | Operator *U = dyn_cast<Operator>(V); |
| 669 | switch (Operator::getOpcode(V)) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 670 | default: break; |
| 671 | case Instruction::SExt: |
Mon P Wang | 69a0080 | 2009-12-02 04:59:58 +0000 | [diff] [blame] | 672 | Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 673 | return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; |
| 674 | |
| 675 | case Instruction::AShr: |
| 676 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 677 | // ashr X, C -> adds C sign bits. |
| 678 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 679 | Tmp += C->getZExtValue(); |
| 680 | if (Tmp > TyBits) Tmp = TyBits; |
| 681 | } |
| 682 | return Tmp; |
| 683 | case Instruction::Shl: |
| 684 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 685 | // shl destroys sign bits. |
| 686 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 687 | if (C->getZExtValue() >= TyBits || // Bad shift. |
| 688 | C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. |
| 689 | return Tmp - C->getZExtValue(); |
| 690 | } |
| 691 | break; |
| 692 | case Instruction::And: |
| 693 | case Instruction::Or: |
| 694 | case Instruction::Xor: // NOT is handled here. |
| 695 | // Logical binary ops preserve the number of sign bits at the worst. |
| 696 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 697 | if (Tmp != 1) { |
| 698 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 699 | FirstAnswer = std::min(Tmp, Tmp2); |
| 700 | // We computed what we know about the sign bits as our first |
| 701 | // answer. Now proceed to the generic code that uses |
| 702 | // ComputeMaskedBits, and pick whichever answer is better. |
| 703 | } |
| 704 | break; |
| 705 | |
| 706 | case Instruction::Select: |
| 707 | Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 708 | if (Tmp == 1) return 1; // Early out. |
| 709 | Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); |
| 710 | return std::min(Tmp, Tmp2); |
| 711 | |
| 712 | case Instruction::Add: |
| 713 | // Add can have at most one carry bit. Thus we know that the output |
| 714 | // is, at worst, one more bit than the inputs. |
| 715 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 716 | if (Tmp == 1) return 1; // Early out. |
| 717 | |
| 718 | // Special case decrementing a value (ADD X, -1): |
Dan Gohman | 0001e56 | 2009-02-24 02:00:40 +0000 | [diff] [blame] | 719 | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 720 | if (CRHS->isAllOnesValue()) { |
| 721 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 722 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 723 | ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 724 | Depth+1); |
| 725 | |
| 726 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 727 | // sign bits set. |
| 728 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 729 | return TyBits; |
| 730 | |
| 731 | // If we are subtracting one from a positive number, there is no carry |
| 732 | // out of the result. |
| 733 | if (KnownZero.isNegative()) |
| 734 | return Tmp; |
| 735 | } |
| 736 | |
| 737 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 738 | if (Tmp2 == 1) return 1; |
Chris Lattner | 8d10f9d | 2010-01-07 23:44:37 +0000 | [diff] [blame] | 739 | return std::min(Tmp, Tmp2)-1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 740 | |
| 741 | case Instruction::Sub: |
| 742 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 743 | if (Tmp2 == 1) return 1; |
| 744 | |
| 745 | // Handle NEG. |
| 746 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) |
| 747 | if (CLHS->isNullValue()) { |
| 748 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 749 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 750 | ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, |
| 751 | TD, Depth+1); |
| 752 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 753 | // sign bits set. |
| 754 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 755 | return TyBits; |
| 756 | |
| 757 | // If the input is known to be positive (the sign bit is known clear), |
| 758 | // the output of the NEG has the same number of sign bits as the input. |
| 759 | if (KnownZero.isNegative()) |
| 760 | return Tmp2; |
| 761 | |
| 762 | // Otherwise, we treat this like a SUB. |
| 763 | } |
| 764 | |
| 765 | // Sub can have at most one carry bit. Thus we know that the output |
| 766 | // is, at worst, one more bit than the inputs. |
| 767 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 768 | if (Tmp == 1) return 1; // Early out. |
Chris Lattner | 8d10f9d | 2010-01-07 23:44:37 +0000 | [diff] [blame] | 769 | return std::min(Tmp, Tmp2)-1; |
| 770 | |
| 771 | case Instruction::PHI: { |
| 772 | PHINode *PN = cast<PHINode>(U); |
| 773 | // Don't analyze large in-degree PHIs. |
| 774 | if (PN->getNumIncomingValues() > 4) break; |
| 775 | |
| 776 | // Take the minimum of all incoming values. This can't infinitely loop |
| 777 | // because of our depth threshold. |
| 778 | Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); |
| 779 | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 780 | if (Tmp == 1) return Tmp; |
| 781 | Tmp = std::min(Tmp, |
Evan Cheng | 0af20d8 | 2010-03-13 02:20:29 +0000 | [diff] [blame] | 782 | ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); |
Chris Lattner | 8d10f9d | 2010-01-07 23:44:37 +0000 | [diff] [blame] | 783 | } |
| 784 | return Tmp; |
| 785 | } |
| 786 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 787 | case Instruction::Trunc: |
| 788 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 789 | // case for targets like X86. |
| 790 | break; |
| 791 | } |
| 792 | |
| 793 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 794 | // use this information. |
| 795 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 796 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 797 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 798 | |
| 799 | if (KnownZero.isNegative()) { // sign bit is 0 |
| 800 | Mask = KnownZero; |
| 801 | } else if (KnownOne.isNegative()) { // sign bit is 1; |
| 802 | Mask = KnownOne; |
| 803 | } else { |
| 804 | // Nothing known. |
| 805 | return FirstAnswer; |
| 806 | } |
| 807 | |
| 808 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 809 | // the number of identical bits in the top of the input value. |
| 810 | Mask = ~Mask; |
| 811 | Mask <<= Mask.getBitWidth()-TyBits; |
| 812 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 813 | // shifting. We don't want to return '64' as for an i32 "0". |
| 814 | return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); |
| 815 | } |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 816 | |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 817 | /// ComputeMultiple - This function computes the integer multiple of Base that |
| 818 | /// equals V. If successful, it returns true and returns the multiple in |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 819 | /// Multiple. If unsuccessful, it returns false. It looks |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 820 | /// through SExt instructions only if LookThroughSExt is true. |
| 821 | bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 822 | bool LookThroughSExt, unsigned Depth) { |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 823 | const unsigned MaxDepth = 6; |
| 824 | |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 825 | assert(V && "No Value?"); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 826 | assert(Depth <= MaxDepth && "Limit Search Depth"); |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 827 | assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 828 | |
| 829 | const Type *T = V->getType(); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 830 | |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 831 | ConstantInt *CI = dyn_cast<ConstantInt>(V); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 832 | |
| 833 | if (Base == 0) |
| 834 | return false; |
| 835 | |
| 836 | if (Base == 1) { |
| 837 | Multiple = V; |
| 838 | return true; |
| 839 | } |
| 840 | |
| 841 | ConstantExpr *CO = dyn_cast<ConstantExpr>(V); |
| 842 | Constant *BaseVal = ConstantInt::get(T, Base); |
| 843 | if (CO && CO == BaseVal) { |
| 844 | // Multiple is 1. |
| 845 | Multiple = ConstantInt::get(T, 1); |
| 846 | return true; |
| 847 | } |
| 848 | |
| 849 | if (CI && CI->getZExtValue() % Base == 0) { |
| 850 | Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); |
| 851 | return true; |
| 852 | } |
| 853 | |
| 854 | if (Depth == MaxDepth) return false; // Limit search depth. |
| 855 | |
| 856 | Operator *I = dyn_cast<Operator>(V); |
| 857 | if (!I) return false; |
| 858 | |
| 859 | switch (I->getOpcode()) { |
| 860 | default: break; |
Chris Lattner | 11fe726 | 2009-11-26 01:50:12 +0000 | [diff] [blame] | 861 | case Instruction::SExt: |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 862 | if (!LookThroughSExt) return false; |
| 863 | // otherwise fall through to ZExt |
Chris Lattner | 11fe726 | 2009-11-26 01:50:12 +0000 | [diff] [blame] | 864 | case Instruction::ZExt: |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 865 | return ComputeMultiple(I->getOperand(0), Base, Multiple, |
| 866 | LookThroughSExt, Depth+1); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 867 | case Instruction::Shl: |
| 868 | case Instruction::Mul: { |
| 869 | Value *Op0 = I->getOperand(0); |
| 870 | Value *Op1 = I->getOperand(1); |
| 871 | |
| 872 | if (I->getOpcode() == Instruction::Shl) { |
| 873 | ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); |
| 874 | if (!Op1CI) return false; |
| 875 | // Turn Op0 << Op1 into Op0 * 2^Op1 |
| 876 | APInt Op1Int = Op1CI->getValue(); |
| 877 | uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); |
| 878 | Op1 = ConstantInt::get(V->getContext(), |
| 879 | APInt(Op1Int.getBitWidth(), 0).set(BitToSet)); |
| 880 | } |
| 881 | |
| 882 | Value *Mul0 = NULL; |
| 883 | Value *Mul1 = NULL; |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 884 | bool M0 = ComputeMultiple(Op0, Base, Mul0, |
| 885 | LookThroughSExt, Depth+1); |
| 886 | bool M1 = ComputeMultiple(Op1, Base, Mul1, |
| 887 | LookThroughSExt, Depth+1); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 888 | |
| 889 | if (M0) { |
| 890 | if (isa<Constant>(Op1) && isa<Constant>(Mul0)) { |
| 891 | // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) |
| 892 | Multiple = ConstantExpr::getMul(cast<Constant>(Mul0), |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 893 | cast<Constant>(Op1)); |
| 894 | return true; |
| 895 | } |
| 896 | |
| 897 | if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) |
| 898 | if (Mul0CI->getValue() == 1) { |
| 899 | // V == Base * Op1, so return Op1 |
| 900 | Multiple = Op1; |
| 901 | return true; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | if (M1) { |
| 906 | if (isa<Constant>(Op0) && isa<Constant>(Mul1)) { |
| 907 | // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) |
| 908 | Multiple = ConstantExpr::getMul(cast<Constant>(Mul1), |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 909 | cast<Constant>(Op0)); |
| 910 | return true; |
| 911 | } |
| 912 | |
| 913 | if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) |
| 914 | if (Mul1CI->getValue() == 1) { |
| 915 | // V == Base * Op0, so return Op0 |
| 916 | Multiple = Op0; |
| 917 | return true; |
| 918 | } |
| 919 | } |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 920 | } |
| 921 | } |
| 922 | |
| 923 | // We could not determine if V is a multiple of Base. |
| 924 | return false; |
| 925 | } |
| 926 | |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 927 | /// CannotBeNegativeZero - Return true if we can prove that the specified FP |
| 928 | /// value is never equal to -0.0. |
| 929 | /// |
| 930 | /// NOTE: this function will need to be revisited when we support non-default |
| 931 | /// rounding modes! |
| 932 | /// |
| 933 | bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { |
| 934 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) |
| 935 | return !CFP->getValueAPF().isNegZero(); |
| 936 | |
| 937 | if (Depth == 6) |
| 938 | return 1; // Limit search depth. |
| 939 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 940 | const Operator *I = dyn_cast<Operator>(V); |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 941 | if (I == 0) return false; |
| 942 | |
| 943 | // (add x, 0.0) is guaranteed to return +0.0, not -0.0. |
Dan Gohman | ae3a0be | 2009-06-04 22:49:04 +0000 | [diff] [blame] | 944 | if (I->getOpcode() == Instruction::FAdd && |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 945 | isa<ConstantFP>(I->getOperand(1)) && |
| 946 | cast<ConstantFP>(I->getOperand(1))->isNullValue()) |
| 947 | return true; |
| 948 | |
| 949 | // sitofp and uitofp turn into +0.0 for zero. |
| 950 | if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) |
| 951 | return true; |
| 952 | |
| 953 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| 954 | // sqrt(-0.0) = -0.0, no other negative results are possible. |
| 955 | if (II->getIntrinsicID() == Intrinsic::sqrt) |
| 956 | return CannotBeNegativeZero(II->getOperand(1), Depth+1); |
| 957 | |
| 958 | if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| 959 | if (const Function *F = CI->getCalledFunction()) { |
| 960 | if (F->isDeclaration()) { |
Daniel Dunbar | f0443c1 | 2009-07-26 08:34:35 +0000 | [diff] [blame] | 961 | // abs(x) != -0.0 |
| 962 | if (F->getName() == "abs") return true; |
Dale Johannesen | 9d06175 | 2009-09-25 20:54:50 +0000 | [diff] [blame] | 963 | // fabs[lf](x) != -0.0 |
| 964 | if (F->getName() == "fabs") return true; |
| 965 | if (F->getName() == "fabsf") return true; |
| 966 | if (F->getName() == "fabsl") return true; |
| 967 | if (F->getName() == "sqrt" || F->getName() == "sqrtf" || |
| 968 | F->getName() == "sqrtl") |
| 969 | return CannotBeNegativeZero(CI->getOperand(1), Depth+1); |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 970 | } |
| 971 | } |
| 972 | |
| 973 | return false; |
| 974 | } |
| 975 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 976 | |
| 977 | /// GetLinearExpression - Analyze the specified value as a linear expression: |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 978 | /// "A*V + B", where A and B are constant integers. Return the scale and offset |
| 979 | /// values as APInts and return V as a Value*. The incoming Value is known to |
| 980 | /// have IntegerType. Note that this looks through extends, so the high bits |
| 981 | /// may not be represented in the result. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 982 | static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 983 | const TargetData *TD, unsigned Depth) { |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 984 | assert(V->getType()->isIntegerTy() && "Not an integer value"); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 985 | |
| 986 | // Limit our recursion depth. |
| 987 | if (Depth == 6) { |
| 988 | Scale = 1; |
| 989 | Offset = 0; |
| 990 | return V; |
| 991 | } |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 992 | |
| 993 | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { |
| 994 | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { |
| 995 | switch (BOp->getOpcode()) { |
| 996 | default: break; |
| 997 | case Instruction::Or: |
| 998 | // X|C == X+C if all the bits in C are unset in X. Otherwise we can't |
| 999 | // analyze it. |
| 1000 | if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD)) |
| 1001 | break; |
| 1002 | // FALL THROUGH. |
| 1003 | case Instruction::Add: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1004 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1005 | Offset += RHSC->getValue(); |
| 1006 | return V; |
| 1007 | case Instruction::Mul: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1008 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1009 | Offset *= RHSC->getValue(); |
| 1010 | Scale *= RHSC->getValue(); |
| 1011 | return V; |
| 1012 | case Instruction::Shl: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1013 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1014 | Offset <<= RHSC->getValue().getLimitedValue(); |
| 1015 | Scale <<= RHSC->getValue().getLimitedValue(); |
| 1016 | return V; |
| 1017 | } |
| 1018 | } |
| 1019 | } |
| 1020 | |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1021 | // Since clients don't care about the high bits of the value, just scales and |
| 1022 | // offsets, we can look through extensions. |
| 1023 | if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { |
| 1024 | Value *CastOp = cast<CastInst>(V)->getOperand(0); |
| 1025 | unsigned OldWidth = Scale.getBitWidth(); |
| 1026 | unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); |
| 1027 | Scale.trunc(SmallWidth); |
| 1028 | Offset.trunc(SmallWidth); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1029 | Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1); |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1030 | Scale.zext(OldWidth); |
| 1031 | Offset.zext(OldWidth); |
| 1032 | return Result; |
| 1033 | } |
| 1034 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1035 | Scale = 1; |
| 1036 | Offset = 0; |
| 1037 | return V; |
| 1038 | } |
| 1039 | |
| 1040 | /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it |
| 1041 | /// into a base pointer with a constant offset and a number of scaled symbolic |
| 1042 | /// offsets. |
| 1043 | /// |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1044 | /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in |
| 1045 | /// the VarIndices vector) are Value*'s that are known to be scaled by the |
| 1046 | /// specified amount, but which may have other unrepresented high bits. As such, |
| 1047 | /// the gep cannot necessarily be reconstructed from its decomposed form. |
| 1048 | /// |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1049 | /// When TargetData is around, this function is capable of analyzing everything |
| 1050 | /// that Value::getUnderlyingObject() can look through. When not, it just looks |
| 1051 | /// through pointer casts. |
| 1052 | /// |
| 1053 | const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, |
| 1054 | SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices, |
| 1055 | const TargetData *TD) { |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1056 | // Limit recursion depth to limit compile time in crazy cases. |
| 1057 | unsigned MaxLookup = 6; |
| 1058 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1059 | BaseOffs = 0; |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1060 | do { |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1061 | // See if this is a bitcast or GEP. |
| 1062 | const Operator *Op = dyn_cast<Operator>(V); |
| 1063 | if (Op == 0) { |
| 1064 | // The only non-operator case we can handle are GlobalAliases. |
| 1065 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| 1066 | if (!GA->mayBeOverridden()) { |
| 1067 | V = GA->getAliasee(); |
| 1068 | continue; |
| 1069 | } |
| 1070 | } |
| 1071 | return V; |
| 1072 | } |
| 1073 | |
| 1074 | if (Op->getOpcode() == Instruction::BitCast) { |
| 1075 | V = Op->getOperand(0); |
| 1076 | continue; |
| 1077 | } |
| 1078 | |
| 1079 | const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); |
| 1080 | if (GEPOp == 0) |
| 1081 | return V; |
| 1082 | |
| 1083 | // Don't attempt to analyze GEPs over unsized objects. |
| 1084 | if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) |
| 1085 | ->getElementType()->isSized()) |
| 1086 | return V; |
| 1087 | |
| 1088 | // If we are lacking TargetData information, we can't compute the offets of |
| 1089 | // elements computed by GEPs. However, we can handle bitcast equivalent |
| 1090 | // GEPs. |
| 1091 | if (!TD) { |
| 1092 | if (!GEPOp->hasAllZeroIndices()) |
| 1093 | return V; |
| 1094 | V = GEPOp->getOperand(0); |
| 1095 | continue; |
| 1096 | } |
| 1097 | |
| 1098 | // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. |
| 1099 | gep_type_iterator GTI = gep_type_begin(GEPOp); |
| 1100 | for (User::const_op_iterator I = GEPOp->op_begin()+1, |
| 1101 | E = GEPOp->op_end(); I != E; ++I) { |
| 1102 | Value *Index = *I; |
| 1103 | // Compute the (potentially symbolic) offset in bytes for this index. |
| 1104 | if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { |
| 1105 | // For a struct, add the member offset. |
| 1106 | unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); |
| 1107 | if (FieldNo == 0) continue; |
| 1108 | |
| 1109 | BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); |
| 1110 | continue; |
| 1111 | } |
| 1112 | |
| 1113 | // For an array/pointer, add the element offset, explicitly scaled. |
| 1114 | if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { |
| 1115 | if (CIdx->isZero()) continue; |
| 1116 | BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); |
| 1117 | continue; |
| 1118 | } |
| 1119 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1120 | uint64_t Scale = TD->getTypeAllocSize(*GTI); |
| 1121 | |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1122 | // Use GetLinearExpression to decompose the index into a C1*V+C2 form. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1123 | unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); |
| 1124 | APInt IndexScale(Width, 0), IndexOffset(Width, 0); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1125 | Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1126 | |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1127 | // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. |
| 1128 | // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1129 | BaseOffs += IndexOffset.getZExtValue()*Scale; |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1130 | Scale *= IndexScale.getZExtValue(); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1131 | |
| 1132 | |
| 1133 | // If we already had an occurrance of this index variable, merge this |
| 1134 | // scale into it. For example, we want to handle: |
| 1135 | // A[x][x] -> x*16 + x*4 -> x*20 |
| 1136 | // This also ensures that 'x' only appears in the index list once. |
| 1137 | for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { |
| 1138 | if (VarIndices[i].first == Index) { |
| 1139 | Scale += VarIndices[i].second; |
| 1140 | VarIndices.erase(VarIndices.begin()+i); |
| 1141 | break; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | // Make sure that we have a scale that makes sense for this target's |
| 1146 | // pointer size. |
| 1147 | if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { |
| 1148 | Scale <<= ShiftBits; |
| 1149 | Scale >>= ShiftBits; |
| 1150 | } |
| 1151 | |
| 1152 | if (Scale) |
| 1153 | VarIndices.push_back(std::make_pair(Index, Scale)); |
| 1154 | } |
| 1155 | |
| 1156 | // Analyze the base pointer next. |
| 1157 | V = GEPOp->getOperand(0); |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1158 | } while (--MaxLookup); |
| 1159 | |
| 1160 | // If the chain of expressions is too deep, just return early. |
| 1161 | return V; |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1162 | } |
| 1163 | |
| 1164 | |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1165 | // This is the recursive version of BuildSubAggregate. It takes a few different |
| 1166 | // arguments. Idxs is the index within the nested struct From that we are |
| 1167 | // looking at now (which is of type IndexedType). IdxSkip is the number of |
| 1168 | // indices from Idxs that should be left out when inserting into the resulting |
| 1169 | // struct. To is the result struct built so far, new insertvalue instructions |
| 1170 | // build on that. |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1171 | static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, |
| 1172 | SmallVector<unsigned, 10> &Idxs, |
| 1173 | unsigned IdxSkip, |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1174 | Instruction *InsertBefore) { |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1175 | const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); |
| 1176 | if (STy) { |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1177 | // Save the original To argument so we can modify it |
| 1178 | Value *OrigTo = To; |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1179 | // General case, the type indexed by Idxs is a struct |
| 1180 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 1181 | // Process each struct element recursively |
| 1182 | Idxs.push_back(i); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1183 | Value *PrevTo = To; |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1184 | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1185 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1186 | Idxs.pop_back(); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1187 | if (!To) { |
| 1188 | // Couldn't find any inserted value for this index? Cleanup |
| 1189 | while (PrevTo != OrigTo) { |
| 1190 | InsertValueInst* Del = cast<InsertValueInst>(PrevTo); |
| 1191 | PrevTo = Del->getAggregateOperand(); |
| 1192 | Del->eraseFromParent(); |
| 1193 | } |
| 1194 | // Stop processing elements |
| 1195 | break; |
| 1196 | } |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1197 | } |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1198 | // If we succesfully found a value for each of our subaggregates |
| 1199 | if (To) |
| 1200 | return To; |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1201 | } |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1202 | // Base case, the type indexed by SourceIdxs is not a struct, or not all of |
| 1203 | // the struct's elements had a value that was inserted directly. In the latter |
| 1204 | // case, perhaps we can't determine each of the subelements individually, but |
| 1205 | // we might be able to find the complete struct somewhere. |
| 1206 | |
| 1207 | // Find the value that is at that particular spot |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1208 | Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1209 | |
| 1210 | if (!V) |
| 1211 | return NULL; |
| 1212 | |
| 1213 | // Insert the value in the new (sub) aggregrate |
| 1214 | return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, |
| 1215 | Idxs.end(), "tmp", InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1216 | } |
| 1217 | |
| 1218 | // This helper takes a nested struct and extracts a part of it (which is again a |
| 1219 | // struct) into a new value. For example, given the struct: |
| 1220 | // { a, { b, { c, d }, e } } |
| 1221 | // and the indices "1, 1" this returns |
| 1222 | // { c, d }. |
| 1223 | // |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1224 | // It does this by inserting an insertvalue for each element in the resulting |
| 1225 | // struct, as opposed to just inserting a single struct. This will only work if |
| 1226 | // each of the elements of the substruct are known (ie, inserted into From by an |
| 1227 | // insertvalue instruction somewhere). |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1228 | // |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1229 | // All inserted insertvalue instructions are inserted before InsertBefore |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1230 | static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1231 | const unsigned *idx_end, |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1232 | Instruction *InsertBefore) { |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1233 | assert(InsertBefore && "Must have someplace to insert!"); |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1234 | const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), |
| 1235 | idx_begin, |
| 1236 | idx_end); |
Owen Anderson | 9e9a0d5 | 2009-07-30 23:03:37 +0000 | [diff] [blame] | 1237 | Value *To = UndefValue::get(IndexedType); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1238 | SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); |
| 1239 | unsigned IdxSkip = Idxs.size(); |
| 1240 | |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1241 | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1242 | } |
| 1243 | |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1244 | /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if |
| 1245 | /// the scalar value indexed is already around as a register, for example if it |
| 1246 | /// were inserted directly into the aggregrate. |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1247 | /// |
| 1248 | /// If InsertBefore is not null, this function will duplicate (modified) |
| 1249 | /// insertvalues when a part of a nested struct is extracted. |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1250 | Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1251 | const unsigned *idx_end, Instruction *InsertBefore) { |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1252 | // Nothing to index? Just return V then (this is useful at the end of our |
| 1253 | // recursion) |
| 1254 | if (idx_begin == idx_end) |
| 1255 | return V; |
| 1256 | // We have indices, so V should have an indexable type |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 1257 | assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1258 | && "Not looking at a struct or array?"); |
| 1259 | assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) |
| 1260 | && "Invalid indices for type?"); |
| 1261 | const CompositeType *PTy = cast<CompositeType>(V->getType()); |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1262 | |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1263 | if (isa<UndefValue>(V)) |
Owen Anderson | 9e9a0d5 | 2009-07-30 23:03:37 +0000 | [diff] [blame] | 1264 | return UndefValue::get(ExtractValueInst::getIndexedType(PTy, |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1265 | idx_begin, |
| 1266 | idx_end)); |
| 1267 | else if (isa<ConstantAggregateZero>(V)) |
Owen Anderson | a7235ea | 2009-07-31 20:28:14 +0000 | [diff] [blame] | 1268 | return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1269 | idx_begin, |
| 1270 | idx_end)); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1271 | else if (Constant *C = dyn_cast<Constant>(V)) { |
| 1272 | if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) |
| 1273 | // Recursively process this constant |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1274 | return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1275 | idx_end, InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1276 | } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { |
| 1277 | // Loop the indices for the insertvalue instruction in parallel with the |
| 1278 | // requested indices |
| 1279 | const unsigned *req_idx = idx_begin; |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1280 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
| 1281 | i != e; ++i, ++req_idx) { |
Duncan Sands | 9954c76 | 2008-06-19 08:47:31 +0000 | [diff] [blame] | 1282 | if (req_idx == idx_end) { |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1283 | if (InsertBefore) |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1284 | // The requested index identifies a part of a nested aggregate. Handle |
| 1285 | // this specially. For example, |
| 1286 | // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 |
| 1287 | // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 |
| 1288 | // %C = extractvalue {i32, { i32, i32 } } %B, 1 |
| 1289 | // This can be changed into |
| 1290 | // %A = insertvalue {i32, i32 } undef, i32 10, 0 |
| 1291 | // %C = insertvalue {i32, i32 } %A, i32 11, 1 |
| 1292 | // which allows the unused 0,0 element from the nested struct to be |
| 1293 | // removed. |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1294 | return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1295 | else |
| 1296 | // We can't handle this without inserting insertvalues |
| 1297 | return 0; |
Duncan Sands | 9954c76 | 2008-06-19 08:47:31 +0000 | [diff] [blame] | 1298 | } |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1299 | |
| 1300 | // This insert value inserts something else than what we are looking for. |
| 1301 | // See if the (aggregrate) value inserted into has the value we are |
| 1302 | // looking for, then. |
| 1303 | if (*req_idx != *i) |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1304 | return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1305 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1306 | } |
| 1307 | // If we end up here, the indices of the insertvalue match with those |
| 1308 | // requested (though possibly only partially). Now we recursively look at |
| 1309 | // the inserted value, passing any remaining indices. |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1310 | return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1311 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1312 | } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { |
| 1313 | // If we're extracting a value from an aggregrate that was extracted from |
| 1314 | // something else, we can extract from that something else directly instead. |
| 1315 | // However, we will need to chain I's indices with the requested indices. |
| 1316 | |
| 1317 | // Calculate the number of indices required |
| 1318 | unsigned size = I->getNumIndices() + (idx_end - idx_begin); |
| 1319 | // Allocate some space to put the new indices in |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1320 | SmallVector<unsigned, 5> Idxs; |
| 1321 | Idxs.reserve(size); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1322 | // Add indices from the extract value instruction |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1323 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1324 | i != e; ++i) |
| 1325 | Idxs.push_back(*i); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1326 | |
| 1327 | // Add requested indices |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1328 | for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) |
| 1329 | Idxs.push_back(*i); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1330 | |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1331 | assert(Idxs.size() == size |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1332 | && "Number of indices added not correct?"); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1333 | |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1334 | return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1335 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1336 | } |
| 1337 | // Otherwise, we don't know (such as, extracting from a function return value |
| 1338 | // or load instruction) |
| 1339 | return 0; |
| 1340 | } |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1341 | |
| 1342 | /// GetConstantStringInfo - This function computes the length of a |
| 1343 | /// null-terminated C string pointed to by V. If successful, it returns true |
| 1344 | /// and returns the string in Str. If unsuccessful, it returns false. |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1345 | bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, |
| 1346 | uint64_t Offset, |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1347 | bool StopAtNul) { |
| 1348 | // If V is NULL then return false; |
| 1349 | if (V == NULL) return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1350 | |
| 1351 | // Look through bitcast instructions. |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1352 | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1353 | return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); |
| 1354 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1355 | // If the value is not a GEP instruction nor a constant expression with a |
| 1356 | // GEP instruction, then return false because ConstantArray can't occur |
| 1357 | // any other way |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1358 | const User *GEP = 0; |
| 1359 | if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1360 | GEP = GEPI; |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1361 | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1362 | if (CE->getOpcode() == Instruction::BitCast) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1363 | return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); |
| 1364 | if (CE->getOpcode() != Instruction::GetElementPtr) |
| 1365 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1366 | GEP = CE; |
| 1367 | } |
| 1368 | |
| 1369 | if (GEP) { |
| 1370 | // Make sure the GEP has exactly three arguments. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1371 | if (GEP->getNumOperands() != 3) |
| 1372 | return false; |
| 1373 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1374 | // Make sure the index-ee is a pointer to array of i8. |
| 1375 | const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); |
| 1376 | const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 1377 | if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1378 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1379 | |
| 1380 | // Check to make sure that the first operand of the GEP is an integer and |
| 1381 | // has value 0 so that we are sure we're indexing into the initializer. |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1382 | const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1383 | if (FirstIdx == 0 || !FirstIdx->isZero()) |
| 1384 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1385 | |
| 1386 | // If the second index isn't a ConstantInt, then this is a variable index |
| 1387 | // into the array. If this occurs, we can't say anything meaningful about |
| 1388 | // the string. |
| 1389 | uint64_t StartIdx = 0; |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1390 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1391 | StartIdx = CI->getZExtValue(); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1392 | else |
| 1393 | return false; |
| 1394 | return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1395 | StopAtNul); |
| 1396 | } |
| 1397 | |
| 1398 | // The GEP instruction, constant or instruction, must reference a global |
| 1399 | // variable that is a constant and is initialized. The referenced constant |
| 1400 | // initializer is the array that we'll use for optimization. |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1401 | const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); |
Dan Gohman | 8255573 | 2009-08-19 18:20:44 +0000 | [diff] [blame] | 1402 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1403 | return false; |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1404 | const Constant *GlobalInit = GV->getInitializer(); |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1405 | |
| 1406 | // Handle the ConstantAggregateZero case |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1407 | if (isa<ConstantAggregateZero>(GlobalInit)) { |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1408 | // This is a degenerate case. The initializer is constant zero so the |
| 1409 | // length of the string must be zero. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1410 | Str.clear(); |
| 1411 | return true; |
| 1412 | } |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1413 | |
| 1414 | // Must be a Constant Array |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1415 | const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 1416 | if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1417 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1418 | |
| 1419 | // Get the number of elements in the array |
| 1420 | uint64_t NumElts = Array->getType()->getNumElements(); |
| 1421 | |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1422 | if (Offset > NumElts) |
| 1423 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1424 | |
| 1425 | // Traverse the constant array from 'Offset' which is the place the GEP refers |
| 1426 | // to in the array. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1427 | Str.reserve(NumElts-Offset); |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1428 | for (unsigned i = Offset; i != NumElts; ++i) { |
Dan Gohman | 0a60fa3 | 2010-04-14 22:20:45 +0000 | [diff] [blame^] | 1429 | const Constant *Elt = Array->getOperand(i); |
| 1430 | const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1431 | if (!CI) // This array isn't suitable, non-int initializer. |
| 1432 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1433 | if (StopAtNul && CI->isZero()) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1434 | return true; // we found end of string, success! |
| 1435 | Str += (char)CI->getZExtValue(); |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1436 | } |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1437 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1438 | // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1439 | return true; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1440 | } |
Eric Christopher | 25ec483 | 2010-03-05 06:58:57 +0000 | [diff] [blame] | 1441 | |
| 1442 | // These next two are very similar to the above, but also look through PHI |
| 1443 | // nodes. |
| 1444 | // TODO: See if we can integrate these two together. |
| 1445 | |
| 1446 | /// GetStringLengthH - If we can compute the length of the string pointed to by |
| 1447 | /// the specified pointer, return 'len+1'. If we can't, return 0. |
| 1448 | static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { |
| 1449 | // Look through noop bitcast instructions. |
| 1450 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) |
| 1451 | return GetStringLengthH(BCI->getOperand(0), PHIs); |
| 1452 | |
| 1453 | // If this is a PHI node, there are two cases: either we have already seen it |
| 1454 | // or we haven't. |
| 1455 | if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| 1456 | if (!PHIs.insert(PN)) |
| 1457 | return ~0ULL; // already in the set. |
| 1458 | |
| 1459 | // If it was new, see if all the input strings are the same length. |
| 1460 | uint64_t LenSoFar = ~0ULL; |
| 1461 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 1462 | uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); |
| 1463 | if (Len == 0) return 0; // Unknown length -> unknown. |
| 1464 | |
| 1465 | if (Len == ~0ULL) continue; |
| 1466 | |
| 1467 | if (Len != LenSoFar && LenSoFar != ~0ULL) |
| 1468 | return 0; // Disagree -> unknown. |
| 1469 | LenSoFar = Len; |
| 1470 | } |
| 1471 | |
| 1472 | // Success, all agree. |
| 1473 | return LenSoFar; |
| 1474 | } |
| 1475 | |
| 1476 | // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) |
| 1477 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { |
| 1478 | uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); |
| 1479 | if (Len1 == 0) return 0; |
| 1480 | uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); |
| 1481 | if (Len2 == 0) return 0; |
| 1482 | if (Len1 == ~0ULL) return Len2; |
| 1483 | if (Len2 == ~0ULL) return Len1; |
| 1484 | if (Len1 != Len2) return 0; |
| 1485 | return Len1; |
| 1486 | } |
| 1487 | |
| 1488 | // If the value is not a GEP instruction nor a constant expression with a |
| 1489 | // GEP instruction, then return unknown. |
| 1490 | User *GEP = 0; |
| 1491 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { |
| 1492 | GEP = GEPI; |
| 1493 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| 1494 | if (CE->getOpcode() != Instruction::GetElementPtr) |
| 1495 | return 0; |
| 1496 | GEP = CE; |
| 1497 | } else { |
| 1498 | return 0; |
| 1499 | } |
| 1500 | |
| 1501 | // Make sure the GEP has exactly three arguments. |
| 1502 | if (GEP->getNumOperands() != 3) |
| 1503 | return 0; |
| 1504 | |
| 1505 | // Check to make sure that the first operand of the GEP is an integer and |
| 1506 | // has value 0 so that we are sure we're indexing into the initializer. |
| 1507 | if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { |
| 1508 | if (!Idx->isZero()) |
| 1509 | return 0; |
| 1510 | } else |
| 1511 | return 0; |
| 1512 | |
| 1513 | // If the second index isn't a ConstantInt, then this is a variable index |
| 1514 | // into the array. If this occurs, we can't say anything meaningful about |
| 1515 | // the string. |
| 1516 | uint64_t StartIdx = 0; |
| 1517 | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) |
| 1518 | StartIdx = CI->getZExtValue(); |
| 1519 | else |
| 1520 | return 0; |
| 1521 | |
| 1522 | // The GEP instruction, constant or instruction, must reference a global |
| 1523 | // variable that is a constant and is initialized. The referenced constant |
| 1524 | // initializer is the array that we'll use for optimization. |
| 1525 | GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| 1526 | if (!GV || !GV->isConstant() || !GV->hasInitializer() || |
| 1527 | GV->mayBeOverridden()) |
| 1528 | return 0; |
| 1529 | Constant *GlobalInit = GV->getInitializer(); |
| 1530 | |
| 1531 | // Handle the ConstantAggregateZero case, which is a degenerate case. The |
| 1532 | // initializer is constant zero so the length of the string must be zero. |
| 1533 | if (isa<ConstantAggregateZero>(GlobalInit)) |
| 1534 | return 1; // Len = 0 offset by 1. |
| 1535 | |
| 1536 | // Must be a Constant Array |
| 1537 | ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); |
| 1538 | if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) |
| 1539 | return false; |
| 1540 | |
| 1541 | // Get the number of elements in the array |
| 1542 | uint64_t NumElts = Array->getType()->getNumElements(); |
| 1543 | |
| 1544 | // Traverse the constant array from StartIdx (derived above) which is |
| 1545 | // the place the GEP refers to in the array. |
| 1546 | for (unsigned i = StartIdx; i != NumElts; ++i) { |
| 1547 | Constant *Elt = Array->getOperand(i); |
| 1548 | ConstantInt *CI = dyn_cast<ConstantInt>(Elt); |
| 1549 | if (!CI) // This array isn't suitable, non-int initializer. |
| 1550 | return 0; |
| 1551 | if (CI->isZero()) |
| 1552 | return i-StartIdx+1; // We found end of string, success! |
| 1553 | } |
| 1554 | |
| 1555 | return 0; // The array isn't null terminated, conservatively return 'unknown'. |
| 1556 | } |
| 1557 | |
| 1558 | /// GetStringLength - If we can compute the length of the string pointed to by |
| 1559 | /// the specified pointer, return 'len+1'. If we can't, return 0. |
| 1560 | uint64_t llvm::GetStringLength(Value *V) { |
| 1561 | if (!V->getType()->isPointerTy()) return 0; |
| 1562 | |
| 1563 | SmallPtrSet<PHINode*, 32> PHIs; |
| 1564 | uint64_t Len = GetStringLengthH(V, PHIs); |
| 1565 | // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return |
| 1566 | // an empty string as a length. |
| 1567 | return Len == ~0ULL ? 1 : Len; |
| 1568 | } |