blob: 40903c59e1d530624b98ab300ede67f838525fa1 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner92b1dfe2010-02-03 21:43:43 +000030 X86MCCodeEmitter(TargetMachine &tm)
31 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner1ac23b12010-02-05 02:18:40 +000032 // FIXME: Get this from the right place.
33 Is64BitMode = false;
Chris Lattner45762472010-02-03 21:24:49 +000034 }
35
36 ~X86MCCodeEmitter() {}
37
Chris Lattner28249d92010-02-05 01:53:19 +000038 static unsigned GetX86RegNum(const MCOperand &MO) {
39 return X86RegisterInfo::getX86RegNum(MO.getReg());
40 }
41
Chris Lattner92b1dfe2010-02-03 21:43:43 +000042 void EmitByte(unsigned char C, raw_ostream &OS) const {
43 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000044 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000045
Chris Lattner28249d92010-02-05 01:53:19 +000046 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
47 // Output the constant in little endian byte order.
48 for (unsigned i = 0; i != Size; ++i) {
49 EmitByte(Val & 255, OS);
50 Val >>= 8;
51 }
52 }
Chris Lattner0e73c392010-02-05 06:16:07 +000053
54 void EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
55 int64_t Adj, bool IsPCRel, raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000056
57 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
58 unsigned RM) {
59 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
60 return RM | (RegOpcode << 3) | (Mod << 6);
61 }
62
63 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
64 raw_ostream &OS) const {
65 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
66 }
67
Chris Lattner0e73c392010-02-05 06:16:07 +000068 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
69 raw_ostream &OS) const {
70 // SIB byte is in the same format as the ModRMByte...
71 EmitByte(ModRMByte(SS, Index, Base), OS);
72 }
73
74
Chris Lattner1ac23b12010-02-05 02:18:40 +000075 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
76 unsigned RegOpcodeField, intptr_t PCAdj,
77 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000078
Chris Lattner92b1dfe2010-02-03 21:43:43 +000079 void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
80
Chris Lattner45762472010-02-03 21:24:49 +000081};
82
83} // end anonymous namespace
84
85
86MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
87 TargetMachine &TM) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000088 return new X86MCCodeEmitter(TM);
89}
90
91
Chris Lattner1ac23b12010-02-05 02:18:40 +000092/// isDisp8 - Return true if this signed displacement fits in a 8-bit
93/// sign-extended field.
94static bool isDisp8(int Value) {
95 return Value == (signed char)Value;
96}
97
Chris Lattner0e73c392010-02-05 06:16:07 +000098void X86MCCodeEmitter::
99EmitDisplacementField(const MCOperand *RelocOp, int DispVal,
100 int64_t Adj, bool IsPCRel, raw_ostream &OS) const {
101 // If this is a simple integer displacement that doesn't require a relocation,
102 // emit it now.
103 if (!RelocOp) {
104 EmitConstant(DispVal, 4, OS);
105 return;
106 }
107
108 assert(0 && "Reloc not handled yet");
109#if 0
110 // Otherwise, this is something that requires a relocation. Emit it as such
111 // now.
112 unsigned RelocType = Is64BitMode ?
113 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
114 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
115 if (RelocOp->isGlobal()) {
116 // In 64-bit static small code model, we could potentially emit absolute.
117 // But it's probably not beneficial. If the MCE supports using RIP directly
118 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
119 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
120 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
121 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
122 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
123 Adj, Indirect);
124 } else if (RelocOp->isSymbol()) {
125 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
126 } else if (RelocOp->isCPI()) {
127 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
128 RelocOp->getOffset(), Adj);
129 } else {
130 assert(RelocOp->isJTI() && "Unexpected machine operand!");
131 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
132 }
133#endif
134}
135
136
Chris Lattner1ac23b12010-02-05 02:18:40 +0000137void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
138 unsigned RegOpcodeField,
139 intptr_t PCAdj,
140 raw_ostream &OS) const {
141 const MCOperand &Op3 = MI.getOperand(Op+3);
142 int DispVal = 0;
143 const MCOperand *DispForReloc = 0;
144
145 // Figure out what sort of displacement we have to handle here.
146 if (Op3.isImm()) {
147 DispVal = Op3.getImm();
148 } else {
Chris Lattner0e73c392010-02-05 06:16:07 +0000149 assert(0 && "Unknown operand");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000150#if 0
151 if (Op3.isGlobal()) {
152 DispForReloc = &Op3;
153 } else if (Op3.isSymbol()) {
154 DispForReloc = &Op3;
155 } else if (Op3.isCPI()) {
156 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
157 DispForReloc = &Op3;
158 } else {
159 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
160 DispVal += Op3.getOffset();
161 }
162 } else {
163 assert(Op3.isJTI());
164 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
165 DispForReloc = &Op3;
166 } else {
167 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
168 }
169#endif
170 }
171
172 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000173 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000174 const MCOperand &IndexReg = MI.getOperand(Op+2);
175 unsigned BaseReg = Base.getReg();
176
Chris Lattner0e73c392010-02-05 06:16:07 +0000177 // FIXME: Eliminate!
178 bool IsPCRel = false;
179
Chris Lattner1ac23b12010-02-05 02:18:40 +0000180 // Is a SIB byte needed?
181 // If no BaseReg, issue a RIP relative instruction only if the MCE can
182 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
183 // 2-7) and absolute references.
184 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
185 IndexReg.getReg() == 0 &&
186 (BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
187 if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
188 // Emit special case [disp32] encoding
189 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000190 EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000191 } else {
192 unsigned BaseRegNo = GetX86RegNum(Base);
193 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
194 // Emit simple indirect register encoding... [EAX] f.e.
195 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
196 } else if (!DispForReloc && isDisp8(DispVal)) {
197 // Emit the disp8 encoding... [REG+disp8]
198 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
199 EmitConstant(DispVal, 1, OS);
200 } else {
201 // Emit the most general non-SIB encoding: [REG+disp32]
202 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000203 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000204 }
205 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000206 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000207 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000208
209 // We need a SIB byte, so start by outputting the ModR/M byte first
210 assert(IndexReg.getReg() != X86::ESP &&
211 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
212
213 bool ForceDisp32 = false;
214 bool ForceDisp8 = false;
215 if (BaseReg == 0) {
216 // If there is no base register, we emit the special case SIB byte with
217 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
218 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
219 ForceDisp32 = true;
220 } else if (DispForReloc) {
221 // Emit the normal disp32 encoding.
222 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
223 ForceDisp32 = true;
224 } else if (DispVal == 0 && BaseReg != X86::EBP) {
225 // Emit no displacement ModR/M byte
226 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
227 } else if (isDisp8(DispVal)) {
228 // Emit the disp8 encoding.
229 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
230 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
231 } else {
232 // Emit the normal disp32 encoding.
233 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
234 }
235
236 // Calculate what the SS field value should be...
237 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
238 unsigned SS = SSTable[Scale.getImm()];
239
240 if (BaseReg == 0) {
241 // Handle the SIB byte for the case where there is no base, see Intel
242 // Manual 2A, table 2-7. The displacement has already been output.
243 unsigned IndexRegNo;
244 if (IndexReg.getReg())
245 IndexRegNo = GetX86RegNum(IndexReg);
246 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
247 IndexRegNo = 4;
248 EmitSIBByte(SS, IndexRegNo, 5, OS);
249 } else {
250 unsigned IndexRegNo;
251 if (IndexReg.getReg())
252 IndexRegNo = GetX86RegNum(IndexReg);
253 else
254 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
255 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS);
256 }
257
258 // Do we need to output a displacement?
259 if (ForceDisp8)
260 EmitConstant(DispVal, 1, OS);
261 else if (DispVal != 0 || ForceDisp32)
262 EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000263}
264
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000265
266void X86MCCodeEmitter::
267EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
268 unsigned Opcode = MI.getOpcode();
269 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000270 unsigned TSFlags = Desc.TSFlags;
271
272 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
273 // in order to provide diffability.
274
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000275 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000276 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000277 EmitByte(0xF0, OS);
278
279 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000280 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000281 default: assert(0 && "Invalid segment!");
282 case 0: break; // No segment override!
283 case X86II::FS:
284 EmitByte(0x64, OS);
285 break;
286 case X86II::GS:
287 EmitByte(0x65, OS);
288 break;
289 }
290
Chris Lattner1e80f402010-02-03 21:57:59 +0000291 // Emit the repeat opcode prefix as needed.
292 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
293 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000294
Chris Lattner1e80f402010-02-03 21:57:59 +0000295 // Emit the operand size opcode prefix as needed.
296 if (TSFlags & X86II::OpSize)
297 EmitByte(0x66, OS);
298
299 // Emit the address size opcode prefix as needed.
300 if (TSFlags & X86II::AdSize)
301 EmitByte(0x67, OS);
302
303 bool Need0FPrefix = false;
304 switch (TSFlags & X86II::Op0Mask) {
305 default: assert(0 && "Invalid prefix!");
306 case 0: break; // No prefix!
307 case X86II::REP: break; // already handled.
308 case X86II::TB: // Two-byte opcode prefix
309 case X86II::T8: // 0F 38
310 case X86II::TA: // 0F 3A
311 Need0FPrefix = true;
312 break;
313 case X86II::TF: // F2 0F 38
314 EmitByte(0xF2, OS);
315 Need0FPrefix = true;
316 break;
317 case X86II::XS: // F3 0F
318 EmitByte(0xF3, OS);
319 Need0FPrefix = true;
320 break;
321 case X86II::XD: // F2 0F
322 EmitByte(0xF2, OS);
323 Need0FPrefix = true;
324 break;
325 case X86II::D8: EmitByte(0xD8, OS); break;
326 case X86II::D9: EmitByte(0xD9, OS); break;
327 case X86II::DA: EmitByte(0xDA, OS); break;
328 case X86II::DB: EmitByte(0xDB, OS); break;
329 case X86II::DC: EmitByte(0xDC, OS); break;
330 case X86II::DD: EmitByte(0xDD, OS); break;
331 case X86II::DE: EmitByte(0xDE, OS); break;
332 case X86II::DF: EmitByte(0xDF, OS); break;
333 }
334
335 // Handle REX prefix.
336#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
337 if (Is64BitMode) {
338 if (unsigned REX = X86InstrInfo::determineREX(MI))
339 EmitByte(0x40 | REX, OS);
340 }
341#endif
342
343 // 0x0F escape code must be emitted just before the opcode.
344 if (Need0FPrefix)
345 EmitByte(0x0F, OS);
346
347 // FIXME: Pull this up into previous switch if REX can be moved earlier.
348 switch (TSFlags & X86II::Op0Mask) {
349 case X86II::TF: // F2 0F 38
350 case X86II::T8: // 0F 38
351 EmitByte(0x38, OS);
352 break;
353 case X86II::TA: // 0F 3A
354 EmitByte(0x3A, OS);
355 break;
356 }
357
358 // If this is a two-address instruction, skip one of the register operands.
359 unsigned NumOps = Desc.getNumOperands();
360 unsigned CurOp = 0;
361 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
362 ++CurOp;
363 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
364 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
365 --NumOps;
366
Chris Lattner1ac23b12010-02-05 02:18:40 +0000367 // FIXME: Can we kill off MRMInitReg??
368
Chris Lattner1e80f402010-02-03 21:57:59 +0000369 unsigned char BaseOpcode = X86InstrInfo::getBaseOpcodeFor(Desc);
370 switch (TSFlags & X86II::FormMask) {
Chris Lattner1ac23b12010-02-05 02:18:40 +0000371 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
372 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000373 case X86II::RawFrm: {
374 EmitByte(BaseOpcode, OS);
375
376 if (CurOp == NumOps)
377 break;
378
Chris Lattner28249d92010-02-05 01:53:19 +0000379 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000380 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000381 }
Chris Lattner28249d92010-02-05 01:53:19 +0000382
383 case X86II::AddRegFrm: {
384 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
385 if (CurOp == NumOps)
386 break;
387
388 const MCOperand &MO1 = MI.getOperand(CurOp++);
389 if (MO1.isImm()) {
390 unsigned Size = X86InstrInfo::sizeOfImm(&Desc);
391 EmitConstant(MO1.getImm(), Size, OS);
392 break;
393 }
394
395 assert(0 && "Unimpl AddRegFrm expr");
396 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000397 }
Chris Lattner28249d92010-02-05 01:53:19 +0000398
399 case X86II::MRMDestReg:
400 EmitByte(BaseOpcode, OS);
401 EmitRegModRMByte(MI.getOperand(CurOp),
402 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
403 CurOp += 2;
404 if (CurOp != NumOps)
405 EmitConstant(MI.getOperand(CurOp++).getImm(),
406 X86InstrInfo::sizeOfImm(&Desc), OS);
407 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000408
409 case X86II::MRMDestMem:
410 EmitByte(BaseOpcode, OS);
411 EmitMemModRMByte(MI, CurOp,
412 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
413 0, OS);
414 CurOp += X86AddrNumOperands + 1;
415 if (CurOp != NumOps)
416 EmitConstant(MI.getOperand(CurOp++).getImm(),
417 X86InstrInfo::sizeOfImm(&Desc), OS);
418 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000419 }
420
421#ifndef NDEBUG
422 if (!Desc.isVariadic() && CurOp != NumOps) {
423 errs() << "Cannot encode all operands of: ";
424 MI.dump();
425 errs() << '\n';
426 abort();
427 }
428#endif
Chris Lattner45762472010-02-03 21:24:49 +0000429}