Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Implementing code generation to LLVM IR</title> |
| 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 8 | <meta name="author" content="Chris Lattner"> |
| 9 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 10 | </head> |
| 11 | |
| 12 | <body> |
| 13 | |
| 14 | <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> |
| 15 | |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame^] | 16 | <ul> |
| 17 | <li>Chapter 3 |
| 18 | <ol> |
| 19 | <li><a href="#intro">Chapter 3 Introduction</a></li> |
| 20 | <li><a href="#basics">Code Generation setup</a></li> |
| 21 | <li><a href="#exprs">Expression Code Generation</a></li> |
| 22 | <li><a href="#funcs">Function Code Generation</a></li> |
| 23 | <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> |
| 24 | <li><a href="#code">Full Code Listing</a></li> |
| 25 | </ol> |
| 26 | </li> |
| 27 | </ul> |
| 28 | |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 29 | <div class="doc_author"> |
| 30 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 31 | </div> |
| 32 | |
| 33 | <!-- *********************************************************************** --> |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame^] | 34 | <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 35 | <!-- *********************************************************************** --> |
| 36 | |
| 37 | <div class="doc_text"> |
| 38 | |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame^] | 39 | <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language |
| 40 | with LLVM</a>" tutorial. This chapter shows you how to transform the <a |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 41 | href="LangImpl2.html">Abstract Syntax Tree built in Chapter 2</a> into LLVM IR. |
| 42 | This will teach you a little bit about how LLVM does things, as well as |
| 43 | demonstrate how easy it is to use. It's much more work to build a lexer and |
| 44 | parser than it is to generate LLVM IR code. |
| 45 | </p> |
| 46 | |
| 47 | </div> |
| 48 | |
| 49 | <!-- *********************************************************************** --> |
| 50 | <div class="doc_section"><a name="basics">Code Generation setup</a></div> |
| 51 | <!-- *********************************************************************** --> |
| 52 | |
| 53 | <div class="doc_text"> |
| 54 | |
| 55 | <p> |
| 56 | In order to generate LLVM IR, we want some simple setup to get started. First, |
| 57 | we define virtual codegen methods in each AST class:</p> |
| 58 | |
| 59 | <div class="doc_code"> |
| 60 | <pre> |
| 61 | /// ExprAST - Base class for all expression nodes. |
| 62 | class ExprAST { |
| 63 | public: |
| 64 | virtual ~ExprAST() {} |
| 65 | virtual Value *Codegen() = 0; |
| 66 | }; |
| 67 | |
| 68 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 69 | class NumberExprAST : public ExprAST { |
| 70 | double Val; |
| 71 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 72 | explicit NumberExprAST(double val) : Val(val) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 73 | virtual Value *Codegen(); |
| 74 | }; |
| 75 | ... |
| 76 | </pre> |
| 77 | </div> |
| 78 | |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 79 | <p>The Codegen() method says to emit IR for that AST node and all things it |
| 80 | depends on, and they all return an LLVM Value object. |
| 81 | "Value" is the class used to represent a "<a |
| 82 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| 83 | Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect |
| 84 | of SSA values is that their value is computed as the related instruction |
| 85 | executes, and it does not get a new value until (and if) the instruction |
| 86 | re-executes. In order words, there is no way to "change" an SSA value. For |
| 87 | more information, please read up on <a |
| 88 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| 89 | Assignment</a> - the concepts are really quite natural once you grok them.</p> |
| 90 | |
| 91 | <p>The |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 92 | second thing we want is an "Error" method like we used for parser, which will |
| 93 | be used to report errors found during code generation (for example, use of an |
| 94 | undeclared parameter):</p> |
| 95 | |
| 96 | <div class="doc_code"> |
| 97 | <pre> |
| 98 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 99 | |
| 100 | static Module *TheModule; |
| 101 | static LLVMBuilder Builder; |
| 102 | static std::map<std::string, Value*> NamedValues; |
| 103 | </pre> |
| 104 | </div> |
| 105 | |
| 106 | <p>The static variables will be used during code generation. <tt>TheModule</tt> |
| 107 | is the LLVM construct that contains all of the functions and global variables in |
| 108 | a chunk of code. In many ways, it is the top-level structure that the LLVM IR |
| 109 | uses to contain code.</p> |
| 110 | |
| 111 | <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate |
Chris Lattner | f6e53df | 2007-11-05 18:02:15 +0000 | [diff] [blame] | 112 | LLVM instructions. Instances of the <a |
| 113 | href="http://llvm.org/doxygen/LLVMBuilder_8h-source.html"><tt>LLVMBuilder</tt> |
| 114 | class</a> keeps track of the current place to |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 115 | insert instructions and has methods to create new instructions.</p> |
| 116 | |
| 117 | <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the |
| 118 | current scope and what their LLVM representation is. In this form of |
| 119 | Kaleidoscope, the only things that can be referenced are function parameters. |
| 120 | As such, function parameters will be in this map when generating code for their |
| 121 | function body.</p> |
| 122 | |
| 123 | <p> |
| 124 | With these basics in place, we can start talking about how to generate code for |
| 125 | each expression. Note that this assumes that the <tt>Builder</tt> has been set |
| 126 | up to generate code <em>into</em> something. For now, we'll assume that this |
| 127 | has already been done, and we'll just use it to emit code. |
| 128 | </p> |
| 129 | |
| 130 | </div> |
| 131 | |
| 132 | <!-- *********************************************************************** --> |
| 133 | <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> |
| 134 | <!-- *********************************************************************** --> |
| 135 | |
| 136 | <div class="doc_text"> |
| 137 | |
| 138 | <p>Generating LLVM code for expression nodes is very straight-forward: less |
| 139 | than 45 lines of commented code for all four of our expression nodes. First, |
| 140 | we'll do numeric literals:</p> |
| 141 | |
| 142 | <div class="doc_code"> |
| 143 | <pre> |
| 144 | Value *NumberExprAST::Codegen() { |
| 145 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| 146 | } |
| 147 | </pre> |
| 148 | </div> |
| 149 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 150 | <p>In the LLVM IR, numeric constants are represented with the |
| 151 | <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> |
| 152 | internally (<tt>APFloat</tt> has the capability of holding floating point |
| 153 | constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just |
| 154 | creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 155 | that constants are all uniqued together and shared. For this reason, the API |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 156 | uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..).</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 157 | |
| 158 | <div class="doc_code"> |
| 159 | <pre> |
| 160 | Value *VariableExprAST::Codegen() { |
| 161 | // Look this variable up in the function. |
| 162 | Value *V = NamedValues[Name]; |
| 163 | return V ? V : ErrorV("Unknown variable name"); |
| 164 | } |
| 165 | </pre> |
| 166 | </div> |
| 167 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 168 | <p>References to variables is also quite simple here. In the simple version |
| 169 | of Kaleidoscope, we assume that the variable has already been emited somewhere |
| 170 | and its value is available. In practice, the only values that can be in the |
| 171 | <tt>NamedValues</tt> map are function arguments. This |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 172 | code simply checks to see that the specified name is in the map (if not, an |
| 173 | unknown variable is being referenced) and returns the value for it.</p> |
| 174 | |
| 175 | <div class="doc_code"> |
| 176 | <pre> |
| 177 | Value *BinaryExprAST::Codegen() { |
| 178 | Value *L = LHS->Codegen(); |
| 179 | Value *R = RHS->Codegen(); |
| 180 | if (L == 0 || R == 0) return 0; |
| 181 | |
| 182 | switch (Op) { |
| 183 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 184 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 185 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 186 | case '<': |
| 187 | L = Builder.CreateFCmpULT(L, R, "multmp"); |
| 188 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 189 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 190 | default: return ErrorV("invalid binary operator"); |
| 191 | } |
| 192 | } |
| 193 | </pre> |
| 194 | </div> |
| 195 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 196 | <p>Binary operators start to get more interesting. The basic idea here is that |
| 197 | we recursively emit code for the left-hand side of the expression, then the |
| 198 | right-hand side, then we compute the result of the binary expression. In this |
| 199 | code, we do a simple switch on the opcode to create the right LLVM instruction. |
| 200 | </p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 201 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 202 | <p>In this example, the LLVM builder class is starting to show its value. |
| 203 | Because it knows where to insert the newly created instruction, you just have to |
| 204 | specificy what instruction to create (e.g. with <tt>CreateAdd</tt>), which |
| 205 | operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name |
| 206 | for the generated instruction. One nice thing about LLVM is that the name is |
| 207 | just a hint: if there are multiple additions in a single function, the first |
| 208 | will be named "addtmp" and the second will be "autorenamed" by adding a suffix, |
| 209 | giving it a name like "addtmp42". Local value names for instructions are purely |
| 210 | optional, but it makes it much easier to read the IR dumps.</p> |
| 211 | |
| 212 | <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained to |
| 213 | have very strict type properties: for example, the Left and Right operators of |
| 214 | an <a href="../LangRef.html#i_add">add instruction</a> have to have the same |
| 215 | type, and that the result of the add matches the operands. Because all values |
| 216 | in Kaleidoscope are doubles, this makes for very simple code for add, sub and |
| 217 | mul.</p> |
| 218 | |
| 219 | <p>On the other hand, LLVM specifies that the <a |
| 220 | href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value |
| 221 | (a one bit integer). However, Kaleidoscope wants the value to be a 0.0 or 1.0 |
| 222 | value. In order to get these semantics, we combine the fcmp instruction with |
| 223 | a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction |
| 224 | converts its input integer into a floating point value by treating the input |
| 225 | as an unsigned value. In contrast, if we used the <a |
| 226 | href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' |
| 227 | operator would return 0.0 and -1.0, depending on the input value.</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 228 | |
| 229 | <div class="doc_code"> |
| 230 | <pre> |
| 231 | Value *CallExprAST::Codegen() { |
| 232 | // Look up the name in the global module table. |
| 233 | Function *CalleeF = TheModule->getFunction(Callee); |
| 234 | if (CalleeF == 0) |
| 235 | return ErrorV("Unknown function referenced"); |
| 236 | |
| 237 | // If argument mismatch error. |
| 238 | if (CalleeF->arg_size() != Args.size()) |
| 239 | return ErrorV("Incorrect # arguments passed"); |
| 240 | |
| 241 | std::vector<Value*> ArgsV; |
| 242 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 243 | ArgsV.push_back(Args[i]->Codegen()); |
| 244 | if (ArgsV.back() == 0) return 0; |
| 245 | } |
| 246 | |
| 247 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 248 | } |
| 249 | </pre> |
| 250 | </div> |
| 251 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame] | 252 | <p>Code generation for function calls is quite straight-forward with LLVM. The |
| 253 | code above first looks the name of the function up in the LLVM Module's symbol |
| 254 | table. Recall that the LLVM Module is the container that holds all of the |
| 255 | functions we are JIT'ing. By giving each function the same name as what the |
| 256 | user specifies, we can use the LLVM symbol table to resolve function names for |
| 257 | us.</p> |
| 258 | |
| 259 | <p>Once we have the function to call, we recursively codegen each argument that |
| 260 | is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call |
| 261 | instruction</a>. Note that LLVM uses the native C calling conventions by |
| 262 | default, allowing these calls to call into standard library functions like |
| 263 | "sin" and "cos" with no additional effort.</p> |
| 264 | |
| 265 | <p>This wraps up our handling of the four basic expressions that we have so far |
| 266 | in Kaleidoscope. Feel free to go in and add some more. For example, by |
| 267 | browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find |
| 268 | several other interesting instructions that are really easy to plug into our |
| 269 | basic framework.</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 270 | |
| 271 | </div> |
| 272 | |
| 273 | <!-- *********************************************************************** --> |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 274 | <div class="doc_section"><a name="funcs">Function Code Generation</a></div> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 275 | <!-- *********************************************************************** --> |
| 276 | |
| 277 | <div class="doc_text"> |
| 278 | |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 279 | <p>Code generation for prototypes and functions has to handle a number of |
| 280 | details, which make their code less beautiful and elegant than expression code |
| 281 | generation, but they illustrate some important points. First, lets talk about |
| 282 | code generation for prototypes: this is used both for function bodies as well |
| 283 | as external function declarations. The code starts with:</p> |
| 284 | |
| 285 | <div class="doc_code"> |
| 286 | <pre> |
| 287 | Function *PrototypeAST::Codegen() { |
| 288 | // Make the function type: double(double,double) etc. |
| 289 | std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); |
| 290 | FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); |
| 291 | |
| 292 | Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); |
| 293 | </pre> |
| 294 | </div> |
| 295 | |
| 296 | <p>This code packs a lot of power into a few lines. The first step is to create |
| 297 | the <tt>FunctionType</tt> that should be used for a given Prototype. Since all |
| 298 | function arguments in Kaleidoscope are of type double, the first line creates |
| 299 | a vector of "N" LLVM Double types. It then uses the <tt>FunctionType::get</tt> |
| 300 | method to create a function type that takes "N" doubles as arguments, returns |
| 301 | one double as a result, and that is not vararg (the false parameter indicates |
| 302 | this). Note that Types in LLVM are uniqued just like Constants are, so you |
| 303 | don't "new" a type, you "get" it.</p> |
| 304 | |
| 305 | <p>The final line above actually creates the function that the prototype will |
| 306 | correspond to. This indicates which type, linkage, and name to use, and which |
| 307 | module to insert into. "<a href="LangRef.html#linkage">external linkage</a>" |
| 308 | means that the function may be defined outside the current module and/or that it |
| 309 | is callable by functions outside the module. The Name passed in is the name the |
| 310 | user specified: since "<tt>TheModule</tt>" is specified, this name is registered |
| 311 | in "<tt>TheModule</tt>"s symbol table, which is used by the function call code |
| 312 | above.</p> |
| 313 | |
| 314 | <div class="doc_code"> |
| 315 | <pre> |
| 316 | // If F conflicted, there was already something named 'Name'. If it has a |
| 317 | // body, don't allow redefinition or reextern. |
| 318 | if (F->getName() != Name) { |
| 319 | // Delete the one we just made and get the existing one. |
| 320 | F->eraseFromParent(); |
| 321 | F = TheModule->getFunction(Name); |
| 322 | </pre> |
| 323 | </div> |
| 324 | |
| 325 | <p>The Module symbol table works just like the Function symbol table when it |
| 326 | comes to name conflicts: if a new function is created with a name was previously |
| 327 | added to the symbol table, it will get implicitly renamed when added to the |
| 328 | Module. The code above exploits this fact to tell if there was a previous |
| 329 | definition of this function.</p> |
| 330 | |
| 331 | <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: |
| 332 | first, we want to allow 'extern'ing a function more than once, so long as the |
| 333 | prototypes for the externs match (since all arguments have the same type, we |
| 334 | just have to check that the number of arguments match). Second, we want to |
| 335 | allow 'extern'ing a function and then definining a body for it. This is useful |
| 336 | when defining mutually recursive functions.</p> |
| 337 | |
| 338 | <p>In order to implement this, the code above first checks to see if there is |
| 339 | a collision on the name of the function. If so, it deletes the function we just |
| 340 | created (by calling <tt>eraseFromParent</tt>) and then calling |
| 341 | <tt>getFunction</tt> to get the existing function with the specified name. Note |
| 342 | that many APIs in LLVM have "erase" forms and "remove" forms. The "remove" form |
| 343 | unlinks the object from its parent (e.g. a Function from a Module) and returns |
| 344 | it. The "erase" form unlinks the object and then deletes it.</p> |
| 345 | |
| 346 | <div class="doc_code"> |
| 347 | <pre> |
| 348 | // If F already has a body, reject this. |
| 349 | if (!F->empty()) { |
| 350 | ErrorF("redefinition of function"); |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | // If F took a different number of args, reject. |
| 355 | if (F->arg_size() != Args.size()) { |
| 356 | ErrorF("redefinition of function with different # args"); |
| 357 | return 0; |
| 358 | } |
| 359 | } |
| 360 | </pre> |
| 361 | </div> |
| 362 | |
| 363 | <p>In order to verify the logic above, we first check to see if the preexisting |
| 364 | function is "empty". In this case, empty means that it has no basic blocks in |
| 365 | it, which means it has no body. If it has no body, this means its a forward |
| 366 | declaration. Since we don't allow anything after a full definition of the |
| 367 | function, the code rejects this case. If the previous reference to a function |
| 368 | was an 'extern', we simply verify that the number of arguments for that |
| 369 | definition and this one match up. If not, we emit an error.</p> |
| 370 | |
| 371 | <div class="doc_code"> |
| 372 | <pre> |
| 373 | // Set names for all arguments. |
| 374 | unsigned Idx = 0; |
| 375 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 376 | ++AI, ++Idx) { |
| 377 | AI->setName(Args[Idx]); |
| 378 | |
| 379 | // Add arguments to variable symbol table. |
| 380 | NamedValues[Args[Idx]] = AI; |
| 381 | } |
| 382 | return F; |
| 383 | } |
| 384 | </pre> |
| 385 | </div> |
| 386 | |
| 387 | <p>The last bit of code for prototypes loops over all of the arguments in the |
| 388 | function, setting the name of the LLVM Argument objects to match and registering |
| 389 | the arguments in the <tt>NamedValues</tt> map for future use by the |
| 390 | <tt>VariableExprAST</tt> AST node. Once this is set up, it returns the Function |
| 391 | object to the caller. Note that we don't check for conflicting |
| 392 | argument names here (e.g. "extern foo(a b a)"). Doing so would be very |
| 393 | straight-forward.</p> |
| 394 | |
| 395 | <div class="doc_code"> |
| 396 | <pre> |
| 397 | Function *FunctionAST::Codegen() { |
| 398 | NamedValues.clear(); |
| 399 | |
| 400 | Function *TheFunction = Proto->Codegen(); |
| 401 | if (TheFunction == 0) |
| 402 | return 0; |
| 403 | </pre> |
| 404 | </div> |
| 405 | |
| 406 | <p>Code generation for function definitions starts out simply enough: first we |
| 407 | codegen the prototype and verify that it is ok. We also clear out the |
| 408 | <tt>NamedValues</tt> map to make sure that there isn't anything in it from the |
| 409 | last function we compiled.</p> |
| 410 | |
| 411 | <div class="doc_code"> |
| 412 | <pre> |
| 413 | // Create a new basic block to start insertion into. |
| 414 | BasicBlock *BB = new BasicBlock("entry", TheFunction); |
| 415 | Builder.SetInsertPoint(BB); |
| 416 | |
| 417 | if (Value *RetVal = Body->Codegen()) { |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 418 | </pre> |
| 419 | </div> |
| 420 | |
| 421 | <p>Now we get to the point where the <tt>Builder</tt> is set up. The first |
| 422 | line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic |
| 423 | block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>. The |
| 424 | second line then tells the builder that new instructions should be inserted into |
| 425 | the end of the new basic block. Basic blocks in LLVM are an important part |
| 426 | of functions that define the <a |
| 427 | href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. |
| 428 | Since we don't have any control flow, our functions will only contain one |
| 429 | block so far. We'll fix this in a future installment :).</p> |
| 430 | |
Chris Lattner | d9b8616 | 2007-10-25 04:30:35 +0000 | [diff] [blame] | 431 | <div class="doc_code"> |
| 432 | <pre> |
| 433 | if (Value *RetVal = Body->Codegen()) { |
| 434 | // Finish off the function. |
| 435 | Builder.CreateRet(RetVal); |
| 436 | |
| 437 | // Validate the generated code, checking for consistency. |
| 438 | verifyFunction(*TheFunction); |
| 439 | return TheFunction; |
| 440 | } |
| 441 | </pre> |
| 442 | </div> |
| 443 | |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 444 | <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for |
| 445 | the root expression of the function. If no error happens, this emits code to |
| 446 | compute the expression into the entry block and returns the value that was |
| 447 | computed. Assuming no error, we then create an LLVM <a |
Chris Lattner | d9b8616 | 2007-10-25 04:30:35 +0000 | [diff] [blame] | 448 | href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. |
| 449 | Once the function is built, we call the <tt>verifyFunction</tt> function, which |
| 450 | is provided by LLVM. This function does a variety of consistency checks on the |
| 451 | generated code, to determine if our compiler is doing everything right. Using |
| 452 | this is important: it can catch a lot of bugs. Once the function is finished |
| 453 | and validated, we return it.</p> |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 454 | |
| 455 | <div class="doc_code"> |
| 456 | <pre> |
| 457 | // Error reading body, remove function. |
| 458 | TheFunction->eraseFromParent(); |
| 459 | return 0; |
| 460 | } |
| 461 | </pre> |
| 462 | </div> |
| 463 | |
| 464 | <p>The only piece left here is handling of the error case. For simplicity, we |
| 465 | simply handle this by deleting the function we produced with the |
| 466 | <tt>eraseFromParent</tt> method. This allows the user to redefine a function |
| 467 | that they incorrectly typed in before: if we didn't delete it, it would live in |
| 468 | the symbol table, with a body, preventing future redefinition.</p> |
| 469 | |
| 470 | <p>This code does have a bug though. Since the <tt>PrototypeAST::Codegen</tt> |
| 471 | can return a previously defined forward declaration, this can actually delete |
| 472 | a forward declaration. There are a number of ways to fix this bug, see what you |
| 473 | can come up with! Here is a testcase:</p> |
| 474 | |
| 475 | <div class="doc_code"> |
| 476 | <pre> |
| 477 | extern foo(a b); # ok, defines foo. |
| 478 | def foo(a b) c; # error, 'c' is invalid. |
| 479 | def bar() foo(1, 2); # error, unknown function "foo" |
| 480 | </pre> |
| 481 | </div> |
| 482 | |
| 483 | </div> |
| 484 | |
| 485 | <!-- *********************************************************************** --> |
| 486 | <div class="doc_section"><a name="driver">Driver Changes and |
| 487 | Closing Thoughts</a></div> |
| 488 | <!-- *********************************************************************** --> |
| 489 | |
| 490 | <div class="doc_text"> |
| 491 | |
| 492 | <p> |
| 493 | For now, code generation to LLVM doesn't really get us much, except that we can |
| 494 | look at the pretty IR calls. The sample code inserts calls to Codegen into the |
| 495 | "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then |
| 496 | dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple |
| 497 | functions. For example: |
| 498 | </p> |
| 499 | |
| 500 | <div class="doc_code"> |
| 501 | <pre> |
| 502 | ready> <b>4+5</b>; |
| 503 | ready> Read top-level expression: |
| 504 | define double @""() { |
| 505 | entry: |
| 506 | %addtmp = add double 4.000000e+00, 5.000000e+00 |
| 507 | ret double %addtmp |
| 508 | } |
| 509 | </pre> |
| 510 | </div> |
| 511 | |
| 512 | <p>Note how the parser turns the top-level expression into anonymous functions |
| 513 | for us. This will be handy when we add JIT support in the next chapter. Also |
| 514 | note that the code is very literally transcribed, no optimizations are being |
| 515 | performed. We will add optimizations explicitly in the next chapter.</p> |
| 516 | |
| 517 | <div class="doc_code"> |
| 518 | <pre> |
| 519 | ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> |
| 520 | ready> Read function definition: |
| 521 | define double @foo(double %a, double %b) { |
| 522 | entry: |
| 523 | %multmp = mul double %a, %a |
| 524 | %multmp1 = mul double 2.000000e+00, %a |
| 525 | %multmp2 = mul double %multmp1, %b |
| 526 | %addtmp = add double %multmp, %multmp2 |
| 527 | %multmp3 = mul double %b, %b |
| 528 | %addtmp4 = add double %addtmp, %multmp3 |
| 529 | ret double %addtmp4 |
| 530 | } |
| 531 | </pre> |
| 532 | </div> |
| 533 | |
| 534 | <p>This shows some simple arithmetic. Notice the striking similarity to the |
| 535 | LLVM builder calls that we use to create the instructions.</p> |
| 536 | |
| 537 | <div class="doc_code"> |
| 538 | <pre> |
| 539 | ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> |
| 540 | ready> Read function definition: |
| 541 | define double @bar(double %a) { |
| 542 | entry: |
| 543 | %calltmp = call double @foo( double %a, double 4.000000e+00 ) |
| 544 | %calltmp1 = call double @bar( double 3.133700e+04 ) |
| 545 | %addtmp = add double %calltmp, %calltmp1 |
| 546 | ret double %addtmp |
| 547 | } |
| 548 | </pre> |
| 549 | </div> |
| 550 | |
Chris Lattner | fc60ab0 | 2007-11-05 17:39:26 +0000 | [diff] [blame] | 551 | <p>This shows some function calls. Note that this function will take a long |
| 552 | time to execute if you call it. In the future we'll add conditional control |
| 553 | flow to make recursion actually be useful :).</p> |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 554 | |
| 555 | <div class="doc_code"> |
| 556 | <pre> |
| 557 | ready> <b>extern cos(x);</b> |
| 558 | ready> Read extern: |
| 559 | declare double @cos(double) |
| 560 | |
| 561 | ready> <b>cos(1.234);</b> |
| 562 | ready> Read top-level expression: |
| 563 | define double @""() { |
| 564 | entry: |
Chris Lattner | 8eef4b2 | 2007-10-23 06:30:50 +0000 | [diff] [blame] | 565 | %calltmp = call double @cos( double 1.234000e+00 ) |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 566 | ret double %calltmp |
| 567 | } |
| 568 | </pre> |
| 569 | </div> |
| 570 | |
| 571 | <p>This shows an extern for the libm "cos" function, and a call to it.</p> |
| 572 | |
| 573 | |
| 574 | <div class="doc_code"> |
| 575 | <pre> |
| 576 | ready> <b>^D</b> |
| 577 | ; ModuleID = 'my cool jit' |
| 578 | |
| 579 | define double @""() { |
| 580 | entry: |
| 581 | %addtmp = add double 4.000000e+00, 5.000000e+00 |
| 582 | ret double %addtmp |
| 583 | } |
| 584 | |
| 585 | define double @foo(double %a, double %b) { |
| 586 | entry: |
| 587 | %multmp = mul double %a, %a |
| 588 | %multmp1 = mul double 2.000000e+00, %a |
| 589 | %multmp2 = mul double %multmp1, %b |
| 590 | %addtmp = add double %multmp, %multmp2 |
| 591 | %multmp3 = mul double %b, %b |
| 592 | %addtmp4 = add double %addtmp, %multmp3 |
| 593 | ret double %addtmp4 |
| 594 | } |
| 595 | |
| 596 | define double @bar(double %a) { |
| 597 | entry: |
| 598 | %calltmp = call double @foo( double %a, double 4.000000e+00 ) |
| 599 | %calltmp1 = call double @bar( double 3.133700e+04 ) |
| 600 | %addtmp = add double %calltmp, %calltmp1 |
| 601 | ret double %addtmp |
| 602 | } |
| 603 | |
| 604 | declare double @cos(double) |
| 605 | |
| 606 | define double @""() { |
| 607 | entry: |
| 608 | %calltmp = call double @cos( double 1.234000e+00 ) |
| 609 | ret double %calltmp |
| 610 | } |
| 611 | </pre> |
| 612 | </div> |
| 613 | |
| 614 | <p>When you quit the current demo, it dumps out the IR for the entire module |
| 615 | generated. Here you can see the big picture with all the functions referencing |
| 616 | each other.</p> |
| 617 | |
| 618 | <p>This wraps up this chapter of the Kaleidoscope tutorial. Up next we'll |
| 619 | describe how to <a href="LangImpl4.html">add JIT codegen and optimizer |
| 620 | support</a> to this so we can actually start running code!</p> |
| 621 | |
| 622 | </div> |
| 623 | |
| 624 | |
| 625 | <!-- *********************************************************************** --> |
| 626 | <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| 627 | <!-- *********************************************************************** --> |
| 628 | |
| 629 | <div class="doc_text"> |
| 630 | |
| 631 | <p> |
| 632 | Here is the complete code listing for our running example, enhanced with the |
| 633 | LLVM code generator. Because this uses the LLVM libraries, we need to link |
| 634 | them in. To do this, we use the <a |
| 635 | href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform |
| 636 | our makefile/command line about which options to use:</p> |
| 637 | |
| 638 | <div class="doc_code"> |
| 639 | <pre> |
| 640 | # Compile |
Chris Lattner | 9ac0ca0 | 2007-10-24 05:09:48 +0000 | [diff] [blame] | 641 | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 642 | # Run |
| 643 | ./toy |
| 644 | </pre> |
| 645 | </div> |
| 646 | |
| 647 | <p>Here is the code:</p> |
| 648 | |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 649 | <div class="doc_code"> |
| 650 | <pre> |
| 651 | // To build this: |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 652 | // See example below. |
| 653 | |
| 654 | #include "llvm/DerivedTypes.h" |
| 655 | #include "llvm/Module.h" |
Chris Lattner | d9b8616 | 2007-10-25 04:30:35 +0000 | [diff] [blame] | 656 | #include "llvm/Analysis/Verifier.h" |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 657 | #include "llvm/Support/LLVMBuilder.h" |
| 658 | #include <cstdio> |
| 659 | #include <string> |
| 660 | #include <map> |
| 661 | #include <vector> |
| 662 | using namespace llvm; |
| 663 | |
| 664 | //===----------------------------------------------------------------------===// |
| 665 | // Lexer |
| 666 | //===----------------------------------------------------------------------===// |
| 667 | |
| 668 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 669 | // of these for known things. |
| 670 | enum Token { |
| 671 | tok_eof = -1, |
| 672 | |
| 673 | // commands |
| 674 | tok_def = -2, tok_extern = -3, |
| 675 | |
| 676 | // primary |
| 677 | tok_identifier = -4, tok_number = -5, |
| 678 | }; |
| 679 | |
| 680 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 681 | static double NumVal; // Filled in if tok_number |
| 682 | |
| 683 | /// gettok - Return the next token from standard input. |
| 684 | static int gettok() { |
| 685 | static int LastChar = ' '; |
| 686 | |
| 687 | // Skip any whitespace. |
| 688 | while (isspace(LastChar)) |
| 689 | LastChar = getchar(); |
| 690 | |
| 691 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 692 | IdentifierStr = LastChar; |
| 693 | while (isalnum((LastChar = getchar()))) |
| 694 | IdentifierStr += LastChar; |
| 695 | |
| 696 | if (IdentifierStr == "def") return tok_def; |
| 697 | if (IdentifierStr == "extern") return tok_extern; |
| 698 | return tok_identifier; |
| 699 | } |
| 700 | |
| 701 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 702 | std::string NumStr; |
| 703 | do { |
| 704 | NumStr += LastChar; |
| 705 | LastChar = getchar(); |
| 706 | } while (isdigit(LastChar) || LastChar == '.'); |
| 707 | |
| 708 | NumVal = strtod(NumStr.c_str(), 0); |
| 709 | return tok_number; |
| 710 | } |
| 711 | |
| 712 | if (LastChar == '#') { |
| 713 | // Comment until end of line. |
| 714 | do LastChar = getchar(); |
| 715 | while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); |
| 716 | |
| 717 | if (LastChar != EOF) |
| 718 | return gettok(); |
| 719 | } |
| 720 | |
| 721 | // Check for end of file. Don't eat the EOF. |
| 722 | if (LastChar == EOF) |
| 723 | return tok_eof; |
| 724 | |
| 725 | // Otherwise, just return the character as its ascii value. |
| 726 | int ThisChar = LastChar; |
| 727 | LastChar = getchar(); |
| 728 | return ThisChar; |
| 729 | } |
| 730 | |
| 731 | //===----------------------------------------------------------------------===// |
| 732 | // Abstract Syntax Tree (aka Parse Tree) |
| 733 | //===----------------------------------------------------------------------===// |
| 734 | |
| 735 | /// ExprAST - Base class for all expression nodes. |
| 736 | class ExprAST { |
| 737 | public: |
| 738 | virtual ~ExprAST() {} |
| 739 | virtual Value *Codegen() = 0; |
| 740 | }; |
| 741 | |
| 742 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 743 | class NumberExprAST : public ExprAST { |
| 744 | double Val; |
| 745 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 746 | explicit NumberExprAST(double val) : Val(val) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 747 | virtual Value *Codegen(); |
| 748 | }; |
| 749 | |
| 750 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 751 | class VariableExprAST : public ExprAST { |
| 752 | std::string Name; |
| 753 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 754 | explicit VariableExprAST(const std::string &name) : Name(name) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 755 | virtual Value *Codegen(); |
| 756 | }; |
| 757 | |
| 758 | /// BinaryExprAST - Expression class for a binary operator. |
| 759 | class BinaryExprAST : public ExprAST { |
| 760 | char Op; |
| 761 | ExprAST *LHS, *RHS; |
| 762 | public: |
| 763 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 764 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 765 | virtual Value *Codegen(); |
| 766 | }; |
| 767 | |
| 768 | /// CallExprAST - Expression class for function calls. |
| 769 | class CallExprAST : public ExprAST { |
| 770 | std::string Callee; |
| 771 | std::vector<ExprAST*> Args; |
| 772 | public: |
| 773 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 774 | : Callee(callee), Args(args) {} |
| 775 | virtual Value *Codegen(); |
| 776 | }; |
| 777 | |
| 778 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 779 | /// which captures its argument names as well as if it is an operator. |
| 780 | class PrototypeAST { |
| 781 | std::string Name; |
| 782 | std::vector<std::string> Args; |
| 783 | public: |
| 784 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 785 | : Name(name), Args(args) {} |
| 786 | |
| 787 | Function *Codegen(); |
| 788 | }; |
| 789 | |
| 790 | /// FunctionAST - This class represents a function definition itself. |
| 791 | class FunctionAST { |
| 792 | PrototypeAST *Proto; |
| 793 | ExprAST *Body; |
| 794 | public: |
| 795 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 796 | : Proto(proto), Body(body) {} |
| 797 | |
| 798 | Function *Codegen(); |
| 799 | }; |
| 800 | |
| 801 | //===----------------------------------------------------------------------===// |
| 802 | // Parser |
| 803 | //===----------------------------------------------------------------------===// |
| 804 | |
| 805 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 806 | /// token the parser it looking at. getNextToken reads another token from the |
| 807 | /// lexer and updates CurTok with its results. |
| 808 | static int CurTok; |
| 809 | static int getNextToken() { |
| 810 | return CurTok = gettok(); |
| 811 | } |
| 812 | |
| 813 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 814 | /// defined. |
| 815 | static std::map<char, int> BinopPrecedence; |
| 816 | |
| 817 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 818 | static int GetTokPrecedence() { |
| 819 | if (!isascii(CurTok)) |
| 820 | return -1; |
| 821 | |
| 822 | // Make sure it's a declared binop. |
| 823 | int TokPrec = BinopPrecedence[CurTok]; |
| 824 | if (TokPrec <= 0) return -1; |
| 825 | return TokPrec; |
| 826 | } |
| 827 | |
| 828 | /// Error* - These are little helper functions for error handling. |
| 829 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 830 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 831 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 832 | |
| 833 | static ExprAST *ParseExpression(); |
| 834 | |
| 835 | /// identifierexpr |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 836 | /// ::= identifier |
| 837 | /// ::= identifier '(' expression* ')' |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 838 | static ExprAST *ParseIdentifierExpr() { |
| 839 | std::string IdName = IdentifierStr; |
| 840 | |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 841 | getNextToken(); // eat identifier. |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 842 | |
| 843 | if (CurTok != '(') // Simple variable ref. |
| 844 | return new VariableExprAST(IdName); |
| 845 | |
| 846 | // Call. |
| 847 | getNextToken(); // eat ( |
| 848 | std::vector<ExprAST*> Args; |
| 849 | while (1) { |
| 850 | ExprAST *Arg = ParseExpression(); |
| 851 | if (!Arg) return 0; |
| 852 | Args.push_back(Arg); |
| 853 | |
| 854 | if (CurTok == ')') break; |
| 855 | |
| 856 | if (CurTok != ',') |
| 857 | return Error("Expected ')'"); |
| 858 | getNextToken(); |
| 859 | } |
| 860 | |
| 861 | // Eat the ')'. |
| 862 | getNextToken(); |
| 863 | |
| 864 | return new CallExprAST(IdName, Args); |
| 865 | } |
| 866 | |
| 867 | /// numberexpr ::= number |
| 868 | static ExprAST *ParseNumberExpr() { |
| 869 | ExprAST *Result = new NumberExprAST(NumVal); |
| 870 | getNextToken(); // consume the number |
| 871 | return Result; |
| 872 | } |
| 873 | |
| 874 | /// parenexpr ::= '(' expression ')' |
| 875 | static ExprAST *ParseParenExpr() { |
| 876 | getNextToken(); // eat (. |
| 877 | ExprAST *V = ParseExpression(); |
| 878 | if (!V) return 0; |
| 879 | |
| 880 | if (CurTok != ')') |
| 881 | return Error("expected ')'"); |
| 882 | getNextToken(); // eat ). |
| 883 | return V; |
| 884 | } |
| 885 | |
| 886 | /// primary |
| 887 | /// ::= identifierexpr |
| 888 | /// ::= numberexpr |
| 889 | /// ::= parenexpr |
| 890 | static ExprAST *ParsePrimary() { |
| 891 | switch (CurTok) { |
| 892 | default: return Error("unknown token when expecting an expression"); |
| 893 | case tok_identifier: return ParseIdentifierExpr(); |
| 894 | case tok_number: return ParseNumberExpr(); |
| 895 | case '(': return ParseParenExpr(); |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | /// binoprhs |
| 900 | /// ::= ('+' primary)* |
| 901 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 902 | // If this is a binop, find its precedence. |
| 903 | while (1) { |
| 904 | int TokPrec = GetTokPrecedence(); |
| 905 | |
| 906 | // If this is a binop that binds at least as tightly as the current binop, |
| 907 | // consume it, otherwise we are done. |
| 908 | if (TokPrec < ExprPrec) |
| 909 | return LHS; |
| 910 | |
| 911 | // Okay, we know this is a binop. |
| 912 | int BinOp = CurTok; |
| 913 | getNextToken(); // eat binop |
| 914 | |
| 915 | // Parse the primary expression after the binary operator. |
| 916 | ExprAST *RHS = ParsePrimary(); |
| 917 | if (!RHS) return 0; |
| 918 | |
| 919 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 920 | // the pending operator take RHS as its LHS. |
| 921 | int NextPrec = GetTokPrecedence(); |
| 922 | if (TokPrec < NextPrec) { |
| 923 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 924 | if (RHS == 0) return 0; |
| 925 | } |
| 926 | |
| 927 | // Merge LHS/RHS. |
| 928 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | /// expression |
| 933 | /// ::= primary binoprhs |
| 934 | /// |
| 935 | static ExprAST *ParseExpression() { |
| 936 | ExprAST *LHS = ParsePrimary(); |
| 937 | if (!LHS) return 0; |
| 938 | |
| 939 | return ParseBinOpRHS(0, LHS); |
| 940 | } |
| 941 | |
| 942 | /// prototype |
| 943 | /// ::= id '(' id* ')' |
| 944 | static PrototypeAST *ParsePrototype() { |
| 945 | if (CurTok != tok_identifier) |
| 946 | return ErrorP("Expected function name in prototype"); |
| 947 | |
| 948 | std::string FnName = IdentifierStr; |
| 949 | getNextToken(); |
| 950 | |
| 951 | if (CurTok != '(') |
| 952 | return ErrorP("Expected '(' in prototype"); |
| 953 | |
| 954 | std::vector<std::string> ArgNames; |
| 955 | while (getNextToken() == tok_identifier) |
| 956 | ArgNames.push_back(IdentifierStr); |
| 957 | if (CurTok != ')') |
| 958 | return ErrorP("Expected ')' in prototype"); |
| 959 | |
| 960 | // success. |
| 961 | getNextToken(); // eat ')'. |
| 962 | |
| 963 | return new PrototypeAST(FnName, ArgNames); |
| 964 | } |
| 965 | |
| 966 | /// definition ::= 'def' prototype expression |
| 967 | static FunctionAST *ParseDefinition() { |
| 968 | getNextToken(); // eat def. |
| 969 | PrototypeAST *Proto = ParsePrototype(); |
| 970 | if (Proto == 0) return 0; |
| 971 | |
| 972 | if (ExprAST *E = ParseExpression()) |
| 973 | return new FunctionAST(Proto, E); |
| 974 | return 0; |
| 975 | } |
| 976 | |
| 977 | /// toplevelexpr ::= expression |
| 978 | static FunctionAST *ParseTopLevelExpr() { |
| 979 | if (ExprAST *E = ParseExpression()) { |
| 980 | // Make an anonymous proto. |
| 981 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 982 | return new FunctionAST(Proto, E); |
| 983 | } |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | /// external ::= 'extern' prototype |
| 988 | static PrototypeAST *ParseExtern() { |
| 989 | getNextToken(); // eat extern. |
| 990 | return ParsePrototype(); |
| 991 | } |
| 992 | |
| 993 | //===----------------------------------------------------------------------===// |
| 994 | // Code Generation |
| 995 | //===----------------------------------------------------------------------===// |
| 996 | |
| 997 | static Module *TheModule; |
| 998 | static LLVMBuilder Builder; |
| 999 | static std::map<std::string, Value*> NamedValues; |
| 1000 | |
| 1001 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 1002 | |
| 1003 | Value *NumberExprAST::Codegen() { |
| 1004 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| 1005 | } |
| 1006 | |
| 1007 | Value *VariableExprAST::Codegen() { |
| 1008 | // Look this variable up in the function. |
| 1009 | Value *V = NamedValues[Name]; |
| 1010 | return V ? V : ErrorV("Unknown variable name"); |
| 1011 | } |
| 1012 | |
| 1013 | Value *BinaryExprAST::Codegen() { |
| 1014 | Value *L = LHS->Codegen(); |
| 1015 | Value *R = RHS->Codegen(); |
| 1016 | if (L == 0 || R == 0) return 0; |
| 1017 | |
| 1018 | switch (Op) { |
| 1019 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 1020 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 1021 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 1022 | case '<': |
| 1023 | L = Builder.CreateFCmpULT(L, R, "multmp"); |
| 1024 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 1025 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 1026 | default: return ErrorV("invalid binary operator"); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | Value *CallExprAST::Codegen() { |
| 1031 | // Look up the name in the global module table. |
| 1032 | Function *CalleeF = TheModule->getFunction(Callee); |
| 1033 | if (CalleeF == 0) |
| 1034 | return ErrorV("Unknown function referenced"); |
| 1035 | |
| 1036 | // If argument mismatch error. |
| 1037 | if (CalleeF->arg_size() != Args.size()) |
| 1038 | return ErrorV("Incorrect # arguments passed"); |
| 1039 | |
| 1040 | std::vector<Value*> ArgsV; |
| 1041 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 1042 | ArgsV.push_back(Args[i]->Codegen()); |
| 1043 | if (ArgsV.back() == 0) return 0; |
| 1044 | } |
| 1045 | |
| 1046 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 1047 | } |
| 1048 | |
| 1049 | Function *PrototypeAST::Codegen() { |
| 1050 | // Make the function type: double(double,double) etc. |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 1051 | std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); |
| 1052 | FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1053 | |
| 1054 | Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); |
| 1055 | |
| 1056 | // If F conflicted, there was already something named 'Name'. If it has a |
| 1057 | // body, don't allow redefinition or reextern. |
| 1058 | if (F->getName() != Name) { |
| 1059 | // Delete the one we just made and get the existing one. |
| 1060 | F->eraseFromParent(); |
| 1061 | F = TheModule->getFunction(Name); |
| 1062 | |
| 1063 | // If F already has a body, reject this. |
| 1064 | if (!F->empty()) { |
| 1065 | ErrorF("redefinition of function"); |
| 1066 | return 0; |
| 1067 | } |
| 1068 | |
| 1069 | // If F took a different number of args, reject. |
| 1070 | if (F->arg_size() != Args.size()) { |
| 1071 | ErrorF("redefinition of function with different # args"); |
| 1072 | return 0; |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | // Set names for all arguments. |
| 1077 | unsigned Idx = 0; |
| 1078 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 1079 | ++AI, ++Idx) { |
| 1080 | AI->setName(Args[Idx]); |
| 1081 | |
| 1082 | // Add arguments to variable symbol table. |
| 1083 | NamedValues[Args[Idx]] = AI; |
| 1084 | } |
| 1085 | |
| 1086 | return F; |
| 1087 | } |
| 1088 | |
| 1089 | Function *FunctionAST::Codegen() { |
| 1090 | NamedValues.clear(); |
| 1091 | |
| 1092 | Function *TheFunction = Proto->Codegen(); |
| 1093 | if (TheFunction == 0) |
| 1094 | return 0; |
| 1095 | |
| 1096 | // Create a new basic block to start insertion into. |
Chris Lattner | 35abbf5 | 2007-10-23 06:23:57 +0000 | [diff] [blame] | 1097 | BasicBlock *BB = new BasicBlock("entry", TheFunction); |
| 1098 | Builder.SetInsertPoint(BB); |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1099 | |
| 1100 | if (Value *RetVal = Body->Codegen()) { |
| 1101 | // Finish off the function. |
| 1102 | Builder.CreateRet(RetVal); |
Chris Lattner | d9b8616 | 2007-10-25 04:30:35 +0000 | [diff] [blame] | 1103 | |
| 1104 | // Validate the generated code, checking for consistency. |
| 1105 | verifyFunction(*TheFunction); |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1106 | return TheFunction; |
| 1107 | } |
| 1108 | |
| 1109 | // Error reading body, remove function. |
| 1110 | TheFunction->eraseFromParent(); |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | //===----------------------------------------------------------------------===// |
| 1115 | // Top-Level parsing and JIT Driver |
| 1116 | //===----------------------------------------------------------------------===// |
| 1117 | |
| 1118 | static void HandleDefinition() { |
| 1119 | if (FunctionAST *F = ParseDefinition()) { |
| 1120 | if (Function *LF = F->Codegen()) { |
| 1121 | fprintf(stderr, "Read function definition:"); |
| 1122 | LF->dump(); |
| 1123 | } |
| 1124 | } else { |
| 1125 | // Skip token for error recovery. |
| 1126 | getNextToken(); |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | static void HandleExtern() { |
| 1131 | if (PrototypeAST *P = ParseExtern()) { |
| 1132 | if (Function *F = P->Codegen()) { |
| 1133 | fprintf(stderr, "Read extern: "); |
| 1134 | F->dump(); |
| 1135 | } |
| 1136 | } else { |
| 1137 | // Skip token for error recovery. |
| 1138 | getNextToken(); |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | static void HandleTopLevelExpression() { |
| 1143 | // Evaluate a top level expression into an anonymous function. |
| 1144 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 1145 | if (Function *LF = F->Codegen()) { |
| 1146 | fprintf(stderr, "Read top-level expression:"); |
| 1147 | LF->dump(); |
| 1148 | } |
| 1149 | } else { |
| 1150 | // Skip token for error recovery. |
| 1151 | getNextToken(); |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | /// top ::= definition | external | expression | ';' |
| 1156 | static void MainLoop() { |
| 1157 | while (1) { |
| 1158 | fprintf(stderr, "ready> "); |
| 1159 | switch (CurTok) { |
| 1160 | case tok_eof: return; |
| 1161 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 1162 | case tok_def: HandleDefinition(); break; |
| 1163 | case tok_extern: HandleExtern(); break; |
| 1164 | default: HandleTopLevelExpression(); break; |
| 1165 | } |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | |
| 1170 | |
| 1171 | //===----------------------------------------------------------------------===// |
| 1172 | // "Library" functions that can be "extern'd" from user code. |
| 1173 | //===----------------------------------------------------------------------===// |
| 1174 | |
| 1175 | /// putchard - putchar that takes a double and returns 0. |
| 1176 | extern "C" |
| 1177 | double putchard(double X) { |
| 1178 | putchar((char)X); |
| 1179 | return 0; |
| 1180 | } |
| 1181 | |
| 1182 | //===----------------------------------------------------------------------===// |
| 1183 | // Main driver code. |
| 1184 | //===----------------------------------------------------------------------===// |
| 1185 | |
| 1186 | int main() { |
| 1187 | TheModule = new Module("my cool jit"); |
| 1188 | |
| 1189 | // Install standard binary operators. |
| 1190 | // 1 is lowest precedence. |
| 1191 | BinopPrecedence['<'] = 10; |
| 1192 | BinopPrecedence['+'] = 20; |
| 1193 | BinopPrecedence['-'] = 20; |
| 1194 | BinopPrecedence['*'] = 40; // highest. |
| 1195 | |
| 1196 | // Prime the first token. |
| 1197 | fprintf(stderr, "ready> "); |
| 1198 | getNextToken(); |
| 1199 | |
| 1200 | MainLoop(); |
| 1201 | TheModule->dump(); |
| 1202 | return 0; |
| 1203 | } |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1204 | </pre> |
| 1205 | </div> |
| 1206 | </div> |
| 1207 | |
| 1208 | <!-- *********************************************************************** --> |
| 1209 | <hr> |
| 1210 | <address> |
| 1211 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 1212 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 1213 | <a href="http://validator.w3.org/check/referer"><img |
Chris Lattner | 8eef4b2 | 2007-10-23 06:30:50 +0000 | [diff] [blame] | 1214 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1215 | |
| 1216 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 1217 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 1218 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 1219 | </address> |
| 1220 | </body> |
| 1221 | </html> |