blob: 054c3b631b96a5b7b2203c39b687962635e64ba5 [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000012#include "llvm/Function.h"
13#include "llvm/CodeGen/MachineFrameInfo.h"
14#include "llvm/CodeGen/MachineInstrBuilder.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000016#include "llvm/Support/CommandLine.h"
17#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000018#include "llvm/Support/ErrorHandling.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000019#include "llvm/Support/raw_ostream.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000020#include "llvm/Target/TargetInstrInfo.h"
David Greene2d4e6d32009-07-28 16:49:24 +000021#include "llvm/Target/TargetLowering.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000022#include "llvm/ADT/DepthFirstIterator.h"
23#include "llvm/ADT/Statistic.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000024#include <algorithm>
25using namespace llvm;
26
27STATISTIC(NumDSE , "Number of dead stores elided");
28STATISTIC(NumDSS , "Number of dead spill slots removed");
29STATISTIC(NumCommutes, "Number of instructions commuted");
30STATISTIC(NumDRM , "Number of re-materializable defs elided");
31STATISTIC(NumStores , "Number of stores added");
32STATISTIC(NumPSpills , "Number of physical register spills");
33STATISTIC(NumOmitted , "Number of reloads omited");
34STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
35STATISTIC(NumCopified, "Number of available reloads turned into copies");
36STATISTIC(NumReMats , "Number of re-materialization");
37STATISTIC(NumLoads , "Number of loads added");
38STATISTIC(NumReused , "Number of values reused");
39STATISTIC(NumDCE , "Number of copies elided");
40STATISTIC(NumSUnfold , "Number of stores unfolded");
41STATISTIC(NumModRefUnfold, "Number of modref unfolded");
42
43namespace {
Lang Hamesac276402009-06-04 18:45:36 +000044 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000045}
46
47static cl::opt<RewriterName>
48RewriterOpt("rewriter",
49 cl::desc("Rewriter to use: (default: local)"),
50 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000051 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000052 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000053 clEnumValEnd),
54 cl::init(local));
55
Dan Gohman7db949d2009-08-07 01:32:21 +000056static cl::opt<bool>
David Greene2d4e6d32009-07-28 16:49:24 +000057ScheduleSpills("schedule-spills",
58 cl::desc("Schedule spill code"),
59 cl::init(false));
60
Lang Hames87e3bca2009-05-06 02:36:21 +000061VirtRegRewriter::~VirtRegRewriter() {}
62
Dan Gohman7db949d2009-08-07 01:32:21 +000063namespace {
Lang Hames87e3bca2009-05-06 02:36:21 +000064
Lang Hamesf41538d2009-06-02 16:53:25 +000065/// This class is intended for use with the new spilling framework only. It
66/// rewrites vreg def/uses to use the assigned preg, but does not insert any
67/// spill code.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000068struct TrivialRewriter : public VirtRegRewriter {
Lang Hamesf41538d2009-06-02 16:53:25 +000069
70 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
71 LiveIntervals* LIs) {
Chris Lattner6456d382009-08-23 03:20:44 +000072 DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000073 DEBUG(errs() << "********** Function: "
74 << MF.getFunction()->getName() << '\n');
Chris Lattner6456d382009-08-23 03:20:44 +000075 DEBUG(errs() << "**** Machine Instrs"
76 << "(NOTE! Does not include spills and reloads!) ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +000077 DEBUG(MF.dump());
78
Lang Hamesf41538d2009-06-02 16:53:25 +000079 MachineRegisterInfo *mri = &MF.getRegInfo();
Lang Hames38283e22009-11-18 20:31:20 +000080 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
Lang Hamesf41538d2009-06-02 16:53:25 +000081
82 bool changed = false;
83
84 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
85 liItr != liEnd; ++liItr) {
86
Lang Hames38283e22009-11-18 20:31:20 +000087 const LiveInterval *li = liItr->second;
88 unsigned reg = li->reg;
89
90 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
91 if (!li->empty())
92 mri->setPhysRegUsed(reg);
93 }
94 else {
95 if (!VRM.hasPhys(reg))
96 continue;
97 unsigned pReg = VRM.getPhys(reg);
98 mri->setPhysRegUsed(pReg);
99 for (MachineRegisterInfo::reg_iterator regItr = mri->reg_begin(reg),
100 regEnd = mri->reg_end(); regItr != regEnd;) {
101 MachineOperand &mop = regItr.getOperand();
102 assert(mop.isReg() && mop.getReg() == reg && "reg_iterator broken?");
103 ++regItr;
104 unsigned subRegIdx = mop.getSubReg();
105 unsigned pRegOp = subRegIdx ? tri->getSubReg(pReg, subRegIdx) : pReg;
106 mop.setReg(pRegOp);
107 mop.setSubReg(0);
Lang Hamesf41538d2009-06-02 16:53:25 +0000108 changed = true;
109 }
110 }
Lang Hamesf41538d2009-06-02 16:53:25 +0000111 }
David Greene2d4e6d32009-07-28 16:49:24 +0000112
Chris Lattner6456d382009-08-23 03:20:44 +0000113 DEBUG(errs() << "**** Post Machine Instrs ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000114 DEBUG(MF.dump());
Lang Hamesf41538d2009-06-02 16:53:25 +0000115
116 return changed;
117 }
118
119};
120
Dan Gohman7db949d2009-08-07 01:32:21 +0000121}
122
Lang Hames87e3bca2009-05-06 02:36:21 +0000123// ************************************************************************ //
124
Dan Gohman7db949d2009-08-07 01:32:21 +0000125namespace {
126
Lang Hames87e3bca2009-05-06 02:36:21 +0000127/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
128/// from top down, keep track of which spill slots or remat are available in
129/// each register.
130///
131/// Note that not all physregs are created equal here. In particular, some
132/// physregs are reloads that we are allowed to clobber or ignore at any time.
133/// Other physregs are values that the register allocated program is using
134/// that we cannot CHANGE, but we can read if we like. We keep track of this
135/// on a per-stack-slot / remat id basis as the low bit in the value of the
136/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
137/// this bit and addAvailable sets it if.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000138class AvailableSpills {
Lang Hames87e3bca2009-05-06 02:36:21 +0000139 const TargetRegisterInfo *TRI;
140 const TargetInstrInfo *TII;
141
142 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
143 // or remat'ed virtual register values that are still available, due to
144 // being loaded or stored to, but not invalidated yet.
145 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
146
147 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
148 // indicating which stack slot values are currently held by a physreg. This
149 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
150 // physreg is modified.
151 std::multimap<unsigned, int> PhysRegsAvailable;
152
153 void disallowClobberPhysRegOnly(unsigned PhysReg);
154
155 void ClobberPhysRegOnly(unsigned PhysReg);
156public:
157 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
158 : TRI(tri), TII(tii) {
159 }
160
161 /// clear - Reset the state.
162 void clear() {
163 SpillSlotsOrReMatsAvailable.clear();
164 PhysRegsAvailable.clear();
165 }
166
167 const TargetRegisterInfo *getRegInfo() const { return TRI; }
168
169 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
170 /// available in a physical register, return that PhysReg, otherwise
171 /// return 0.
172 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
173 std::map<int, unsigned>::const_iterator I =
174 SpillSlotsOrReMatsAvailable.find(Slot);
175 if (I != SpillSlotsOrReMatsAvailable.end()) {
176 return I->second >> 1; // Remove the CanClobber bit.
177 }
178 return 0;
179 }
180
181 /// addAvailable - Mark that the specified stack slot / remat is available
182 /// in the specified physreg. If CanClobber is true, the physreg can be
183 /// modified at any time without changing the semantics of the program.
184 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
185 // If this stack slot is thought to be available in some other physreg,
186 // remove its record.
187 ModifyStackSlotOrReMat(SlotOrReMat);
188
189 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
190 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
191 (unsigned)CanClobber;
192
193 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +0000194 DEBUG(errs() << "Remembering RM#"
195 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +0000196 else
Chris Lattner6456d382009-08-23 03:20:44 +0000197 DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
198 DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000199 }
200
201 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
202 /// the value of the specified stackslot register if it desires. The
203 /// specified stack slot must be available in a physreg for this query to
204 /// make sense.
205 bool canClobberPhysRegForSS(int SlotOrReMat) const {
206 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
207 "Value not available!");
208 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
209 }
210
211 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
212 /// physical register where values for some stack slot(s) might be
213 /// available.
214 bool canClobberPhysReg(unsigned PhysReg) const {
215 std::multimap<unsigned, int>::const_iterator I =
216 PhysRegsAvailable.lower_bound(PhysReg);
217 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
218 int SlotOrReMat = I->second;
219 I++;
220 if (!canClobberPhysRegForSS(SlotOrReMat))
221 return false;
222 }
223 return true;
224 }
225
226 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
227 /// stackslot register. The register is still available but is no longer
228 /// allowed to be modifed.
229 void disallowClobberPhysReg(unsigned PhysReg);
230
231 /// ClobberPhysReg - This is called when the specified physreg changes
232 /// value. We use this to invalidate any info about stuff that lives in
233 /// it and any of its aliases.
234 void ClobberPhysReg(unsigned PhysReg);
235
236 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
237 /// slot changes. This removes information about which register the
238 /// previous value for this slot lives in (as the previous value is dead
239 /// now).
240 void ModifyStackSlotOrReMat(int SlotOrReMat);
241
242 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
243 /// into the specified MBB. Add available physical registers as potential
244 /// live-in's. If they are reused in the MBB, they will be added to the
245 /// live-in set to make register scavenger and post-allocation scheduler.
246 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
247 std::vector<MachineOperand*> &KillOps);
248};
249
Dan Gohman7db949d2009-08-07 01:32:21 +0000250}
251
Lang Hames87e3bca2009-05-06 02:36:21 +0000252// ************************************************************************ //
253
David Greene2d4e6d32009-07-28 16:49:24 +0000254// Given a location where a reload of a spilled register or a remat of
255// a constant is to be inserted, attempt to find a safe location to
256// insert the load at an earlier point in the basic-block, to hide
257// latency of the load and to avoid address-generation interlock
258// issues.
259static MachineBasicBlock::iterator
260ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
261 MachineBasicBlock::iterator const Begin,
262 unsigned PhysReg,
263 const TargetRegisterInfo *TRI,
264 bool DoReMat,
265 int SSorRMId,
266 const TargetInstrInfo *TII,
267 const MachineFunction &MF)
268{
269 if (!ScheduleSpills)
270 return InsertLoc;
271
272 // Spill backscheduling is of primary interest to addresses, so
273 // don't do anything if the register isn't in the register class
274 // used for pointers.
275
276 const TargetLowering *TL = MF.getTarget().getTargetLowering();
277
278 if (!TL->isTypeLegal(TL->getPointerTy()))
279 // Believe it or not, this is true on PIC16.
280 return InsertLoc;
281
282 const TargetRegisterClass *ptrRegClass =
283 TL->getRegClassFor(TL->getPointerTy());
284 if (!ptrRegClass->contains(PhysReg))
285 return InsertLoc;
286
287 // Scan upwards through the preceding instructions. If an instruction doesn't
288 // reference the stack slot or the register we're loading, we can
289 // backschedule the reload up past it.
290 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
291 while (NewInsertLoc != Begin) {
292 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
293 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
294 MachineOperand &Op = Prev->getOperand(i);
295 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
296 goto stop;
297 }
298 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
299 Prev->findRegisterDefOperand(PhysReg))
300 goto stop;
301 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
302 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
303 Prev->findRegisterDefOperand(*Alias))
304 goto stop;
305 NewInsertLoc = Prev;
306 }
307stop:;
308
309 // If we made it to the beginning of the block, turn around and move back
310 // down just past any existing reloads. They're likely to be reloads/remats
311 // for instructions earlier than what our current reload/remat is for, so
312 // they should be scheduled earlier.
313 if (NewInsertLoc == Begin) {
314 int FrameIdx;
315 while (InsertLoc != NewInsertLoc &&
316 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
317 TII->isTriviallyReMaterializable(NewInsertLoc)))
318 ++NewInsertLoc;
319 }
320
321 return NewInsertLoc;
322}
Dan Gohman7db949d2009-08-07 01:32:21 +0000323
324namespace {
325
Lang Hames87e3bca2009-05-06 02:36:21 +0000326// ReusedOp - For each reused operand, we keep track of a bit of information,
327// in case we need to rollback upon processing a new operand. See comments
328// below.
329struct ReusedOp {
330 // The MachineInstr operand that reused an available value.
331 unsigned Operand;
332
333 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
334 unsigned StackSlotOrReMat;
335
336 // PhysRegReused - The physical register the value was available in.
337 unsigned PhysRegReused;
338
339 // AssignedPhysReg - The physreg that was assigned for use by the reload.
340 unsigned AssignedPhysReg;
341
342 // VirtReg - The virtual register itself.
343 unsigned VirtReg;
344
345 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
346 unsigned vreg)
347 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
348 AssignedPhysReg(apr), VirtReg(vreg) {}
349};
350
351/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
352/// is reused instead of reloaded.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000353class ReuseInfo {
Lang Hames87e3bca2009-05-06 02:36:21 +0000354 MachineInstr &MI;
355 std::vector<ReusedOp> Reuses;
356 BitVector PhysRegsClobbered;
357public:
358 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
359 PhysRegsClobbered.resize(tri->getNumRegs());
360 }
361
362 bool hasReuses() const {
363 return !Reuses.empty();
364 }
365
366 /// addReuse - If we choose to reuse a virtual register that is already
367 /// available instead of reloading it, remember that we did so.
368 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
369 unsigned PhysRegReused, unsigned AssignedPhysReg,
370 unsigned VirtReg) {
371 // If the reload is to the assigned register anyway, no undo will be
372 // required.
373 if (PhysRegReused == AssignedPhysReg) return;
374
375 // Otherwise, remember this.
376 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
377 AssignedPhysReg, VirtReg));
378 }
379
380 void markClobbered(unsigned PhysReg) {
381 PhysRegsClobbered.set(PhysReg);
382 }
383
384 bool isClobbered(unsigned PhysReg) const {
385 return PhysRegsClobbered.test(PhysReg);
386 }
387
388 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
389 /// is some other operand that is using the specified register, either pick
390 /// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000391 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
392 MachineFunction &MF, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000393 AvailableSpills &Spills,
394 std::vector<MachineInstr*> &MaybeDeadStores,
395 SmallSet<unsigned, 8> &Rejected,
396 BitVector &RegKills,
397 std::vector<MachineOperand*> &KillOps,
398 VirtRegMap &VRM);
399
400 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
401 /// 'Rejected' set to remember which registers have been considered and
402 /// rejected for the reload. This avoids infinite looping in case like
403 /// this:
404 /// t1 := op t2, t3
405 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
406 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
407 /// t1 <- desires r1
408 /// sees r1 is taken by t2, tries t2's reload register r0
409 /// sees r0 is taken by t3, tries t3's reload register r1
410 /// sees r1 is taken by t2, tries t2's reload register r0 ...
Evan Cheng5d885022009-07-21 09:15:00 +0000411 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000412 AvailableSpills &Spills,
413 std::vector<MachineInstr*> &MaybeDeadStores,
414 BitVector &RegKills,
415 std::vector<MachineOperand*> &KillOps,
416 VirtRegMap &VRM) {
417 SmallSet<unsigned, 8> Rejected;
Evan Cheng5d885022009-07-21 09:15:00 +0000418 MachineFunction &MF = *MI->getParent()->getParent();
419 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
420 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
421 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000422 }
423};
424
Dan Gohman7db949d2009-08-07 01:32:21 +0000425}
Lang Hames87e3bca2009-05-06 02:36:21 +0000426
427// ****************** //
428// Utility Functions //
429// ****************** //
430
Lang Hames87e3bca2009-05-06 02:36:21 +0000431/// findSinglePredSuccessor - Return via reference a vector of machine basic
432/// blocks each of which is a successor of the specified BB and has no other
433/// predecessor.
434static void findSinglePredSuccessor(MachineBasicBlock *MBB,
435 SmallVectorImpl<MachineBasicBlock *> &Succs) {
436 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
437 SE = MBB->succ_end(); SI != SE; ++SI) {
438 MachineBasicBlock *SuccMBB = *SI;
439 if (SuccMBB->pred_size() == 1)
440 Succs.push_back(SuccMBB);
441 }
442}
443
Evan Cheng427a6b62009-05-15 06:48:19 +0000444/// InvalidateKill - Invalidate register kill information for a specific
445/// register. This also unsets the kills marker on the last kill operand.
446static void InvalidateKill(unsigned Reg,
447 const TargetRegisterInfo* TRI,
448 BitVector &RegKills,
449 std::vector<MachineOperand*> &KillOps) {
450 if (RegKills[Reg]) {
451 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000452 // KillOps[Reg] might be a def of a super-register.
453 unsigned KReg = KillOps[Reg]->getReg();
454 KillOps[KReg] = NULL;
455 RegKills.reset(KReg);
456 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000457 if (RegKills[*SR]) {
458 KillOps[*SR]->setIsKill(false);
459 KillOps[*SR] = NULL;
460 RegKills.reset(*SR);
461 }
462 }
463 }
464}
465
Lang Hames87e3bca2009-05-06 02:36:21 +0000466/// InvalidateKills - MI is going to be deleted. If any of its operands are
467/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000468static void InvalidateKills(MachineInstr &MI,
469 const TargetRegisterInfo* TRI,
470 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000471 std::vector<MachineOperand*> &KillOps,
472 SmallVector<unsigned, 2> *KillRegs = NULL) {
473 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
474 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000475 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000476 continue;
477 unsigned Reg = MO.getReg();
478 if (TargetRegisterInfo::isVirtualRegister(Reg))
479 continue;
480 if (KillRegs)
481 KillRegs->push_back(Reg);
482 assert(Reg < KillOps.size());
483 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000484 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000485 RegKills.reset(Reg);
486 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
487 if (RegKills[*SR]) {
488 KillOps[*SR] = NULL;
489 RegKills.reset(*SR);
490 }
491 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000492 }
493 }
494}
495
496/// InvalidateRegDef - If the def operand of the specified def MI is now dead
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000497/// (since its spill instruction is removed), mark it isDead. Also checks if
Lang Hames87e3bca2009-05-06 02:36:21 +0000498/// the def MI has other definition operands that are not dead. Returns it by
499/// reference.
500static bool InvalidateRegDef(MachineBasicBlock::iterator I,
501 MachineInstr &NewDef, unsigned Reg,
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000502 bool &HasLiveDef,
503 const TargetRegisterInfo *TRI) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000504 // Due to remat, it's possible this reg isn't being reused. That is,
505 // the def of this reg (by prev MI) is now dead.
506 MachineInstr *DefMI = I;
507 MachineOperand *DefOp = NULL;
508 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
509 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000510 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
Evan Cheng4784f1f2009-06-30 08:49:04 +0000511 continue;
512 if (MO.getReg() == Reg)
513 DefOp = &MO;
514 else if (!MO.isDead())
515 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000516 }
517 if (!DefOp)
518 return false;
519
520 bool FoundUse = false, Done = false;
521 MachineBasicBlock::iterator E = &NewDef;
522 ++I; ++E;
523 for (; !Done && I != E; ++I) {
524 MachineInstr *NMI = I;
525 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
526 MachineOperand &MO = NMI->getOperand(j);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000527 if (!MO.isReg() || MO.getReg() == 0 ||
528 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
Lang Hames87e3bca2009-05-06 02:36:21 +0000529 continue;
530 if (MO.isUse())
531 FoundUse = true;
532 Done = true; // Stop after scanning all the operands of this MI.
533 }
534 }
535 if (!FoundUse) {
536 // Def is dead!
537 DefOp->setIsDead();
538 return true;
539 }
540 return false;
541}
542
543/// UpdateKills - Track and update kill info. If a MI reads a register that is
544/// marked kill, then it must be due to register reuse. Transfer the kill info
545/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000546static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
547 BitVector &RegKills,
548 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000549 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
550 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000551 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000552 continue;
553 unsigned Reg = MO.getReg();
554 if (Reg == 0)
555 continue;
556
557 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
558 // That can't be right. Register is killed but not re-defined and it's
559 // being reused. Let's fix that.
560 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000561 // KillOps[Reg] might be a def of a super-register.
562 unsigned KReg = KillOps[Reg]->getReg();
563 KillOps[KReg] = NULL;
564 RegKills.reset(KReg);
565
566 // Must be a def of a super-register. Its other sub-regsters are no
567 // longer killed as well.
568 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
569 KillOps[*SR] = NULL;
570 RegKills.reset(*SR);
571 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000572 } else {
573 // Check for subreg kills as well.
574 // d4 =
575 // store d4, fi#0
576 // ...
577 // = s8<kill>
578 // ...
579 // = d4 <avoiding reload>
580 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
581 unsigned SReg = *SR;
582 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
583 KillOps[SReg]->setIsKill(false);
584 unsigned KReg = KillOps[SReg]->getReg();
585 KillOps[KReg] = NULL;
586 RegKills.reset(KReg);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000587
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000588 for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
589 KillOps[*SSR] = NULL;
590 RegKills.reset(*SSR);
591 }
592 }
593 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000594 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000595
Lang Hames87e3bca2009-05-06 02:36:21 +0000596 if (MO.isKill()) {
597 RegKills.set(Reg);
598 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000599 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
600 RegKills.set(*SR);
601 KillOps[*SR] = &MO;
602 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000603 }
604 }
605
606 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
607 const MachineOperand &MO = MI.getOperand(i);
Evan Chengd57cdd52009-11-14 02:55:43 +0000608 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000609 continue;
610 unsigned Reg = MO.getReg();
611 RegKills.reset(Reg);
612 KillOps[Reg] = NULL;
613 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000614 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
615 RegKills.reset(*SR);
616 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000617 }
Evan Cheng1f6a3c82009-11-13 23:16:41 +0000618 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
619 RegKills.reset(*SR);
620 KillOps[*SR] = NULL;
621 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000622 }
623}
624
625/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
626///
627static void ReMaterialize(MachineBasicBlock &MBB,
628 MachineBasicBlock::iterator &MII,
629 unsigned DestReg, unsigned Reg,
630 const TargetInstrInfo *TII,
631 const TargetRegisterInfo *TRI,
632 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000633 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000634#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000635 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
Evan Chengc1b46f92009-07-17 00:32:06 +0000636 assert(TID.getNumDefs() == 1 &&
Evan Cheng5f159922009-07-16 20:15:00 +0000637 "Don't know how to remat instructions that define > 1 values!");
638#endif
639 TII->reMaterialize(MBB, MII, DestReg,
Evan Chengd57cdd52009-11-14 02:55:43 +0000640 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000641 MachineInstr *NewMI = prior(MII);
642 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
643 MachineOperand &MO = NewMI->getOperand(i);
644 if (!MO.isReg() || MO.getReg() == 0)
645 continue;
646 unsigned VirtReg = MO.getReg();
647 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
648 continue;
649 assert(MO.isUse());
650 unsigned SubIdx = MO.getSubReg();
651 unsigned Phys = VRM.getPhys(VirtReg);
Evan Cheng427c3ba2009-10-25 07:51:47 +0000652 assert(Phys && "Virtual register is not assigned a register?");
Lang Hames87e3bca2009-05-06 02:36:21 +0000653 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
654 MO.setReg(RReg);
655 MO.setSubReg(0);
656 }
657 ++NumReMats;
658}
659
660/// findSuperReg - Find the SubReg's super-register of given register class
661/// where its SubIdx sub-register is SubReg.
662static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
663 unsigned SubIdx, const TargetRegisterInfo *TRI) {
664 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
665 I != E; ++I) {
666 unsigned Reg = *I;
667 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
668 return Reg;
669 }
670 return 0;
671}
672
673// ******************************** //
674// Available Spills Implementation //
675// ******************************** //
676
677/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
678/// stackslot register. The register is still available but is no longer
679/// allowed to be modifed.
680void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
681 std::multimap<unsigned, int>::iterator I =
682 PhysRegsAvailable.lower_bound(PhysReg);
683 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
684 int SlotOrReMat = I->second;
685 I++;
686 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
687 "Bidirectional map mismatch!");
688 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
Chris Lattner6456d382009-08-23 03:20:44 +0000689 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
690 << " copied, it is available for use but can no longer be modified\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000691 }
692}
693
694/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
695/// stackslot register and its aliases. The register and its aliases may
696/// still available but is no longer allowed to be modifed.
697void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
698 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
699 disallowClobberPhysRegOnly(*AS);
700 disallowClobberPhysRegOnly(PhysReg);
701}
702
703/// ClobberPhysRegOnly - This is called when the specified physreg changes
704/// value. We use this to invalidate any info about stuff we thing lives in it.
705void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
706 std::multimap<unsigned, int>::iterator I =
707 PhysRegsAvailable.lower_bound(PhysReg);
708 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
709 int SlotOrReMat = I->second;
710 PhysRegsAvailable.erase(I++);
711 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
712 "Bidirectional map mismatch!");
713 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
Chris Lattner6456d382009-08-23 03:20:44 +0000714 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
715 << " clobbered, invalidating ");
Lang Hames87e3bca2009-05-06 02:36:21 +0000716 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +0000717 DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000718 else
Chris Lattner6456d382009-08-23 03:20:44 +0000719 DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000720 }
721}
722
723/// ClobberPhysReg - This is called when the specified physreg changes
724/// value. We use this to invalidate any info about stuff we thing lives in
725/// it and any of its aliases.
726void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
727 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
728 ClobberPhysRegOnly(*AS);
729 ClobberPhysRegOnly(PhysReg);
730}
731
732/// AddAvailableRegsToLiveIn - Availability information is being kept coming
733/// into the specified MBB. Add available physical registers as potential
734/// live-in's. If they are reused in the MBB, they will be added to the
735/// live-in set to make register scavenger and post-allocation scheduler.
736void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
737 BitVector &RegKills,
738 std::vector<MachineOperand*> &KillOps) {
739 std::set<unsigned> NotAvailable;
740 for (std::multimap<unsigned, int>::iterator
741 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
742 I != E; ++I) {
743 unsigned Reg = I->first;
744 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
745 // FIXME: A temporary workaround. We can't reuse available value if it's
746 // not safe to move the def of the virtual register's class. e.g.
747 // X86::RFP* register classes. Do not add it as a live-in.
748 if (!TII->isSafeToMoveRegClassDefs(RC))
749 // This is no longer available.
750 NotAvailable.insert(Reg);
751 else {
752 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000753 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000754 }
755
756 // Skip over the same register.
Chris Lattner7896c9f2009-12-03 00:50:42 +0000757 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
Lang Hames87e3bca2009-05-06 02:36:21 +0000758 while (NI != E && NI->first == Reg) {
759 ++I;
760 ++NI;
761 }
762 }
763
764 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
765 E = NotAvailable.end(); I != E; ++I) {
766 ClobberPhysReg(*I);
767 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
768 *SubRegs; ++SubRegs)
769 ClobberPhysReg(*SubRegs);
770 }
771}
772
773/// ModifyStackSlotOrReMat - This method is called when the value in a stack
774/// slot changes. This removes information about which register the previous
775/// value for this slot lives in (as the previous value is dead now).
776void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
777 std::map<int, unsigned>::iterator It =
778 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
779 if (It == SpillSlotsOrReMatsAvailable.end()) return;
780 unsigned Reg = It->second >> 1;
781 SpillSlotsOrReMatsAvailable.erase(It);
782
783 // This register may hold the value of multiple stack slots, only remove this
784 // stack slot from the set of values the register contains.
785 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
786 for (; ; ++I) {
787 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
788 "Map inverse broken!");
789 if (I->second == SlotOrReMat) break;
790 }
791 PhysRegsAvailable.erase(I);
792}
793
794// ************************** //
795// Reuse Info Implementation //
796// ************************** //
797
798/// GetRegForReload - We are about to emit a reload into PhysReg. If there
799/// is some other operand that is using the specified register, either pick
800/// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000801unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
802 unsigned PhysReg,
803 MachineFunction &MF,
804 MachineInstr *MI, AvailableSpills &Spills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000805 std::vector<MachineInstr*> &MaybeDeadStores,
806 SmallSet<unsigned, 8> &Rejected,
807 BitVector &RegKills,
808 std::vector<MachineOperand*> &KillOps,
809 VirtRegMap &VRM) {
Evan Cheng5d885022009-07-21 09:15:00 +0000810 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
811 const TargetRegisterInfo *TRI = Spills.getRegInfo();
Lang Hames87e3bca2009-05-06 02:36:21 +0000812
813 if (Reuses.empty()) return PhysReg; // This is most often empty.
814
815 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
816 ReusedOp &Op = Reuses[ro];
817 // If we find some other reuse that was supposed to use this register
818 // exactly for its reload, we can change this reload to use ITS reload
819 // register. That is, unless its reload register has already been
820 // considered and subsequently rejected because it has also been reused
821 // by another operand.
822 if (Op.PhysRegReused == PhysReg &&
Evan Cheng5d885022009-07-21 09:15:00 +0000823 Rejected.count(Op.AssignedPhysReg) == 0 &&
824 RC->contains(Op.AssignedPhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000825 // Yup, use the reload register that we didn't use before.
826 unsigned NewReg = Op.AssignedPhysReg;
827 Rejected.insert(PhysReg);
Evan Cheng5d885022009-07-21 09:15:00 +0000828 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
Lang Hames87e3bca2009-05-06 02:36:21 +0000829 RegKills, KillOps, VRM);
830 } else {
831 // Otherwise, we might also have a problem if a previously reused
Evan Cheng5d885022009-07-21 09:15:00 +0000832 // value aliases the new register. If so, codegen the previous reload
Lang Hames87e3bca2009-05-06 02:36:21 +0000833 // and use this one.
834 unsigned PRRU = Op.PhysRegReused;
Lang Hames3f2f3f52009-09-03 02:52:02 +0000835 if (TRI->regsOverlap(PRRU, PhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000836 // Okay, we found out that an alias of a reused register
837 // was used. This isn't good because it means we have
838 // to undo a previous reuse.
839 MachineBasicBlock *MBB = MI->getParent();
840 const TargetRegisterClass *AliasRC =
841 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
842
843 // Copy Op out of the vector and remove it, we're going to insert an
844 // explicit load for it.
845 ReusedOp NewOp = Op;
846 Reuses.erase(Reuses.begin()+ro);
847
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000848 // MI may be using only a sub-register of PhysRegUsed.
849 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
850 unsigned SubIdx = 0;
851 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
852 "A reuse cannot be a virtual register");
853 if (PRRU != RealPhysRegUsed) {
854 // What was the sub-register index?
Evan Chengfae3e922009-11-14 03:42:17 +0000855 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
856 assert(SubIdx &&
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000857 "Operand physreg is not a sub-register of PhysRegUsed");
858 }
859
Lang Hames87e3bca2009-05-06 02:36:21 +0000860 // Ok, we're going to try to reload the assigned physreg into the
861 // slot that we were supposed to in the first place. However, that
862 // register could hold a reuse. Check to see if it conflicts or
863 // would prefer us to use a different register.
Evan Cheng5d885022009-07-21 09:15:00 +0000864 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
865 MF, MI, Spills, MaybeDeadStores,
866 Rejected, RegKills, KillOps, VRM);
David Greene2d4e6d32009-07-28 16:49:24 +0000867
868 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
869 int SSorRMId = DoReMat
870 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
871
872 // Back-schedule reloads and remats.
873 MachineBasicBlock::iterator InsertLoc =
874 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
875 DoReMat, SSorRMId, TII, MF);
876
877 if (DoReMat) {
878 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
879 TRI, VRM);
880 } else {
881 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000882 NewOp.StackSlotOrReMat, AliasRC);
David Greene2d4e6d32009-07-28 16:49:24 +0000883 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +0000884 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
885 // Any stores to this stack slot are not dead anymore.
886 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
887 ++NumLoads;
888 }
889 Spills.ClobberPhysReg(NewPhysReg);
890 Spills.ClobberPhysReg(NewOp.PhysRegReused);
891
Evan Cheng427c3ba2009-10-25 07:51:47 +0000892 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
Lang Hames87e3bca2009-05-06 02:36:21 +0000893 MI->getOperand(NewOp.Operand).setReg(RReg);
894 MI->getOperand(NewOp.Operand).setSubReg(0);
895
896 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
David Greene2d4e6d32009-07-28 16:49:24 +0000897 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +0000898 DEBUG(errs() << '\t' << *prior(InsertLoc));
Lang Hames87e3bca2009-05-06 02:36:21 +0000899
Chris Lattner6456d382009-08-23 03:20:44 +0000900 DEBUG(errs() << "Reuse undone!\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000901 --NumReused;
902
903 // Finally, PhysReg is now available, go ahead and use it.
904 return PhysReg;
905 }
906 }
907 }
908 return PhysReg;
909}
910
911// ************************************************************************ //
912
913/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
914/// stack slot mod/ref. It also checks if it's possible to unfold the
915/// instruction by having it define a specified physical register instead.
916static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
917 const TargetInstrInfo *TII,
918 const TargetRegisterInfo *TRI,
919 VirtRegMap &VRM) {
920 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
921 return false;
922
923 bool Found = false;
924 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
925 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
926 unsigned VirtReg = I->second.first;
927 VirtRegMap::ModRef MR = I->second.second;
928 if (MR & VirtRegMap::isModRef)
929 if (VRM.getStackSlot(VirtReg) == SS) {
930 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
931 break;
932 }
933 }
934 if (!Found)
935 return false;
936
937 // Does the instruction uses a register that overlaps the scratch register?
938 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
939 MachineOperand &MO = MI.getOperand(i);
940 if (!MO.isReg() || MO.getReg() == 0)
941 continue;
942 unsigned Reg = MO.getReg();
943 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
944 if (!VRM.hasPhys(Reg))
945 continue;
946 Reg = VRM.getPhys(Reg);
947 }
948 if (TRI->regsOverlap(PhysReg, Reg))
949 return false;
950 }
951 return true;
952}
953
954/// FindFreeRegister - Find a free register of a given register class by looking
955/// at (at most) the last two machine instructions.
956static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
957 MachineBasicBlock &MBB,
958 const TargetRegisterClass *RC,
959 const TargetRegisterInfo *TRI,
960 BitVector &AllocatableRegs) {
961 BitVector Defs(TRI->getNumRegs());
962 BitVector Uses(TRI->getNumRegs());
963 SmallVector<unsigned, 4> LocalUses;
964 SmallVector<unsigned, 4> Kills;
965
966 // Take a look at 2 instructions at most.
967 for (unsigned Count = 0; Count < 2; ++Count) {
968 if (MII == MBB.begin())
969 break;
970 MachineInstr *PrevMI = prior(MII);
971 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
972 MachineOperand &MO = PrevMI->getOperand(i);
973 if (!MO.isReg() || MO.getReg() == 0)
974 continue;
975 unsigned Reg = MO.getReg();
976 if (MO.isDef()) {
977 Defs.set(Reg);
978 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
979 Defs.set(*AS);
980 } else {
981 LocalUses.push_back(Reg);
982 if (MO.isKill() && AllocatableRegs[Reg])
983 Kills.push_back(Reg);
984 }
985 }
986
987 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
988 unsigned Kill = Kills[i];
989 if (!Defs[Kill] && !Uses[Kill] &&
990 TRI->getPhysicalRegisterRegClass(Kill) == RC)
991 return Kill;
992 }
993 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
994 unsigned Reg = LocalUses[i];
995 Uses.set(Reg);
996 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
997 Uses.set(*AS);
998 }
999
1000 MII = PrevMI;
1001 }
1002
1003 return 0;
1004}
1005
1006static
1007void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
1008 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1009 MachineOperand &MO = MI->getOperand(i);
1010 if (MO.isReg() && MO.getReg() == VirtReg)
1011 MO.setReg(PhysReg);
1012 }
1013}
1014
Evan Chengeca24fb2009-05-12 23:07:00 +00001015namespace {
1016 struct RefSorter {
1017 bool operator()(const std::pair<MachineInstr*, int> &A,
1018 const std::pair<MachineInstr*, int> &B) {
1019 return A.second < B.second;
1020 }
1021 };
1022}
Lang Hames87e3bca2009-05-06 02:36:21 +00001023
1024// ***************************** //
1025// Local Spiller Implementation //
1026// ***************************** //
1027
Dan Gohman7db949d2009-08-07 01:32:21 +00001028namespace {
1029
Nick Lewycky6726b6d2009-10-25 06:33:48 +00001030class LocalRewriter : public VirtRegRewriter {
Lang Hames87e3bca2009-05-06 02:36:21 +00001031 MachineRegisterInfo *RegInfo;
1032 const TargetRegisterInfo *TRI;
1033 const TargetInstrInfo *TII;
1034 BitVector AllocatableRegs;
1035 DenseMap<MachineInstr*, unsigned> DistanceMap;
1036public:
1037
1038 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1039 LiveIntervals* LIs) {
1040 RegInfo = &MF.getRegInfo();
1041 TRI = MF.getTarget().getRegisterInfo();
1042 TII = MF.getTarget().getInstrInfo();
1043 AllocatableRegs = TRI->getAllocatableSet(MF);
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00001044 DEBUG(errs() << "\n**** Local spiller rewriting function '"
1045 << MF.getFunction()->getName() << "':\n");
Chris Lattner6456d382009-08-23 03:20:44 +00001046 DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
1047 " reloads!) ****\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001048 DEBUG(MF.dump());
1049
1050 // Spills - Keep track of which spilled values are available in physregs
1051 // so that we can choose to reuse the physregs instead of emitting
1052 // reloads. This is usually refreshed per basic block.
1053 AvailableSpills Spills(TRI, TII);
1054
1055 // Keep track of kill information.
1056 BitVector RegKills(TRI->getNumRegs());
1057 std::vector<MachineOperand*> KillOps;
1058 KillOps.resize(TRI->getNumRegs(), NULL);
1059
1060 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1061 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1062 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1063
1064 // Traverse the basic blocks depth first.
1065 MachineBasicBlock *Entry = MF.begin();
1066 SmallPtrSet<MachineBasicBlock*,16> Visited;
1067 for (df_ext_iterator<MachineBasicBlock*,
1068 SmallPtrSet<MachineBasicBlock*,16> >
1069 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1070 DFI != E; ++DFI) {
1071 MachineBasicBlock *MBB = *DFI;
1072 if (!EarlyVisited.count(MBB))
1073 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1074
1075 // If this MBB is the only predecessor of a successor. Keep the
1076 // availability information and visit it next.
1077 do {
1078 // Keep visiting single predecessor successor as long as possible.
1079 SinglePredSuccs.clear();
1080 findSinglePredSuccessor(MBB, SinglePredSuccs);
1081 if (SinglePredSuccs.empty())
1082 MBB = 0;
1083 else {
1084 // FIXME: More than one successors, each of which has MBB has
1085 // the only predecessor.
1086 MBB = SinglePredSuccs[0];
1087 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1088 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1089 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1090 }
1091 }
1092 } while (MBB);
1093
1094 // Clear the availability info.
1095 Spills.clear();
1096 }
1097
Chris Lattner6456d382009-08-23 03:20:44 +00001098 DEBUG(errs() << "**** Post Machine Instrs ****\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001099 DEBUG(MF.dump());
1100
1101 // Mark unused spill slots.
1102 MachineFrameInfo *MFI = MF.getFrameInfo();
1103 int SS = VRM.getLowSpillSlot();
1104 if (SS != VirtRegMap::NO_STACK_SLOT)
1105 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1106 if (!VRM.isSpillSlotUsed(SS)) {
1107 MFI->RemoveStackObject(SS);
1108 ++NumDSS;
1109 }
1110
1111 return true;
1112 }
1113
1114private:
1115
1116 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1117 /// a scratch register is available.
1118 /// xorq %r12<kill>, %r13
1119 /// addq %rax, -184(%rbp)
1120 /// addq %r13, -184(%rbp)
1121 /// ==>
1122 /// xorq %r12<kill>, %r13
1123 /// movq -184(%rbp), %r12
1124 /// addq %rax, %r12
1125 /// addq %r13, %r12
1126 /// movq %r12, -184(%rbp)
1127 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1128 MachineBasicBlock &MBB,
1129 MachineBasicBlock::iterator &MII,
1130 std::vector<MachineInstr*> &MaybeDeadStores,
1131 AvailableSpills &Spills,
1132 BitVector &RegKills,
1133 std::vector<MachineOperand*> &KillOps,
1134 VirtRegMap &VRM) {
1135
Chris Lattner7896c9f2009-12-03 00:50:42 +00001136 MachineBasicBlock::iterator NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001137 if (NextMII == MBB.end())
1138 return false;
1139
1140 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1141 return false;
1142
1143 // Now let's see if the last couple of instructions happens to have freed up
1144 // a register.
1145 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1146 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1147 if (!PhysReg)
1148 return false;
1149
1150 MachineFunction &MF = *MBB.getParent();
1151 TRI = MF.getTarget().getRegisterInfo();
1152 MachineInstr &MI = *MII;
1153 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1154 return false;
1155
1156 // If the next instruction also folds the same SS modref and can be unfoled,
1157 // then it's worthwhile to issue a load from SS into the free register and
1158 // then unfold these instructions.
1159 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1160 return false;
1161
David Greene2d4e6d32009-07-28 16:49:24 +00001162 // Back-schedule reloads and remats.
Duncan Sandsb7c5bdf2009-09-06 08:33:48 +00001163 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
David Greene2d4e6d32009-07-28 16:49:24 +00001164
Lang Hames87e3bca2009-05-06 02:36:21 +00001165 // Load from SS to the spare physical register.
1166 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1167 // This invalidates Phys.
1168 Spills.ClobberPhysReg(PhysReg);
1169 // Remember it's available.
1170 Spills.addAvailable(SS, PhysReg);
1171 MaybeDeadStores[SS] = NULL;
1172
1173 // Unfold current MI.
1174 SmallVector<MachineInstr*, 4> NewMIs;
1175 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001176 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001177 assert(NewMIs.size() == 1);
1178 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1179 VRM.transferRestorePts(&MI, NewMIs[0]);
1180 MII = MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001181 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001182 VRM.RemoveMachineInstrFromMaps(&MI);
1183 MBB.erase(&MI);
1184 ++NumModRefUnfold;
1185
1186 // Unfold next instructions that fold the same SS.
1187 do {
1188 MachineInstr &NextMI = *NextMII;
Chris Lattner7896c9f2009-12-03 00:50:42 +00001189 NextMII = llvm::next(NextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001190 NewMIs.clear();
1191 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001192 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001193 assert(NewMIs.size() == 1);
1194 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1195 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1196 MBB.insert(NextMII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001197 InvalidateKills(NextMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001198 VRM.RemoveMachineInstrFromMaps(&NextMI);
1199 MBB.erase(&NextMI);
1200 ++NumModRefUnfold;
Evan Cheng2c48fe62009-06-03 09:00:27 +00001201 if (NextMII == MBB.end())
1202 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001203 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1204
1205 // Store the value back into SS.
1206 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1207 MachineInstr *StoreMI = prior(NextMII);
1208 VRM.addSpillSlotUse(SS, StoreMI);
1209 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1210
1211 return true;
1212 }
1213
1214 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1215 /// instruction. e.g.
1216 /// xorl %edi, %eax
1217 /// movl %eax, -32(%ebp)
1218 /// movl -36(%ebp), %eax
1219 /// orl %eax, -32(%ebp)
1220 /// ==>
1221 /// xorl %edi, %eax
1222 /// orl -36(%ebp), %eax
1223 /// mov %eax, -32(%ebp)
1224 /// This enables unfolding optimization for a subsequent instruction which will
1225 /// also eliminate the newly introduced store instruction.
1226 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1227 MachineBasicBlock::iterator &MII,
1228 std::vector<MachineInstr*> &MaybeDeadStores,
1229 AvailableSpills &Spills,
1230 BitVector &RegKills,
1231 std::vector<MachineOperand*> &KillOps,
1232 VirtRegMap &VRM) {
1233 MachineFunction &MF = *MBB.getParent();
1234 MachineInstr &MI = *MII;
1235 unsigned UnfoldedOpc = 0;
1236 unsigned UnfoldPR = 0;
1237 unsigned UnfoldVR = 0;
1238 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1239 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1240 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1241 // Only transform a MI that folds a single register.
1242 if (UnfoldedOpc)
1243 return false;
1244 UnfoldVR = I->second.first;
1245 VirtRegMap::ModRef MR = I->second.second;
1246 // MI2VirtMap be can updated which invalidate the iterator.
1247 // Increment the iterator first.
1248 ++I;
1249 if (VRM.isAssignedReg(UnfoldVR))
1250 continue;
1251 // If this reference is not a use, any previous store is now dead.
1252 // Otherwise, the store to this stack slot is not dead anymore.
1253 FoldedSS = VRM.getStackSlot(UnfoldVR);
1254 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1255 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1256 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1257 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1258 continue;
1259 UnfoldPR = PhysReg;
1260 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1261 false, true);
1262 }
1263 }
1264
1265 if (!UnfoldedOpc) {
1266 if (!UnfoldVR)
1267 return false;
1268
1269 // Look for other unfolding opportunities.
1270 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1271 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1272 }
1273
1274 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1275 MachineOperand &MO = MI.getOperand(i);
1276 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1277 continue;
1278 unsigned VirtReg = MO.getReg();
1279 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1280 continue;
1281 if (VRM.isAssignedReg(VirtReg)) {
1282 unsigned PhysReg = VRM.getPhys(VirtReg);
1283 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1284 return false;
1285 } else if (VRM.isReMaterialized(VirtReg))
1286 continue;
1287 int SS = VRM.getStackSlot(VirtReg);
1288 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1289 if (PhysReg) {
1290 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1291 return false;
1292 continue;
1293 }
1294 if (VRM.hasPhys(VirtReg)) {
1295 PhysReg = VRM.getPhys(VirtReg);
1296 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1297 continue;
1298 }
1299
1300 // Ok, we'll need to reload the value into a register which makes
1301 // it impossible to perform the store unfolding optimization later.
1302 // Let's see if it is possible to fold the load if the store is
1303 // unfolded. This allows us to perform the store unfolding
1304 // optimization.
1305 SmallVector<MachineInstr*, 4> NewMIs;
1306 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1307 assert(NewMIs.size() == 1);
1308 MachineInstr *NewMI = NewMIs.back();
1309 NewMIs.clear();
1310 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1311 assert(Idx != -1);
1312 SmallVector<unsigned, 1> Ops;
1313 Ops.push_back(Idx);
1314 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1315 if (FoldedMI) {
1316 VRM.addSpillSlotUse(SS, FoldedMI);
1317 if (!VRM.hasPhys(UnfoldVR))
1318 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1319 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1320 MII = MBB.insert(MII, FoldedMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001321 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001322 VRM.RemoveMachineInstrFromMaps(&MI);
1323 MBB.erase(&MI);
1324 MF.DeleteMachineInstr(NewMI);
1325 return true;
1326 }
1327 MF.DeleteMachineInstr(NewMI);
1328 }
1329 }
1330
1331 return false;
1332 }
1333
Evan Cheng261ce1d2009-07-10 19:15:51 +00001334 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1335 /// where SrcReg is r1 and it is tied to r0. Return true if after
1336 /// commuting this instruction it will be r0 = op r2, r1.
1337 static bool CommuteChangesDestination(MachineInstr *DefMI,
1338 const TargetInstrDesc &TID,
1339 unsigned SrcReg,
1340 const TargetInstrInfo *TII,
1341 unsigned &DstIdx) {
1342 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1343 return false;
1344 if (!DefMI->getOperand(1).isReg() ||
1345 DefMI->getOperand(1).getReg() != SrcReg)
1346 return false;
1347 unsigned DefIdx;
1348 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1349 return false;
1350 unsigned SrcIdx1, SrcIdx2;
1351 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1352 return false;
1353 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1354 DstIdx = 2;
1355 return true;
1356 }
1357 return false;
1358 }
1359
Lang Hames87e3bca2009-05-06 02:36:21 +00001360 /// CommuteToFoldReload -
1361 /// Look for
1362 /// r1 = load fi#1
1363 /// r1 = op r1, r2<kill>
1364 /// store r1, fi#1
1365 ///
1366 /// If op is commutable and r2 is killed, then we can xform these to
1367 /// r2 = op r2, fi#1
1368 /// store r2, fi#1
1369 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1370 MachineBasicBlock::iterator &MII,
1371 unsigned VirtReg, unsigned SrcReg, int SS,
1372 AvailableSpills &Spills,
1373 BitVector &RegKills,
1374 std::vector<MachineOperand*> &KillOps,
1375 const TargetRegisterInfo *TRI,
1376 VirtRegMap &VRM) {
1377 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1378 return false;
1379
1380 MachineFunction &MF = *MBB.getParent();
1381 MachineInstr &MI = *MII;
1382 MachineBasicBlock::iterator DefMII = prior(MII);
1383 MachineInstr *DefMI = DefMII;
1384 const TargetInstrDesc &TID = DefMI->getDesc();
1385 unsigned NewDstIdx;
1386 if (DefMII != MBB.begin() &&
1387 TID.isCommutable() &&
Evan Cheng261ce1d2009-07-10 19:15:51 +00001388 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001389 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1390 unsigned NewReg = NewDstMO.getReg();
1391 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1392 return false;
1393 MachineInstr *ReloadMI = prior(DefMII);
1394 int FrameIdx;
1395 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1396 if (DestReg != SrcReg || FrameIdx != SS)
1397 return false;
1398 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1399 if (UseIdx == -1)
1400 return false;
1401 unsigned DefIdx;
1402 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1403 return false;
1404 assert(DefMI->getOperand(DefIdx).isReg() &&
1405 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1406
1407 // Now commute def instruction.
1408 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1409 if (!CommutedMI)
1410 return false;
1411 SmallVector<unsigned, 1> Ops;
1412 Ops.push_back(NewDstIdx);
1413 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1414 // Not needed since foldMemoryOperand returns new MI.
1415 MF.DeleteMachineInstr(CommutedMI);
1416 if (!FoldedMI)
1417 return false;
1418
1419 VRM.addSpillSlotUse(SS, FoldedMI);
1420 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1421 // Insert new def MI and spill MI.
1422 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1423 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1424 MII = prior(MII);
1425 MachineInstr *StoreMI = MII;
1426 VRM.addSpillSlotUse(SS, StoreMI);
1427 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1428 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1429
1430 // Delete all 3 old instructions.
Evan Cheng427a6b62009-05-15 06:48:19 +00001431 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001432 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1433 MBB.erase(ReloadMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001434 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001435 VRM.RemoveMachineInstrFromMaps(DefMI);
1436 MBB.erase(DefMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001437 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001438 VRM.RemoveMachineInstrFromMaps(&MI);
1439 MBB.erase(&MI);
1440
1441 // If NewReg was previously holding value of some SS, it's now clobbered.
1442 // This has to be done now because it's a physical register. When this
1443 // instruction is re-visited, it's ignored.
1444 Spills.ClobberPhysReg(NewReg);
1445
1446 ++NumCommutes;
1447 return true;
1448 }
1449
1450 return false;
1451 }
1452
1453 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1454 /// the last store to the same slot is now dead. If so, remove the last store.
1455 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1456 MachineBasicBlock::iterator &MII,
1457 int Idx, unsigned PhysReg, int StackSlot,
1458 const TargetRegisterClass *RC,
1459 bool isAvailable, MachineInstr *&LastStore,
1460 AvailableSpills &Spills,
1461 SmallSet<MachineInstr*, 4> &ReMatDefs,
1462 BitVector &RegKills,
1463 std::vector<MachineOperand*> &KillOps,
1464 VirtRegMap &VRM) {
1465
Chris Lattner7896c9f2009-12-03 00:50:42 +00001466 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1467 TII->storeRegToStackSlot(MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
Dale Johannesen78c5cda2009-10-29 01:15:40 +00001468 MachineInstr *StoreMI = prior(oldNextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001469 VRM.addSpillSlotUse(StackSlot, StoreMI);
Chris Lattner6456d382009-08-23 03:20:44 +00001470 DEBUG(errs() << "Store:\t" << *StoreMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001471
1472 // If there is a dead store to this stack slot, nuke it now.
1473 if (LastStore) {
Chris Lattner6456d382009-08-23 03:20:44 +00001474 DEBUG(errs() << "Removed dead store:\t" << *LastStore);
Lang Hames87e3bca2009-05-06 02:36:21 +00001475 ++NumDSE;
1476 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00001477 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001478 MachineBasicBlock::iterator PrevMII = LastStore;
1479 bool CheckDef = PrevMII != MBB.begin();
1480 if (CheckDef)
1481 --PrevMII;
1482 VRM.RemoveMachineInstrFromMaps(LastStore);
1483 MBB.erase(LastStore);
1484 if (CheckDef) {
1485 // Look at defs of killed registers on the store. Mark the defs
1486 // as dead since the store has been deleted and they aren't
1487 // being reused.
1488 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1489 bool HasOtherDef = false;
Evan Cheng8fdd84c2009-11-14 02:09:09 +00001490 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001491 MachineInstr *DeadDef = PrevMII;
1492 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
Evan Cheng4784f1f2009-06-30 08:49:04 +00001493 // FIXME: This assumes a remat def does not have side effects.
Lang Hames87e3bca2009-05-06 02:36:21 +00001494 VRM.RemoveMachineInstrFromMaps(DeadDef);
1495 MBB.erase(DeadDef);
1496 ++NumDRM;
1497 }
1498 }
1499 }
1500 }
1501 }
1502
Dale Johannesene841d2f2009-10-28 21:56:18 +00001503 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1504 // the last of multiple instructions is the actual store.
1505 LastStore = prior(oldNextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001506
1507 // If the stack slot value was previously available in some other
1508 // register, change it now. Otherwise, make the register available,
1509 // in PhysReg.
1510 Spills.ModifyStackSlotOrReMat(StackSlot);
1511 Spills.ClobberPhysReg(PhysReg);
1512 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1513 ++NumStores;
1514 }
1515
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001516 /// isSafeToDelete - Return true if this instruction doesn't produce any side
1517 /// effect and all of its defs are dead.
1518 static bool isSafeToDelete(MachineInstr &MI) {
1519 const TargetInstrDesc &TID = MI.getDesc();
1520 if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1521 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1522 TID.hasUnmodeledSideEffects())
1523 return false;
1524 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1525 MachineOperand &MO = MI.getOperand(i);
1526 if (!MO.isReg() || !MO.getReg())
1527 continue;
1528 if (MO.isDef() && !MO.isDead())
1529 return false;
1530 if (MO.isUse() && MO.isKill())
1531 // FIXME: We can't remove kill markers or else the scavenger will assert.
1532 // An alternative is to add a ADD pseudo instruction to replace kill
1533 // markers.
1534 return false;
1535 }
1536 return true;
1537 }
1538
Lang Hames87e3bca2009-05-06 02:36:21 +00001539 /// TransferDeadness - A identity copy definition is dead and it's being
1540 /// removed. Find the last def or use and mark it as dead / kill.
1541 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1542 unsigned Reg, BitVector &RegKills,
Evan Chengeca24fb2009-05-12 23:07:00 +00001543 std::vector<MachineOperand*> &KillOps,
1544 VirtRegMap &VRM) {
1545 SmallPtrSet<MachineInstr*, 4> Seens;
1546 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001547 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1548 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1549 MachineInstr *UDMI = &*RI;
1550 if (UDMI->getParent() != MBB)
1551 continue;
1552 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1553 if (DI == DistanceMap.end() || DI->second > CurDist)
1554 continue;
Evan Chengeca24fb2009-05-12 23:07:00 +00001555 if (Seens.insert(UDMI))
1556 Refs.push_back(std::make_pair(UDMI, DI->second));
Lang Hames87e3bca2009-05-06 02:36:21 +00001557 }
1558
Evan Chengeca24fb2009-05-12 23:07:00 +00001559 if (Refs.empty())
1560 return;
1561 std::sort(Refs.begin(), Refs.end(), RefSorter());
1562
1563 while (!Refs.empty()) {
1564 MachineInstr *LastUDMI = Refs.back().first;
1565 Refs.pop_back();
1566
Lang Hames87e3bca2009-05-06 02:36:21 +00001567 MachineOperand *LastUD = NULL;
1568 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1569 MachineOperand &MO = LastUDMI->getOperand(i);
1570 if (!MO.isReg() || MO.getReg() != Reg)
1571 continue;
1572 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1573 LastUD = &MO;
1574 if (LastUDMI->isRegTiedToDefOperand(i))
Evan Chengeca24fb2009-05-12 23:07:00 +00001575 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001576 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001577 if (LastUD->isDef()) {
1578 // If the instruction has no side effect, delete it and propagate
1579 // backward further. Otherwise, mark is dead and we are done.
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001580 if (!isSafeToDelete(*LastUDMI)) {
Evan Chengeca24fb2009-05-12 23:07:00 +00001581 LastUD->setIsDead();
1582 break;
1583 }
1584 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1585 MBB->erase(LastUDMI);
1586 } else {
Lang Hames87e3bca2009-05-06 02:36:21 +00001587 LastUD->setIsKill();
1588 RegKills.set(Reg);
1589 KillOps[Reg] = LastUD;
Evan Chengeca24fb2009-05-12 23:07:00 +00001590 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001591 }
1592 }
1593 }
1594
1595 /// rewriteMBB - Keep track of which spills are available even after the
1596 /// register allocator is done with them. If possible, avid reloading vregs.
1597 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1598 LiveIntervals *LIs,
1599 AvailableSpills &Spills, BitVector &RegKills,
1600 std::vector<MachineOperand*> &KillOps) {
1601
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00001602 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
Jakob Stoklund Olesen324da762009-11-20 01:17:03 +00001603 << MBB.getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001604
1605 MachineFunction &MF = *MBB.getParent();
1606
1607 // MaybeDeadStores - When we need to write a value back into a stack slot,
1608 // keep track of the inserted store. If the stack slot value is never read
1609 // (because the value was used from some available register, for example), and
1610 // subsequently stored to, the original store is dead. This map keeps track
1611 // of inserted stores that are not used. If we see a subsequent store to the
1612 // same stack slot, the original store is deleted.
1613 std::vector<MachineInstr*> MaybeDeadStores;
1614 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1615
1616 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1617 SmallSet<MachineInstr*, 4> ReMatDefs;
1618
1619 // Clear kill info.
1620 SmallSet<unsigned, 2> KilledMIRegs;
1621 RegKills.reset();
1622 KillOps.clear();
1623 KillOps.resize(TRI->getNumRegs(), NULL);
1624
1625 unsigned Dist = 0;
1626 DistanceMap.clear();
1627 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1628 MII != E; ) {
Chris Lattner7896c9f2009-12-03 00:50:42 +00001629 MachineBasicBlock::iterator NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001630
1631 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1632 bool Erased = false;
1633 bool BackTracked = false;
1634 if (OptimizeByUnfold(MBB, MII,
1635 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
Chris Lattner7896c9f2009-12-03 00:50:42 +00001636 NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001637
1638 MachineInstr &MI = *MII;
1639
1640 if (VRM.hasEmergencySpills(&MI)) {
1641 // Spill physical register(s) in the rare case the allocator has run out
1642 // of registers to allocate.
1643 SmallSet<int, 4> UsedSS;
1644 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1645 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1646 unsigned PhysReg = EmSpills[i];
1647 const TargetRegisterClass *RC =
1648 TRI->getPhysicalRegisterRegClass(PhysReg);
1649 assert(RC && "Unable to determine register class!");
1650 int SS = VRM.getEmergencySpillSlot(RC);
1651 if (UsedSS.count(SS))
Torok Edwinc23197a2009-07-14 16:55:14 +00001652 llvm_unreachable("Need to spill more than one physical registers!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001653 UsedSS.insert(SS);
1654 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1655 MachineInstr *StoreMI = prior(MII);
1656 VRM.addSpillSlotUse(SS, StoreMI);
David Greene2d4e6d32009-07-28 16:49:24 +00001657
1658 // Back-schedule reloads and remats.
1659 MachineBasicBlock::iterator InsertLoc =
Chris Lattner7896c9f2009-12-03 00:50:42 +00001660 ComputeReloadLoc(llvm::next(MII), MBB.begin(), PhysReg, TRI, false,
David Greene2d4e6d32009-07-28 16:49:24 +00001661 SS, TII, MF);
1662
1663 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1664
1665 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001666 VRM.addSpillSlotUse(SS, LoadMI);
1667 ++NumPSpills;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00001668 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00001669 }
Chris Lattner7896c9f2009-12-03 00:50:42 +00001670 NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001671 }
1672
1673 // Insert restores here if asked to.
1674 if (VRM.isRestorePt(&MI)) {
1675 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1676 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1677 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1678 if (!VRM.getPreSplitReg(VirtReg))
1679 continue; // Split interval spilled again.
1680 unsigned Phys = VRM.getPhys(VirtReg);
1681 RegInfo->setPhysRegUsed(Phys);
1682
1683 // Check if the value being restored if available. If so, it must be
1684 // from a predecessor BB that fallthrough into this BB. We do not
1685 // expect:
1686 // BB1:
1687 // r1 = load fi#1
1688 // ...
1689 // = r1<kill>
1690 // ... # r1 not clobbered
1691 // ...
1692 // = load fi#1
1693 bool DoReMat = VRM.isReMaterialized(VirtReg);
1694 int SSorRMId = DoReMat
1695 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1696 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1697 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1698 if (InReg == Phys) {
1699 // If the value is already available in the expected register, save
1700 // a reload / remat.
1701 if (SSorRMId)
Chris Lattner6456d382009-08-23 03:20:44 +00001702 DEBUG(errs() << "Reusing RM#"
1703 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001704 else
Chris Lattner6456d382009-08-23 03:20:44 +00001705 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1706 DEBUG(errs() << " from physreg "
1707 << TRI->getName(InReg) << " for vreg"
1708 << VirtReg <<" instead of reloading into physreg "
1709 << TRI->getName(Phys) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001710 ++NumOmitted;
1711 continue;
1712 } else if (InReg && InReg != Phys) {
1713 if (SSorRMId)
Chris Lattner6456d382009-08-23 03:20:44 +00001714 DEBUG(errs() << "Reusing RM#"
1715 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001716 else
Chris Lattner6456d382009-08-23 03:20:44 +00001717 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1718 DEBUG(errs() << " from physreg "
1719 << TRI->getName(InReg) << " for vreg"
1720 << VirtReg <<" by copying it into physreg "
1721 << TRI->getName(Phys) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001722
1723 // If the reloaded / remat value is available in another register,
1724 // copy it to the desired register.
David Greene2d4e6d32009-07-28 16:49:24 +00001725
1726 // Back-schedule reloads and remats.
1727 MachineBasicBlock::iterator InsertLoc =
1728 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1729 SSorRMId, TII, MF);
1730
1731 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
Lang Hames87e3bca2009-05-06 02:36:21 +00001732
1733 // This invalidates Phys.
1734 Spills.ClobberPhysReg(Phys);
1735 // Remember it's available.
1736 Spills.addAvailable(SSorRMId, Phys);
1737
1738 // Mark is killed.
David Greene2d4e6d32009-07-28 16:49:24 +00001739 MachineInstr *CopyMI = prior(InsertLoc);
David Greene6bedb302009-11-12 21:07:54 +00001740 CopyMI->setAsmPrinterFlag(AsmPrinter::ReloadReuse);
Lang Hames87e3bca2009-05-06 02:36:21 +00001741 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1742 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001743 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001744
Chris Lattner6456d382009-08-23 03:20:44 +00001745 DEBUG(errs() << '\t' << *CopyMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001746 ++NumCopified;
1747 continue;
1748 }
1749
David Greene2d4e6d32009-07-28 16:49:24 +00001750 // Back-schedule reloads and remats.
1751 MachineBasicBlock::iterator InsertLoc =
1752 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1753 SSorRMId, TII, MF);
1754
Lang Hames87e3bca2009-05-06 02:36:21 +00001755 if (VRM.isReMaterialized(VirtReg)) {
David Greene2d4e6d32009-07-28 16:49:24 +00001756 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001757 } else {
1758 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
David Greene2d4e6d32009-07-28 16:49:24 +00001759 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1760 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00001761 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1762 ++NumLoads;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00001763 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00001764 }
1765
1766 // This invalidates Phys.
1767 Spills.ClobberPhysReg(Phys);
1768 // Remember it's available.
1769 Spills.addAvailable(SSorRMId, Phys);
1770
David Greene2d4e6d32009-07-28 16:49:24 +00001771 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +00001772 DEBUG(errs() << '\t' << *prior(MII));
Lang Hames87e3bca2009-05-06 02:36:21 +00001773 }
1774 }
1775
1776 // Insert spills here if asked to.
1777 if (VRM.isSpillPt(&MI)) {
1778 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1779 VRM.getSpillPtSpills(&MI);
1780 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1781 unsigned VirtReg = SpillRegs[i].first;
1782 bool isKill = SpillRegs[i].second;
1783 if (!VRM.getPreSplitReg(VirtReg))
1784 continue; // Split interval spilled again.
1785 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1786 unsigned Phys = VRM.getPhys(VirtReg);
1787 int StackSlot = VRM.getStackSlot(VirtReg);
Chris Lattner7896c9f2009-12-03 00:50:42 +00001788 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1789 TII->storeRegToStackSlot(MBB, llvm::next(MII), Phys, isKill, StackSlot, RC);
Dale Johannesen78c5cda2009-10-29 01:15:40 +00001790 MachineInstr *StoreMI = prior(oldNextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001791 VRM.addSpillSlotUse(StackSlot, StoreMI);
Chris Lattner6456d382009-08-23 03:20:44 +00001792 DEBUG(errs() << "Store:\t" << *StoreMI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001793 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1794 }
Chris Lattner7896c9f2009-12-03 00:50:42 +00001795 NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001796 }
1797
1798 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1799 /// reuse.
1800 ReuseInfo ReusedOperands(MI, TRI);
1801 SmallVector<unsigned, 4> VirtUseOps;
1802 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1803 MachineOperand &MO = MI.getOperand(i);
1804 if (!MO.isReg() || MO.getReg() == 0)
1805 continue; // Ignore non-register operands.
1806
1807 unsigned VirtReg = MO.getReg();
1808 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1809 // Ignore physregs for spilling, but remember that it is used by this
1810 // function.
1811 RegInfo->setPhysRegUsed(VirtReg);
1812 continue;
1813 }
1814
1815 // We want to process implicit virtual register uses first.
1816 if (MO.isImplicit())
1817 // If the virtual register is implicitly defined, emit a implicit_def
1818 // before so scavenger knows it's "defined".
Evan Cheng4784f1f2009-06-30 08:49:04 +00001819 // FIXME: This is a horrible hack done the by register allocator to
1820 // remat a definition with virtual register operand.
Lang Hames87e3bca2009-05-06 02:36:21 +00001821 VirtUseOps.insert(VirtUseOps.begin(), i);
1822 else
1823 VirtUseOps.push_back(i);
1824 }
1825
1826 // Process all of the spilled uses and all non spilled reg references.
1827 SmallVector<int, 2> PotentialDeadStoreSlots;
1828 KilledMIRegs.clear();
1829 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1830 unsigned i = VirtUseOps[j];
1831 MachineOperand &MO = MI.getOperand(i);
1832 unsigned VirtReg = MO.getReg();
1833 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1834 "Not a virtual register?");
1835
1836 unsigned SubIdx = MO.getSubReg();
1837 if (VRM.isAssignedReg(VirtReg)) {
1838 // This virtual register was assigned a physreg!
1839 unsigned Phys = VRM.getPhys(VirtReg);
1840 RegInfo->setPhysRegUsed(Phys);
1841 if (MO.isDef())
1842 ReusedOperands.markClobbered(Phys);
1843 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1844 MI.getOperand(i).setReg(RReg);
1845 MI.getOperand(i).setSubReg(0);
1846 if (VRM.isImplicitlyDefined(VirtReg))
Evan Cheng4784f1f2009-06-30 08:49:04 +00001847 // FIXME: Is this needed?
Lang Hames87e3bca2009-05-06 02:36:21 +00001848 BuildMI(MBB, &MI, MI.getDebugLoc(),
1849 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1850 continue;
1851 }
1852
1853 // This virtual register is now known to be a spilled value.
1854 if (!MO.isUse())
1855 continue; // Handle defs in the loop below (handle use&def here though)
1856
Evan Cheng4784f1f2009-06-30 08:49:04 +00001857 bool AvoidReload = MO.isUndef();
1858 // Check if it is defined by an implicit def. It should not be spilled.
1859 // Note, this is for correctness reason. e.g.
1860 // 8 %reg1024<def> = IMPLICIT_DEF
1861 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1862 // The live range [12, 14) are not part of the r1024 live interval since
1863 // it's defined by an implicit def. It will not conflicts with live
1864 // interval of r1025. Now suppose both registers are spilled, you can
1865 // easily see a situation where both registers are reloaded before
1866 // the INSERT_SUBREG and both target registers that would overlap.
Lang Hames87e3bca2009-05-06 02:36:21 +00001867 bool DoReMat = VRM.isReMaterialized(VirtReg);
1868 int SSorRMId = DoReMat
1869 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1870 int ReuseSlot = SSorRMId;
1871
1872 // Check to see if this stack slot is available.
1873 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1874
1875 // If this is a sub-register use, make sure the reuse register is in the
1876 // right register class. For example, for x86 not all of the 32-bit
1877 // registers have accessible sub-registers.
1878 // Similarly so for EXTRACT_SUBREG. Consider this:
1879 // EDI = op
1880 // MOV32_mr fi#1, EDI
1881 // ...
1882 // = EXTRACT_SUBREG fi#1
1883 // fi#1 is available in EDI, but it cannot be reused because it's not in
1884 // the right register file.
1885 if (PhysReg && !AvoidReload &&
1886 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1887 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1888 if (!RC->contains(PhysReg))
1889 PhysReg = 0;
1890 }
1891
1892 if (PhysReg && !AvoidReload) {
1893 // This spilled operand might be part of a two-address operand. If this
1894 // is the case, then changing it will necessarily require changing the
1895 // def part of the instruction as well. However, in some cases, we
1896 // aren't allowed to modify the reused register. If none of these cases
1897 // apply, reuse it.
1898 bool CanReuse = true;
1899 bool isTied = MI.isRegTiedToDefOperand(i);
1900 if (isTied) {
1901 // Okay, we have a two address operand. We can reuse this physreg as
1902 // long as we are allowed to clobber the value and there isn't an
1903 // earlier def that has already clobbered the physreg.
1904 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1905 Spills.canClobberPhysReg(PhysReg);
1906 }
1907
1908 if (CanReuse) {
1909 // If this stack slot value is already available, reuse it!
1910 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +00001911 DEBUG(errs() << "Reusing RM#"
1912 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001913 else
Chris Lattner6456d382009-08-23 03:20:44 +00001914 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1915 DEBUG(errs() << " from physreg "
1916 << TRI->getName(PhysReg) << " for vreg"
1917 << VirtReg <<" instead of reloading into physreg "
1918 << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
Lang Hames87e3bca2009-05-06 02:36:21 +00001919 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1920 MI.getOperand(i).setReg(RReg);
1921 MI.getOperand(i).setSubReg(0);
1922
1923 // The only technical detail we have is that we don't know that
1924 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1925 // later in the instruction. In particular, consider 'op V1, V2'.
1926 // If V1 is available in physreg R0, we would choose to reuse it
1927 // here, instead of reloading it into the register the allocator
1928 // indicated (say R1). However, V2 might have to be reloaded
1929 // later, and it might indicate that it needs to live in R0. When
1930 // this occurs, we need to have information available that
1931 // indicates it is safe to use R1 for the reload instead of R0.
1932 //
1933 // To further complicate matters, we might conflict with an alias,
1934 // or R0 and R1 might not be compatible with each other. In this
1935 // case, we actually insert a reload for V1 in R1, ensuring that
1936 // we can get at R0 or its alias.
1937 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1938 VRM.getPhys(VirtReg), VirtReg);
1939 if (isTied)
1940 // Only mark it clobbered if this is a use&def operand.
1941 ReusedOperands.markClobbered(PhysReg);
1942 ++NumReused;
1943
1944 if (MI.getOperand(i).isKill() &&
1945 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1946
1947 // The store of this spilled value is potentially dead, but we
1948 // won't know for certain until we've confirmed that the re-use
1949 // above is valid, which means waiting until the other operands
1950 // are processed. For now we just track the spill slot, we'll
1951 // remove it after the other operands are processed if valid.
1952
1953 PotentialDeadStoreSlots.push_back(ReuseSlot);
1954 }
1955
1956 // Mark is isKill if it's there no other uses of the same virtual
1957 // register and it's not a two-address operand. IsKill will be
1958 // unset if reg is reused.
1959 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1960 MI.getOperand(i).setIsKill();
1961 KilledMIRegs.insert(VirtReg);
1962 }
1963
1964 continue;
1965 } // CanReuse
1966
1967 // Otherwise we have a situation where we have a two-address instruction
1968 // whose mod/ref operand needs to be reloaded. This reload is already
1969 // available in some register "PhysReg", but if we used PhysReg as the
1970 // operand to our 2-addr instruction, the instruction would modify
1971 // PhysReg. This isn't cool if something later uses PhysReg and expects
1972 // to get its initial value.
1973 //
1974 // To avoid this problem, and to avoid doing a load right after a store,
1975 // we emit a copy from PhysReg into the designated register for this
1976 // operand.
1977 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1978 assert(DesignatedReg && "Must map virtreg to physreg!");
1979
1980 // Note that, if we reused a register for a previous operand, the
1981 // register we want to reload into might not actually be
1982 // available. If this occurs, use the register indicated by the
1983 // reuser.
1984 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00001985 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1986 DesignatedReg, &MI,
1987 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00001988
1989 // If the mapped designated register is actually the physreg we have
1990 // incoming, we don't need to inserted a dead copy.
1991 if (DesignatedReg == PhysReg) {
1992 // If this stack slot value is already available, reuse it!
1993 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
Chris Lattner6456d382009-08-23 03:20:44 +00001994 DEBUG(errs() << "Reusing RM#"
1995 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +00001996 else
Chris Lattner6456d382009-08-23 03:20:44 +00001997 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1998 DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
1999 << " for vreg" << VirtReg
2000 << " instead of reloading into same physreg.\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00002001 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2002 MI.getOperand(i).setReg(RReg);
2003 MI.getOperand(i).setSubReg(0);
2004 ReusedOperands.markClobbered(RReg);
2005 ++NumReused;
2006 continue;
2007 }
2008
2009 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
2010 RegInfo->setPhysRegUsed(DesignatedReg);
2011 ReusedOperands.markClobbered(DesignatedReg);
Lang Hames87e3bca2009-05-06 02:36:21 +00002012
David Greene2d4e6d32009-07-28 16:49:24 +00002013 // Back-schedule reloads and remats.
2014 MachineBasicBlock::iterator InsertLoc =
2015 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
2016 SSorRMId, TII, MF);
2017
2018 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
2019
2020 MachineInstr *CopyMI = prior(InsertLoc);
David Greene6bedb302009-11-12 21:07:54 +00002021 CopyMI->setAsmPrinterFlag(AsmPrinter::ReloadReuse);
Evan Cheng427a6b62009-05-15 06:48:19 +00002022 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002023
2024 // This invalidates DesignatedReg.
2025 Spills.ClobberPhysReg(DesignatedReg);
2026
2027 Spills.addAvailable(ReuseSlot, DesignatedReg);
2028 unsigned RReg =
2029 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
2030 MI.getOperand(i).setReg(RReg);
2031 MI.getOperand(i).setSubReg(0);
Chris Lattner6456d382009-08-23 03:20:44 +00002032 DEBUG(errs() << '\t' << *prior(MII));
Lang Hames87e3bca2009-05-06 02:36:21 +00002033 ++NumReused;
2034 continue;
2035 } // if (PhysReg)
2036
2037 // Otherwise, reload it and remember that we have it.
2038 PhysReg = VRM.getPhys(VirtReg);
2039 assert(PhysReg && "Must map virtreg to physreg!");
2040
2041 // Note that, if we reused a register for a previous operand, the
2042 // register we want to reload into might not actually be
2043 // available. If this occurs, use the register indicated by the
2044 // reuser.
2045 if (ReusedOperands.hasReuses())
Evan Cheng5d885022009-07-21 09:15:00 +00002046 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2047 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002048
2049 RegInfo->setPhysRegUsed(PhysReg);
2050 ReusedOperands.markClobbered(PhysReg);
2051 if (AvoidReload)
2052 ++NumAvoided;
2053 else {
David Greene2d4e6d32009-07-28 16:49:24 +00002054 // Back-schedule reloads and remats.
2055 MachineBasicBlock::iterator InsertLoc =
2056 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
2057 SSorRMId, TII, MF);
2058
Lang Hames87e3bca2009-05-06 02:36:21 +00002059 if (DoReMat) {
David Greene2d4e6d32009-07-28 16:49:24 +00002060 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002061 } else {
2062 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
David Greene2d4e6d32009-07-28 16:49:24 +00002063 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
2064 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +00002065 VRM.addSpillSlotUse(SSorRMId, LoadMI);
2066 ++NumLoads;
Jakob Stoklund Olesen7a1e8722009-08-15 11:03:03 +00002067 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00002068 }
2069 // This invalidates PhysReg.
2070 Spills.ClobberPhysReg(PhysReg);
2071
2072 // Any stores to this stack slot are not dead anymore.
2073 if (!DoReMat)
2074 MaybeDeadStores[SSorRMId] = NULL;
2075 Spills.addAvailable(SSorRMId, PhysReg);
2076 // Assumes this is the last use. IsKill will be unset if reg is reused
2077 // unless it's a two-address operand.
2078 if (!MI.isRegTiedToDefOperand(i) &&
2079 KilledMIRegs.count(VirtReg) == 0) {
2080 MI.getOperand(i).setIsKill();
2081 KilledMIRegs.insert(VirtReg);
2082 }
2083
David Greene2d4e6d32009-07-28 16:49:24 +00002084 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
Chris Lattner6456d382009-08-23 03:20:44 +00002085 DEBUG(errs() << '\t' << *prior(InsertLoc));
Lang Hames87e3bca2009-05-06 02:36:21 +00002086 }
2087 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2088 MI.getOperand(i).setReg(RReg);
2089 MI.getOperand(i).setSubReg(0);
2090 }
2091
2092 // Ok - now we can remove stores that have been confirmed dead.
2093 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2094 // This was the last use and the spilled value is still available
2095 // for reuse. That means the spill was unnecessary!
2096 int PDSSlot = PotentialDeadStoreSlots[j];
2097 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2098 if (DeadStore) {
Chris Lattner6456d382009-08-23 03:20:44 +00002099 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002100 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002101 VRM.RemoveMachineInstrFromMaps(DeadStore);
2102 MBB.erase(DeadStore);
2103 MaybeDeadStores[PDSSlot] = NULL;
2104 ++NumDSE;
2105 }
2106 }
2107
2108
Chris Lattner6456d382009-08-23 03:20:44 +00002109 DEBUG(errs() << '\t' << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002110
2111
2112 // If we have folded references to memory operands, make sure we clear all
2113 // physical registers that may contain the value of the spilled virtual
2114 // register
2115 SmallSet<int, 2> FoldedSS;
2116 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2117 unsigned VirtReg = I->second.first;
2118 VirtRegMap::ModRef MR = I->second.second;
Chris Lattner6456d382009-08-23 03:20:44 +00002119 DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
Lang Hames87e3bca2009-05-06 02:36:21 +00002120
2121 // MI2VirtMap be can updated which invalidate the iterator.
2122 // Increment the iterator first.
2123 ++I;
2124 int SS = VRM.getStackSlot(VirtReg);
2125 if (SS == VirtRegMap::NO_STACK_SLOT)
2126 continue;
2127 FoldedSS.insert(SS);
Chris Lattner6456d382009-08-23 03:20:44 +00002128 DEBUG(errs() << " - StackSlot: " << SS << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00002129
2130 // If this folded instruction is just a use, check to see if it's a
2131 // straight load from the virt reg slot.
2132 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2133 int FrameIdx;
2134 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2135 if (DestReg && FrameIdx == SS) {
2136 // If this spill slot is available, turn it into a copy (or nothing)
2137 // instead of leaving it as a load!
2138 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
Chris Lattner6456d382009-08-23 03:20:44 +00002139 DEBUG(errs() << "Promoted Load To Copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002140 if (DestReg != InReg) {
2141 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2142 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2143 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2144 unsigned SubIdx = DefMO->getSubReg();
2145 // Revisit the copy so we make sure to notice the effects of the
2146 // operation on the destreg (either needing to RA it if it's
2147 // virtual or needing to clobber any values if it's physical).
2148 NextMII = &MI;
2149 --NextMII; // backtrack to the copy.
David Greene6bedb302009-11-12 21:07:54 +00002150 NextMII->setAsmPrinterFlag(AsmPrinter::ReloadReuse);
Lang Hames87e3bca2009-05-06 02:36:21 +00002151 // Propagate the sub-register index over.
2152 if (SubIdx) {
2153 DefMO = NextMII->findRegisterDefOperand(DestReg);
2154 DefMO->setSubReg(SubIdx);
2155 }
2156
2157 // Mark is killed.
2158 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2159 KillOpnd->setIsKill();
2160
2161 BackTracked = true;
2162 } else {
Chris Lattner6456d382009-08-23 03:20:44 +00002163 DEBUG(errs() << "Removing now-noop copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002164 // Unset last kill since it's being reused.
Evan Cheng427a6b62009-05-15 06:48:19 +00002165 InvalidateKill(InReg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002166 Spills.disallowClobberPhysReg(InReg);
2167 }
2168
Evan Cheng427a6b62009-05-15 06:48:19 +00002169 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002170 VRM.RemoveMachineInstrFromMaps(&MI);
2171 MBB.erase(&MI);
2172 Erased = true;
2173 goto ProcessNextInst;
2174 }
2175 } else {
2176 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2177 SmallVector<MachineInstr*, 4> NewMIs;
2178 if (PhysReg &&
2179 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2180 MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00002181 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002182 VRM.RemoveMachineInstrFromMaps(&MI);
2183 MBB.erase(&MI);
2184 Erased = true;
2185 --NextMII; // backtrack to the unfolded instruction.
2186 BackTracked = true;
2187 goto ProcessNextInst;
2188 }
2189 }
2190 }
2191
2192 // If this reference is not a use, any previous store is now dead.
2193 // Otherwise, the store to this stack slot is not dead anymore.
2194 MachineInstr* DeadStore = MaybeDeadStores[SS];
2195 if (DeadStore) {
2196 bool isDead = !(MR & VirtRegMap::isRef);
2197 MachineInstr *NewStore = NULL;
2198 if (MR & VirtRegMap::isModRef) {
2199 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2200 SmallVector<MachineInstr*, 4> NewMIs;
2201 // We can reuse this physreg as long as we are allowed to clobber
2202 // the value and there isn't an earlier def that has already clobbered
2203 // the physreg.
2204 if (PhysReg &&
2205 !ReusedOperands.isClobbered(PhysReg) &&
2206 Spills.canClobberPhysReg(PhysReg) &&
2207 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2208 MachineOperand *KillOpnd =
2209 DeadStore->findRegisterUseOperand(PhysReg, true);
2210 // Note, if the store is storing a sub-register, it's possible the
2211 // super-register is needed below.
2212 if (KillOpnd && !KillOpnd->getSubReg() &&
2213 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2214 MBB.insert(MII, NewMIs[0]);
2215 NewStore = NewMIs[1];
2216 MBB.insert(MII, NewStore);
2217 VRM.addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002218 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002219 VRM.RemoveMachineInstrFromMaps(&MI);
2220 MBB.erase(&MI);
2221 Erased = true;
2222 --NextMII;
2223 --NextMII; // backtrack to the unfolded instruction.
2224 BackTracked = true;
2225 isDead = true;
2226 ++NumSUnfold;
2227 }
2228 }
2229 }
2230
2231 if (isDead) { // Previous store is dead.
2232 // If we get here, the store is dead, nuke it now.
Chris Lattner6456d382009-08-23 03:20:44 +00002233 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002234 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002235 VRM.RemoveMachineInstrFromMaps(DeadStore);
2236 MBB.erase(DeadStore);
2237 if (!NewStore)
2238 ++NumDSE;
2239 }
2240
2241 MaybeDeadStores[SS] = NULL;
2242 if (NewStore) {
2243 // Treat this store as a spill merged into a copy. That makes the
2244 // stack slot value available.
2245 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2246 goto ProcessNextInst;
2247 }
2248 }
2249
2250 // If the spill slot value is available, and this is a new definition of
2251 // the value, the value is not available anymore.
2252 if (MR & VirtRegMap::isMod) {
2253 // Notice that the value in this stack slot has been modified.
2254 Spills.ModifyStackSlotOrReMat(SS);
2255
2256 // If this is *just* a mod of the value, check to see if this is just a
2257 // store to the spill slot (i.e. the spill got merged into the copy). If
2258 // so, realize that the vreg is available now, and add the store to the
2259 // MaybeDeadStore info.
2260 int StackSlot;
2261 if (!(MR & VirtRegMap::isRef)) {
2262 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2263 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2264 "Src hasn't been allocated yet?");
2265
2266 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2267 Spills, RegKills, KillOps, TRI, VRM)) {
Chris Lattner7896c9f2009-12-03 00:50:42 +00002268 NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00002269 BackTracked = true;
2270 goto ProcessNextInst;
2271 }
2272
2273 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2274 // this as a potentially dead store in case there is a subsequent
2275 // store into the stack slot without a read from it.
2276 MaybeDeadStores[StackSlot] = &MI;
2277
2278 // If the stack slot value was previously available in some other
2279 // register, change it now. Otherwise, make the register
2280 // available in PhysReg.
2281 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2282 }
2283 }
2284 }
2285 }
2286
2287 // Process all of the spilled defs.
2288 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2289 MachineOperand &MO = MI.getOperand(i);
2290 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2291 continue;
2292
2293 unsigned VirtReg = MO.getReg();
2294 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2295 // Check to see if this is a noop copy. If so, eliminate the
2296 // instruction before considering the dest reg to be changed.
Evan Cheng2578ba22009-07-01 01:59:31 +00002297 // Also check if it's copying from an "undef", if so, we can't
2298 // eliminate this or else the undef marker is lost and it will
2299 // confuses the scavenger. This is extremely rare.
Lang Hames87e3bca2009-05-06 02:36:21 +00002300 unsigned Src, Dst, SrcSR, DstSR;
Evan Chenga5dc45e2009-10-26 04:56:07 +00002301 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
Evan Cheng2578ba22009-07-01 01:59:31 +00002302 !MI.findRegisterUseOperand(Src)->isUndef()) {
Lang Hames87e3bca2009-05-06 02:36:21 +00002303 ++NumDCE;
Chris Lattner6456d382009-08-23 03:20:44 +00002304 DEBUG(errs() << "Removing now-noop copy: " << MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002305 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00002306 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00002307 if (MO.isDead() && !KillRegs.empty()) {
2308 // Source register or an implicit super/sub-register use is killed.
2309 assert(KillRegs[0] == Dst ||
2310 TRI->isSubRegister(KillRegs[0], Dst) ||
2311 TRI->isSuperRegister(KillRegs[0], Dst));
2312 // Last def is now dead.
Evan Chengeca24fb2009-05-12 23:07:00 +00002313 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002314 }
2315 VRM.RemoveMachineInstrFromMaps(&MI);
2316 MBB.erase(&MI);
2317 Erased = true;
2318 Spills.disallowClobberPhysReg(VirtReg);
2319 goto ProcessNextInst;
2320 }
Evan Cheng2578ba22009-07-01 01:59:31 +00002321
Lang Hames87e3bca2009-05-06 02:36:21 +00002322 // If it's not a no-op copy, it clobbers the value in the destreg.
2323 Spills.ClobberPhysReg(VirtReg);
2324 ReusedOperands.markClobbered(VirtReg);
2325
2326 // Check to see if this instruction is a load from a stack slot into
2327 // a register. If so, this provides the stack slot value in the reg.
2328 int FrameIdx;
2329 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2330 assert(DestReg == VirtReg && "Unknown load situation!");
2331
2332 // If it is a folded reference, then it's not safe to clobber.
2333 bool Folded = FoldedSS.count(FrameIdx);
2334 // Otherwise, if it wasn't available, remember that it is now!
2335 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2336 goto ProcessNextInst;
2337 }
2338
2339 continue;
2340 }
2341
2342 unsigned SubIdx = MO.getSubReg();
2343 bool DoReMat = VRM.isReMaterialized(VirtReg);
2344 if (DoReMat)
2345 ReMatDefs.insert(&MI);
2346
2347 // The only vregs left are stack slot definitions.
2348 int StackSlot = VRM.getStackSlot(VirtReg);
2349 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2350
2351 // If this def is part of a two-address operand, make sure to execute
2352 // the store from the correct physical register.
2353 unsigned PhysReg;
2354 unsigned TiedOp;
2355 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2356 PhysReg = MI.getOperand(TiedOp).getReg();
2357 if (SubIdx) {
2358 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2359 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2360 "Can't find corresponding super-register!");
2361 PhysReg = SuperReg;
2362 }
2363 } else {
2364 PhysReg = VRM.getPhys(VirtReg);
2365 if (ReusedOperands.isClobbered(PhysReg)) {
2366 // Another def has taken the assigned physreg. It must have been a
2367 // use&def which got it due to reuse. Undo the reuse!
Evan Cheng5d885022009-07-21 09:15:00 +00002368 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2369 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002370 }
2371 }
2372
2373 assert(PhysReg && "VR not assigned a physical register?");
2374 RegInfo->setPhysRegUsed(PhysReg);
2375 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2376 ReusedOperands.markClobbered(RReg);
2377 MI.getOperand(i).setReg(RReg);
2378 MI.getOperand(i).setSubReg(0);
2379
2380 if (!MO.isDead()) {
2381 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2382 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2383 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
Chris Lattner7896c9f2009-12-03 00:50:42 +00002384 NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00002385
2386 // Check to see if this is a noop copy. If so, eliminate the
2387 // instruction before considering the dest reg to be changed.
2388 {
2389 unsigned Src, Dst, SrcSR, DstSR;
Evan Chenga5dc45e2009-10-26 04:56:07 +00002390 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
Lang Hames87e3bca2009-05-06 02:36:21 +00002391 ++NumDCE;
Chris Lattner6456d382009-08-23 03:20:44 +00002392 DEBUG(errs() << "Removing now-noop copy: " << MI);
Evan Cheng427a6b62009-05-15 06:48:19 +00002393 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002394 VRM.RemoveMachineInstrFromMaps(&MI);
2395 MBB.erase(&MI);
2396 Erased = true;
Evan Cheng427a6b62009-05-15 06:48:19 +00002397 UpdateKills(*LastStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002398 goto ProcessNextInst;
2399 }
2400 }
2401 }
2402 }
2403 ProcessNextInst:
Evan Cheng52484682009-07-18 02:10:10 +00002404 // Delete dead instructions without side effects.
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00002405 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
Evan Cheng52484682009-07-18 02:10:10 +00002406 InvalidateKills(MI, TRI, RegKills, KillOps);
2407 VRM.RemoveMachineInstrFromMaps(&MI);
2408 MBB.erase(&MI);
2409 Erased = true;
2410 }
2411 if (!Erased)
2412 DistanceMap.insert(std::make_pair(&MI, Dist++));
Lang Hames87e3bca2009-05-06 02:36:21 +00002413 if (!Erased && !BackTracked) {
2414 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
Evan Cheng427a6b62009-05-15 06:48:19 +00002415 UpdateKills(*II, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002416 }
2417 MII = NextMII;
2418 }
2419
2420 }
2421
2422};
2423
Dan Gohman7db949d2009-08-07 01:32:21 +00002424}
2425
Lang Hames87e3bca2009-05-06 02:36:21 +00002426llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2427 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002428 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002429 case local:
2430 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002431 case trivial:
2432 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002433 }
2434}