blob: 3b4b4f91750f28b4c51986858ecff7858b7bb377 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000037#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41 : TargetLowering(TM) {
42 Subtarget = &TM.getSubtarget<X86Subtarget>();
43 X86ScalarSSE = Subtarget->hasSSE2();
44 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46 RegInfo = TM.getRegisterInfo();
47
48 // Set up the TargetLowering object.
49
50 // X86 is weird, it always uses i8 for shift amounts and setcc results.
51 setShiftAmountType(MVT::i8);
52 setSetCCResultType(MVT::i8);
53 setSetCCResultContents(ZeroOrOneSetCCResult);
54 setSchedulingPreference(SchedulingForRegPressure);
55 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
56 setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58 if (Subtarget->isTargetDarwin()) {
59 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60 setUseUnderscoreSetJmp(false);
61 setUseUnderscoreLongJmp(false);
62 } else if (Subtarget->isTargetMingw()) {
63 // MS runtime is weird: it exports _setjmp, but longjmp!
64 setUseUnderscoreSetJmp(true);
65 setUseUnderscoreLongJmp(false);
66 } else {
67 setUseUnderscoreSetJmp(true);
68 setUseUnderscoreLongJmp(true);
69 }
70
71 // Set up the register classes.
72 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75 if (Subtarget->is64Bit())
76 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81 // operation.
82 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
83 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
85
86 if (Subtarget->is64Bit()) {
87 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
89 } else {
90 if (X86ScalarSSE)
91 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
93 else
94 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
95 }
96
97 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98 // this operation.
99 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
100 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
101 // SSE has no i16 to fp conversion, only i32
Dale Johannesen2fc20782007-09-14 22:26:36 +0000102 if (X86ScalarSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000104 // f32 and f64 cases are Legal, f80 case is not
105 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
106 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
108 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
109 }
110
111 if (!Subtarget->is64Bit()) {
112 // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
113 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
114 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
115 }
116
117 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118 // this operation.
119 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
120 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
121
122 if (X86ScalarSSE) {
123 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000124 // f32 and f64 cases are Legal, f80 case is not
125 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 } else {
127 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
129 }
130
131 // Handle FP_TO_UINT by promoting the destination to a larger signed
132 // conversion.
133 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
135 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
136
137 if (Subtarget->is64Bit()) {
138 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
139 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
140 } else {
141 if (X86ScalarSSE && !Subtarget->hasSSE3())
142 // Expand FP_TO_UINT into a select.
143 // FIXME: We would like to use a Custom expander here eventually to do
144 // the optimal thing for SSE vs. the default expansion in the legalizer.
145 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
146 else
147 // With SSE3 we can use fisttpll to convert to a signed i64.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
149 }
150
151 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
152 if (!X86ScalarSSE) {
153 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
154 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
155 }
156
157 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
158 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
159 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
160 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
161 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
162 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
167 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
168 setOperationAction(ISD::FREM , MVT::f64 , Expand);
169
170 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
171 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
172 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
173 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
174 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
175 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
176 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
177 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
178 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
179 if (Subtarget->is64Bit()) {
180 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
181 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
182 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
183 }
184
185 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
186 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
187
188 // These should be promoted to a larger select which is supported.
189 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
190 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
191 // X86 wants to expand cmov itself.
192 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
193 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
194 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
195 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000196 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
198 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
199 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
200 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
201 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000202 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 if (Subtarget->is64Bit()) {
204 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
205 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
206 }
207 // X86 ret instruction may pop stack.
208 setOperationAction(ISD::RET , MVT::Other, Custom);
209 if (!Subtarget->is64Bit())
210 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
211
212 // Darwin ABI issue.
213 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
214 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
215 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
216 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
217 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
218 if (Subtarget->is64Bit()) {
219 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
220 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
221 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
222 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
223 }
224 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
226 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
227 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
228 // X86 wants to expand memset / memcpy itself.
229 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
230 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
231
232 // We don't have line number support yet.
233 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235 // FIXME - use subtarget debug flags
236 if (!Subtarget->isTargetDarwin() &&
237 !Subtarget->isTargetELF() &&
238 !Subtarget->isTargetCygMing())
239 setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
242 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
243 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
244 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
245 if (Subtarget->is64Bit()) {
246 // FIXME: Verify
247 setExceptionPointerRegister(X86::RAX);
248 setExceptionSelectorRegister(X86::RDX);
249 } else {
250 setExceptionPointerRegister(X86::EAX);
251 setExceptionSelectorRegister(X86::EDX);
252 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000253 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254
Duncan Sands7407a9f2007-09-11 14:10:23 +0000255 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000256
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
258 setOperationAction(ISD::VASTART , MVT::Other, Custom);
259 setOperationAction(ISD::VAARG , MVT::Other, Expand);
260 setOperationAction(ISD::VAEND , MVT::Other, Expand);
261 if (Subtarget->is64Bit())
262 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
263 else
264 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
265
266 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
267 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
268 if (Subtarget->is64Bit())
269 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
270 if (Subtarget->isTargetCygMing())
271 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
272 else
273 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
274
275 if (X86ScalarSSE) {
276 // Set up the FP register classes.
277 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
278 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
279
280 // Use ANDPD to simulate FABS.
281 setOperationAction(ISD::FABS , MVT::f64, Custom);
282 setOperationAction(ISD::FABS , MVT::f32, Custom);
283
284 // Use XORP to simulate FNEG.
285 setOperationAction(ISD::FNEG , MVT::f64, Custom);
286 setOperationAction(ISD::FNEG , MVT::f32, Custom);
287
288 // Use ANDPD and ORPD to simulate FCOPYSIGN.
289 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
290 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
291
292 // We don't support sin/cos/fmod
293 setOperationAction(ISD::FSIN , MVT::f64, Expand);
294 setOperationAction(ISD::FCOS , MVT::f64, Expand);
295 setOperationAction(ISD::FREM , MVT::f64, Expand);
296 setOperationAction(ISD::FSIN , MVT::f32, Expand);
297 setOperationAction(ISD::FCOS , MVT::f32, Expand);
298 setOperationAction(ISD::FREM , MVT::f32, Expand);
299
300 // Expand FP immediates into loads from the stack, except for the special
301 // cases we handle.
302 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
303 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000304 addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000305
306 // Conversions to long double (in X87) go through memory.
307 setConvertAction(MVT::f32, MVT::f80, Expand);
308 setConvertAction(MVT::f64, MVT::f80, Expand);
309
310 // Conversions from long double (in X87) go through memory.
311 setConvertAction(MVT::f80, MVT::f32, Expand);
312 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 } else {
314 // Set up the FP register classes.
315 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
316 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
317
318 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
319 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
320 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
321 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000322
323 // Floating truncations need to go through memory.
324 setConvertAction(MVT::f80, MVT::f32, Expand);
325 setConvertAction(MVT::f64, MVT::f32, Expand);
326 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327
328 if (!UnsafeFPMath) {
329 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
330 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
331 }
332
333 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
334 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000335 addLegalFPImmediate(APFloat(+0.0)); // FLD0
336 addLegalFPImmediate(APFloat(+1.0)); // FLD1
337 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
338 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 }
340
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000341 // Long double always uses X87.
342 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000343 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
344 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
345 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000346
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347 // First set operation action for all vector types to expand. Then we
348 // will selectively turn on ones that can be effectively codegen'd.
349 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
350 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
351 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
352 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
353 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
354 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
355 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
356 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
357 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
358 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
359 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
360 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
361 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
362 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
363 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
364 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
365 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
366 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
367 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
368 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
369 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
370 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
371 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
372 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
373 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
374 }
375
376 if (Subtarget->hasMMX()) {
377 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
378 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
379 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
380 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
381
382 // FIXME: add MMX packed arithmetics
383
384 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
385 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
386 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
387 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
388
389 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
390 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
391 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
392
393 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
394 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
395
396 setOperationAction(ISD::AND, MVT::v8i8, Promote);
397 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
398 setOperationAction(ISD::AND, MVT::v4i16, Promote);
399 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
400 setOperationAction(ISD::AND, MVT::v2i32, Promote);
401 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
402 setOperationAction(ISD::AND, MVT::v1i64, Legal);
403
404 setOperationAction(ISD::OR, MVT::v8i8, Promote);
405 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
406 setOperationAction(ISD::OR, MVT::v4i16, Promote);
407 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
408 setOperationAction(ISD::OR, MVT::v2i32, Promote);
409 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
410 setOperationAction(ISD::OR, MVT::v1i64, Legal);
411
412 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
413 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
414 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
415 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
416 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
417 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
418 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
419
420 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
421 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
422 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
423 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
424 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
425 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
426 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
427
428 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
429 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
430 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
431 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
432
433 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
434 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
435 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
436 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
437
438 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
439 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
440 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
441 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
442 }
443
444 if (Subtarget->hasSSE1()) {
445 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
446
447 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
448 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
449 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
450 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
451 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
452 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
454 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
455 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
456 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
457 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
458 }
459
460 if (Subtarget->hasSSE2()) {
461 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
462 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
463 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
464 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
465 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
466
467 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
468 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
469 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
470 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
471 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
472 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
473 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
474 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
475 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
476 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
477 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
478 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
479 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
480 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
481 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000482
483 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
484 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
485 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
486 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
487 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
488 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
489
490 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
491 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
492 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
493 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
494 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
495 }
496 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
497 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
498 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
499 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
500 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
501 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
502
503 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
504 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
505 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
506 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
507 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
508 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
509 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
510 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
511 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
512 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
513 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
514 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
515 }
516
517 // Custom lower v2i64 and v2f64 selects.
518 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
519 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
520 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
521 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
522 }
523
524 // We want to custom lower some of our intrinsics.
525 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
526
527 // We have target-specific dag combine patterns for the following nodes:
528 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
529 setTargetDAGCombine(ISD::SELECT);
530
531 computeRegisterProperties();
532
533 // FIXME: These should be based on subtarget info. Plus, the values should
534 // be smaller when we are in optimizing for size mode.
535 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
536 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
537 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
538 allowUnalignedMemoryAccesses = true; // x86 supports it!
539}
540
541
542//===----------------------------------------------------------------------===//
543// Return Value Calling Convention Implementation
544//===----------------------------------------------------------------------===//
545
546#include "X86GenCallingConv.inc"
547
548/// LowerRET - Lower an ISD::RET node.
549SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
550 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
551
552 SmallVector<CCValAssign, 16> RVLocs;
553 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
554 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
555 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
556 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
557
558
559 // If this is the first return lowered for this function, add the regs to the
560 // liveout set for the function.
561 if (DAG.getMachineFunction().liveout_empty()) {
562 for (unsigned i = 0; i != RVLocs.size(); ++i)
563 if (RVLocs[i].isRegLoc())
564 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
565 }
566
567 SDOperand Chain = Op.getOperand(0);
568 SDOperand Flag;
569
570 // Copy the result values into the output registers.
571 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
572 RVLocs[0].getLocReg() != X86::ST0) {
573 for (unsigned i = 0; i != RVLocs.size(); ++i) {
574 CCValAssign &VA = RVLocs[i];
575 assert(VA.isRegLoc() && "Can only return in registers!");
576 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
577 Flag);
578 Flag = Chain.getValue(1);
579 }
580 } else {
581 // We need to handle a destination of ST0 specially, because it isn't really
582 // a register.
583 SDOperand Value = Op.getOperand(1);
584
585 // If this is an FP return with ScalarSSE, we need to move the value from
586 // an XMM register onto the fp-stack.
587 if (X86ScalarSSE) {
588 SDOperand MemLoc;
589
590 // If this is a load into a scalarsse value, don't store the loaded value
591 // back to the stack, only to reload it: just replace the scalar-sse load.
592 if (ISD::isNON_EXTLoad(Value.Val) &&
593 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
594 Chain = Value.getOperand(0);
595 MemLoc = Value.getOperand(1);
596 } else {
597 // Spill the value to memory and reload it into top of stack.
598 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
599 MachineFunction &MF = DAG.getMachineFunction();
600 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
601 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
602 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
603 }
604 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
605 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
606 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
607 Chain = Value.getValue(1);
608 }
609
610 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
611 SDOperand Ops[] = { Chain, Value };
612 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
613 Flag = Chain.getValue(1);
614 }
615
616 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
617 if (Flag.Val)
618 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
619 else
620 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
621}
622
623
624/// LowerCallResult - Lower the result values of an ISD::CALL into the
625/// appropriate copies out of appropriate physical registers. This assumes that
626/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
627/// being lowered. The returns a SDNode with the same number of values as the
628/// ISD::CALL.
629SDNode *X86TargetLowering::
630LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
631 unsigned CallingConv, SelectionDAG &DAG) {
632
633 // Assign locations to each value returned by this call.
634 SmallVector<CCValAssign, 16> RVLocs;
635 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
636 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
637 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
638
639
640 SmallVector<SDOperand, 8> ResultVals;
641
642 // Copy all of the result registers out of their specified physreg.
643 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
644 for (unsigned i = 0; i != RVLocs.size(); ++i) {
645 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
646 RVLocs[i].getValVT(), InFlag).getValue(1);
647 InFlag = Chain.getValue(2);
648 ResultVals.push_back(Chain.getValue(0));
649 }
650 } else {
651 // Copies from the FP stack are special, as ST0 isn't a valid register
652 // before the fp stackifier runs.
653
654 // Copy ST0 into an RFP register with FP_GET_RESULT.
655 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
656 SDOperand GROps[] = { Chain, InFlag };
657 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
658 Chain = RetVal.getValue(1);
659 InFlag = RetVal.getValue(2);
660
661 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
662 // an XMM register.
663 if (X86ScalarSSE) {
664 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
665 // shouldn't be necessary except that RFP cannot be live across
666 // multiple blocks. When stackifier is fixed, they can be uncoupled.
667 MachineFunction &MF = DAG.getMachineFunction();
668 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
669 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
670 SDOperand Ops[] = {
671 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
672 };
673 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
674 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
675 Chain = RetVal.getValue(1);
676 }
677 ResultVals.push_back(RetVal);
678 }
679
680 // Merge everything together with a MERGE_VALUES node.
681 ResultVals.push_back(Chain);
682 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
683 &ResultVals[0], ResultVals.size()).Val;
684}
685
686
687//===----------------------------------------------------------------------===//
688// C & StdCall Calling Convention implementation
689//===----------------------------------------------------------------------===//
690// StdCall calling convention seems to be standard for many Windows' API
691// routines and around. It differs from C calling convention just a little:
692// callee should clean up the stack, not caller. Symbols should be also
693// decorated in some fancy way :) It doesn't support any vector arguments.
694
695/// AddLiveIn - This helper function adds the specified physical register to the
696/// MachineFunction as a live in value. It also creates a corresponding virtual
697/// register for it.
698static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
699 const TargetRegisterClass *RC) {
700 assert(RC->contains(PReg) && "Not the correct regclass!");
701 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
702 MF.addLiveIn(PReg, VReg);
703 return VReg;
704}
705
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000706SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
707 const CCValAssign &VA,
708 MachineFrameInfo *MFI,
709 SDOperand Root, unsigned i) {
710 // Create the nodes corresponding to a load from this parameter slot.
711 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
712 VA.getLocMemOffset());
713 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
714
715 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
716
717 if (Flags & ISD::ParamFlags::ByVal)
718 return FIN;
719 else
720 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
721}
722
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
724 bool isStdCall) {
725 unsigned NumArgs = Op.Val->getNumValues() - 1;
726 MachineFunction &MF = DAG.getMachineFunction();
727 MachineFrameInfo *MFI = MF.getFrameInfo();
728 SDOperand Root = Op.getOperand(0);
729 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
730
731 // Assign locations to all of the incoming arguments.
732 SmallVector<CCValAssign, 16> ArgLocs;
733 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
734 getTargetMachine(), ArgLocs);
735 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
736
737 SmallVector<SDOperand, 8> ArgValues;
738 unsigned LastVal = ~0U;
739 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
740 CCValAssign &VA = ArgLocs[i];
741 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
742 // places.
743 assert(VA.getValNo() != LastVal &&
744 "Don't support value assigned to multiple locs yet");
745 LastVal = VA.getValNo();
746
747 if (VA.isRegLoc()) {
748 MVT::ValueType RegVT = VA.getLocVT();
749 TargetRegisterClass *RC;
750 if (RegVT == MVT::i32)
751 RC = X86::GR32RegisterClass;
752 else {
753 assert(MVT::isVector(RegVT));
754 RC = X86::VR128RegisterClass;
755 }
756
757 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
758 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
759
760 // If this is an 8 or 16-bit value, it is really passed promoted to 32
761 // bits. Insert an assert[sz]ext to capture this, then truncate to the
762 // right size.
763 if (VA.getLocInfo() == CCValAssign::SExt)
764 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
765 DAG.getValueType(VA.getValVT()));
766 else if (VA.getLocInfo() == CCValAssign::ZExt)
767 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
768 DAG.getValueType(VA.getValVT()));
769
770 if (VA.getLocInfo() != CCValAssign::Full)
771 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
772
773 ArgValues.push_back(ArgValue);
774 } else {
775 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000776 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777 }
778 }
779
780 unsigned StackSize = CCInfo.getNextStackOffset();
781
782 ArgValues.push_back(Root);
783
784 // If the function takes variable number of arguments, make a frame index for
785 // the start of the first vararg value... for expansion of llvm.va_start.
786 if (isVarArg)
787 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
788
789 if (isStdCall && !isVarArg) {
790 BytesToPopOnReturn = StackSize; // Callee pops everything..
791 BytesCallerReserves = 0;
792 } else {
793 BytesToPopOnReturn = 0; // Callee pops nothing.
794
795 // If this is an sret function, the return should pop the hidden pointer.
796 if (NumArgs &&
797 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
798 ISD::ParamFlags::StructReturn))
799 BytesToPopOnReturn = 4;
800
801 BytesCallerReserves = StackSize;
802 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000803
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805
Anton Korobeynikove844e472007-08-15 17:12:32 +0000806 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
807 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808
809 // Return the new list of results.
810 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
811 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
812}
813
814SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
815 unsigned CC) {
816 SDOperand Chain = Op.getOperand(0);
817 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
818 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
819 SDOperand Callee = Op.getOperand(4);
820 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
821
822 // Analyze operands of the call, assigning locations to each operand.
823 SmallVector<CCValAssign, 16> ArgLocs;
824 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
825 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
826
827 // Get a count of how many bytes are to be pushed on the stack.
828 unsigned NumBytes = CCInfo.getNextStackOffset();
829
830 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
831
832 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
833 SmallVector<SDOperand, 8> MemOpChains;
834
835 SDOperand StackPtr;
836
837 // Walk the register/memloc assignments, inserting copies/loads.
838 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
839 CCValAssign &VA = ArgLocs[i];
840 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
841
842 // Promote the value if needed.
843 switch (VA.getLocInfo()) {
844 default: assert(0 && "Unknown loc info!");
845 case CCValAssign::Full: break;
846 case CCValAssign::SExt:
847 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
848 break;
849 case CCValAssign::ZExt:
850 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
851 break;
852 case CCValAssign::AExt:
853 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
854 break;
855 }
856
857 if (VA.isRegLoc()) {
858 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
859 } else {
860 assert(VA.isMemLoc());
861 if (StackPtr.Val == 0)
862 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
863 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
864 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
865 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
866 }
867 }
868
869 // If the first argument is an sret pointer, remember it.
870 bool isSRet = NumOps &&
871 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
872 ISD::ParamFlags::StructReturn);
873
874 if (!MemOpChains.empty())
875 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
876 &MemOpChains[0], MemOpChains.size());
877
878 // Build a sequence of copy-to-reg nodes chained together with token chain
879 // and flag operands which copy the outgoing args into registers.
880 SDOperand InFlag;
881 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
882 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
883 InFlag);
884 InFlag = Chain.getValue(1);
885 }
886
887 // ELF / PIC requires GOT in the EBX register before function calls via PLT
888 // GOT pointer.
889 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
890 Subtarget->isPICStyleGOT()) {
891 Chain = DAG.getCopyToReg(Chain, X86::EBX,
892 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
893 InFlag);
894 InFlag = Chain.getValue(1);
895 }
896
897 // If the callee is a GlobalAddress node (quite common, every direct call is)
898 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
899 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
900 // We should use extra load for direct calls to dllimported functions in
901 // non-JIT mode.
902 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
903 getTargetMachine(), true))
904 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
905 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
906 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
907
908 // Returns a chain & a flag for retval copy to use.
909 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
910 SmallVector<SDOperand, 8> Ops;
911 Ops.push_back(Chain);
912 Ops.push_back(Callee);
913
914 // Add argument registers to the end of the list so that they are known live
915 // into the call.
916 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
917 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
918 RegsToPass[i].second.getValueType()));
919
920 // Add an implicit use GOT pointer in EBX.
921 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
922 Subtarget->isPICStyleGOT())
923 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
924
925 if (InFlag.Val)
926 Ops.push_back(InFlag);
927
928 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
929 NodeTys, &Ops[0], Ops.size());
930 InFlag = Chain.getValue(1);
931
932 // Create the CALLSEQ_END node.
933 unsigned NumBytesForCalleeToPush = 0;
934
935 if (CC == CallingConv::X86_StdCall) {
936 if (isVarArg)
937 NumBytesForCalleeToPush = isSRet ? 4 : 0;
938 else
939 NumBytesForCalleeToPush = NumBytes;
940 } else {
941 // If this is is a call to a struct-return function, the callee
942 // pops the hidden struct pointer, so we have to push it back.
943 // This is common for Darwin/X86, Linux & Mingw32 targets.
944 NumBytesForCalleeToPush = isSRet ? 4 : 0;
945 }
946
947 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
948 Ops.clear();
949 Ops.push_back(Chain);
950 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
951 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
952 Ops.push_back(InFlag);
953 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
954 InFlag = Chain.getValue(1);
955
956 // Handle result values, copying them out of physregs into vregs that we
957 // return.
958 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
959}
960
961
962//===----------------------------------------------------------------------===//
963// FastCall Calling Convention implementation
964//===----------------------------------------------------------------------===//
965//
966// The X86 'fastcall' calling convention passes up to two integer arguments in
967// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
968// and requires that the callee pop its arguments off the stack (allowing proper
969// tail calls), and has the same return value conventions as C calling convs.
970//
971// This calling convention always arranges for the callee pop value to be 8n+4
972// bytes, which is needed for tail recursion elimination and stack alignment
973// reasons.
974SDOperand
975X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
976 MachineFunction &MF = DAG.getMachineFunction();
977 MachineFrameInfo *MFI = MF.getFrameInfo();
978 SDOperand Root = Op.getOperand(0);
979 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
980
981 // Assign locations to all of the incoming arguments.
982 SmallVector<CCValAssign, 16> ArgLocs;
983 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
984 getTargetMachine(), ArgLocs);
985 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
986
987 SmallVector<SDOperand, 8> ArgValues;
988 unsigned LastVal = ~0U;
989 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
990 CCValAssign &VA = ArgLocs[i];
991 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
992 // places.
993 assert(VA.getValNo() != LastVal &&
994 "Don't support value assigned to multiple locs yet");
995 LastVal = VA.getValNo();
996
997 if (VA.isRegLoc()) {
998 MVT::ValueType RegVT = VA.getLocVT();
999 TargetRegisterClass *RC;
1000 if (RegVT == MVT::i32)
1001 RC = X86::GR32RegisterClass;
1002 else {
1003 assert(MVT::isVector(RegVT));
1004 RC = X86::VR128RegisterClass;
1005 }
1006
1007 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1008 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1009
1010 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1011 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1012 // right size.
1013 if (VA.getLocInfo() == CCValAssign::SExt)
1014 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1015 DAG.getValueType(VA.getValVT()));
1016 else if (VA.getLocInfo() == CCValAssign::ZExt)
1017 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1018 DAG.getValueType(VA.getValVT()));
1019
1020 if (VA.getLocInfo() != CCValAssign::Full)
1021 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1022
1023 ArgValues.push_back(ArgValue);
1024 } else {
1025 assert(VA.isMemLoc());
1026
1027 // Create the nodes corresponding to a load from this parameter slot.
1028 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1029 VA.getLocMemOffset());
1030 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1031 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1032 }
1033 }
1034
1035 ArgValues.push_back(Root);
1036
1037 unsigned StackSize = CCInfo.getNextStackOffset();
1038
1039 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1040 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1041 // arguments and the arguments after the retaddr has been pushed are aligned.
1042 if ((StackSize & 7) == 0)
1043 StackSize += 4;
1044 }
1045
1046 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1047 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1049 BytesCallerReserves = 0;
1050
Anton Korobeynikove844e472007-08-15 17:12:32 +00001051 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1052 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053
1054 // Return the new list of results.
1055 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1056 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1057}
1058
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001059SDOperand
1060X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1061 const SDOperand &StackPtr,
1062 const CCValAssign &VA,
1063 SDOperand Chain,
1064 SDOperand Arg) {
1065 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1066 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1067 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1068 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1069 if (Flags & ISD::ParamFlags::ByVal) {
1070 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1071 ISD::ParamFlags::ByValAlignOffs);
1072
1073 assert (Align >= 8);
1074 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1075 ISD::ParamFlags::ByValSizeOffs;
1076
1077 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1078 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1079
1080 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1081 AlignNode);
1082 } else {
1083 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1084 }
1085}
1086
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1088 unsigned CC) {
1089 SDOperand Chain = Op.getOperand(0);
1090 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1091 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1092 SDOperand Callee = Op.getOperand(4);
1093
1094 // Analyze operands of the call, assigning locations to each operand.
1095 SmallVector<CCValAssign, 16> ArgLocs;
1096 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1097 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1098
1099 // Get a count of how many bytes are to be pushed on the stack.
1100 unsigned NumBytes = CCInfo.getNextStackOffset();
1101
1102 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1103 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1104 // arguments and the arguments after the retaddr has been pushed are aligned.
1105 if ((NumBytes & 7) == 0)
1106 NumBytes += 4;
1107 }
1108
1109 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1110
1111 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1112 SmallVector<SDOperand, 8> MemOpChains;
1113
1114 SDOperand StackPtr;
1115
1116 // Walk the register/memloc assignments, inserting copies/loads.
1117 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1118 CCValAssign &VA = ArgLocs[i];
1119 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1120
1121 // Promote the value if needed.
1122 switch (VA.getLocInfo()) {
1123 default: assert(0 && "Unknown loc info!");
1124 case CCValAssign::Full: break;
1125 case CCValAssign::SExt:
1126 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1127 break;
1128 case CCValAssign::ZExt:
1129 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1130 break;
1131 case CCValAssign::AExt:
1132 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1133 break;
1134 }
1135
1136 if (VA.isRegLoc()) {
1137 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1138 } else {
1139 assert(VA.isMemLoc());
1140 if (StackPtr.Val == 0)
1141 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1142 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1143 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1144 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1145 }
1146 }
1147
1148 if (!MemOpChains.empty())
1149 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1150 &MemOpChains[0], MemOpChains.size());
1151
1152 // Build a sequence of copy-to-reg nodes chained together with token chain
1153 // and flag operands which copy the outgoing args into registers.
1154 SDOperand InFlag;
1155 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1156 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1157 InFlag);
1158 InFlag = Chain.getValue(1);
1159 }
1160
1161 // If the callee is a GlobalAddress node (quite common, every direct call is)
1162 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1163 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1164 // We should use extra load for direct calls to dllimported functions in
1165 // non-JIT mode.
1166 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1167 getTargetMachine(), true))
1168 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1169 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1170 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1171
1172 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1173 // GOT pointer.
1174 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1175 Subtarget->isPICStyleGOT()) {
1176 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1177 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1178 InFlag);
1179 InFlag = Chain.getValue(1);
1180 }
1181
1182 // Returns a chain & a flag for retval copy to use.
1183 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1184 SmallVector<SDOperand, 8> Ops;
1185 Ops.push_back(Chain);
1186 Ops.push_back(Callee);
1187
1188 // Add argument registers to the end of the list so that they are known live
1189 // into the call.
1190 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1191 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1192 RegsToPass[i].second.getValueType()));
1193
1194 // Add an implicit use GOT pointer in EBX.
1195 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1196 Subtarget->isPICStyleGOT())
1197 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1198
1199 if (InFlag.Val)
1200 Ops.push_back(InFlag);
1201
1202 // FIXME: Do not generate X86ISD::TAILCALL for now.
1203 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1204 NodeTys, &Ops[0], Ops.size());
1205 InFlag = Chain.getValue(1);
1206
1207 // Returns a flag for retval copy to use.
1208 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1209 Ops.clear();
1210 Ops.push_back(Chain);
1211 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1212 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1213 Ops.push_back(InFlag);
1214 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1215 InFlag = Chain.getValue(1);
1216
1217 // Handle result values, copying them out of physregs into vregs that we
1218 // return.
1219 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1220}
1221
1222
1223//===----------------------------------------------------------------------===//
1224// X86-64 C Calling Convention implementation
1225//===----------------------------------------------------------------------===//
1226
1227SDOperand
1228X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1229 MachineFunction &MF = DAG.getMachineFunction();
1230 MachineFrameInfo *MFI = MF.getFrameInfo();
1231 SDOperand Root = Op.getOperand(0);
1232 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1233
1234 static const unsigned GPR64ArgRegs[] = {
1235 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1236 };
1237 static const unsigned XMMArgRegs[] = {
1238 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1239 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1240 };
1241
1242
1243 // Assign locations to all of the incoming arguments.
1244 SmallVector<CCValAssign, 16> ArgLocs;
1245 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1246 getTargetMachine(), ArgLocs);
1247 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1248
1249 SmallVector<SDOperand, 8> ArgValues;
1250 unsigned LastVal = ~0U;
1251 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1252 CCValAssign &VA = ArgLocs[i];
1253 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1254 // places.
1255 assert(VA.getValNo() != LastVal &&
1256 "Don't support value assigned to multiple locs yet");
1257 LastVal = VA.getValNo();
1258
1259 if (VA.isRegLoc()) {
1260 MVT::ValueType RegVT = VA.getLocVT();
1261 TargetRegisterClass *RC;
1262 if (RegVT == MVT::i32)
1263 RC = X86::GR32RegisterClass;
1264 else if (RegVT == MVT::i64)
1265 RC = X86::GR64RegisterClass;
1266 else if (RegVT == MVT::f32)
1267 RC = X86::FR32RegisterClass;
1268 else if (RegVT == MVT::f64)
1269 RC = X86::FR64RegisterClass;
1270 else {
1271 assert(MVT::isVector(RegVT));
1272 if (MVT::getSizeInBits(RegVT) == 64) {
1273 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1274 RegVT = MVT::i64;
1275 } else
1276 RC = X86::VR128RegisterClass;
1277 }
1278
1279 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1280 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1281
1282 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1283 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1284 // right size.
1285 if (VA.getLocInfo() == CCValAssign::SExt)
1286 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1287 DAG.getValueType(VA.getValVT()));
1288 else if (VA.getLocInfo() == CCValAssign::ZExt)
1289 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1290 DAG.getValueType(VA.getValVT()));
1291
1292 if (VA.getLocInfo() != CCValAssign::Full)
1293 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1294
1295 // Handle MMX values passed in GPRs.
1296 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1297 MVT::getSizeInBits(RegVT) == 64)
1298 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1299
1300 ArgValues.push_back(ArgValue);
1301 } else {
1302 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001303 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 }
1305 }
1306
1307 unsigned StackSize = CCInfo.getNextStackOffset();
1308
1309 // If the function takes variable number of arguments, make a frame index for
1310 // the start of the first vararg value... for expansion of llvm.va_start.
1311 if (isVarArg) {
1312 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1313 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1314
1315 // For X86-64, if there are vararg parameters that are passed via
1316 // registers, then we must store them to their spots on the stack so they
1317 // may be loaded by deferencing the result of va_next.
1318 VarArgsGPOffset = NumIntRegs * 8;
1319 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1320 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1321 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1322
1323 // Store the integer parameter registers.
1324 SmallVector<SDOperand, 8> MemOps;
1325 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1326 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1327 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1328 for (; NumIntRegs != 6; ++NumIntRegs) {
1329 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1330 X86::GR64RegisterClass);
1331 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1332 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1333 MemOps.push_back(Store);
1334 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1335 DAG.getConstant(8, getPointerTy()));
1336 }
1337
1338 // Now store the XMM (fp + vector) parameter registers.
1339 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1340 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1341 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1342 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1343 X86::VR128RegisterClass);
1344 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1345 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1346 MemOps.push_back(Store);
1347 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1348 DAG.getConstant(16, getPointerTy()));
1349 }
1350 if (!MemOps.empty())
1351 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1352 &MemOps[0], MemOps.size());
1353 }
1354
1355 ArgValues.push_back(Root);
1356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001357 BytesToPopOnReturn = 0; // Callee pops nothing.
1358 BytesCallerReserves = StackSize;
1359
Anton Korobeynikove844e472007-08-15 17:12:32 +00001360 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1361 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363 // Return the new list of results.
1364 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1365 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1366}
1367
1368SDOperand
1369X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1370 unsigned CC) {
1371 SDOperand Chain = Op.getOperand(0);
1372 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1373 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1374 SDOperand Callee = Op.getOperand(4);
1375
1376 // Analyze operands of the call, assigning locations to each operand.
1377 SmallVector<CCValAssign, 16> ArgLocs;
1378 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1379 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1380
1381 // Get a count of how many bytes are to be pushed on the stack.
1382 unsigned NumBytes = CCInfo.getNextStackOffset();
1383 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1384
1385 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1386 SmallVector<SDOperand, 8> MemOpChains;
1387
1388 SDOperand StackPtr;
1389
1390 // Walk the register/memloc assignments, inserting copies/loads.
1391 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1392 CCValAssign &VA = ArgLocs[i];
1393 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1394
1395 // Promote the value if needed.
1396 switch (VA.getLocInfo()) {
1397 default: assert(0 && "Unknown loc info!");
1398 case CCValAssign::Full: break;
1399 case CCValAssign::SExt:
1400 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1401 break;
1402 case CCValAssign::ZExt:
1403 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1404 break;
1405 case CCValAssign::AExt:
1406 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1407 break;
1408 }
1409
1410 if (VA.isRegLoc()) {
1411 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1412 } else {
1413 assert(VA.isMemLoc());
1414 if (StackPtr.Val == 0)
1415 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001416
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001417 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1418 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419 }
1420 }
1421
1422 if (!MemOpChains.empty())
1423 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1424 &MemOpChains[0], MemOpChains.size());
1425
1426 // Build a sequence of copy-to-reg nodes chained together with token chain
1427 // and flag operands which copy the outgoing args into registers.
1428 SDOperand InFlag;
1429 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1430 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1431 InFlag);
1432 InFlag = Chain.getValue(1);
1433 }
1434
1435 if (isVarArg) {
1436 // From AMD64 ABI document:
1437 // For calls that may call functions that use varargs or stdargs
1438 // (prototype-less calls or calls to functions containing ellipsis (...) in
1439 // the declaration) %al is used as hidden argument to specify the number
1440 // of SSE registers used. The contents of %al do not need to match exactly
1441 // the number of registers, but must be an ubound on the number of SSE
1442 // registers used and is in the range 0 - 8 inclusive.
1443
1444 // Count the number of XMM registers allocated.
1445 static const unsigned XMMArgRegs[] = {
1446 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1447 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1448 };
1449 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1450
1451 Chain = DAG.getCopyToReg(Chain, X86::AL,
1452 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1453 InFlag = Chain.getValue(1);
1454 }
1455
1456 // If the callee is a GlobalAddress node (quite common, every direct call is)
1457 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1458 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1459 // We should use extra load for direct calls to dllimported functions in
1460 // non-JIT mode.
1461 if (getTargetMachine().getCodeModel() != CodeModel::Large
1462 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1463 getTargetMachine(), true))
1464 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1465 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1466 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1467 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1468
1469 // Returns a chain & a flag for retval copy to use.
1470 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1471 SmallVector<SDOperand, 8> Ops;
1472 Ops.push_back(Chain);
1473 Ops.push_back(Callee);
1474
1475 // Add argument registers to the end of the list so that they are known live
1476 // into the call.
1477 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1478 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1479 RegsToPass[i].second.getValueType()));
1480
1481 if (InFlag.Val)
1482 Ops.push_back(InFlag);
1483
1484 // FIXME: Do not generate X86ISD::TAILCALL for now.
1485 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1486 NodeTys, &Ops[0], Ops.size());
1487 InFlag = Chain.getValue(1);
1488
1489 // Returns a flag for retval copy to use.
1490 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1491 Ops.clear();
1492 Ops.push_back(Chain);
1493 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1494 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1495 Ops.push_back(InFlag);
1496 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1497 InFlag = Chain.getValue(1);
1498
1499 // Handle result values, copying them out of physregs into vregs that we
1500 // return.
1501 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1502}
1503
1504
1505//===----------------------------------------------------------------------===//
1506// Other Lowering Hooks
1507//===----------------------------------------------------------------------===//
1508
1509
1510SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001511 MachineFunction &MF = DAG.getMachineFunction();
1512 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1513 int ReturnAddrIndex = FuncInfo->getRAIndex();
1514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 if (ReturnAddrIndex == 0) {
1516 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517 if (Subtarget->is64Bit())
1518 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1519 else
1520 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001521
1522 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 }
1524
1525 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1526}
1527
1528
1529
1530/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1531/// specific condition code. It returns a false if it cannot do a direct
1532/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1533/// needed.
1534static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1535 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1536 SelectionDAG &DAG) {
1537 X86CC = X86::COND_INVALID;
1538 if (!isFP) {
1539 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1540 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1541 // X > -1 -> X == 0, jump !sign.
1542 RHS = DAG.getConstant(0, RHS.getValueType());
1543 X86CC = X86::COND_NS;
1544 return true;
1545 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1546 // X < 0 -> X == 0, jump on sign.
1547 X86CC = X86::COND_S;
1548 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001549 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1550 // X < 1 -> X <= 0
1551 RHS = DAG.getConstant(0, RHS.getValueType());
1552 X86CC = X86::COND_LE;
1553 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554 }
1555 }
1556
1557 switch (SetCCOpcode) {
1558 default: break;
1559 case ISD::SETEQ: X86CC = X86::COND_E; break;
1560 case ISD::SETGT: X86CC = X86::COND_G; break;
1561 case ISD::SETGE: X86CC = X86::COND_GE; break;
1562 case ISD::SETLT: X86CC = X86::COND_L; break;
1563 case ISD::SETLE: X86CC = X86::COND_LE; break;
1564 case ISD::SETNE: X86CC = X86::COND_NE; break;
1565 case ISD::SETULT: X86CC = X86::COND_B; break;
1566 case ISD::SETUGT: X86CC = X86::COND_A; break;
1567 case ISD::SETULE: X86CC = X86::COND_BE; break;
1568 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1569 }
1570 } else {
1571 // On a floating point condition, the flags are set as follows:
1572 // ZF PF CF op
1573 // 0 | 0 | 0 | X > Y
1574 // 0 | 0 | 1 | X < Y
1575 // 1 | 0 | 0 | X == Y
1576 // 1 | 1 | 1 | unordered
1577 bool Flip = false;
1578 switch (SetCCOpcode) {
1579 default: break;
1580 case ISD::SETUEQ:
1581 case ISD::SETEQ: X86CC = X86::COND_E; break;
1582 case ISD::SETOLT: Flip = true; // Fallthrough
1583 case ISD::SETOGT:
1584 case ISD::SETGT: X86CC = X86::COND_A; break;
1585 case ISD::SETOLE: Flip = true; // Fallthrough
1586 case ISD::SETOGE:
1587 case ISD::SETGE: X86CC = X86::COND_AE; break;
1588 case ISD::SETUGT: Flip = true; // Fallthrough
1589 case ISD::SETULT:
1590 case ISD::SETLT: X86CC = X86::COND_B; break;
1591 case ISD::SETUGE: Flip = true; // Fallthrough
1592 case ISD::SETULE:
1593 case ISD::SETLE: X86CC = X86::COND_BE; break;
1594 case ISD::SETONE:
1595 case ISD::SETNE: X86CC = X86::COND_NE; break;
1596 case ISD::SETUO: X86CC = X86::COND_P; break;
1597 case ISD::SETO: X86CC = X86::COND_NP; break;
1598 }
1599 if (Flip)
1600 std::swap(LHS, RHS);
1601 }
1602
1603 return X86CC != X86::COND_INVALID;
1604}
1605
1606/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1607/// code. Current x86 isa includes the following FP cmov instructions:
1608/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1609static bool hasFPCMov(unsigned X86CC) {
1610 switch (X86CC) {
1611 default:
1612 return false;
1613 case X86::COND_B:
1614 case X86::COND_BE:
1615 case X86::COND_E:
1616 case X86::COND_P:
1617 case X86::COND_A:
1618 case X86::COND_AE:
1619 case X86::COND_NE:
1620 case X86::COND_NP:
1621 return true;
1622 }
1623}
1624
1625/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1626/// true if Op is undef or if its value falls within the specified range (L, H].
1627static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1628 if (Op.getOpcode() == ISD::UNDEF)
1629 return true;
1630
1631 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1632 return (Val >= Low && Val < Hi);
1633}
1634
1635/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1636/// true if Op is undef or if its value equal to the specified value.
1637static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1638 if (Op.getOpcode() == ISD::UNDEF)
1639 return true;
1640 return cast<ConstantSDNode>(Op)->getValue() == Val;
1641}
1642
1643/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1644/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1645bool X86::isPSHUFDMask(SDNode *N) {
1646 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1647
Dan Gohman7dc19012007-08-02 21:17:01 +00001648 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001649 return false;
1650
1651 // Check if the value doesn't reference the second vector.
1652 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1653 SDOperand Arg = N->getOperand(i);
1654 if (Arg.getOpcode() == ISD::UNDEF) continue;
1655 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001656 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001657 return false;
1658 }
1659
1660 return true;
1661}
1662
1663/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1664/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1665bool X86::isPSHUFHWMask(SDNode *N) {
1666 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1667
1668 if (N->getNumOperands() != 8)
1669 return false;
1670
1671 // Lower quadword copied in order.
1672 for (unsigned i = 0; i != 4; ++i) {
1673 SDOperand Arg = N->getOperand(i);
1674 if (Arg.getOpcode() == ISD::UNDEF) continue;
1675 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1676 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1677 return false;
1678 }
1679
1680 // Upper quadword shuffled.
1681 for (unsigned i = 4; i != 8; ++i) {
1682 SDOperand Arg = N->getOperand(i);
1683 if (Arg.getOpcode() == ISD::UNDEF) continue;
1684 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1685 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1686 if (Val < 4 || Val > 7)
1687 return false;
1688 }
1689
1690 return true;
1691}
1692
1693/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1694/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1695bool X86::isPSHUFLWMask(SDNode *N) {
1696 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1697
1698 if (N->getNumOperands() != 8)
1699 return false;
1700
1701 // Upper quadword copied in order.
1702 for (unsigned i = 4; i != 8; ++i)
1703 if (!isUndefOrEqual(N->getOperand(i), i))
1704 return false;
1705
1706 // Lower quadword shuffled.
1707 for (unsigned i = 0; i != 4; ++i)
1708 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1709 return false;
1710
1711 return true;
1712}
1713
1714/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1715/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1716static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1717 if (NumElems != 2 && NumElems != 4) return false;
1718
1719 unsigned Half = NumElems / 2;
1720 for (unsigned i = 0; i < Half; ++i)
1721 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1722 return false;
1723 for (unsigned i = Half; i < NumElems; ++i)
1724 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1725 return false;
1726
1727 return true;
1728}
1729
1730bool X86::isSHUFPMask(SDNode *N) {
1731 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1732 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1733}
1734
1735/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1736/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1737/// half elements to come from vector 1 (which would equal the dest.) and
1738/// the upper half to come from vector 2.
1739static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1740 if (NumOps != 2 && NumOps != 4) return false;
1741
1742 unsigned Half = NumOps / 2;
1743 for (unsigned i = 0; i < Half; ++i)
1744 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1745 return false;
1746 for (unsigned i = Half; i < NumOps; ++i)
1747 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1748 return false;
1749 return true;
1750}
1751
1752static bool isCommutedSHUFP(SDNode *N) {
1753 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1754 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1755}
1756
1757/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1758/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1759bool X86::isMOVHLPSMask(SDNode *N) {
1760 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1761
1762 if (N->getNumOperands() != 4)
1763 return false;
1764
1765 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1766 return isUndefOrEqual(N->getOperand(0), 6) &&
1767 isUndefOrEqual(N->getOperand(1), 7) &&
1768 isUndefOrEqual(N->getOperand(2), 2) &&
1769 isUndefOrEqual(N->getOperand(3), 3);
1770}
1771
1772/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1773/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1774/// <2, 3, 2, 3>
1775bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1776 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1777
1778 if (N->getNumOperands() != 4)
1779 return false;
1780
1781 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1782 return isUndefOrEqual(N->getOperand(0), 2) &&
1783 isUndefOrEqual(N->getOperand(1), 3) &&
1784 isUndefOrEqual(N->getOperand(2), 2) &&
1785 isUndefOrEqual(N->getOperand(3), 3);
1786}
1787
1788/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1789/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1790bool X86::isMOVLPMask(SDNode *N) {
1791 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1792
1793 unsigned NumElems = N->getNumOperands();
1794 if (NumElems != 2 && NumElems != 4)
1795 return false;
1796
1797 for (unsigned i = 0; i < NumElems/2; ++i)
1798 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1799 return false;
1800
1801 for (unsigned i = NumElems/2; i < NumElems; ++i)
1802 if (!isUndefOrEqual(N->getOperand(i), i))
1803 return false;
1804
1805 return true;
1806}
1807
1808/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1809/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1810/// and MOVLHPS.
1811bool X86::isMOVHPMask(SDNode *N) {
1812 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1813
1814 unsigned NumElems = N->getNumOperands();
1815 if (NumElems != 2 && NumElems != 4)
1816 return false;
1817
1818 for (unsigned i = 0; i < NumElems/2; ++i)
1819 if (!isUndefOrEqual(N->getOperand(i), i))
1820 return false;
1821
1822 for (unsigned i = 0; i < NumElems/2; ++i) {
1823 SDOperand Arg = N->getOperand(i + NumElems/2);
1824 if (!isUndefOrEqual(Arg, i + NumElems))
1825 return false;
1826 }
1827
1828 return true;
1829}
1830
1831/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1832/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1833bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1834 bool V2IsSplat = false) {
1835 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1836 return false;
1837
1838 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1839 SDOperand BitI = Elts[i];
1840 SDOperand BitI1 = Elts[i+1];
1841 if (!isUndefOrEqual(BitI, j))
1842 return false;
1843 if (V2IsSplat) {
1844 if (isUndefOrEqual(BitI1, NumElts))
1845 return false;
1846 } else {
1847 if (!isUndefOrEqual(BitI1, j + NumElts))
1848 return false;
1849 }
1850 }
1851
1852 return true;
1853}
1854
1855bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1856 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1857 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1858}
1859
1860/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1861/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1862bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1863 bool V2IsSplat = false) {
1864 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1865 return false;
1866
1867 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1868 SDOperand BitI = Elts[i];
1869 SDOperand BitI1 = Elts[i+1];
1870 if (!isUndefOrEqual(BitI, j + NumElts/2))
1871 return false;
1872 if (V2IsSplat) {
1873 if (isUndefOrEqual(BitI1, NumElts))
1874 return false;
1875 } else {
1876 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1877 return false;
1878 }
1879 }
1880
1881 return true;
1882}
1883
1884bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1885 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1886 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1887}
1888
1889/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1890/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1891/// <0, 0, 1, 1>
1892bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1893 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1894
1895 unsigned NumElems = N->getNumOperands();
1896 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1897 return false;
1898
1899 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1900 SDOperand BitI = N->getOperand(i);
1901 SDOperand BitI1 = N->getOperand(i+1);
1902
1903 if (!isUndefOrEqual(BitI, j))
1904 return false;
1905 if (!isUndefOrEqual(BitI1, j))
1906 return false;
1907 }
1908
1909 return true;
1910}
1911
1912/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1913/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1914/// <2, 2, 3, 3>
1915bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1916 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1917
1918 unsigned NumElems = N->getNumOperands();
1919 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1920 return false;
1921
1922 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1923 SDOperand BitI = N->getOperand(i);
1924 SDOperand BitI1 = N->getOperand(i + 1);
1925
1926 if (!isUndefOrEqual(BitI, j))
1927 return false;
1928 if (!isUndefOrEqual(BitI1, j))
1929 return false;
1930 }
1931
1932 return true;
1933}
1934
1935/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1936/// specifies a shuffle of elements that is suitable for input to MOVSS,
1937/// MOVSD, and MOVD, i.e. setting the lowest element.
1938static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1939 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1940 return false;
1941
1942 if (!isUndefOrEqual(Elts[0], NumElts))
1943 return false;
1944
1945 for (unsigned i = 1; i < NumElts; ++i) {
1946 if (!isUndefOrEqual(Elts[i], i))
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953bool X86::isMOVLMask(SDNode *N) {
1954 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1955 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1956}
1957
1958/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1959/// of what x86 movss want. X86 movs requires the lowest element to be lowest
1960/// element of vector 2 and the other elements to come from vector 1 in order.
1961static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1962 bool V2IsSplat = false,
1963 bool V2IsUndef = false) {
1964 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1965 return false;
1966
1967 if (!isUndefOrEqual(Ops[0], 0))
1968 return false;
1969
1970 for (unsigned i = 1; i < NumOps; ++i) {
1971 SDOperand Arg = Ops[i];
1972 if (!(isUndefOrEqual(Arg, i+NumOps) ||
1973 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1974 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1975 return false;
1976 }
1977
1978 return true;
1979}
1980
1981static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1982 bool V2IsUndef = false) {
1983 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1984 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1985 V2IsSplat, V2IsUndef);
1986}
1987
1988/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1989/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1990bool X86::isMOVSHDUPMask(SDNode *N) {
1991 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1992
1993 if (N->getNumOperands() != 4)
1994 return false;
1995
1996 // Expect 1, 1, 3, 3
1997 for (unsigned i = 0; i < 2; ++i) {
1998 SDOperand Arg = N->getOperand(i);
1999 if (Arg.getOpcode() == ISD::UNDEF) continue;
2000 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2001 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2002 if (Val != 1) return false;
2003 }
2004
2005 bool HasHi = false;
2006 for (unsigned i = 2; i < 4; ++i) {
2007 SDOperand Arg = N->getOperand(i);
2008 if (Arg.getOpcode() == ISD::UNDEF) continue;
2009 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2010 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2011 if (Val != 3) return false;
2012 HasHi = true;
2013 }
2014
2015 // Don't use movshdup if it can be done with a shufps.
2016 return HasHi;
2017}
2018
2019/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2020/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2021bool X86::isMOVSLDUPMask(SDNode *N) {
2022 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2023
2024 if (N->getNumOperands() != 4)
2025 return false;
2026
2027 // Expect 0, 0, 2, 2
2028 for (unsigned i = 0; i < 2; ++i) {
2029 SDOperand Arg = N->getOperand(i);
2030 if (Arg.getOpcode() == ISD::UNDEF) continue;
2031 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2032 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2033 if (Val != 0) return false;
2034 }
2035
2036 bool HasHi = false;
2037 for (unsigned i = 2; i < 4; ++i) {
2038 SDOperand Arg = N->getOperand(i);
2039 if (Arg.getOpcode() == ISD::UNDEF) continue;
2040 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2041 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2042 if (Val != 2) return false;
2043 HasHi = true;
2044 }
2045
2046 // Don't use movshdup if it can be done with a shufps.
2047 return HasHi;
2048}
2049
2050/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2051/// specifies a identity operation on the LHS or RHS.
2052static bool isIdentityMask(SDNode *N, bool RHS = false) {
2053 unsigned NumElems = N->getNumOperands();
2054 for (unsigned i = 0; i < NumElems; ++i)
2055 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2056 return false;
2057 return true;
2058}
2059
2060/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2061/// a splat of a single element.
2062static bool isSplatMask(SDNode *N) {
2063 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2064
2065 // This is a splat operation if each element of the permute is the same, and
2066 // if the value doesn't reference the second vector.
2067 unsigned NumElems = N->getNumOperands();
2068 SDOperand ElementBase;
2069 unsigned i = 0;
2070 for (; i != NumElems; ++i) {
2071 SDOperand Elt = N->getOperand(i);
2072 if (isa<ConstantSDNode>(Elt)) {
2073 ElementBase = Elt;
2074 break;
2075 }
2076 }
2077
2078 if (!ElementBase.Val)
2079 return false;
2080
2081 for (; i != NumElems; ++i) {
2082 SDOperand Arg = N->getOperand(i);
2083 if (Arg.getOpcode() == ISD::UNDEF) continue;
2084 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085 if (Arg != ElementBase) return false;
2086 }
2087
2088 // Make sure it is a splat of the first vector operand.
2089 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2090}
2091
2092/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2093/// a splat of a single element and it's a 2 or 4 element mask.
2094bool X86::isSplatMask(SDNode *N) {
2095 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2096
2097 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2098 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2099 return false;
2100 return ::isSplatMask(N);
2101}
2102
2103/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2104/// specifies a splat of zero element.
2105bool X86::isSplatLoMask(SDNode *N) {
2106 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107
2108 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2109 if (!isUndefOrEqual(N->getOperand(i), 0))
2110 return false;
2111 return true;
2112}
2113
2114/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2115/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2116/// instructions.
2117unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2118 unsigned NumOperands = N->getNumOperands();
2119 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2120 unsigned Mask = 0;
2121 for (unsigned i = 0; i < NumOperands; ++i) {
2122 unsigned Val = 0;
2123 SDOperand Arg = N->getOperand(NumOperands-i-1);
2124 if (Arg.getOpcode() != ISD::UNDEF)
2125 Val = cast<ConstantSDNode>(Arg)->getValue();
2126 if (Val >= NumOperands) Val -= NumOperands;
2127 Mask |= Val;
2128 if (i != NumOperands - 1)
2129 Mask <<= Shift;
2130 }
2131
2132 return Mask;
2133}
2134
2135/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2136/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2137/// instructions.
2138unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2139 unsigned Mask = 0;
2140 // 8 nodes, but we only care about the last 4.
2141 for (unsigned i = 7; i >= 4; --i) {
2142 unsigned Val = 0;
2143 SDOperand Arg = N->getOperand(i);
2144 if (Arg.getOpcode() != ISD::UNDEF)
2145 Val = cast<ConstantSDNode>(Arg)->getValue();
2146 Mask |= (Val - 4);
2147 if (i != 4)
2148 Mask <<= 2;
2149 }
2150
2151 return Mask;
2152}
2153
2154/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2155/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2156/// instructions.
2157unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2158 unsigned Mask = 0;
2159 // 8 nodes, but we only care about the first 4.
2160 for (int i = 3; i >= 0; --i) {
2161 unsigned Val = 0;
2162 SDOperand Arg = N->getOperand(i);
2163 if (Arg.getOpcode() != ISD::UNDEF)
2164 Val = cast<ConstantSDNode>(Arg)->getValue();
2165 Mask |= Val;
2166 if (i != 0)
2167 Mask <<= 2;
2168 }
2169
2170 return Mask;
2171}
2172
2173/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2174/// specifies a 8 element shuffle that can be broken into a pair of
2175/// PSHUFHW and PSHUFLW.
2176static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2177 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179 if (N->getNumOperands() != 8)
2180 return false;
2181
2182 // Lower quadword shuffled.
2183 for (unsigned i = 0; i != 4; ++i) {
2184 SDOperand Arg = N->getOperand(i);
2185 if (Arg.getOpcode() == ISD::UNDEF) continue;
2186 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2188 if (Val > 4)
2189 return false;
2190 }
2191
2192 // Upper quadword shuffled.
2193 for (unsigned i = 4; i != 8; ++i) {
2194 SDOperand Arg = N->getOperand(i);
2195 if (Arg.getOpcode() == ISD::UNDEF) continue;
2196 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2197 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2198 if (Val < 4 || Val > 7)
2199 return false;
2200 }
2201
2202 return true;
2203}
2204
2205/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2206/// values in ther permute mask.
2207static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2208 SDOperand &V2, SDOperand &Mask,
2209 SelectionDAG &DAG) {
2210 MVT::ValueType VT = Op.getValueType();
2211 MVT::ValueType MaskVT = Mask.getValueType();
2212 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2213 unsigned NumElems = Mask.getNumOperands();
2214 SmallVector<SDOperand, 8> MaskVec;
2215
2216 for (unsigned i = 0; i != NumElems; ++i) {
2217 SDOperand Arg = Mask.getOperand(i);
2218 if (Arg.getOpcode() == ISD::UNDEF) {
2219 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2220 continue;
2221 }
2222 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2223 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2224 if (Val < NumElems)
2225 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2226 else
2227 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2228 }
2229
2230 std::swap(V1, V2);
2231 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2232 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2233}
2234
2235/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2236/// match movhlps. The lower half elements should come from upper half of
2237/// V1 (and in order), and the upper half elements should come from the upper
2238/// half of V2 (and in order).
2239static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2240 unsigned NumElems = Mask->getNumOperands();
2241 if (NumElems != 4)
2242 return false;
2243 for (unsigned i = 0, e = 2; i != e; ++i)
2244 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2245 return false;
2246 for (unsigned i = 2; i != 4; ++i)
2247 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2248 return false;
2249 return true;
2250}
2251
2252/// isScalarLoadToVector - Returns true if the node is a scalar load that
2253/// is promoted to a vector.
2254static inline bool isScalarLoadToVector(SDNode *N) {
2255 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2256 N = N->getOperand(0).Val;
2257 return ISD::isNON_EXTLoad(N);
2258 }
2259 return false;
2260}
2261
2262/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2263/// match movlp{s|d}. The lower half elements should come from lower half of
2264/// V1 (and in order), and the upper half elements should come from the upper
2265/// half of V2 (and in order). And since V1 will become the source of the
2266/// MOVLP, it must be either a vector load or a scalar load to vector.
2267static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2268 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2269 return false;
2270 // Is V2 is a vector load, don't do this transformation. We will try to use
2271 // load folding shufps op.
2272 if (ISD::isNON_EXTLoad(V2))
2273 return false;
2274
2275 unsigned NumElems = Mask->getNumOperands();
2276 if (NumElems != 2 && NumElems != 4)
2277 return false;
2278 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2279 if (!isUndefOrEqual(Mask->getOperand(i), i))
2280 return false;
2281 for (unsigned i = NumElems/2; i != NumElems; ++i)
2282 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2283 return false;
2284 return true;
2285}
2286
2287/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2288/// all the same.
2289static bool isSplatVector(SDNode *N) {
2290 if (N->getOpcode() != ISD::BUILD_VECTOR)
2291 return false;
2292
2293 SDOperand SplatValue = N->getOperand(0);
2294 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2295 if (N->getOperand(i) != SplatValue)
2296 return false;
2297 return true;
2298}
2299
2300/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2301/// to an undef.
2302static bool isUndefShuffle(SDNode *N) {
2303 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2304 return false;
2305
2306 SDOperand V1 = N->getOperand(0);
2307 SDOperand V2 = N->getOperand(1);
2308 SDOperand Mask = N->getOperand(2);
2309 unsigned NumElems = Mask.getNumOperands();
2310 for (unsigned i = 0; i != NumElems; ++i) {
2311 SDOperand Arg = Mask.getOperand(i);
2312 if (Arg.getOpcode() != ISD::UNDEF) {
2313 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2314 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2315 return false;
2316 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2317 return false;
2318 }
2319 }
2320 return true;
2321}
2322
2323/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2324/// constant +0.0.
2325static inline bool isZeroNode(SDOperand Elt) {
2326 return ((isa<ConstantSDNode>(Elt) &&
2327 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2328 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002329 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330}
2331
2332/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2333/// to an zero vector.
2334static bool isZeroShuffle(SDNode *N) {
2335 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2336 return false;
2337
2338 SDOperand V1 = N->getOperand(0);
2339 SDOperand V2 = N->getOperand(1);
2340 SDOperand Mask = N->getOperand(2);
2341 unsigned NumElems = Mask.getNumOperands();
2342 for (unsigned i = 0; i != NumElems; ++i) {
2343 SDOperand Arg = Mask.getOperand(i);
2344 if (Arg.getOpcode() != ISD::UNDEF) {
2345 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2346 if (Idx < NumElems) {
2347 unsigned Opc = V1.Val->getOpcode();
2348 if (Opc == ISD::UNDEF)
2349 continue;
2350 if (Opc != ISD::BUILD_VECTOR ||
2351 !isZeroNode(V1.Val->getOperand(Idx)))
2352 return false;
2353 } else if (Idx >= NumElems) {
2354 unsigned Opc = V2.Val->getOpcode();
2355 if (Opc == ISD::UNDEF)
2356 continue;
2357 if (Opc != ISD::BUILD_VECTOR ||
2358 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2359 return false;
2360 }
2361 }
2362 }
2363 return true;
2364}
2365
2366/// getZeroVector - Returns a vector of specified type with all zero elements.
2367///
2368static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2369 assert(MVT::isVector(VT) && "Expected a vector type");
2370 unsigned NumElems = MVT::getVectorNumElements(VT);
2371 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2372 bool isFP = MVT::isFloatingPoint(EVT);
2373 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2374 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2375 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2376}
2377
2378/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2379/// that point to V2 points to its first element.
2380static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2381 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2382
2383 bool Changed = false;
2384 SmallVector<SDOperand, 8> MaskVec;
2385 unsigned NumElems = Mask.getNumOperands();
2386 for (unsigned i = 0; i != NumElems; ++i) {
2387 SDOperand Arg = Mask.getOperand(i);
2388 if (Arg.getOpcode() != ISD::UNDEF) {
2389 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2390 if (Val > NumElems) {
2391 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2392 Changed = true;
2393 }
2394 }
2395 MaskVec.push_back(Arg);
2396 }
2397
2398 if (Changed)
2399 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2400 &MaskVec[0], MaskVec.size());
2401 return Mask;
2402}
2403
2404/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2405/// operation of specified width.
2406static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2407 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2408 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2409
2410 SmallVector<SDOperand, 8> MaskVec;
2411 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2412 for (unsigned i = 1; i != NumElems; ++i)
2413 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2414 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2415}
2416
2417/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2418/// of specified width.
2419static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2420 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2421 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2422 SmallVector<SDOperand, 8> MaskVec;
2423 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2424 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2425 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2426 }
2427 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2428}
2429
2430/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2431/// of specified width.
2432static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2433 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2434 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2435 unsigned Half = NumElems/2;
2436 SmallVector<SDOperand, 8> MaskVec;
2437 for (unsigned i = 0; i != Half; ++i) {
2438 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2439 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2440 }
2441 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2442}
2443
2444/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2445///
2446static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2447 SDOperand V1 = Op.getOperand(0);
2448 SDOperand Mask = Op.getOperand(2);
2449 MVT::ValueType VT = Op.getValueType();
2450 unsigned NumElems = Mask.getNumOperands();
2451 Mask = getUnpacklMask(NumElems, DAG);
2452 while (NumElems != 4) {
2453 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2454 NumElems >>= 1;
2455 }
2456 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2457
2458 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2459 Mask = getZeroVector(MaskVT, DAG);
2460 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2461 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2462 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2463}
2464
2465/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2466/// vector of zero or undef vector.
2467static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2468 unsigned NumElems, unsigned Idx,
2469 bool isZero, SelectionDAG &DAG) {
2470 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2471 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2472 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2473 SDOperand Zero = DAG.getConstant(0, EVT);
2474 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2475 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2476 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2477 &MaskVec[0], MaskVec.size());
2478 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2479}
2480
2481/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2482///
2483static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2484 unsigned NumNonZero, unsigned NumZero,
2485 SelectionDAG &DAG, TargetLowering &TLI) {
2486 if (NumNonZero > 8)
2487 return SDOperand();
2488
2489 SDOperand V(0, 0);
2490 bool First = true;
2491 for (unsigned i = 0; i < 16; ++i) {
2492 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2493 if (ThisIsNonZero && First) {
2494 if (NumZero)
2495 V = getZeroVector(MVT::v8i16, DAG);
2496 else
2497 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2498 First = false;
2499 }
2500
2501 if ((i & 1) != 0) {
2502 SDOperand ThisElt(0, 0), LastElt(0, 0);
2503 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2504 if (LastIsNonZero) {
2505 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2506 }
2507 if (ThisIsNonZero) {
2508 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2509 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2510 ThisElt, DAG.getConstant(8, MVT::i8));
2511 if (LastIsNonZero)
2512 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2513 } else
2514 ThisElt = LastElt;
2515
2516 if (ThisElt.Val)
2517 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2518 DAG.getConstant(i/2, TLI.getPointerTy()));
2519 }
2520 }
2521
2522 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2523}
2524
2525/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2526///
2527static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2528 unsigned NumNonZero, unsigned NumZero,
2529 SelectionDAG &DAG, TargetLowering &TLI) {
2530 if (NumNonZero > 4)
2531 return SDOperand();
2532
2533 SDOperand V(0, 0);
2534 bool First = true;
2535 for (unsigned i = 0; i < 8; ++i) {
2536 bool isNonZero = (NonZeros & (1 << i)) != 0;
2537 if (isNonZero) {
2538 if (First) {
2539 if (NumZero)
2540 V = getZeroVector(MVT::v8i16, DAG);
2541 else
2542 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2543 First = false;
2544 }
2545 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2546 DAG.getConstant(i, TLI.getPointerTy()));
2547 }
2548 }
2549
2550 return V;
2551}
2552
2553SDOperand
2554X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2555 // All zero's are handled with pxor.
2556 if (ISD::isBuildVectorAllZeros(Op.Val))
2557 return Op;
2558
2559 // All one's are handled with pcmpeqd.
2560 if (ISD::isBuildVectorAllOnes(Op.Val))
2561 return Op;
2562
2563 MVT::ValueType VT = Op.getValueType();
2564 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2565 unsigned EVTBits = MVT::getSizeInBits(EVT);
2566
2567 unsigned NumElems = Op.getNumOperands();
2568 unsigned NumZero = 0;
2569 unsigned NumNonZero = 0;
2570 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002571 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572 std::set<SDOperand> Values;
2573 for (unsigned i = 0; i < NumElems; ++i) {
2574 SDOperand Elt = Op.getOperand(i);
2575 if (Elt.getOpcode() != ISD::UNDEF) {
2576 Values.insert(Elt);
2577 if (isZeroNode(Elt))
2578 NumZero++;
2579 else {
2580 NonZeros |= (1 << i);
2581 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002582 if (Elt.getOpcode() == ISD::Constant ||
2583 Elt.getOpcode() == ISD::ConstantFP)
2584 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585 }
2586 }
2587 }
2588
2589 if (NumNonZero == 0) {
2590 if (NumZero == 0)
2591 // All undef vector. Return an UNDEF.
2592 return DAG.getNode(ISD::UNDEF, VT);
2593 else
2594 // A mix of zero and undef. Return a zero vector.
2595 return getZeroVector(VT, DAG);
2596 }
2597
2598 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2599 if (Values.size() == 1)
2600 return SDOperand();
2601
2602 // Special case for single non-zero element.
2603 if (NumNonZero == 1) {
2604 unsigned Idx = CountTrailingZeros_32(NonZeros);
2605 SDOperand Item = Op.getOperand(Idx);
2606 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2607 if (Idx == 0)
2608 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2609 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2610 NumZero > 0, DAG);
2611
2612 if (EVTBits == 32) {
2613 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2614 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2615 DAG);
2616 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2617 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2618 SmallVector<SDOperand, 8> MaskVec;
2619 for (unsigned i = 0; i < NumElems; i++)
2620 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2621 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2622 &MaskVec[0], MaskVec.size());
2623 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2624 DAG.getNode(ISD::UNDEF, VT), Mask);
2625 }
2626 }
2627
Dan Gohman21463242007-07-24 22:55:08 +00002628 // A vector full of immediates; various special cases are already
2629 // handled, so this is best done with a single constant-pool load.
2630 if (NumNonZero == NumNonZeroImms)
2631 return SDOperand();
2632
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002633 // Let legalizer expand 2-wide build_vectors.
2634 if (EVTBits == 64)
2635 return SDOperand();
2636
2637 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2638 if (EVTBits == 8 && NumElems == 16) {
2639 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2640 *this);
2641 if (V.Val) return V;
2642 }
2643
2644 if (EVTBits == 16 && NumElems == 8) {
2645 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2646 *this);
2647 if (V.Val) return V;
2648 }
2649
2650 // If element VT is == 32 bits, turn it into a number of shuffles.
2651 SmallVector<SDOperand, 8> V;
2652 V.resize(NumElems);
2653 if (NumElems == 4 && NumZero > 0) {
2654 for (unsigned i = 0; i < 4; ++i) {
2655 bool isZero = !(NonZeros & (1 << i));
2656 if (isZero)
2657 V[i] = getZeroVector(VT, DAG);
2658 else
2659 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2660 }
2661
2662 for (unsigned i = 0; i < 2; ++i) {
2663 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2664 default: break;
2665 case 0:
2666 V[i] = V[i*2]; // Must be a zero vector.
2667 break;
2668 case 1:
2669 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2670 getMOVLMask(NumElems, DAG));
2671 break;
2672 case 2:
2673 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2674 getMOVLMask(NumElems, DAG));
2675 break;
2676 case 3:
2677 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2678 getUnpacklMask(NumElems, DAG));
2679 break;
2680 }
2681 }
2682
2683 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2684 // clears the upper bits.
2685 // FIXME: we can do the same for v4f32 case when we know both parts of
2686 // the lower half come from scalar_to_vector (loadf32). We should do
2687 // that in post legalizer dag combiner with target specific hooks.
2688 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2689 return V[0];
2690 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2691 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2692 SmallVector<SDOperand, 8> MaskVec;
2693 bool Reverse = (NonZeros & 0x3) == 2;
2694 for (unsigned i = 0; i < 2; ++i)
2695 if (Reverse)
2696 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2697 else
2698 MaskVec.push_back(DAG.getConstant(i, EVT));
2699 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2700 for (unsigned i = 0; i < 2; ++i)
2701 if (Reverse)
2702 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2703 else
2704 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2705 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2706 &MaskVec[0], MaskVec.size());
2707 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2708 }
2709
2710 if (Values.size() > 2) {
2711 // Expand into a number of unpckl*.
2712 // e.g. for v4f32
2713 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2714 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2715 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2716 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2717 for (unsigned i = 0; i < NumElems; ++i)
2718 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2719 NumElems >>= 1;
2720 while (NumElems != 0) {
2721 for (unsigned i = 0; i < NumElems; ++i)
2722 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2723 UnpckMask);
2724 NumElems >>= 1;
2725 }
2726 return V[0];
2727 }
2728
2729 return SDOperand();
2730}
2731
2732SDOperand
2733X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2734 SDOperand V1 = Op.getOperand(0);
2735 SDOperand V2 = Op.getOperand(1);
2736 SDOperand PermMask = Op.getOperand(2);
2737 MVT::ValueType VT = Op.getValueType();
2738 unsigned NumElems = PermMask.getNumOperands();
2739 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2740 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2741 bool V1IsSplat = false;
2742 bool V2IsSplat = false;
2743
2744 if (isUndefShuffle(Op.Val))
2745 return DAG.getNode(ISD::UNDEF, VT);
2746
2747 if (isZeroShuffle(Op.Val))
2748 return getZeroVector(VT, DAG);
2749
2750 if (isIdentityMask(PermMask.Val))
2751 return V1;
2752 else if (isIdentityMask(PermMask.Val, true))
2753 return V2;
2754
2755 if (isSplatMask(PermMask.Val)) {
2756 if (NumElems <= 4) return Op;
2757 // Promote it to a v4i32 splat.
2758 return PromoteSplat(Op, DAG);
2759 }
2760
2761 if (X86::isMOVLMask(PermMask.Val))
2762 return (V1IsUndef) ? V2 : Op;
2763
2764 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2765 X86::isMOVSLDUPMask(PermMask.Val) ||
2766 X86::isMOVHLPSMask(PermMask.Val) ||
2767 X86::isMOVHPMask(PermMask.Val) ||
2768 X86::isMOVLPMask(PermMask.Val))
2769 return Op;
2770
2771 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2772 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2773 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2774
2775 bool Commuted = false;
2776 V1IsSplat = isSplatVector(V1.Val);
2777 V2IsSplat = isSplatVector(V2.Val);
2778 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2779 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2780 std::swap(V1IsSplat, V2IsSplat);
2781 std::swap(V1IsUndef, V2IsUndef);
2782 Commuted = true;
2783 }
2784
2785 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2786 if (V2IsUndef) return V1;
2787 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2788 if (V2IsSplat) {
2789 // V2 is a splat, so the mask may be malformed. That is, it may point
2790 // to any V2 element. The instruction selectior won't like this. Get
2791 // a corrected mask and commute to form a proper MOVS{S|D}.
2792 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2793 if (NewMask.Val != PermMask.Val)
2794 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2795 }
2796 return Op;
2797 }
2798
2799 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2800 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2801 X86::isUNPCKLMask(PermMask.Val) ||
2802 X86::isUNPCKHMask(PermMask.Val))
2803 return Op;
2804
2805 if (V2IsSplat) {
2806 // Normalize mask so all entries that point to V2 points to its first
2807 // element then try to match unpck{h|l} again. If match, return a
2808 // new vector_shuffle with the corrected mask.
2809 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2810 if (NewMask.Val != PermMask.Val) {
2811 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2812 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2813 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2814 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2815 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2816 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2817 }
2818 }
2819 }
2820
2821 // Normalize the node to match x86 shuffle ops if needed
2822 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2823 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2824
2825 if (Commuted) {
2826 // Commute is back and try unpck* again.
2827 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2828 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2829 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2830 X86::isUNPCKLMask(PermMask.Val) ||
2831 X86::isUNPCKHMask(PermMask.Val))
2832 return Op;
2833 }
2834
2835 // If VT is integer, try PSHUF* first, then SHUFP*.
2836 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002837 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2838 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2839 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2840 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002841 X86::isPSHUFHWMask(PermMask.Val) ||
2842 X86::isPSHUFLWMask(PermMask.Val)) {
2843 if (V2.getOpcode() != ISD::UNDEF)
2844 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2845 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2846 return Op;
2847 }
2848
2849 if (X86::isSHUFPMask(PermMask.Val) &&
2850 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2851 return Op;
2852
2853 // Handle v8i16 shuffle high / low shuffle node pair.
2854 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2855 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2856 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2857 SmallVector<SDOperand, 8> MaskVec;
2858 for (unsigned i = 0; i != 4; ++i)
2859 MaskVec.push_back(PermMask.getOperand(i));
2860 for (unsigned i = 4; i != 8; ++i)
2861 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2862 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2863 &MaskVec[0], MaskVec.size());
2864 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2865 MaskVec.clear();
2866 for (unsigned i = 0; i != 4; ++i)
2867 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2868 for (unsigned i = 4; i != 8; ++i)
2869 MaskVec.push_back(PermMask.getOperand(i));
2870 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2871 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2872 }
2873 } else {
2874 // Floating point cases in the other order.
2875 if (X86::isSHUFPMask(PermMask.Val))
2876 return Op;
2877 if (X86::isPSHUFDMask(PermMask.Val) ||
2878 X86::isPSHUFHWMask(PermMask.Val) ||
2879 X86::isPSHUFLWMask(PermMask.Val)) {
2880 if (V2.getOpcode() != ISD::UNDEF)
2881 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2882 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2883 return Op;
2884 }
2885 }
2886
2887 if (NumElems == 4 &&
2888 // Don't do this for MMX.
2889 MVT::getSizeInBits(VT) != 64) {
2890 MVT::ValueType MaskVT = PermMask.getValueType();
2891 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2892 SmallVector<std::pair<int, int>, 8> Locs;
2893 Locs.reserve(NumElems);
2894 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2895 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2896 unsigned NumHi = 0;
2897 unsigned NumLo = 0;
2898 // If no more than two elements come from either vector. This can be
2899 // implemented with two shuffles. First shuffle gather the elements.
2900 // The second shuffle, which takes the first shuffle as both of its
2901 // vector operands, put the elements into the right order.
2902 for (unsigned i = 0; i != NumElems; ++i) {
2903 SDOperand Elt = PermMask.getOperand(i);
2904 if (Elt.getOpcode() == ISD::UNDEF) {
2905 Locs[i] = std::make_pair(-1, -1);
2906 } else {
2907 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2908 if (Val < NumElems) {
2909 Locs[i] = std::make_pair(0, NumLo);
2910 Mask1[NumLo] = Elt;
2911 NumLo++;
2912 } else {
2913 Locs[i] = std::make_pair(1, NumHi);
2914 if (2+NumHi < NumElems)
2915 Mask1[2+NumHi] = Elt;
2916 NumHi++;
2917 }
2918 }
2919 }
2920 if (NumLo <= 2 && NumHi <= 2) {
2921 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2922 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2923 &Mask1[0], Mask1.size()));
2924 for (unsigned i = 0; i != NumElems; ++i) {
2925 if (Locs[i].first == -1)
2926 continue;
2927 else {
2928 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2929 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2930 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2931 }
2932 }
2933
2934 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2935 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2936 &Mask2[0], Mask2.size()));
2937 }
2938
2939 // Break it into (shuffle shuffle_hi, shuffle_lo).
2940 Locs.clear();
2941 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2942 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2943 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2944 unsigned MaskIdx = 0;
2945 unsigned LoIdx = 0;
2946 unsigned HiIdx = NumElems/2;
2947 for (unsigned i = 0; i != NumElems; ++i) {
2948 if (i == NumElems/2) {
2949 MaskPtr = &HiMask;
2950 MaskIdx = 1;
2951 LoIdx = 0;
2952 HiIdx = NumElems/2;
2953 }
2954 SDOperand Elt = PermMask.getOperand(i);
2955 if (Elt.getOpcode() == ISD::UNDEF) {
2956 Locs[i] = std::make_pair(-1, -1);
2957 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2958 Locs[i] = std::make_pair(MaskIdx, LoIdx);
2959 (*MaskPtr)[LoIdx] = Elt;
2960 LoIdx++;
2961 } else {
2962 Locs[i] = std::make_pair(MaskIdx, HiIdx);
2963 (*MaskPtr)[HiIdx] = Elt;
2964 HiIdx++;
2965 }
2966 }
2967
2968 SDOperand LoShuffle =
2969 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2970 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2971 &LoMask[0], LoMask.size()));
2972 SDOperand HiShuffle =
2973 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2974 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2975 &HiMask[0], HiMask.size()));
2976 SmallVector<SDOperand, 8> MaskOps;
2977 for (unsigned i = 0; i != NumElems; ++i) {
2978 if (Locs[i].first == -1) {
2979 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2980 } else {
2981 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2982 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2983 }
2984 }
2985 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2986 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2987 &MaskOps[0], MaskOps.size()));
2988 }
2989
2990 return SDOperand();
2991}
2992
2993SDOperand
2994X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2995 if (!isa<ConstantSDNode>(Op.getOperand(1)))
2996 return SDOperand();
2997
2998 MVT::ValueType VT = Op.getValueType();
2999 // TODO: handle v16i8.
3000 if (MVT::getSizeInBits(VT) == 16) {
3001 // Transform it so it match pextrw which produces a 32-bit result.
3002 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3003 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3004 Op.getOperand(0), Op.getOperand(1));
3005 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3006 DAG.getValueType(VT));
3007 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3008 } else if (MVT::getSizeInBits(VT) == 32) {
3009 SDOperand Vec = Op.getOperand(0);
3010 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3011 if (Idx == 0)
3012 return Op;
3013 // SHUFPS the element to the lowest double word, then movss.
3014 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3015 SmallVector<SDOperand, 8> IdxVec;
3016 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3017 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3018 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3019 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3020 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3021 &IdxVec[0], IdxVec.size());
3022 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3023 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3024 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3025 DAG.getConstant(0, getPointerTy()));
3026 } else if (MVT::getSizeInBits(VT) == 64) {
3027 SDOperand Vec = Op.getOperand(0);
3028 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3029 if (Idx == 0)
3030 return Op;
3031
3032 // UNPCKHPD the element to the lowest double word, then movsd.
3033 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3034 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3035 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3036 SmallVector<SDOperand, 8> IdxVec;
3037 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3038 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3039 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3040 &IdxVec[0], IdxVec.size());
3041 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3042 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3043 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3044 DAG.getConstant(0, getPointerTy()));
3045 }
3046
3047 return SDOperand();
3048}
3049
3050SDOperand
3051X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3052 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3053 // as its second argument.
3054 MVT::ValueType VT = Op.getValueType();
3055 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3056 SDOperand N0 = Op.getOperand(0);
3057 SDOperand N1 = Op.getOperand(1);
3058 SDOperand N2 = Op.getOperand(2);
3059 if (MVT::getSizeInBits(BaseVT) == 16) {
3060 if (N1.getValueType() != MVT::i32)
3061 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3062 if (N2.getValueType() != MVT::i32)
3063 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3064 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3065 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3066 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3067 if (Idx == 0) {
3068 // Use a movss.
3069 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3070 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3071 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3072 SmallVector<SDOperand, 8> MaskVec;
3073 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3074 for (unsigned i = 1; i <= 3; ++i)
3075 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3076 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3077 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3078 &MaskVec[0], MaskVec.size()));
3079 } else {
3080 // Use two pinsrw instructions to insert a 32 bit value.
3081 Idx <<= 1;
3082 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003083 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3084 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3085 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3086 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087 }
3088 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3089 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3090 DAG.getConstant(Idx, getPointerTy()));
3091 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3092 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3093 DAG.getConstant(Idx+1, getPointerTy()));
3094 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3095 }
3096 }
3097
3098 return SDOperand();
3099}
3100
3101SDOperand
3102X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3103 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3104 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3105}
3106
3107// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3108// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3109// one of the above mentioned nodes. It has to be wrapped because otherwise
3110// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3111// be used to form addressing mode. These wrapped nodes will be selected
3112// into MOV32ri.
3113SDOperand
3114X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3115 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3116 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3117 getPointerTy(),
3118 CP->getAlignment());
3119 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3120 // With PIC, the address is actually $g + Offset.
3121 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3122 !Subtarget->isPICStyleRIPRel()) {
3123 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3124 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3125 Result);
3126 }
3127
3128 return Result;
3129}
3130
3131SDOperand
3132X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3133 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3134 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3135 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3136 // With PIC, the address is actually $g + Offset.
3137 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3138 !Subtarget->isPICStyleRIPRel()) {
3139 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3140 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3141 Result);
3142 }
3143
3144 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3145 // load the value at address GV, not the value of GV itself. This means that
3146 // the GlobalAddress must be in the base or index register of the address, not
3147 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3148 // The same applies for external symbols during PIC codegen
3149 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3150 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3151
3152 return Result;
3153}
3154
3155// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3156static SDOperand
3157LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3158 const MVT::ValueType PtrVT) {
3159 SDOperand InFlag;
3160 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3161 DAG.getNode(X86ISD::GlobalBaseReg,
3162 PtrVT), InFlag);
3163 InFlag = Chain.getValue(1);
3164
3165 // emit leal symbol@TLSGD(,%ebx,1), %eax
3166 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3167 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3168 GA->getValueType(0),
3169 GA->getOffset());
3170 SDOperand Ops[] = { Chain, TGA, InFlag };
3171 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3172 InFlag = Result.getValue(2);
3173 Chain = Result.getValue(1);
3174
3175 // call ___tls_get_addr. This function receives its argument in
3176 // the register EAX.
3177 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3178 InFlag = Chain.getValue(1);
3179
3180 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3181 SDOperand Ops1[] = { Chain,
3182 DAG.getTargetExternalSymbol("___tls_get_addr",
3183 PtrVT),
3184 DAG.getRegister(X86::EAX, PtrVT),
3185 DAG.getRegister(X86::EBX, PtrVT),
3186 InFlag };
3187 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3188 InFlag = Chain.getValue(1);
3189
3190 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3191}
3192
3193// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3194// "local exec" model.
3195static SDOperand
3196LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3197 const MVT::ValueType PtrVT) {
3198 // Get the Thread Pointer
3199 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3200 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3201 // exec)
3202 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3203 GA->getValueType(0),
3204 GA->getOffset());
3205 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3206
3207 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3208 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3209
3210 // The address of the thread local variable is the add of the thread
3211 // pointer with the offset of the variable.
3212 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3213}
3214
3215SDOperand
3216X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3217 // TODO: implement the "local dynamic" model
3218 // TODO: implement the "initial exec"model for pic executables
3219 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3220 "TLS not implemented for non-ELF and 64-bit targets");
3221 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3222 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3223 // otherwise use the "Local Exec"TLS Model
3224 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3225 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3226 else
3227 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3228}
3229
3230SDOperand
3231X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3232 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3233 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3234 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3235 // With PIC, the address is actually $g + Offset.
3236 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3237 !Subtarget->isPICStyleRIPRel()) {
3238 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3239 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3240 Result);
3241 }
3242
3243 return Result;
3244}
3245
3246SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3247 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3248 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3249 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3250 // With PIC, the address is actually $g + Offset.
3251 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3252 !Subtarget->isPICStyleRIPRel()) {
3253 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3254 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3255 Result);
3256 }
3257
3258 return Result;
3259}
3260
3261SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3262 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3263 "Not an i64 shift!");
3264 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3265 SDOperand ShOpLo = Op.getOperand(0);
3266 SDOperand ShOpHi = Op.getOperand(1);
3267 SDOperand ShAmt = Op.getOperand(2);
3268 SDOperand Tmp1 = isSRA ?
3269 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3270 DAG.getConstant(0, MVT::i32);
3271
3272 SDOperand Tmp2, Tmp3;
3273 if (Op.getOpcode() == ISD::SHL_PARTS) {
3274 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3275 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3276 } else {
3277 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3278 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3279 }
3280
3281 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3282 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3283 DAG.getConstant(32, MVT::i8));
3284 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3285 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3286
3287 SDOperand Hi, Lo;
3288 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3289
3290 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3291 SmallVector<SDOperand, 4> Ops;
3292 if (Op.getOpcode() == ISD::SHL_PARTS) {
3293 Ops.push_back(Tmp2);
3294 Ops.push_back(Tmp3);
3295 Ops.push_back(CC);
3296 Ops.push_back(InFlag);
3297 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3298 InFlag = Hi.getValue(1);
3299
3300 Ops.clear();
3301 Ops.push_back(Tmp3);
3302 Ops.push_back(Tmp1);
3303 Ops.push_back(CC);
3304 Ops.push_back(InFlag);
3305 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3306 } else {
3307 Ops.push_back(Tmp2);
3308 Ops.push_back(Tmp3);
3309 Ops.push_back(CC);
3310 Ops.push_back(InFlag);
3311 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3312 InFlag = Lo.getValue(1);
3313
3314 Ops.clear();
3315 Ops.push_back(Tmp3);
3316 Ops.push_back(Tmp1);
3317 Ops.push_back(CC);
3318 Ops.push_back(InFlag);
3319 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3320 }
3321
3322 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3323 Ops.clear();
3324 Ops.push_back(Lo);
3325 Ops.push_back(Hi);
3326 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3327}
3328
3329SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3330 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3331 Op.getOperand(0).getValueType() >= MVT::i16 &&
3332 "Unknown SINT_TO_FP to lower!");
3333
3334 SDOperand Result;
3335 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3336 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3337 MachineFunction &MF = DAG.getMachineFunction();
3338 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3339 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3340 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3341 StackSlot, NULL, 0);
3342
Dale Johannesen2fc20782007-09-14 22:26:36 +00003343 // These are really Legal; caller falls through into that case.
3344 if (SrcVT==MVT::i32 && Op.getValueType() != MVT::f80 && X86ScalarSSE)
3345 return Result;
3346
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003347 // Build the FILD
3348 SDVTList Tys;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003349 bool useSSE = X86ScalarSSE && Op.getValueType() != MVT::f80;
3350 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003351 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3352 else
3353 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3354 SmallVector<SDOperand, 8> Ops;
3355 Ops.push_back(Chain);
3356 Ops.push_back(StackSlot);
3357 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003358 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 Tys, &Ops[0], Ops.size());
3360
Dale Johannesen2fc20782007-09-14 22:26:36 +00003361 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003362 Chain = Result.getValue(1);
3363 SDOperand InFlag = Result.getValue(2);
3364
3365 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3366 // shouldn't be necessary except that RFP cannot be live across
3367 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3368 MachineFunction &MF = DAG.getMachineFunction();
3369 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3370 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3371 Tys = DAG.getVTList(MVT::Other);
3372 SmallVector<SDOperand, 8> Ops;
3373 Ops.push_back(Chain);
3374 Ops.push_back(Result);
3375 Ops.push_back(StackSlot);
3376 Ops.push_back(DAG.getValueType(Op.getValueType()));
3377 Ops.push_back(InFlag);
3378 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3379 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3380 }
3381
3382 return Result;
3383}
3384
3385SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3386 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3387 "Unknown FP_TO_SINT to lower!");
3388 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3389 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003390 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003391 MachineFunction &MF = DAG.getMachineFunction();
3392 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3393 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3394 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3395
Dale Johannesen2fc20782007-09-14 22:26:36 +00003396 // These are really Legal.
3397 if (Op.getValueType() == MVT::i32 && X86ScalarSSE &&
3398 Op.getOperand(0).getValueType() != MVT::f80)
3399 return Result;
3400
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401 unsigned Opc;
3402 switch (Op.getValueType()) {
3403 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3404 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3405 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3406 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3407 }
3408
3409 SDOperand Chain = DAG.getEntryNode();
3410 SDOperand Value = Op.getOperand(0);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003411 if (X86ScalarSSE && Op.getOperand(0).getValueType() != MVT::f80) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003412 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3413 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3414 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3415 SDOperand Ops[] = {
3416 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3417 };
3418 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3419 Chain = Value.getValue(1);
3420 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3421 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3422 }
3423
3424 // Build the FP_TO_INT*_IN_MEM
3425 SDOperand Ops[] = { Chain, Value, StackSlot };
3426 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3427
3428 // Load the result.
3429 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3430}
3431
3432SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3433 MVT::ValueType VT = Op.getValueType();
3434 MVT::ValueType EltVT = VT;
3435 if (MVT::isVector(VT))
3436 EltVT = MVT::getVectorElementType(VT);
3437 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3438 std::vector<Constant*> CV;
3439 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003440 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003441 CV.push_back(C);
3442 CV.push_back(C);
3443 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003444 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445 CV.push_back(C);
3446 CV.push_back(C);
3447 CV.push_back(C);
3448 CV.push_back(C);
3449 }
Dan Gohman11821702007-07-27 17:16:43 +00003450 Constant *C = ConstantVector::get(CV);
3451 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3452 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3453 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3455}
3456
3457SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3458 MVT::ValueType VT = Op.getValueType();
3459 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003460 unsigned EltNum = 1;
3461 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003463 EltNum = MVT::getVectorNumElements(VT);
3464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003465 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3466 std::vector<Constant*> CV;
3467 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003468 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003469 CV.push_back(C);
3470 CV.push_back(C);
3471 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003472 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473 CV.push_back(C);
3474 CV.push_back(C);
3475 CV.push_back(C);
3476 CV.push_back(C);
3477 }
Dan Gohman11821702007-07-27 17:16:43 +00003478 Constant *C = ConstantVector::get(CV);
3479 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3480 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3481 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003482 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003483 return DAG.getNode(ISD::BIT_CONVERT, VT,
3484 DAG.getNode(ISD::XOR, MVT::v2i64,
3485 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3486 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3487 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003488 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3489 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490}
3491
3492SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3493 SDOperand Op0 = Op.getOperand(0);
3494 SDOperand Op1 = Op.getOperand(1);
3495 MVT::ValueType VT = Op.getValueType();
3496 MVT::ValueType SrcVT = Op1.getValueType();
3497 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3498
3499 // If second operand is smaller, extend it first.
3500 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3501 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3502 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003503 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504 }
3505
3506 // First get the sign bit of second operand.
3507 std::vector<Constant*> CV;
3508 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003509 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3510 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003512 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3513 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3514 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3515 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 }
Dan Gohman11821702007-07-27 17:16:43 +00003517 Constant *C = ConstantVector::get(CV);
3518 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3519 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3520 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003521 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3522
3523 // Shift sign bit right or left if the two operands have different types.
3524 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3525 // Op0 is MVT::f32, Op1 is MVT::f64.
3526 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3527 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3528 DAG.getConstant(32, MVT::i32));
3529 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3530 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3531 DAG.getConstant(0, getPointerTy()));
3532 }
3533
3534 // Clear first operand sign bit.
3535 CV.clear();
3536 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003537 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3538 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003539 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003540 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3541 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3542 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3543 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003544 }
Dan Gohman11821702007-07-27 17:16:43 +00003545 C = ConstantVector::get(CV);
3546 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3547 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3548 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3550
3551 // Or the value with the sign bit.
3552 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3553}
3554
3555SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3556 SDOperand Chain) {
3557 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3558 SDOperand Cond;
3559 SDOperand Op0 = Op.getOperand(0);
3560 SDOperand Op1 = Op.getOperand(1);
3561 SDOperand CC = Op.getOperand(2);
3562 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3563 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3564 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3565 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3566 unsigned X86CC;
3567
3568 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3569 Op0, Op1, DAG)) {
3570 SDOperand Ops1[] = { Chain, Op0, Op1 };
3571 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3572 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3573 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3574 }
3575
3576 assert(isFP && "Illegal integer SetCC!");
3577
3578 SDOperand COps[] = { Chain, Op0, Op1 };
3579 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3580
3581 switch (SetCCOpcode) {
3582 default: assert(false && "Illegal floating point SetCC!");
3583 case ISD::SETOEQ: { // !PF & ZF
3584 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3585 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3586 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3587 Tmp1.getValue(1) };
3588 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3589 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3590 }
3591 case ISD::SETUNE: { // PF | !ZF
3592 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3593 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3594 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3595 Tmp1.getValue(1) };
3596 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3597 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3598 }
3599 }
3600}
3601
3602SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3603 bool addTest = true;
3604 SDOperand Chain = DAG.getEntryNode();
3605 SDOperand Cond = Op.getOperand(0);
3606 SDOperand CC;
3607 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3608
3609 if (Cond.getOpcode() == ISD::SETCC)
3610 Cond = LowerSETCC(Cond, DAG, Chain);
3611
3612 if (Cond.getOpcode() == X86ISD::SETCC) {
3613 CC = Cond.getOperand(0);
3614
3615 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3616 // (since flag operand cannot be shared). Use it as the condition setting
3617 // operand in place of the X86ISD::SETCC.
3618 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3619 // to use a test instead of duplicating the X86ISD::CMP (for register
3620 // pressure reason)?
3621 SDOperand Cmp = Cond.getOperand(1);
3622 unsigned Opc = Cmp.getOpcode();
3623 bool IllegalFPCMov = !X86ScalarSSE &&
3624 MVT::isFloatingPoint(Op.getValueType()) &&
3625 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3626 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3627 !IllegalFPCMov) {
3628 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3629 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3630 addTest = false;
3631 }
3632 }
3633
3634 if (addTest) {
3635 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3636 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3637 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3638 }
3639
3640 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3641 SmallVector<SDOperand, 4> Ops;
3642 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3643 // condition is true.
3644 Ops.push_back(Op.getOperand(2));
3645 Ops.push_back(Op.getOperand(1));
3646 Ops.push_back(CC);
3647 Ops.push_back(Cond.getValue(1));
3648 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3649}
3650
3651SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3652 bool addTest = true;
3653 SDOperand Chain = Op.getOperand(0);
3654 SDOperand Cond = Op.getOperand(1);
3655 SDOperand Dest = Op.getOperand(2);
3656 SDOperand CC;
3657 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3658
3659 if (Cond.getOpcode() == ISD::SETCC)
3660 Cond = LowerSETCC(Cond, DAG, Chain);
3661
3662 if (Cond.getOpcode() == X86ISD::SETCC) {
3663 CC = Cond.getOperand(0);
3664
3665 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3666 // (since flag operand cannot be shared). Use it as the condition setting
3667 // operand in place of the X86ISD::SETCC.
3668 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3669 // to use a test instead of duplicating the X86ISD::CMP (for register
3670 // pressure reason)?
3671 SDOperand Cmp = Cond.getOperand(1);
3672 unsigned Opc = Cmp.getOpcode();
3673 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3674 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3675 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3676 addTest = false;
3677 }
3678 }
3679
3680 if (addTest) {
3681 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3682 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3683 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3684 }
3685 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3686 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3687}
3688
3689SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3690 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3691
3692 if (Subtarget->is64Bit())
3693 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3694 else
3695 switch (CallingConv) {
3696 default:
3697 assert(0 && "Unsupported calling convention");
3698 case CallingConv::Fast:
3699 // TODO: Implement fastcc
3700 // Falls through
3701 case CallingConv::C:
3702 case CallingConv::X86_StdCall:
3703 return LowerCCCCallTo(Op, DAG, CallingConv);
3704 case CallingConv::X86_FastCall:
3705 return LowerFastCCCallTo(Op, DAG, CallingConv);
3706 }
3707}
3708
3709
3710// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3711// Calls to _alloca is needed to probe the stack when allocating more than 4k
3712// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3713// that the guard pages used by the OS virtual memory manager are allocated in
3714// correct sequence.
3715SDOperand
3716X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3717 SelectionDAG &DAG) {
3718 assert(Subtarget->isTargetCygMing() &&
3719 "This should be used only on Cygwin/Mingw targets");
3720
3721 // Get the inputs.
3722 SDOperand Chain = Op.getOperand(0);
3723 SDOperand Size = Op.getOperand(1);
3724 // FIXME: Ensure alignment here
3725
3726 SDOperand Flag;
3727
3728 MVT::ValueType IntPtr = getPointerTy();
3729 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3730
3731 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3732 Flag = Chain.getValue(1);
3733
3734 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3735 SDOperand Ops[] = { Chain,
3736 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3737 DAG.getRegister(X86::EAX, IntPtr),
3738 Flag };
3739 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3740 Flag = Chain.getValue(1);
3741
3742 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3743
3744 std::vector<MVT::ValueType> Tys;
3745 Tys.push_back(SPTy);
3746 Tys.push_back(MVT::Other);
3747 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3748 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3749}
3750
3751SDOperand
3752X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3753 MachineFunction &MF = DAG.getMachineFunction();
3754 const Function* Fn = MF.getFunction();
3755 if (Fn->hasExternalLinkage() &&
3756 Subtarget->isTargetCygMing() &&
3757 Fn->getName() == "main")
3758 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3759
3760 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3761 if (Subtarget->is64Bit())
3762 return LowerX86_64CCCArguments(Op, DAG);
3763 else
3764 switch(CC) {
3765 default:
3766 assert(0 && "Unsupported calling convention");
3767 case CallingConv::Fast:
3768 // TODO: implement fastcc.
3769
3770 // Falls through
3771 case CallingConv::C:
3772 return LowerCCCArguments(Op, DAG);
3773 case CallingConv::X86_StdCall:
3774 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3775 return LowerCCCArguments(Op, DAG, true);
3776 case CallingConv::X86_FastCall:
3777 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3778 return LowerFastCCArguments(Op, DAG);
3779 }
3780}
3781
3782SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3783 SDOperand InFlag(0, 0);
3784 SDOperand Chain = Op.getOperand(0);
3785 unsigned Align =
3786 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3787 if (Align == 0) Align = 1;
3788
3789 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003790 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003791 // The libc version is likely to be faster for these cases. It can use the
3792 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003794 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003795 MVT::ValueType IntPtr = getPointerTy();
3796 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3797 TargetLowering::ArgListTy Args;
3798 TargetLowering::ArgListEntry Entry;
3799 Entry.Node = Op.getOperand(1);
3800 Entry.Ty = IntPtrTy;
3801 Args.push_back(Entry);
3802 // Extend the unsigned i8 argument to be an int value for the call.
3803 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3804 Entry.Ty = IntPtrTy;
3805 Args.push_back(Entry);
3806 Entry.Node = Op.getOperand(3);
3807 Args.push_back(Entry);
3808 std::pair<SDOperand,SDOperand> CallResult =
3809 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3810 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3811 return CallResult.second;
3812 }
3813
3814 MVT::ValueType AVT;
3815 SDOperand Count;
3816 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3817 unsigned BytesLeft = 0;
3818 bool TwoRepStos = false;
3819 if (ValC) {
3820 unsigned ValReg;
3821 uint64_t Val = ValC->getValue() & 255;
3822
3823 // If the value is a constant, then we can potentially use larger sets.
3824 switch (Align & 3) {
3825 case 2: // WORD aligned
3826 AVT = MVT::i16;
3827 ValReg = X86::AX;
3828 Val = (Val << 8) | Val;
3829 break;
3830 case 0: // DWORD aligned
3831 AVT = MVT::i32;
3832 ValReg = X86::EAX;
3833 Val = (Val << 8) | Val;
3834 Val = (Val << 16) | Val;
3835 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3836 AVT = MVT::i64;
3837 ValReg = X86::RAX;
3838 Val = (Val << 32) | Val;
3839 }
3840 break;
3841 default: // Byte aligned
3842 AVT = MVT::i8;
3843 ValReg = X86::AL;
3844 Count = Op.getOperand(3);
3845 break;
3846 }
3847
3848 if (AVT > MVT::i8) {
3849 if (I) {
3850 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3851 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3852 BytesLeft = I->getValue() % UBytes;
3853 } else {
3854 assert(AVT >= MVT::i32 &&
3855 "Do not use rep;stos if not at least DWORD aligned");
3856 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3857 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3858 TwoRepStos = true;
3859 }
3860 }
3861
3862 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3863 InFlag);
3864 InFlag = Chain.getValue(1);
3865 } else {
3866 AVT = MVT::i8;
3867 Count = Op.getOperand(3);
3868 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3869 InFlag = Chain.getValue(1);
3870 }
3871
3872 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3873 Count, InFlag);
3874 InFlag = Chain.getValue(1);
3875 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3876 Op.getOperand(1), InFlag);
3877 InFlag = Chain.getValue(1);
3878
3879 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3880 SmallVector<SDOperand, 8> Ops;
3881 Ops.push_back(Chain);
3882 Ops.push_back(DAG.getValueType(AVT));
3883 Ops.push_back(InFlag);
3884 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3885
3886 if (TwoRepStos) {
3887 InFlag = Chain.getValue(1);
3888 Count = Op.getOperand(3);
3889 MVT::ValueType CVT = Count.getValueType();
3890 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3891 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3892 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3893 Left, InFlag);
3894 InFlag = Chain.getValue(1);
3895 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3896 Ops.clear();
3897 Ops.push_back(Chain);
3898 Ops.push_back(DAG.getValueType(MVT::i8));
3899 Ops.push_back(InFlag);
3900 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3901 } else if (BytesLeft) {
3902 // Issue stores for the last 1 - 7 bytes.
3903 SDOperand Value;
3904 unsigned Val = ValC->getValue() & 255;
3905 unsigned Offset = I->getValue() - BytesLeft;
3906 SDOperand DstAddr = Op.getOperand(1);
3907 MVT::ValueType AddrVT = DstAddr.getValueType();
3908 if (BytesLeft >= 4) {
3909 Val = (Val << 8) | Val;
3910 Val = (Val << 16) | Val;
3911 Value = DAG.getConstant(Val, MVT::i32);
3912 Chain = DAG.getStore(Chain, Value,
3913 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3914 DAG.getConstant(Offset, AddrVT)),
3915 NULL, 0);
3916 BytesLeft -= 4;
3917 Offset += 4;
3918 }
3919 if (BytesLeft >= 2) {
3920 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3921 Chain = DAG.getStore(Chain, Value,
3922 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3923 DAG.getConstant(Offset, AddrVT)),
3924 NULL, 0);
3925 BytesLeft -= 2;
3926 Offset += 2;
3927 }
3928 if (BytesLeft == 1) {
3929 Value = DAG.getConstant(Val, MVT::i8);
3930 Chain = DAG.getStore(Chain, Value,
3931 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3932 DAG.getConstant(Offset, AddrVT)),
3933 NULL, 0);
3934 }
3935 }
3936
3937 return Chain;
3938}
3939
3940SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3941 SDOperand Chain = Op.getOperand(0);
3942 unsigned Align =
3943 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3944 if (Align == 0) Align = 1;
3945
3946 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003947 // If not DWORD aligned or size is more than the threshold, call memcpy.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003948 // The libc version is likely to be faster for these cases. It can use the
3949 // address value and run time information about the CPU.
3950 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003951 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003952 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003953 MVT::ValueType IntPtr = getPointerTy();
3954 TargetLowering::ArgListTy Args;
3955 TargetLowering::ArgListEntry Entry;
3956 Entry.Ty = getTargetData()->getIntPtrType();
3957 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3958 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3959 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3960 std::pair<SDOperand,SDOperand> CallResult =
3961 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3962 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3963 return CallResult.second;
3964 }
3965
3966 MVT::ValueType AVT;
3967 SDOperand Count;
3968 unsigned BytesLeft = 0;
3969 bool TwoRepMovs = false;
3970 switch (Align & 3) {
3971 case 2: // WORD aligned
3972 AVT = MVT::i16;
3973 break;
3974 case 0: // DWORD aligned
3975 AVT = MVT::i32;
3976 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
3977 AVT = MVT::i64;
3978 break;
3979 default: // Byte aligned
3980 AVT = MVT::i8;
3981 Count = Op.getOperand(3);
3982 break;
3983 }
3984
3985 if (AVT > MVT::i8) {
3986 if (I) {
3987 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3988 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3989 BytesLeft = I->getValue() % UBytes;
3990 } else {
3991 assert(AVT >= MVT::i32 &&
3992 "Do not use rep;movs if not at least DWORD aligned");
3993 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3994 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3995 TwoRepMovs = true;
3996 }
3997 }
3998
3999 SDOperand InFlag(0, 0);
4000 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4001 Count, InFlag);
4002 InFlag = Chain.getValue(1);
4003 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4004 Op.getOperand(1), InFlag);
4005 InFlag = Chain.getValue(1);
4006 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4007 Op.getOperand(2), InFlag);
4008 InFlag = Chain.getValue(1);
4009
4010 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4011 SmallVector<SDOperand, 8> Ops;
4012 Ops.push_back(Chain);
4013 Ops.push_back(DAG.getValueType(AVT));
4014 Ops.push_back(InFlag);
4015 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4016
4017 if (TwoRepMovs) {
4018 InFlag = Chain.getValue(1);
4019 Count = Op.getOperand(3);
4020 MVT::ValueType CVT = Count.getValueType();
4021 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4022 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4023 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4024 Left, InFlag);
4025 InFlag = Chain.getValue(1);
4026 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4027 Ops.clear();
4028 Ops.push_back(Chain);
4029 Ops.push_back(DAG.getValueType(MVT::i8));
4030 Ops.push_back(InFlag);
4031 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4032 } else if (BytesLeft) {
4033 // Issue loads and stores for the last 1 - 7 bytes.
4034 unsigned Offset = I->getValue() - BytesLeft;
4035 SDOperand DstAddr = Op.getOperand(1);
4036 MVT::ValueType DstVT = DstAddr.getValueType();
4037 SDOperand SrcAddr = Op.getOperand(2);
4038 MVT::ValueType SrcVT = SrcAddr.getValueType();
4039 SDOperand Value;
4040 if (BytesLeft >= 4) {
4041 Value = DAG.getLoad(MVT::i32, Chain,
4042 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4043 DAG.getConstant(Offset, SrcVT)),
4044 NULL, 0);
4045 Chain = Value.getValue(1);
4046 Chain = DAG.getStore(Chain, Value,
4047 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4048 DAG.getConstant(Offset, DstVT)),
4049 NULL, 0);
4050 BytesLeft -= 4;
4051 Offset += 4;
4052 }
4053 if (BytesLeft >= 2) {
4054 Value = DAG.getLoad(MVT::i16, Chain,
4055 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4056 DAG.getConstant(Offset, SrcVT)),
4057 NULL, 0);
4058 Chain = Value.getValue(1);
4059 Chain = DAG.getStore(Chain, Value,
4060 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4061 DAG.getConstant(Offset, DstVT)),
4062 NULL, 0);
4063 BytesLeft -= 2;
4064 Offset += 2;
4065 }
4066
4067 if (BytesLeft == 1) {
4068 Value = DAG.getLoad(MVT::i8, Chain,
4069 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4070 DAG.getConstant(Offset, SrcVT)),
4071 NULL, 0);
4072 Chain = Value.getValue(1);
4073 Chain = DAG.getStore(Chain, Value,
4074 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4075 DAG.getConstant(Offset, DstVT)),
4076 NULL, 0);
4077 }
4078 }
4079
4080 return Chain;
4081}
4082
4083SDOperand
4084X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4085 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4086 SDOperand TheOp = Op.getOperand(0);
4087 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4088 if (Subtarget->is64Bit()) {
4089 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4090 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4091 MVT::i64, Copy1.getValue(2));
4092 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4093 DAG.getConstant(32, MVT::i8));
4094 SDOperand Ops[] = {
4095 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4096 };
4097
4098 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4099 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4100 }
4101
4102 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4103 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4104 MVT::i32, Copy1.getValue(2));
4105 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4106 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4107 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4108}
4109
4110SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4111 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4112
4113 if (!Subtarget->is64Bit()) {
4114 // vastart just stores the address of the VarArgsFrameIndex slot into the
4115 // memory location argument.
4116 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4117 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4118 SV->getOffset());
4119 }
4120
4121 // __va_list_tag:
4122 // gp_offset (0 - 6 * 8)
4123 // fp_offset (48 - 48 + 8 * 16)
4124 // overflow_arg_area (point to parameters coming in memory).
4125 // reg_save_area
4126 SmallVector<SDOperand, 8> MemOps;
4127 SDOperand FIN = Op.getOperand(1);
4128 // Store gp_offset
4129 SDOperand Store = DAG.getStore(Op.getOperand(0),
4130 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4131 FIN, SV->getValue(), SV->getOffset());
4132 MemOps.push_back(Store);
4133
4134 // Store fp_offset
4135 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4136 DAG.getConstant(4, getPointerTy()));
4137 Store = DAG.getStore(Op.getOperand(0),
4138 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4139 FIN, SV->getValue(), SV->getOffset());
4140 MemOps.push_back(Store);
4141
4142 // Store ptr to overflow_arg_area
4143 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4144 DAG.getConstant(4, getPointerTy()));
4145 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4146 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4147 SV->getOffset());
4148 MemOps.push_back(Store);
4149
4150 // Store ptr to reg_save_area.
4151 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4152 DAG.getConstant(8, getPointerTy()));
4153 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4154 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4155 SV->getOffset());
4156 MemOps.push_back(Store);
4157 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4158}
4159
4160SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4161 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4162 SDOperand Chain = Op.getOperand(0);
4163 SDOperand DstPtr = Op.getOperand(1);
4164 SDOperand SrcPtr = Op.getOperand(2);
4165 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4166 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4167
4168 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4169 SrcSV->getValue(), SrcSV->getOffset());
4170 Chain = SrcPtr.getValue(1);
4171 for (unsigned i = 0; i < 3; ++i) {
4172 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4173 SrcSV->getValue(), SrcSV->getOffset());
4174 Chain = Val.getValue(1);
4175 Chain = DAG.getStore(Chain, Val, DstPtr,
4176 DstSV->getValue(), DstSV->getOffset());
4177 if (i == 2)
4178 break;
4179 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4180 DAG.getConstant(8, getPointerTy()));
4181 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4182 DAG.getConstant(8, getPointerTy()));
4183 }
4184 return Chain;
4185}
4186
4187SDOperand
4188X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4189 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4190 switch (IntNo) {
4191 default: return SDOperand(); // Don't custom lower most intrinsics.
4192 // Comparison intrinsics.
4193 case Intrinsic::x86_sse_comieq_ss:
4194 case Intrinsic::x86_sse_comilt_ss:
4195 case Intrinsic::x86_sse_comile_ss:
4196 case Intrinsic::x86_sse_comigt_ss:
4197 case Intrinsic::x86_sse_comige_ss:
4198 case Intrinsic::x86_sse_comineq_ss:
4199 case Intrinsic::x86_sse_ucomieq_ss:
4200 case Intrinsic::x86_sse_ucomilt_ss:
4201 case Intrinsic::x86_sse_ucomile_ss:
4202 case Intrinsic::x86_sse_ucomigt_ss:
4203 case Intrinsic::x86_sse_ucomige_ss:
4204 case Intrinsic::x86_sse_ucomineq_ss:
4205 case Intrinsic::x86_sse2_comieq_sd:
4206 case Intrinsic::x86_sse2_comilt_sd:
4207 case Intrinsic::x86_sse2_comile_sd:
4208 case Intrinsic::x86_sse2_comigt_sd:
4209 case Intrinsic::x86_sse2_comige_sd:
4210 case Intrinsic::x86_sse2_comineq_sd:
4211 case Intrinsic::x86_sse2_ucomieq_sd:
4212 case Intrinsic::x86_sse2_ucomilt_sd:
4213 case Intrinsic::x86_sse2_ucomile_sd:
4214 case Intrinsic::x86_sse2_ucomigt_sd:
4215 case Intrinsic::x86_sse2_ucomige_sd:
4216 case Intrinsic::x86_sse2_ucomineq_sd: {
4217 unsigned Opc = 0;
4218 ISD::CondCode CC = ISD::SETCC_INVALID;
4219 switch (IntNo) {
4220 default: break;
4221 case Intrinsic::x86_sse_comieq_ss:
4222 case Intrinsic::x86_sse2_comieq_sd:
4223 Opc = X86ISD::COMI;
4224 CC = ISD::SETEQ;
4225 break;
4226 case Intrinsic::x86_sse_comilt_ss:
4227 case Intrinsic::x86_sse2_comilt_sd:
4228 Opc = X86ISD::COMI;
4229 CC = ISD::SETLT;
4230 break;
4231 case Intrinsic::x86_sse_comile_ss:
4232 case Intrinsic::x86_sse2_comile_sd:
4233 Opc = X86ISD::COMI;
4234 CC = ISD::SETLE;
4235 break;
4236 case Intrinsic::x86_sse_comigt_ss:
4237 case Intrinsic::x86_sse2_comigt_sd:
4238 Opc = X86ISD::COMI;
4239 CC = ISD::SETGT;
4240 break;
4241 case Intrinsic::x86_sse_comige_ss:
4242 case Intrinsic::x86_sse2_comige_sd:
4243 Opc = X86ISD::COMI;
4244 CC = ISD::SETGE;
4245 break;
4246 case Intrinsic::x86_sse_comineq_ss:
4247 case Intrinsic::x86_sse2_comineq_sd:
4248 Opc = X86ISD::COMI;
4249 CC = ISD::SETNE;
4250 break;
4251 case Intrinsic::x86_sse_ucomieq_ss:
4252 case Intrinsic::x86_sse2_ucomieq_sd:
4253 Opc = X86ISD::UCOMI;
4254 CC = ISD::SETEQ;
4255 break;
4256 case Intrinsic::x86_sse_ucomilt_ss:
4257 case Intrinsic::x86_sse2_ucomilt_sd:
4258 Opc = X86ISD::UCOMI;
4259 CC = ISD::SETLT;
4260 break;
4261 case Intrinsic::x86_sse_ucomile_ss:
4262 case Intrinsic::x86_sse2_ucomile_sd:
4263 Opc = X86ISD::UCOMI;
4264 CC = ISD::SETLE;
4265 break;
4266 case Intrinsic::x86_sse_ucomigt_ss:
4267 case Intrinsic::x86_sse2_ucomigt_sd:
4268 Opc = X86ISD::UCOMI;
4269 CC = ISD::SETGT;
4270 break;
4271 case Intrinsic::x86_sse_ucomige_ss:
4272 case Intrinsic::x86_sse2_ucomige_sd:
4273 Opc = X86ISD::UCOMI;
4274 CC = ISD::SETGE;
4275 break;
4276 case Intrinsic::x86_sse_ucomineq_ss:
4277 case Intrinsic::x86_sse2_ucomineq_sd:
4278 Opc = X86ISD::UCOMI;
4279 CC = ISD::SETNE;
4280 break;
4281 }
4282
4283 unsigned X86CC;
4284 SDOperand LHS = Op.getOperand(1);
4285 SDOperand RHS = Op.getOperand(2);
4286 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4287
4288 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4289 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4290 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4291 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4292 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4293 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4294 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4295 }
4296 }
4297}
4298
4299SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4300 // Depths > 0 not supported yet!
4301 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4302 return SDOperand();
4303
4304 // Just load the return address
4305 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4306 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4307}
4308
4309SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4310 // Depths > 0 not supported yet!
4311 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4312 return SDOperand();
4313
4314 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4315 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4316 DAG.getConstant(4, getPointerTy()));
4317}
4318
4319SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4320 SelectionDAG &DAG) {
4321 // Is not yet supported on x86-64
4322 if (Subtarget->is64Bit())
4323 return SDOperand();
4324
4325 return DAG.getConstant(8, getPointerTy());
4326}
4327
4328SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4329{
4330 assert(!Subtarget->is64Bit() &&
4331 "Lowering of eh_return builtin is not supported yet on x86-64");
4332
4333 MachineFunction &MF = DAG.getMachineFunction();
4334 SDOperand Chain = Op.getOperand(0);
4335 SDOperand Offset = Op.getOperand(1);
4336 SDOperand Handler = Op.getOperand(2);
4337
4338 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4339 getPointerTy());
4340
4341 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4342 DAG.getConstant(-4UL, getPointerTy()));
4343 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4344 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4345 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4346 MF.addLiveOut(X86::ECX);
4347
4348 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4349 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4350}
4351
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004352SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4353 SelectionDAG &DAG) {
4354 SDOperand Root = Op.getOperand(0);
4355 SDOperand Trmp = Op.getOperand(1); // trampoline
4356 SDOperand FPtr = Op.getOperand(2); // nested function
4357 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4358
4359 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4360
4361 if (Subtarget->is64Bit()) {
4362 return SDOperand(); // not yet supported
4363 } else {
4364 Function *Func = (Function *)
4365 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4366 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004367 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004368
4369 switch (CC) {
4370 default:
4371 assert(0 && "Unsupported calling convention");
4372 case CallingConv::C:
4373 case CallingConv::Fast:
4374 case CallingConv::X86_StdCall: {
4375 // Pass 'nest' parameter in ECX.
4376 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004377 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004378
4379 // Check that ECX wasn't needed by an 'inreg' parameter.
4380 const FunctionType *FTy = Func->getFunctionType();
4381 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4382
4383 if (Attrs && !Func->isVarArg()) {
4384 unsigned InRegCount = 0;
4385 unsigned Idx = 1;
4386
4387 for (FunctionType::param_iterator I = FTy->param_begin(),
4388 E = FTy->param_end(); I != E; ++I, ++Idx)
4389 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4390 // FIXME: should only count parameters that are lowered to integers.
4391 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4392
4393 if (InRegCount > 2) {
4394 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4395 abort();
4396 }
4397 }
4398 break;
4399 }
4400 case CallingConv::X86_FastCall:
4401 // Pass 'nest' parameter in EAX.
4402 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004403 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004404 break;
4405 }
4406
Duncan Sands466eadd2007-08-29 19:01:20 +00004407 const X86InstrInfo *TII =
4408 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4409
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004410 SDOperand OutChains[4];
4411 SDOperand Addr, Disp;
4412
4413 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4414 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4415
Duncan Sands466eadd2007-08-29 19:01:20 +00004416 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4417 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4418 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004419 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4420
4421 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4422 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4423 TrmpSV->getOffset() + 1, false, 1);
4424
Duncan Sands466eadd2007-08-29 19:01:20 +00004425 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004426 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4427 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4428 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4429
4430 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4431 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4432 TrmpSV->getOffset() + 6, false, 1);
4433
Duncan Sands7407a9f2007-09-11 14:10:23 +00004434 SDOperand Ops[] =
4435 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4436 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004437 }
4438}
4439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004440/// LowerOperation - Provide custom lowering hooks for some operations.
4441///
4442SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4443 switch (Op.getOpcode()) {
4444 default: assert(0 && "Should not custom lower this!");
4445 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4446 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4447 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4448 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4449 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4450 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4451 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4452 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4453 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4454 case ISD::SHL_PARTS:
4455 case ISD::SRA_PARTS:
4456 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4457 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4458 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4459 case ISD::FABS: return LowerFABS(Op, DAG);
4460 case ISD::FNEG: return LowerFNEG(Op, DAG);
4461 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4462 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4463 case ISD::SELECT: return LowerSELECT(Op, DAG);
4464 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4465 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4466 case ISD::CALL: return LowerCALL(Op, DAG);
4467 case ISD::RET: return LowerRET(Op, DAG);
4468 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4469 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4470 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4471 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4472 case ISD::VASTART: return LowerVASTART(Op, DAG);
4473 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4474 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4475 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4476 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4477 case ISD::FRAME_TO_ARGS_OFFSET:
4478 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4479 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4480 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004481 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482 }
4483 return SDOperand();
4484}
4485
4486const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4487 switch (Opcode) {
4488 default: return NULL;
4489 case X86ISD::SHLD: return "X86ISD::SHLD";
4490 case X86ISD::SHRD: return "X86ISD::SHRD";
4491 case X86ISD::FAND: return "X86ISD::FAND";
4492 case X86ISD::FOR: return "X86ISD::FOR";
4493 case X86ISD::FXOR: return "X86ISD::FXOR";
4494 case X86ISD::FSRL: return "X86ISD::FSRL";
4495 case X86ISD::FILD: return "X86ISD::FILD";
4496 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4497 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4498 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4499 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4500 case X86ISD::FLD: return "X86ISD::FLD";
4501 case X86ISD::FST: return "X86ISD::FST";
4502 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4503 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4504 case X86ISD::CALL: return "X86ISD::CALL";
4505 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4506 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4507 case X86ISD::CMP: return "X86ISD::CMP";
4508 case X86ISD::COMI: return "X86ISD::COMI";
4509 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4510 case X86ISD::SETCC: return "X86ISD::SETCC";
4511 case X86ISD::CMOV: return "X86ISD::CMOV";
4512 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4513 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4514 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4515 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4517 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4518 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4519 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4520 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4521 case X86ISD::FMAX: return "X86ISD::FMAX";
4522 case X86ISD::FMIN: return "X86ISD::FMIN";
4523 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4524 case X86ISD::FRCP: return "X86ISD::FRCP";
4525 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4526 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4527 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4528 }
4529}
4530
4531// isLegalAddressingMode - Return true if the addressing mode represented
4532// by AM is legal for this target, for a load/store of the specified type.
4533bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4534 const Type *Ty) const {
4535 // X86 supports extremely general addressing modes.
4536
4537 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4538 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4539 return false;
4540
4541 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004542 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004543 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4544 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004545
4546 // X86-64 only supports addr of globals in small code model.
4547 if (Subtarget->is64Bit()) {
4548 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4549 return false;
4550 // If lower 4G is not available, then we must use rip-relative addressing.
4551 if (AM.BaseOffs || AM.Scale > 1)
4552 return false;
4553 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004554 }
4555
4556 switch (AM.Scale) {
4557 case 0:
4558 case 1:
4559 case 2:
4560 case 4:
4561 case 8:
4562 // These scales always work.
4563 break;
4564 case 3:
4565 case 5:
4566 case 9:
4567 // These scales are formed with basereg+scalereg. Only accept if there is
4568 // no basereg yet.
4569 if (AM.HasBaseReg)
4570 return false;
4571 break;
4572 default: // Other stuff never works.
4573 return false;
4574 }
4575
4576 return true;
4577}
4578
4579
4580/// isShuffleMaskLegal - Targets can use this to indicate that they only
4581/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4582/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4583/// are assumed to be legal.
4584bool
4585X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4586 // Only do shuffles on 128-bit vector types for now.
4587 if (MVT::getSizeInBits(VT) == 64) return false;
4588 return (Mask.Val->getNumOperands() <= 4 ||
4589 isIdentityMask(Mask.Val) ||
4590 isIdentityMask(Mask.Val, true) ||
4591 isSplatMask(Mask.Val) ||
4592 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4593 X86::isUNPCKLMask(Mask.Val) ||
4594 X86::isUNPCKHMask(Mask.Val) ||
4595 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4596 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4597}
4598
4599bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4600 MVT::ValueType EVT,
4601 SelectionDAG &DAG) const {
4602 unsigned NumElts = BVOps.size();
4603 // Only do shuffles on 128-bit vector types for now.
4604 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4605 if (NumElts == 2) return true;
4606 if (NumElts == 4) {
4607 return (isMOVLMask(&BVOps[0], 4) ||
4608 isCommutedMOVL(&BVOps[0], 4, true) ||
4609 isSHUFPMask(&BVOps[0], 4) ||
4610 isCommutedSHUFP(&BVOps[0], 4));
4611 }
4612 return false;
4613}
4614
4615//===----------------------------------------------------------------------===//
4616// X86 Scheduler Hooks
4617//===----------------------------------------------------------------------===//
4618
4619MachineBasicBlock *
4620X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4621 MachineBasicBlock *BB) {
4622 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4623 switch (MI->getOpcode()) {
4624 default: assert(false && "Unexpected instr type to insert");
4625 case X86::CMOV_FR32:
4626 case X86::CMOV_FR64:
4627 case X86::CMOV_V4F32:
4628 case X86::CMOV_V2F64:
4629 case X86::CMOV_V2I64: {
4630 // To "insert" a SELECT_CC instruction, we actually have to insert the
4631 // diamond control-flow pattern. The incoming instruction knows the
4632 // destination vreg to set, the condition code register to branch on, the
4633 // true/false values to select between, and a branch opcode to use.
4634 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4635 ilist<MachineBasicBlock>::iterator It = BB;
4636 ++It;
4637
4638 // thisMBB:
4639 // ...
4640 // TrueVal = ...
4641 // cmpTY ccX, r1, r2
4642 // bCC copy1MBB
4643 // fallthrough --> copy0MBB
4644 MachineBasicBlock *thisMBB = BB;
4645 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4646 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4647 unsigned Opc =
4648 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4649 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4650 MachineFunction *F = BB->getParent();
4651 F->getBasicBlockList().insert(It, copy0MBB);
4652 F->getBasicBlockList().insert(It, sinkMBB);
4653 // Update machine-CFG edges by first adding all successors of the current
4654 // block to the new block which will contain the Phi node for the select.
4655 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4656 e = BB->succ_end(); i != e; ++i)
4657 sinkMBB->addSuccessor(*i);
4658 // Next, remove all successors of the current block, and add the true
4659 // and fallthrough blocks as its successors.
4660 while(!BB->succ_empty())
4661 BB->removeSuccessor(BB->succ_begin());
4662 BB->addSuccessor(copy0MBB);
4663 BB->addSuccessor(sinkMBB);
4664
4665 // copy0MBB:
4666 // %FalseValue = ...
4667 // # fallthrough to sinkMBB
4668 BB = copy0MBB;
4669
4670 // Update machine-CFG edges
4671 BB->addSuccessor(sinkMBB);
4672
4673 // sinkMBB:
4674 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4675 // ...
4676 BB = sinkMBB;
4677 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4678 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4679 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4680
4681 delete MI; // The pseudo instruction is gone now.
4682 return BB;
4683 }
4684
4685 case X86::FP32_TO_INT16_IN_MEM:
4686 case X86::FP32_TO_INT32_IN_MEM:
4687 case X86::FP32_TO_INT64_IN_MEM:
4688 case X86::FP64_TO_INT16_IN_MEM:
4689 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004690 case X86::FP64_TO_INT64_IN_MEM:
4691 case X86::FP80_TO_INT16_IN_MEM:
4692 case X86::FP80_TO_INT32_IN_MEM:
4693 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694 // Change the floating point control register to use "round towards zero"
4695 // mode when truncating to an integer value.
4696 MachineFunction *F = BB->getParent();
4697 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4698 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4699
4700 // Load the old value of the high byte of the control word...
4701 unsigned OldCW =
4702 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4703 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4704
4705 // Set the high part to be round to zero...
4706 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4707 .addImm(0xC7F);
4708
4709 // Reload the modified control word now...
4710 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4711
4712 // Restore the memory image of control word to original value
4713 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4714 .addReg(OldCW);
4715
4716 // Get the X86 opcode to use.
4717 unsigned Opc;
4718 switch (MI->getOpcode()) {
4719 default: assert(0 && "illegal opcode!");
4720 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4721 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4722 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4723 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4724 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4725 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004726 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4727 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4728 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004729 }
4730
4731 X86AddressMode AM;
4732 MachineOperand &Op = MI->getOperand(0);
4733 if (Op.isRegister()) {
4734 AM.BaseType = X86AddressMode::RegBase;
4735 AM.Base.Reg = Op.getReg();
4736 } else {
4737 AM.BaseType = X86AddressMode::FrameIndexBase;
4738 AM.Base.FrameIndex = Op.getFrameIndex();
4739 }
4740 Op = MI->getOperand(1);
4741 if (Op.isImmediate())
4742 AM.Scale = Op.getImm();
4743 Op = MI->getOperand(2);
4744 if (Op.isImmediate())
4745 AM.IndexReg = Op.getImm();
4746 Op = MI->getOperand(3);
4747 if (Op.isGlobalAddress()) {
4748 AM.GV = Op.getGlobal();
4749 } else {
4750 AM.Disp = Op.getImm();
4751 }
4752 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4753 .addReg(MI->getOperand(4).getReg());
4754
4755 // Reload the original control word now.
4756 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4757
4758 delete MI; // The pseudo instruction is gone now.
4759 return BB;
4760 }
4761 }
4762}
4763
4764//===----------------------------------------------------------------------===//
4765// X86 Optimization Hooks
4766//===----------------------------------------------------------------------===//
4767
4768void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4769 uint64_t Mask,
4770 uint64_t &KnownZero,
4771 uint64_t &KnownOne,
4772 const SelectionDAG &DAG,
4773 unsigned Depth) const {
4774 unsigned Opc = Op.getOpcode();
4775 assert((Opc >= ISD::BUILTIN_OP_END ||
4776 Opc == ISD::INTRINSIC_WO_CHAIN ||
4777 Opc == ISD::INTRINSIC_W_CHAIN ||
4778 Opc == ISD::INTRINSIC_VOID) &&
4779 "Should use MaskedValueIsZero if you don't know whether Op"
4780 " is a target node!");
4781
4782 KnownZero = KnownOne = 0; // Don't know anything.
4783 switch (Opc) {
4784 default: break;
4785 case X86ISD::SETCC:
4786 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4787 break;
4788 }
4789}
4790
4791/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4792/// element of the result of the vector shuffle.
4793static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4794 MVT::ValueType VT = N->getValueType(0);
4795 SDOperand PermMask = N->getOperand(2);
4796 unsigned NumElems = PermMask.getNumOperands();
4797 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4798 i %= NumElems;
4799 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4800 return (i == 0)
4801 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4802 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4803 SDOperand Idx = PermMask.getOperand(i);
4804 if (Idx.getOpcode() == ISD::UNDEF)
4805 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4806 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4807 }
4808 return SDOperand();
4809}
4810
4811/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4812/// node is a GlobalAddress + an offset.
4813static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4814 unsigned Opc = N->getOpcode();
4815 if (Opc == X86ISD::Wrapper) {
4816 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4817 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4818 return true;
4819 }
4820 } else if (Opc == ISD::ADD) {
4821 SDOperand N1 = N->getOperand(0);
4822 SDOperand N2 = N->getOperand(1);
4823 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4824 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4825 if (V) {
4826 Offset += V->getSignExtended();
4827 return true;
4828 }
4829 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4830 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4831 if (V) {
4832 Offset += V->getSignExtended();
4833 return true;
4834 }
4835 }
4836 }
4837 return false;
4838}
4839
4840/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4841/// + Dist * Size.
4842static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4843 MachineFrameInfo *MFI) {
4844 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4845 return false;
4846
4847 SDOperand Loc = N->getOperand(1);
4848 SDOperand BaseLoc = Base->getOperand(1);
4849 if (Loc.getOpcode() == ISD::FrameIndex) {
4850 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4851 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004852 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4853 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004854 int FS = MFI->getObjectSize(FI);
4855 int BFS = MFI->getObjectSize(BFI);
4856 if (FS != BFS || FS != Size) return false;
4857 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4858 } else {
4859 GlobalValue *GV1 = NULL;
4860 GlobalValue *GV2 = NULL;
4861 int64_t Offset1 = 0;
4862 int64_t Offset2 = 0;
4863 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4864 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4865 if (isGA1 && isGA2 && GV1 == GV2)
4866 return Offset1 == (Offset2 + Dist*Size);
4867 }
4868
4869 return false;
4870}
4871
4872static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4873 const X86Subtarget *Subtarget) {
4874 GlobalValue *GV;
4875 int64_t Offset;
4876 if (isGAPlusOffset(Base, GV, Offset))
4877 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4878 else {
4879 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004880 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004881 if (BFI < 0)
4882 // Fixed objects do not specify alignment, however the offsets are known.
4883 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4884 (MFI->getObjectOffset(BFI) % 16) == 0);
4885 else
4886 return MFI->getObjectAlignment(BFI) >= 16;
4887 }
4888 return false;
4889}
4890
4891
4892/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4893/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4894/// if the load addresses are consecutive, non-overlapping, and in the right
4895/// order.
4896static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4897 const X86Subtarget *Subtarget) {
4898 MachineFunction &MF = DAG.getMachineFunction();
4899 MachineFrameInfo *MFI = MF.getFrameInfo();
4900 MVT::ValueType VT = N->getValueType(0);
4901 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4902 SDOperand PermMask = N->getOperand(2);
4903 int NumElems = (int)PermMask.getNumOperands();
4904 SDNode *Base = NULL;
4905 for (int i = 0; i < NumElems; ++i) {
4906 SDOperand Idx = PermMask.getOperand(i);
4907 if (Idx.getOpcode() == ISD::UNDEF) {
4908 if (!Base) return SDOperand();
4909 } else {
4910 SDOperand Arg =
4911 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4912 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4913 return SDOperand();
4914 if (!Base)
4915 Base = Arg.Val;
4916 else if (!isConsecutiveLoad(Arg.Val, Base,
4917 i, MVT::getSizeInBits(EVT)/8,MFI))
4918 return SDOperand();
4919 }
4920 }
4921
4922 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00004923 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004924 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004925 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00004926 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004927 } else {
Dan Gohman11821702007-07-27 17:16:43 +00004928 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4929 LD->getSrcValueOffset(), LD->isVolatile(),
4930 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 }
4932}
4933
4934/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4935static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4936 const X86Subtarget *Subtarget) {
4937 SDOperand Cond = N->getOperand(0);
4938
4939 // If we have SSE[12] support, try to form min/max nodes.
4940 if (Subtarget->hasSSE2() &&
4941 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4942 if (Cond.getOpcode() == ISD::SETCC) {
4943 // Get the LHS/RHS of the select.
4944 SDOperand LHS = N->getOperand(1);
4945 SDOperand RHS = N->getOperand(2);
4946 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4947
4948 unsigned Opcode = 0;
4949 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4950 switch (CC) {
4951 default: break;
4952 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4953 case ISD::SETULE:
4954 case ISD::SETLE:
4955 if (!UnsafeFPMath) break;
4956 // FALL THROUGH.
4957 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
4958 case ISD::SETLT:
4959 Opcode = X86ISD::FMIN;
4960 break;
4961
4962 case ISD::SETOGT: // (X > Y) ? X : Y -> max
4963 case ISD::SETUGT:
4964 case ISD::SETGT:
4965 if (!UnsafeFPMath) break;
4966 // FALL THROUGH.
4967 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
4968 case ISD::SETGE:
4969 Opcode = X86ISD::FMAX;
4970 break;
4971 }
4972 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4973 switch (CC) {
4974 default: break;
4975 case ISD::SETOGT: // (X > Y) ? Y : X -> min
4976 case ISD::SETUGT:
4977 case ISD::SETGT:
4978 if (!UnsafeFPMath) break;
4979 // FALL THROUGH.
4980 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
4981 case ISD::SETGE:
4982 Opcode = X86ISD::FMIN;
4983 break;
4984
4985 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
4986 case ISD::SETULE:
4987 case ISD::SETLE:
4988 if (!UnsafeFPMath) break;
4989 // FALL THROUGH.
4990 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
4991 case ISD::SETLT:
4992 Opcode = X86ISD::FMAX;
4993 break;
4994 }
4995 }
4996
4997 if (Opcode)
4998 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4999 }
5000
5001 }
5002
5003 return SDOperand();
5004}
5005
5006
5007SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5008 DAGCombinerInfo &DCI) const {
5009 SelectionDAG &DAG = DCI.DAG;
5010 switch (N->getOpcode()) {
5011 default: break;
5012 case ISD::VECTOR_SHUFFLE:
5013 return PerformShuffleCombine(N, DAG, Subtarget);
5014 case ISD::SELECT:
5015 return PerformSELECTCombine(N, DAG, Subtarget);
5016 }
5017
5018 return SDOperand();
5019}
5020
5021//===----------------------------------------------------------------------===//
5022// X86 Inline Assembly Support
5023//===----------------------------------------------------------------------===//
5024
5025/// getConstraintType - Given a constraint letter, return the type of
5026/// constraint it is for this target.
5027X86TargetLowering::ConstraintType
5028X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5029 if (Constraint.size() == 1) {
5030 switch (Constraint[0]) {
5031 case 'A':
5032 case 'r':
5033 case 'R':
5034 case 'l':
5035 case 'q':
5036 case 'Q':
5037 case 'x':
5038 case 'Y':
5039 return C_RegisterClass;
5040 default:
5041 break;
5042 }
5043 }
5044 return TargetLowering::getConstraintType(Constraint);
5045}
5046
Chris Lattnera531abc2007-08-25 00:47:38 +00005047/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5048/// vector. If it is invalid, don't add anything to Ops.
5049void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5050 char Constraint,
5051 std::vector<SDOperand>&Ops,
5052 SelectionDAG &DAG) {
5053 SDOperand Result(0, 0);
5054
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005055 switch (Constraint) {
5056 default: break;
5057 case 'I':
5058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005059 if (C->getValue() <= 31) {
5060 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5061 break;
5062 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005063 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005064 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005065 case 'N':
5066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005067 if (C->getValue() <= 255) {
5068 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5069 break;
5070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005071 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005072 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005073 case 'i': {
5074 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005075 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5076 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5077 break;
5078 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005079
5080 // If we are in non-pic codegen mode, we allow the address of a global (with
5081 // an optional displacement) to be used with 'i'.
5082 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5083 int64_t Offset = 0;
5084
5085 // Match either (GA) or (GA+C)
5086 if (GA) {
5087 Offset = GA->getOffset();
5088 } else if (Op.getOpcode() == ISD::ADD) {
5089 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5090 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5091 if (C && GA) {
5092 Offset = GA->getOffset()+C->getValue();
5093 } else {
5094 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5095 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5096 if (C && GA)
5097 Offset = GA->getOffset()+C->getValue();
5098 else
5099 C = 0, GA = 0;
5100 }
5101 }
5102
5103 if (GA) {
5104 // If addressing this global requires a load (e.g. in PIC mode), we can't
5105 // match.
5106 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5107 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005108 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005109
5110 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5111 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005112 Result = Op;
5113 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005114 }
5115
5116 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005117 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005118 }
5119 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005120
5121 if (Result.Val) {
5122 Ops.push_back(Result);
5123 return;
5124 }
5125 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126}
5127
5128std::vector<unsigned> X86TargetLowering::
5129getRegClassForInlineAsmConstraint(const std::string &Constraint,
5130 MVT::ValueType VT) const {
5131 if (Constraint.size() == 1) {
5132 // FIXME: not handling fp-stack yet!
5133 switch (Constraint[0]) { // GCC X86 Constraint Letters
5134 default: break; // Unknown constraint letter
5135 case 'A': // EAX/EDX
5136 if (VT == MVT::i32 || VT == MVT::i64)
5137 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5138 break;
5139 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5140 case 'Q': // Q_REGS
5141 if (VT == MVT::i32)
5142 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5143 else if (VT == MVT::i16)
5144 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5145 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005146 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005147 break;
5148 }
5149 }
5150
5151 return std::vector<unsigned>();
5152}
5153
5154std::pair<unsigned, const TargetRegisterClass*>
5155X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5156 MVT::ValueType VT) const {
5157 // First, see if this is a constraint that directly corresponds to an LLVM
5158 // register class.
5159 if (Constraint.size() == 1) {
5160 // GCC Constraint Letters
5161 switch (Constraint[0]) {
5162 default: break;
5163 case 'r': // GENERAL_REGS
5164 case 'R': // LEGACY_REGS
5165 case 'l': // INDEX_REGS
5166 if (VT == MVT::i64 && Subtarget->is64Bit())
5167 return std::make_pair(0U, X86::GR64RegisterClass);
5168 if (VT == MVT::i32)
5169 return std::make_pair(0U, X86::GR32RegisterClass);
5170 else if (VT == MVT::i16)
5171 return std::make_pair(0U, X86::GR16RegisterClass);
5172 else if (VT == MVT::i8)
5173 return std::make_pair(0U, X86::GR8RegisterClass);
5174 break;
5175 case 'y': // MMX_REGS if MMX allowed.
5176 if (!Subtarget->hasMMX()) break;
5177 return std::make_pair(0U, X86::VR64RegisterClass);
5178 break;
5179 case 'Y': // SSE_REGS if SSE2 allowed
5180 if (!Subtarget->hasSSE2()) break;
5181 // FALL THROUGH.
5182 case 'x': // SSE_REGS if SSE1 allowed
5183 if (!Subtarget->hasSSE1()) break;
5184
5185 switch (VT) {
5186 default: break;
5187 // Scalar SSE types.
5188 case MVT::f32:
5189 case MVT::i32:
5190 return std::make_pair(0U, X86::FR32RegisterClass);
5191 case MVT::f64:
5192 case MVT::i64:
5193 return std::make_pair(0U, X86::FR64RegisterClass);
5194 // Vector types.
5195 case MVT::v16i8:
5196 case MVT::v8i16:
5197 case MVT::v4i32:
5198 case MVT::v2i64:
5199 case MVT::v4f32:
5200 case MVT::v2f64:
5201 return std::make_pair(0U, X86::VR128RegisterClass);
5202 }
5203 break;
5204 }
5205 }
5206
5207 // Use the default implementation in TargetLowering to convert the register
5208 // constraint into a member of a register class.
5209 std::pair<unsigned, const TargetRegisterClass*> Res;
5210 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5211
5212 // Not found as a standard register?
5213 if (Res.second == 0) {
5214 // GCC calls "st(0)" just plain "st".
5215 if (StringsEqualNoCase("{st}", Constraint)) {
5216 Res.first = X86::ST0;
5217 Res.second = X86::RSTRegisterClass;
5218 }
5219
5220 return Res;
5221 }
5222
5223 // Otherwise, check to see if this is a register class of the wrong value
5224 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5225 // turn into {ax},{dx}.
5226 if (Res.second->hasType(VT))
5227 return Res; // Correct type already, nothing to do.
5228
5229 // All of the single-register GCC register classes map their values onto
5230 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5231 // really want an 8-bit or 32-bit register, map to the appropriate register
5232 // class and return the appropriate register.
5233 if (Res.second != X86::GR16RegisterClass)
5234 return Res;
5235
5236 if (VT == MVT::i8) {
5237 unsigned DestReg = 0;
5238 switch (Res.first) {
5239 default: break;
5240 case X86::AX: DestReg = X86::AL; break;
5241 case X86::DX: DestReg = X86::DL; break;
5242 case X86::CX: DestReg = X86::CL; break;
5243 case X86::BX: DestReg = X86::BL; break;
5244 }
5245 if (DestReg) {
5246 Res.first = DestReg;
5247 Res.second = Res.second = X86::GR8RegisterClass;
5248 }
5249 } else if (VT == MVT::i32) {
5250 unsigned DestReg = 0;
5251 switch (Res.first) {
5252 default: break;
5253 case X86::AX: DestReg = X86::EAX; break;
5254 case X86::DX: DestReg = X86::EDX; break;
5255 case X86::CX: DestReg = X86::ECX; break;
5256 case X86::BX: DestReg = X86::EBX; break;
5257 case X86::SI: DestReg = X86::ESI; break;
5258 case X86::DI: DestReg = X86::EDI; break;
5259 case X86::BP: DestReg = X86::EBP; break;
5260 case X86::SP: DestReg = X86::ESP; break;
5261 }
5262 if (DestReg) {
5263 Res.first = DestReg;
5264 Res.second = Res.second = X86::GR32RegisterClass;
5265 }
5266 } else if (VT == MVT::i64) {
5267 unsigned DestReg = 0;
5268 switch (Res.first) {
5269 default: break;
5270 case X86::AX: DestReg = X86::RAX; break;
5271 case X86::DX: DestReg = X86::RDX; break;
5272 case X86::CX: DestReg = X86::RCX; break;
5273 case X86::BX: DestReg = X86::RBX; break;
5274 case X86::SI: DestReg = X86::RSI; break;
5275 case X86::DI: DestReg = X86::RDI; break;
5276 case X86::BP: DestReg = X86::RBP; break;
5277 case X86::SP: DestReg = X86::RSP; break;
5278 }
5279 if (DestReg) {
5280 Res.first = DestReg;
5281 Res.second = Res.second = X86::GR64RegisterClass;
5282 }
5283 }
5284
5285 return Res;
5286}