blob: b8ac9e910494d77033a2dccbe654e41dc4c830b9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>Writing an LLVM Pass</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 Writing an LLVM Pass
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction - What is a pass?</a></li>
17 <li><a href="#quickstart">Quick Start - Writing hello world</a>
18 <ul>
19 <li><a href="#makefile">Setting up the build environment</a></li>
20 <li><a href="#basiccode">Basic code required</a></li>
21 <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22 </ul></li>
23 <li><a href="#passtype">Pass classes and requirements</a>
24 <ul>
25 <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26 <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27 <ul>
28 <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29 </ul></li>
30 <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31 <ul>
32 <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33 &amp;)</tt> method</a></li>
34 <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35 <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36 &amp;)</tt> method</a></li>
37 </ul></li>
38 <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39 <ul>
40 <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41 &amp;)</tt> method</a></li>
42 <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43 <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44 &amp;)</tt> method</a></li>
45 </ul></li>
46 <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47 <ul>
48 <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49 LPPassManager &amp;)</tt> method</a></li>
50 <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51 <li><a href="#doFinalization_loop">The <tt>doFinalization()
52 </tt> method</a></li>
53 </ul></li>
54 <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
55 <ul>
56 <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
57 &amp;)</tt> method</a></li>
58 <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
59 method</a></li>
60 <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
61 &amp;)</tt> method</a></li>
62 </ul></li>
63 <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
64 class</a>
65 <ul>
66 <li><a href="#runOnMachineFunction">The
67 <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
68 </ul></li>
69 </ul>
70 <li><a href="#registration">Pass Registration</a>
71 <ul>
72 <li><a href="#print">The <tt>print</tt> method</a></li>
73 </ul></li>
74 <li><a href="#interaction">Specifying interactions between passes</a>
75 <ul>
76 <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt>
77 method</a></li>
78 <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
79 <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
80 <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
Duncan Sands4e0d6a72009-01-28 13:14:17 +000081 <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
82<tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 </ul></li>
84 <li><a href="#analysisgroup">Implementing Analysis Groups</a>
85 <ul>
86 <li><a href="#agconcepts">Analysis Group Concepts</a></li>
87 <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
88 </ul></li>
89 <li><a href="#passStatistics">Pass Statistics</a>
90 <li><a href="#passmanager">What PassManager does</a>
91 <ul>
92 <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
93 </ul></li>
94 <li><a href="#registering">Registering dynamically loaded passes</a>
95 <ul>
96 <li><a href="#registering_existing">Using existing registries</a></li>
97 <li><a href="#registering_new">Creating new registries</a></li>
98 </ul></li>
99 <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
100 <ul>
101 <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
102 <li><a href="#debugmisc">Miscellaneous Problems</a></li>
103 </ul></li>
104 <li><a href="#future">Future extensions planned</a>
105 <ul>
106 <li><a href="#SMP">Multithreaded LLVM</a></li>
107 </ul></li>
108</ol>
109
110<div class="doc_author">
111 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
112 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
113</div>
114
115<!-- *********************************************************************** -->
116<div class="doc_section">
117 <a name="introduction">Introduction - What is a pass?</a>
118</div>
119<!-- *********************************************************************** -->
120
121<div class="doc_text">
122
123<p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
124passes are where most of the interesting parts of the compiler exist. Passes
125perform the transformations and optimizations that make up the compiler, they
126build the analysis results that are used by these transformations, and they are,
127above all, a structuring technique for compiler code.</p>
128
129<p>All LLVM passes are subclasses of the <tt><a
130href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
131class, which implement functionality by overriding virtual methods inherited
132from <tt>Pass</tt>. Depending on how your pass works, you should inherit from
133the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
134href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
135href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
136href="#LoopPass">LoopPass</a></tt>, or <tt><a
137href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
138more information about what your pass does, and how it can be combined with
139other passes. One of the main features of the LLVM Pass Framework is that it
140schedules passes to run in an efficient way based on the constraints that your
141pass meets (which are indicated by which class they derive from).</p>
142
143<p>We start by showing you how to construct a pass, everything from setting up
144the code, to compiling, loading, and executing it. After the basics are down,
145more advanced features are discussed.</p>
146
147</div>
148
149<!-- *********************************************************************** -->
150<div class="doc_section">
151 <a name="quickstart">Quick Start - Writing hello world</a>
152</div>
153<!-- *********************************************************************** -->
154
155<div class="doc_text">
156
157<p>Here we describe how to write the "hello world" of passes. The "Hello" pass
158is designed to simply print out the name of non-external functions that exist in
159the program being compiled. It does not modify the program at all, it just
160inspects it. The source code and files for this pass are available in the LLVM
161source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
162
163</div>
164
165<!-- ======================================================================= -->
166<div class="doc_subsection">
167 <a name="makefile">Setting up the build environment</a>
168</div>
169
170<div class="doc_text">
171
172 <p>First, you need to create a new directory somewhere in the LLVM source
173 base. For this example, we'll assume that you made
174 <tt>lib/Transforms/Hello</tt>. Next, you must set up a build script
175 (Makefile) that will compile the source code for the new pass. To do this,
176 copy the following into <tt>Makefile</tt>:</p>
177 <hr/>
178
179<div class="doc_code"><pre>
180# Makefile for hello pass
181
182# Path to top level of LLVM heirarchy
183LEVEL = ../../..
184
185# Name of the library to build
186LIBRARYNAME = Hello
187
188# Make the shared library become a loadable module so the tools can
189# dlopen/dlsym on the resulting library.
190LOADABLE_MODULE = 1
191
192# Tell the build system which LLVM libraries your pass needs. You'll probably
193# need at least LLVMSystem.a, LLVMSupport.a, LLVMCore.a but possibly several
194# others too.
195LLVMLIBS = LLVMCore.a LLVMSupport.a LLVMSystem.a
196
197# Include the makefile implementation stuff
198include $(LEVEL)/Makefile.common
199</pre></div>
200
201<p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
202directory are to be compiled and linked together into a
203<tt>Debug/lib/Hello.so</tt> shared object that can be dynamically loaded by
204the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.
205If your operating system uses a suffix other than .so (such as windows or
206Mac OS/X), the appropriate extension will be used.</p>
207
208<p>Now that we have the build scripts set up, we just need to write the code for
209the pass itself.</p>
210
211</div>
212
213<!-- ======================================================================= -->
214<div class="doc_subsection">
215 <a name="basiccode">Basic code required</a>
216</div>
217
218<div class="doc_text">
219
220<p>Now that we have a way to compile our new pass, we just have to write it.
221Start out with:</p>
222
223<div class="doc_code"><pre>
224<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
225<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
226</pre></div>
227
228<p>Which are needed because we are writing a <tt><a
229href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>, and
230we are operating on <tt><a
231href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s.</p>
232
233<p>Next we have:</p>
234<div class="doc_code"><pre>
235<b>using namespace llvm;</b>
236</pre></div>
237<p>... which is required because the functions from the include files
238live in the llvm namespace.
239</p>
240
241<p>Next we have:</p>
242
243<div class="doc_code"><pre>
244<b>namespace</b> {
245</pre></div>
246
247<p>... which starts out an anonymous namespace. Anonymous namespaces are to C++
248what the "<tt>static</tt>" keyword is to C (at global scope). It makes the
249things declared inside of the anonymous namespace only visible to the current
250file. If you're not familiar with them, consult a decent C++ book for more
251information.</p>
252
253<p>Next, we declare our pass itself:</p>
254
255<div class="doc_code"><pre>
256 <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
257</pre></div><p>
258
259<p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
260href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
261The different builtin pass subclasses are described in detail <a
262href="#passtype">later</a>, but for now, know that <a
263href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
264time.</p>
265
266<div class="doc_code"><pre>
267 static char ID;
Dan Gohmanc74a1972009-02-18 05:09:16 +0000268 Hello() : FunctionPass(&amp;ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000269</pre></div><p>
270
271<p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
272avoid using expensive C++ runtime information.</p>
273
274<div class="doc_code"><pre>
275 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
276 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
277 <b>return false</b>;
278 }
279 }; <i>// end of struct Hello</i>
280</pre></div>
281
282<p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
283which overloads an abstract virtual method inherited from <a
284href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed
285to do our thing, so we just print out our message with the name of each
286function.</p>
287
288<div class="doc_code"><pre>
289 char Hello::ID = 0;
290</pre></div>
291
292<p> We initialize pass ID here. LLVM uses ID's address to identify pass so
293initialization value is not important.</p>
294
295<div class="doc_code"><pre>
Devang Patel3aab76e2008-03-19 21:56:59 +0000296 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
297 false /* Only looks at CFG */,
298 false /* Analysis Pass */);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000299} <i>// end of anonymous namespace</i>
300</pre></div>
301
302<p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
303giving it a command line
Devang Patel3aab76e2008-03-19 21:56:59 +0000304argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
305Last two RegisterPass arguments are optional. Their default value is false.
306If a pass walks CFG without modifying it then third argument is set to true.
307If a pass is an analysis pass, for example dominator tree pass, then true
308is supplied as fourth argument. </p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309
310<p>As a whole, the <tt>.cpp</tt> file looks like:</p>
311
312<div class="doc_code"><pre>
313<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
314<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
315
316<b>using namespace llvm;</b>
317
318<b>namespace</b> {
319 <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
320
321 static char ID;
Dan Gohmanc74a1972009-02-18 05:09:16 +0000322 Hello() : FunctionPass(&amp;ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323
324 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
325 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
326 <b>return false</b>;
327 }
328 };
329
Devang Patel8e46f052007-07-25 21:05:39 +0000330 char Hello::ID = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>");
332}
333</pre></div>
334
335<p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
336command in the local directory and you should get a new
337"<tt>Debug/lib/Hello.so</tt> file. Note that everything in this file is
338contained in an anonymous namespace: this reflects the fact that passes are self
339contained units that do not need external interfaces (although they can have
340them) to be useful.</p>
341
342</div>
343
344<!-- ======================================================================= -->
345<div class="doc_subsection">
346 <a name="running">Running a pass with <tt>opt</tt></a>
347</div>
348
349<div class="doc_text">
350
351<p>Now that you have a brand new shiny shared object file, we can use the
352<tt>opt</tt> command to run an LLVM program through your pass. Because you
353registered your pass with the <tt>RegisterPass</tt> template, you will be able to
354use the <tt>opt</tt> tool to access it, once loaded.</p>
355
356<p>To test it, follow the example at the end of the <a
357href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
358LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program
359through our transformation like this (or course, any bitcode file will
360work):</p>
361
362<div class="doc_code"><pre>
363$ opt -load ../../../Debug/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
364Hello: __main
365Hello: puts
366Hello: main
367</pre></div>
368
369<p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
370pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
371argument (which is one reason you need to <a href="#registration">register your
372pass</a>). Because the hello pass does not modify the program in any
373interesting way, we just throw away the result of <tt>opt</tt> (sending it to
374<tt>/dev/null</tt>).</p>
375
376<p>To see what happened to the other string you registered, try running
377<tt>opt</tt> with the <tt>--help</tt> option:</p>
378
379<div class="doc_code"><pre>
380$ opt -load ../../../Debug/lib/Hello.so --help
381OVERVIEW: llvm .bc -&gt; .bc modular optimizer
382
383USAGE: opt [options] &lt;input bitcode&gt;
384
385OPTIONS:
386 Optimizations available:
387...
388 -funcresolve - Resolve Functions
389 -gcse - Global Common Subexpression Elimination
390 -globaldce - Dead Global Elimination
391 <b>-hello - Hello World Pass</b>
392 -indvars - Canonicalize Induction Variables
393 -inline - Function Integration/Inlining
394 -instcombine - Combine redundant instructions
395...
396</pre></div>
397
398<p>The pass name get added as the information string for your pass, giving some
399documentation to users of <tt>opt</tt>. Now that you have a working pass, you
400would go ahead and make it do the cool transformations you want. Once you get
401it all working and tested, it may become useful to find out how fast your pass
402is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
403line option (<tt>--time-passes</tt>) that allows you to get information about
404the execution time of your pass along with the other passes you queue up. For
405example:</p>
406
407<div class="doc_code"><pre>
408$ opt -load ../../../Debug/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
409Hello: __main
410Hello: puts
411Hello: main
412===============================================================================
413 ... Pass execution timing report ...
414===============================================================================
415 Total Execution Time: 0.02 seconds (0.0479059 wall clock)
416
417 ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
418 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
419 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
420 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
421 <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b>
422 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
423</pre></div>
424
425<p>As you can see, our implementation above is pretty fast :). The additional
426passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
427that the LLVM emitted by your pass is still valid and well formed LLVM, which
428hasn't been broken somehow.</p>
429
430<p>Now that you have seen the basics of the mechanics behind passes, we can talk
431about some more details of how they work and how to use them.</p>
432
433</div>
434
435<!-- *********************************************************************** -->
436<div class="doc_section">
437 <a name="passtype">Pass classes and requirements</a>
438</div>
439<!-- *********************************************************************** -->
440
441<div class="doc_text">
442
443<p>One of the first things that you should do when designing a new pass is to
444decide what class you should subclass for your pass. The <a
445href="#basiccode">Hello World</a> example uses the <tt><a
446href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
447did not discuss why or when this should occur. Here we talk about the classes
448available, from the most general to the most specific.</p>
449
450<p>When choosing a superclass for your Pass, you should choose the <b>most
451specific</b> class possible, while still being able to meet the requirements
452listed. This gives the LLVM Pass Infrastructure information necessary to
453optimize how passes are run, so that the resultant compiler isn't unneccesarily
454slow.</p>
455
456</div>
457
458<!-- ======================================================================= -->
459<div class="doc_subsection">
460 <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
461</div>
462
463<div class="doc_text">
464
465<p>The most plain and boring type of pass is the "<tt><a
466href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
467class. This pass type is used for passes that do not have to be run, do not
468change state, and never need to be updated. This is not a normal type of
469transformation or analysis, but can provide information about the current
470compiler configuration.</p>
471
472<p>Although this pass class is very infrequently used, it is important for
473providing information about the current target machine being compiled for, and
474other static information that can affect the various transformations.</p>
475
476<p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
477invalidated, and are never "run".</p>
478
479</div>
480
481<!-- ======================================================================= -->
482<div class="doc_subsection">
483 <a name="ModulePass">The <tt>ModulePass</tt> class</a>
484</div>
485
486<div class="doc_text">
487
488<p>The "<tt><a
489href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
490class is the most general of all superclasses that you can use. Deriving from
491<tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
492refering to function bodies in no predictable order, or adding and removing
493functions. Because nothing is known about the behavior of <tt>ModulePass</tt>
Daniel Dunbarb7750c52009-07-01 23:38:44 +0000494subclasses, no optimization can be done for their execution.</p>
495
496<p>A module pass can use function level passes (e.g. dominators) using
497the getAnalysis interface
498<tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
499function to retrieve analysis result for, if the function pass does not require
500any module passes. Note that this can only be done for functions for which the
501analysis ran, e.g. in the case of dominators you should only ask for the
502DominatorTree for function definitions, not declarations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503
504<p>To write a correct <tt>ModulePass</tt> subclass, derive from
505<tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
506following signature:</p>
507
508</div>
509
510<!-- _______________________________________________________________________ -->
511<div class="doc_subsubsection">
512 <a name="runOnModule">The <tt>runOnModule</tt> method</a>
513</div>
514
515<div class="doc_text">
516
517<div class="doc_code"><pre>
518 <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
519</pre></div>
520
521<p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
522It should return true if the module was modified by the transformation and
523false otherwise.</p>
524
525</div>
526
527<!-- ======================================================================= -->
528<div class="doc_subsection">
529 <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
530</div>
531
532<div class="doc_text">
533
534<p>The "<tt><a
535href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
536is used by passes that need to traverse the program bottom-up on the call graph
537(callees before callers). Deriving from CallGraphSCCPass provides some
538mechanics for building and traversing the CallGraph, but also allows the system
539to optimize execution of CallGraphSCCPass's. If your pass meets the
540requirements outlined below, and doesn't meet the requirements of a <tt><a
541href="#FunctionPass">FunctionPass</a></tt> or <tt><a
542href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
543<tt>CallGraphSCCPass</tt>.</p>
544
545<p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
546
547<p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
548
549<ol>
550
551<li>... <em>not allowed</em> to modify any <tt>Function</tt>s that are not in
552the current SCC.</li>
553
554<li>... <em>not allowed</em> to inspect any Function's other than those in the
555current SCC and the direct callees of the SCC.</li>
556
557<li>... <em>required</em> to preserve the current CallGraph object, updating it
558to reflect any changes made to the program.</li>
559
560<li>... <em>not allowed</em> to add or remove SCC's from the current Module,
561though they may change the contents of an SCC.</li>
562
563<li>... <em>allowed</em> to add or remove global variables from the current
564Module.</li>
565
566<li>... <em>allowed</em> to maintain state across invocations of
567 <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
568</ol>
569
570<p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
571because it has to handle SCCs with more than one node in it. All of the virtual
572methods described below should return true if they modified the program, or
573false if they didn't.</p>
574
575</div>
576
577<!-- _______________________________________________________________________ -->
578<div class="doc_subsubsection">
579 <a name="doInitialization_scc">The <tt>doInitialization(CallGraph &amp;)</tt>
580 method</a>
581</div>
582
583<div class="doc_text">
584
585<div class="doc_code"><pre>
586 <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
587</pre></div>
588
589<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
590<tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove
591functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
592is designed to do simple initialization type of stuff that does not depend on
593the SCCs being processed. The <tt>doInitialization</tt> method call is not
594scheduled to overlap with any other pass executions (thus it should be very
595fast).</p>
596
597</div>
598
599<!-- _______________________________________________________________________ -->
600<div class="doc_subsubsection">
601 <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
602</div>
603
604<div class="doc_text">
605
606<div class="doc_code"><pre>
607 <b>virtual bool</b> runOnSCC(const std::vector&lt;CallGraphNode *&gt; &amp;SCCM) = 0;
608</pre></div>
609
610<p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
611should return true if the module was modified by the transformation, false
612otherwise.</p>
613
614</div>
615
616<!-- _______________________________________________________________________ -->
617<div class="doc_subsubsection">
618 <a name="doFinalization_scc">The <tt>doFinalization(CallGraph
619 &amp;)</tt> method</a>
620</div>
621
622<div class="doc_text">
623
624<div class="doc_code"><pre>
625 <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
626</pre></div>
627
628<p>The <tt>doFinalization</tt> method is an infrequently used method that is
629called when the pass framework has finished calling <a
630href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
631program being compiled.</p>
632
633</div>
634
635<!-- ======================================================================= -->
636<div class="doc_subsection">
637 <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
638</div>
639
640<div class="doc_text">
641
642<p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
643href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
644subclasses do have a predictable, local behavior that can be expected by the
645system. All <tt>FunctionPass</tt> execute on each function in the program
646independent of all of the other functions in the program.
647<tt>FunctionPass</tt>'s do not require that they are executed in a particular
648order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
649
650<p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
651
652<ol>
653<li>Modify a Function other than the one currently being processed.</li>
654<li>Add or remove Function's from the current Module.</li>
655<li>Add or remove global variables from the current Module.</li>
656<li>Maintain state across invocations of
657 <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
658</ol>
659
660<p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
661href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s
662may overload three virtual methods to do their work. All of these methods
663should return true if they modified the program, or false if they didn't.</p>
664
665</div>
666
667<!-- _______________________________________________________________________ -->
668<div class="doc_subsubsection">
669 <a name="doInitialization_mod">The <tt>doInitialization(Module &amp;)</tt>
670 method</a>
671</div>
672
673<div class="doc_text">
674
675<div class="doc_code"><pre>
676 <b>virtual bool</b> doInitialization(Module &amp;M);
677</pre></div>
678
679<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
680<tt>FunctionPass</tt>'s are not allowed to do. They can add and remove
681functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
682is designed to do simple initialization type of stuff that does not depend on
683the functions being processed. The <tt>doInitialization</tt> method call is not
684scheduled to overlap with any other pass executions (thus it should be very
685fast).</p>
686
687<p>A good example of how this method should be used is the <a
688href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
689pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
690platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It
691uses the <tt>doInitialization</tt> method to get a reference to the malloc and
692free functions that it needs, adding prototypes to the module if necessary.</p>
693
694</div>
695
696<!-- _______________________________________________________________________ -->
697<div class="doc_subsubsection">
698 <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
699</div>
700
701<div class="doc_text">
702
703<div class="doc_code"><pre>
704 <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
705</pre></div><p>
706
707<p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
708the transformation or analysis work of your pass. As usual, a true value should
709be returned if the function is modified.</p>
710
711</div>
712
713<!-- _______________________________________________________________________ -->
714<div class="doc_subsubsection">
715 <a name="doFinalization_mod">The <tt>doFinalization(Module
716 &amp;)</tt> method</a>
717</div>
718
719<div class="doc_text">
720
721<div class="doc_code"><pre>
722 <b>virtual bool</b> doFinalization(Module &amp;M);
723</pre></div>
724
725<p>The <tt>doFinalization</tt> method is an infrequently used method that is
726called when the pass framework has finished calling <a
727href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
728program being compiled.</p>
729
730</div>
731
732<!-- ======================================================================= -->
733<div class="doc_subsection">
734 <a name="LoopPass">The <tt>LoopPass</tt> class </a>
735</div>
736
737<div class="doc_text">
738
739<p> All <tt>LoopPass</tt> execute on each loop in the function independent of
740all of the other loops in the function. <tt>LoopPass</tt> processes loops in
741loop nest order such that outer most loop is processed last. </p>
742
743<p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
744<tt>LPPassManager</tt> interface. Implementing a loop pass is usually
745straightforward. <tt>Looppass</tt>'s may overload three virtual methods to
746do their work. All these methods should return true if they modified the
747program, or false if they didn't. </p>
748</div>
749
750<!-- _______________________________________________________________________ -->
751<div class="doc_subsubsection">
752 <a name="doInitialization_loop">The <tt>doInitialization(Loop *,
753 LPPassManager &amp;)</tt>
754 method</a>
755</div>
756
757<div class="doc_text">
758
759<div class="doc_code"><pre>
760 <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
761</pre></div>
762
763<p>The <tt>doInitialization</tt> method is designed to do simple initialization
764type of stuff that does not depend on the functions being processed. The
765<tt>doInitialization</tt> method call is not scheduled to overlap with any
766other pass executions (thus it should be very fast). LPPassManager
767interface should be used to access Function or Module level analysis
768information.</p>
769
770</div>
771
772
773<!-- _______________________________________________________________________ -->
774<div class="doc_subsubsection">
775 <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
776</div>
777
778<div class="doc_text">
779
780<div class="doc_code"><pre>
781 <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
782</pre></div><p>
783
784<p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
785the transformation or analysis work of your pass. As usual, a true value should
786be returned if the function is modified. <tt>LPPassManager</tt> interface
787should be used to update loop nest.</p>
788
789</div>
790
791<!-- _______________________________________________________________________ -->
792<div class="doc_subsubsection">
793 <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
794</div>
795
796<div class="doc_text">
797
798<div class="doc_code"><pre>
799 <b>virtual bool</b> doFinalization();
800</pre></div>
801
802<p>The <tt>doFinalization</tt> method is an infrequently used method that is
803called when the pass framework has finished calling <a
804href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
805program being compiled. </p>
806
807</div>
808
809
810
811<!-- ======================================================================= -->
812<div class="doc_subsection">
813 <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
814</div>
815
816<div class="doc_text">
817
818<p><tt>BasicBlockPass</tt>'s are just like <a
819href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
820their scope of inspection and modification to a single basic block at a time.
821As such, they are <b>not</b> allowed to do any of the following:</p>
822
823<ol>
824<li>Modify or inspect any basic blocks outside of the current one</li>
825<li>Maintain state across invocations of
826 <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
827<li>Modify the control flow graph (by altering terminator instructions)</li>
828<li>Any of the things forbidden for
829 <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
830</ol>
831
832<p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
833optimizations. They may override the same <a
834href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
835href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
836href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
837
838</div>
839
840<!-- _______________________________________________________________________ -->
841<div class="doc_subsubsection">
842 <a name="doInitialization_fn">The <tt>doInitialization(Function
843 &amp;)</tt> method</a>
844</div>
845
846<div class="doc_text">
847
848<div class="doc_code"><pre>
849 <b>virtual bool</b> doInitialization(Function &amp;F);
850</pre></div>
851
852<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
853<tt>BasicBlockPass</tt>'s are not allowed to do, but that
854<tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed
855to do simple initialization that does not depend on the
856BasicBlocks being processed. The <tt>doInitialization</tt> method call is not
857scheduled to overlap with any other pass executions (thus it should be very
858fast).</p>
859
860</div>
861
862<!-- _______________________________________________________________________ -->
863<div class="doc_subsubsection">
864 <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
865</div>
866
867<div class="doc_text">
868
869<div class="doc_code"><pre>
870 <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
871</pre></div>
872
873<p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This
874function is not allowed to inspect or modify basic blocks other than the
875parameter, and are not allowed to modify the CFG. A true value must be returned
876if the basic block is modified.</p>
877
878</div>
879
880<!-- _______________________________________________________________________ -->
881<div class="doc_subsubsection">
882 <a name="doFinalization_fn">The <tt>doFinalization(Function &amp;)</tt>
883 method</a>
884</div>
885
886<div class="doc_text">
887
888<div class="doc_code"><pre>
889 <b>virtual bool</b> doFinalization(Function &amp;F);
890</pre></div>
891
892<p>The <tt>doFinalization</tt> method is an infrequently used method that is
893called when the pass framework has finished calling <a
894href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
895program being compiled. This can be used to perform per-function
896finalization.</p>
897
898</div>
899
900<!-- ======================================================================= -->
901<div class="doc_subsection">
902 <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
903</div>
904
905<div class="doc_text">
906
907<p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
908executes on the machine-dependent representation of each LLVM function in the
909program. A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
910the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
911<tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
912<tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
913
914<ol>
915<li>Modify any LLVM Instructions, BasicBlocks or Functions.</li>
916<li>Modify a MachineFunction other than the one currently being processed.</li>
917<li>Add or remove MachineFunctions from the current Module.</li>
918<li>Add or remove global variables from the current Module.</li>
919<li>Maintain state across invocations of <a
920href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
921data)</li>
922</ol>
923
924</div>
925
926<!-- _______________________________________________________________________ -->
927<div class="doc_subsubsection">
928 <a name="runOnMachineFunction">The <tt>runOnMachineFunction(MachineFunction
929 &amp;MF)</tt> method</a>
930</div>
931
932<div class="doc_text">
933
934<div class="doc_code"><pre>
935 <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
936</pre></div>
937
938<p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
939<tt>MachineFunctionPass</tt>; that is, you should override this method to do the
940work of your <tt>MachineFunctionPass</tt>.</p>
941
942<p>The <tt>runOnMachineFunction</tt> method is called on every
943<tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
944<tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
945representation of the function. If you want to get at the LLVM <tt>Function</tt>
946for the <tt>MachineFunction</tt> you're working on, use
947<tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
948remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
949<tt>MachineFunctionPass</tt>.</p>
950
951</div>
952
953<!-- *********************************************************************** -->
954<div class="doc_section">
955 <a name="registration">Pass registration</a>
956</div>
957<!-- *********************************************************************** -->
958
959<div class="doc_text">
960
961<p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
962pass registration works, and discussed some of the reasons that it is used and
963what it does. Here we discuss how and why passes are registered.</p>
964
965<p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
966template, which requires you to pass at least two
967parameters. The first parameter is the name of the pass that is to be used on
968the command line to specify that the pass should be added to a program (for
969example, with <tt>opt</tt> or <tt>bugpoint</tt>). The second argument is the
970name of the pass, which is to be used for the <tt>--help</tt> output of
971programs, as
972well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
973
974<p>If you want your pass to be easily dumpable, you should
975implement the virtual <tt>print</tt> method:</p>
976
977</div>
978
979<!-- _______________________________________________________________________ -->
980<div class="doc_subsubsection">
981 <a name="print">The <tt>print</tt> method</a>
982</div>
983
984<div class="doc_text">
985
986<div class="doc_code"><pre>
Edwin Török72a8fd22008-10-28 17:29:23 +0000987 <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988</pre></div>
989
990<p>The <tt>print</tt> method must be implemented by "analyses" in order to print
991a human readable version of the analysis results. This is useful for debugging
992an analysis itself, as well as for other people to figure out how an analysis
993works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
994
995<p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
996and the <tt>Module</tt> parameter gives a pointer to the top level module of the
997program that has been analyzed. Note however that this pointer may be null in
998certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
999debugger), so it should only be used to enhance debug output, it should not be
1000depended on.</p>
1001
1002</div>
1003
1004<!-- *********************************************************************** -->
1005<div class="doc_section">
1006 <a name="interaction">Specifying interactions between passes</a>
1007</div>
1008<!-- *********************************************************************** -->
1009
1010<div class="doc_text">
1011
John Criswella99e43f2007-12-03 19:34:25 +00001012<p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013that passes interact with each other correctly. Because <tt>PassManager</tt>
1014tries to <a href="#passmanager">optimize the execution of passes</a> it must
1015know how the passes interact with each other and what dependencies exist between
1016the various passes. To track this, each pass can declare the set of passes that
1017are required to be executed before the current pass, and the passes which are
1018invalidated by the current pass.</p>
1019
1020<p>Typically this functionality is used to require that analysis results are
1021computed before your pass is run. Running arbitrary transformation passes can
1022invalidate the computed analysis results, which is what the invalidation set
1023specifies. If a pass does not implement the <tt><a
1024href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1025having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1026
1027</div>
1028
1029<!-- _______________________________________________________________________ -->
1030<div class="doc_subsubsection">
1031 <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1032</div>
1033
1034<div class="doc_text">
1035
1036<div class="doc_code"><pre>
1037 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1038</pre></div>
1039
1040<p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1041invalidated sets may be specified for your transformation. The implementation
1042should fill in the <tt><a
1043href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1044object with information about which passes are required and not invalidated. To
1045do this, a pass may call any of the following methods on the AnalysisUsage
1046object:</p>
1047</div>
1048
1049<!-- _______________________________________________________________________ -->
1050<div class="doc_subsubsection">
1051 <a name="AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a>
1052</div>
1053
1054<div class="doc_text">
1055<p>
1056If your pass requires a previous pass to be executed (an analysis for example),
1057it can use one of these methods to arrange for it to be run before your pass.
1058LLVM has many different types of analyses and passes that can be required,
1059spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1060Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1061be no critical edges in the CFG when your pass has been run.
1062</p>
1063
1064<p>
1065Some analyses chain to other analyses to do their job. For example, an <a
1066href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1067href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In
1068cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1069used instead of the <tt>addRequired</tt> method. This informs the PassManager
1070that the transitively required pass should be alive as long as the requiring
1071pass is.
1072</p>
1073</div>
1074
1075<!-- _______________________________________________________________________ -->
1076<div class="doc_subsubsection">
1077 <a name="AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a>
1078</div>
1079
1080<div class="doc_text">
1081<p>
1082One of the jobs of the PassManager is to optimize how and when analyses are run.
1083In particular, it attempts to avoid recomputing data unless it needs to. For
1084this reason, passes are allowed to declare that they preserve (i.e., they don't
1085invalidate) an existing analysis if it's available. For example, a simple
1086constant folding pass would not modify the CFG, so it can't possibly affect the
1087results of dominator analysis. By default, all passes are assumed to invalidate
1088all others.
1089</p>
1090
1091<p>
1092The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1093certain circumstances that are related to <tt>addPreserved</tt>. In particular,
1094the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1095not modify the LLVM program at all (which is true for analyses), and the
1096<tt>setPreservesCFG</tt> method can be used by transformations that change
1097instructions in the program but do not modify the CFG or terminator instructions
1098(note that this property is implicitly set for <a
1099href="#BasicBlockPass">BasicBlockPass</a>'s).
1100</p>
1101
1102<p>
1103<tt>addPreserved</tt> is particularly useful for transformations like
1104<tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop
1105and dominator related analyses if they exist, so it can preserve them, despite
1106the fact that it hacks on the CFG.
1107</p>
1108</div>
1109
1110<!-- _______________________________________________________________________ -->
1111<div class="doc_subsubsection">
1112 <a name="AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a>
1113</div>
1114
1115<div class="doc_text">
1116
1117<div class="doc_code"><pre>
1118 <i>// This is an example implementation from an analysis, which does not modify
1119 // the program at all, yet has a prerequisite.</i>
1120 <b>void</b> <a href="http://llvm.org/doxygen/classllvm_1_1PostDominanceFrontier.html">PostDominanceFrontier</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1121 AU.setPreservesAll();
1122 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html">PostDominatorTree</a>&gt;();
1123 }
1124</pre></div>
1125
1126<p>and:</p>
1127
1128<div class="doc_code"><pre>
1129 <i>// This example modifies the program, but does not modify the CFG</i>
1130 <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1131 AU.setPreservesCFG();
1132 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1133 }
1134</pre></div>
1135
1136</div>
1137
1138<!-- _______________________________________________________________________ -->
1139<div class="doc_subsubsection">
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001140 <a name="getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
1141<tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001142</div>
1143
1144<div class="doc_text">
1145
1146<p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1147your class, providing you with access to the passes that you declared that you
1148required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1149method. It takes a single template argument that specifies which pass class you
1150want, and returns a reference to that pass. For example:</p>
1151
1152<div class="doc_code"><pre>
1153 bool LICM::runOnFunction(Function &amp;F) {
1154 LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1155 ...
1156 }
1157</pre></div>
1158
1159<p>This method call returns a reference to the pass desired. You may get a
1160runtime assertion failure if you attempt to get an analysis that you did not
1161declare as required in your <a
1162href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This
1163method can be called by your <tt>run*</tt> method implementation, or by any
1164other local method invoked by your <tt>run*</tt> method.
1165
1166A module level pass can use function level analysis info using this interface.
1167For example:</p>
1168
1169<div class="doc_code"><pre>
1170 bool ModuleLevelPass::runOnModule(Module &amp;M) {
1171 ...
1172 DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1173 ...
1174 }
1175</pre></div>
1176
1177<p>In above example, runOnFunction for DominatorTree is called by pass manager
1178before returning a reference to the desired pass.</p>
1179
1180<p>
1181If your pass is capable of updating analyses if they exist (e.g.,
1182<tt>BreakCriticalEdges</tt>, as described above), you can use the
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001183<tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
1184if it is active. For example:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185
1186<div class="doc_code"><pre>
1187 ...
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001188 if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001189 <i>// A DominatorSet is active. This code will update it.</i>
1190 }
1191 ...
1192</pre></div>
1193
1194</div>
1195
1196<!-- *********************************************************************** -->
1197<div class="doc_section">
1198 <a name="analysisgroup">Implementing Analysis Groups</a>
1199</div>
1200<!-- *********************************************************************** -->
1201
1202<div class="doc_text">
1203
Chris Lattner942c3952007-11-16 05:32:05 +00001204<p>Now that we understand the basics of how passes are defined, how they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205used, and how they are required from other passes, it's time to get a little bit
1206fancier. All of the pass relationships that we have seen so far are very
1207simple: one pass depends on one other specific pass to be run before it can run.
1208For many applications, this is great, for others, more flexibility is
1209required.</p>
1210
1211<p>In particular, some analyses are defined such that there is a single simple
1212interface to the analysis results, but multiple ways of calculating them.
1213Consider alias analysis for example. The most trivial alias analysis returns
1214"may alias" for any alias query. The most sophisticated analysis a
1215flow-sensitive, context-sensitive interprocedural analysis that can take a
1216significant amount of time to execute (and obviously, there is a lot of room
1217between these two extremes for other implementations). To cleanly support
1218situations like this, the LLVM Pass Infrastructure supports the notion of
1219Analysis Groups.</p>
1220
1221</div>
1222
1223<!-- _______________________________________________________________________ -->
1224<div class="doc_subsubsection">
1225 <a name="agconcepts">Analysis Group Concepts</a>
1226</div>
1227
1228<div class="doc_text">
1229
1230<p>An Analysis Group is a single simple interface that may be implemented by
1231multiple different passes. Analysis Groups can be given human readable names
1232just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1233class. An analysis group may have one or more implementations, one of which is
1234the "default" implementation.</p>
1235
1236<p>Analysis groups are used by client passes just like other passes are: the
1237<tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1238In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1239scans the available passes to see if any implementations of the analysis group
1240are available. If none is available, the default implementation is created for
1241the pass to use. All standard rules for <A href="#interaction">interaction
1242between passes</a> still apply.</p>
1243
1244<p>Although <a href="#registration">Pass Registration</a> is optional for normal
1245passes, all analysis group implementations must be registered, and must use the
1246<A href="#registerag"><tt>RegisterAnalysisGroup</tt></a> template to join the
1247implementation pool. Also, a default implementation of the interface
1248<b>must</b> be registered with <A
1249href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1250
1251<p>As a concrete example of an Analysis Group in action, consider the <a
1252href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1253analysis group. The default implementation of the alias analysis interface (the
1254<tt><a
1255href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1256pass) just does a few simple checks that don't require significant analysis to
1257compute (such as: two different globals can never alias each other, etc).
1258Passes that use the <tt><a
1259href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1260interface (for example the <tt><a
1261href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1262not care which implementation of alias analysis is actually provided, they just
1263use the designated interface.</p>
1264
1265<p>From the user's perspective, commands work just like normal. Issuing the
1266command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1267instantiated and added to the pass sequence. Issuing the command '<tt>opt
1268-somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1269<tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1270hypothetical example) instead.</p>
1271
1272</div>
1273
1274<!-- _______________________________________________________________________ -->
1275<div class="doc_subsubsection">
1276 <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1277</div>
1278
1279<div class="doc_text">
1280
1281<p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1282group itself as well as add pass implementations to the analysis group. First,
1283an analysis should be registered, with a human readable name provided for it.
1284Unlike registration of passes, there is no command line argument to be specified
1285for the Analysis Group Interface itself, because it is "abstract":</p>
1286
1287<div class="doc_code"><pre>
1288 <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1289</pre></div>
1290
1291<p>Once the analysis is registered, passes can declare that they are valid
1292implementations of the interface by using the following code:</p>
1293
1294<div class="doc_code"><pre>
1295<b>namespace</b> {
1296 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1297 RegisterPass&lt;FancyAA&gt;
1298 B("<i>somefancyaa</i>", "<i>A more complex alias analysis implementation</i>");
1299
1300 //<i> Declare that we implement the AliasAnalysis interface</i>
1301 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; C(B);
1302}
1303</pre></div>
1304
1305<p>This just shows a class <tt>FancyAA</tt> that is registered normally, then
1306uses the <tt>RegisterAnalysisGroup</tt> template to "join" the <tt><a
1307href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1308analysis group. Every implementation of an analysis group should join using
1309this template. A single pass may join multiple different analysis groups with
1310no problem.</p>
1311
1312<div class="doc_code"><pre>
1313<b>namespace</b> {
1314 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1315 RegisterPass&lt;<a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a>&gt;
1316 D("<i>basicaa</i>", "<i>Basic Alias Analysis (default AA impl)</i>");
1317
1318 //<i> Declare that we implement the AliasAnalysis interface</i>
1319 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, <b>true</b>&gt; E(D);
1320}
1321</pre></div>
1322
1323<p>Here we show how the default implementation is specified (using the extra
1324argument to the <tt>RegisterAnalysisGroup</tt> template). There must be exactly
1325one default implementation available at all times for an Analysis Group to be
1326used. Only default implementation can derive from <tt>ImmutablePass</tt>.
1327Here we declare that the
1328 <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1329pass is the default implementation for the interface.</p>
1330
1331</div>
1332
1333<!-- *********************************************************************** -->
1334<div class="doc_section">
1335 <a name="passStatistics">Pass Statistics</a>
1336</div>
1337<!-- *********************************************************************** -->
1338
1339<div class="doc_text">
1340<p>The <a
1341href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1342class is designed to be an easy way to expose various success
1343metrics from passes. These statistics are printed at the end of a
1344run, when the -stats command line option is enabled on the command
1345line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details.
1346
1347</div>
1348
1349
1350<!-- *********************************************************************** -->
1351<div class="doc_section">
1352 <a name="passmanager">What PassManager does</a>
1353</div>
1354<!-- *********************************************************************** -->
1355
1356<div class="doc_text">
1357
1358<p>The <a
1359href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1360<a
1361href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1362takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1363are set up correctly, and then schedules passes to run efficiently. All of the
1364LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1365passes.</p>
1366
1367<p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1368time of a series of passes:</p>
1369
1370<ol>
1371<li><b>Share analysis results</b> - The PassManager attempts to avoid
1372recomputing analysis results as much as possible. This means keeping track of
1373which analyses are available already, which analyses get invalidated, and which
1374analyses are needed to be run for a pass. An important part of work is that the
1375<tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1376it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1377results as soon as they are no longer needed.</li>
1378
1379<li><b>Pipeline the execution of passes on the program</b> - The
1380<tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1381of a series of passes by pipelining the passes together. This means that, given
1382a series of consequtive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1383will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1384the first function, then all of the <a
1385href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1386etc... until the entire program has been run through the passes.
1387
1388<p>This improves the cache behavior of the compiler, because it is only touching
1389the LLVM program representation for a single function at a time, instead of
1390traversing the entire program. It reduces the memory consumption of compiler,
1391because, for example, only one <a
1392href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
John Criswell8a726152007-12-10 20:26:29 +00001393needs to be calculated at a time. This also makes it possible to implement
1394some <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001395href="#SMP">interesting enhancements</a> in the future.</p></li>
1396
1397</ol>
1398
1399<p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1400much information it has about the behaviors of the passes it is scheduling. For
1401example, the "preserved" set is intentionally conservative in the face of an
1402unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1403Not implementing when it should be implemented will have the effect of not
1404allowing any analysis results to live across the execution of your pass.</p>
1405
1406<p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1407options that is useful for debugging pass execution, seeing how things work, and
1408diagnosing when you should be preserving more analyses than you currently are
1409(To get information about all of the variants of the <tt>--debug-pass</tt>
1410option, just type '<tt>opt --help-hidden</tt>').</p>
1411
1412<p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1413how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1414Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1415
1416<div class="doc_code"><pre>
1417$ opt -load ../../../Debug/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1418Module Pass Manager
1419 Function Pass Manager
1420 Dominator Set Construction
1421 Immediate Dominators Construction
1422 Global Common Subexpression Elimination
1423-- Immediate Dominators Construction
1424-- Global Common Subexpression Elimination
1425 Natural Loop Construction
1426 Loop Invariant Code Motion
1427-- Natural Loop Construction
1428-- Loop Invariant Code Motion
1429 Module Verifier
1430-- Dominator Set Construction
1431-- Module Verifier
1432 Bitcode Writer
1433--Bitcode Writer
1434</pre></div>
1435
1436<p>This output shows us when passes are constructed and when the analysis
1437results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that
1438GCSE uses dominator and immediate dominator information to do its job. The LICM
1439pass uses natural loop information, which uses dominator sets, but not immediate
1440dominators. Because immediate dominators are no longer useful after the GCSE
1441pass, it is immediately destroyed. The dominator sets are then reused to
1442compute natural loop information, which is then used by the LICM pass.</p>
1443
1444<p>After the LICM pass, the module verifier runs (which is automatically added
1445by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1446resultant LLVM code is well formed. After it finishes, the dominator set
1447information is destroyed, after being computed once, and shared by three
1448passes.</p>
1449
1450<p>Lets see how this changes when we run the <a href="#basiccode">Hello
1451World</a> pass in between the two passes:</p>
1452
1453<div class="doc_code"><pre>
1454$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1455Module Pass Manager
1456 Function Pass Manager
1457 Dominator Set Construction
1458 Immediate Dominators Construction
1459 Global Common Subexpression Elimination
1460<b>-- Dominator Set Construction</b>
1461-- Immediate Dominators Construction
1462-- Global Common Subexpression Elimination
1463<b> Hello World Pass
1464-- Hello World Pass
1465 Dominator Set Construction</b>
1466 Natural Loop Construction
1467 Loop Invariant Code Motion
1468-- Natural Loop Construction
1469-- Loop Invariant Code Motion
1470 Module Verifier
1471-- Dominator Set Construction
1472-- Module Verifier
1473 Bitcode Writer
1474--Bitcode Writer
1475Hello: __main
1476Hello: puts
1477Hello: main
1478</pre></div>
1479
1480<p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1481Dominator Set pass, even though it doesn't modify the code at all! To fix this,
1482we need to add the following <a
1483href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1484
1485<div class="doc_code"><pre>
1486 <i>// We don't modify the program, so we preserve all analyses</i>
1487 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1488 AU.setPreservesAll();
1489 }
1490</pre></div>
1491
1492<p>Now when we run our pass, we get this output:</p>
1493
1494<div class="doc_code"><pre>
1495$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1496Pass Arguments: -gcse -hello -licm
1497Module Pass Manager
1498 Function Pass Manager
1499 Dominator Set Construction
1500 Immediate Dominators Construction
1501 Global Common Subexpression Elimination
1502-- Immediate Dominators Construction
1503-- Global Common Subexpression Elimination
1504 Hello World Pass
1505-- Hello World Pass
1506 Natural Loop Construction
1507 Loop Invariant Code Motion
1508-- Loop Invariant Code Motion
1509-- Natural Loop Construction
1510 Module Verifier
1511-- Dominator Set Construction
1512-- Module Verifier
1513 Bitcode Writer
1514--Bitcode Writer
1515Hello: __main
1516Hello: puts
1517Hello: main
1518</pre></div>
1519
1520<p>Which shows that we don't accidentally invalidate dominator information
1521anymore, and therefore do not have to compute it twice.</p>
1522
1523</div>
1524
1525<!-- _______________________________________________________________________ -->
1526<div class="doc_subsubsection">
1527 <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1528</div>
1529
1530<div class="doc_text">
1531
1532<div class="doc_code"><pre>
1533 <b>virtual void</b> releaseMemory();
1534</pre></div>
1535
1536<p>The <tt>PassManager</tt> automatically determines when to compute analysis
1537results, and how long to keep them around for. Because the lifetime of the pass
1538object itself is effectively the entire duration of the compilation process, we
1539need some way to free analysis results when they are no longer useful. The
1540<tt>releaseMemory</tt> virtual method is the way to do this.</p>
1541
1542<p>If you are writing an analysis or any other pass that retains a significant
1543amount of state (for use by another pass which "requires" your pass and uses the
1544<a href="#getAnalysis">getAnalysis</a> method) you should implement
Dan Gohmand72d8ea2009-06-15 18:22:49 +00001545<tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001546internal state. This method is called after the <tt>run*</tt> method for the
1547class, before the next call of <tt>run*</tt> in your pass.</p>
1548
1549</div>
1550
1551<!-- *********************************************************************** -->
1552<div class="doc_section">
1553 <a name="registering">Registering dynamically loaded passes</a>
1554</div>
1555<!-- *********************************************************************** -->
1556
1557<div class="doc_text">
1558
1559<p><i>Size matters</i> when constructing production quality tools using llvm,
1560both for the purposes of distribution, and for regulating the resident code size
1561when running on the target system. Therefore, it becomes desirable to
1562selectively use some passes, while omitting others and maintain the flexibility
1563to change configurations later on. You want to be able to do all this, and,
1564provide feedback to the user. This is where pass registration comes into
1565play.</p>
1566
1567<p>The fundamental mechanisms for pass registration are the
1568<tt>MachinePassRegistry</tt> class and subclasses of
1569<tt>MachinePassRegistryNode</tt>.</p>
1570
1571<p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1572<tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and
1573communicates additions and deletions to the command line interface.</p>
1574
1575<p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1576information provided about a particular pass. This information includes the
1577command line name, the command help string and the address of the function used
1578to create an instance of the pass. A global static constructor of one of these
1579instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1580the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1581in the tool will be registered at start up. A dynamically loaded pass will
1582register on load and unregister at unload.</p>
1583
1584</div>
1585
1586<!-- _______________________________________________________________________ -->
1587<div class="doc_subsection">
1588 <a name="registering_existing">Using existing registries</a>
1589</div>
1590
1591<div class="doc_text">
1592
1593<p>There are predefined registries to track instruction scheduling
1594(<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1595machine passes. Here we will describe how to <i>register</i> a register
1596allocator machine pass.</p>
1597
1598<p>Implement your register allocator machine pass. In your register allocator
1599.cpp file add the following include;</p>
1600
1601<div class="doc_code"><pre>
1602 #include "llvm/CodeGen/RegAllocRegistry.h"
1603</pre></div>
1604
1605<p>Also in your register allocator .cpp file, define a creator function in the
1606form; </p>
1607
1608<div class="doc_code"><pre>
1609 FunctionPass *createMyRegisterAllocator() {
1610 return new MyRegisterAllocator();
1611 }
1612</pre></div>
1613
1614<p>Note that the signature of this function should match the type of
1615<tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the
1616"installing" declaration, in the form;</p>
1617
1618<div class="doc_code"><pre>
1619 static RegisterRegAlloc myRegAlloc("myregalloc",
1620 " my register allocator help string",
1621 createMyRegisterAllocator);
1622</pre></div>
1623
1624<p>Note the two spaces prior to the help string produces a tidy result on the
1625--help query.</p>
1626
1627<div class="doc_code"><pre>
1628$ llc --help
1629 ...
1630 -regalloc - Register allocator to use: (default = linearscan)
1631 =linearscan - linear scan register allocator
1632 =local - local register allocator
1633 =simple - simple register allocator
1634 =myregalloc - my register allocator help string
1635 ...
1636</pre></div>
1637
1638<p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as
1639an option. Registering instruction schedulers is similar except use the
1640<tt>RegisterScheduler</tt> class. Note that the
1641<tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1642<tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1643
1644<p>To force the load/linking of your register allocator into the llc/lli tools,
1645add your creator function's global declaration to "Passes.h" and add a "pseudo"
1646call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1647
1648</div>
1649
1650
1651<!-- _______________________________________________________________________ -->
1652<div class="doc_subsection">
1653 <a name="registering_new">Creating new registries</a>
1654</div>
1655
1656<div class="doc_text">
1657
1658<p>The easiest way to get started is to clone one of the existing registries; we
1659recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify
1660are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1661
1662<p>Then you need to declare the registry. Example: if your pass registry is
1663<tt>RegisterMyPasses</tt> then define;</p>
1664
1665<div class="doc_code"><pre>
1666MachinePassRegistry RegisterMyPasses::Registry;
1667</pre></div>
1668
1669<p>And finally, declare the command line option for your passes. Example:</p>
1670
1671<div class="doc_code"><pre>
1672 cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
Dan Gohman8e58bc52008-10-14 17:00:38 +00001673 RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 MyPassOpt("mypass",
1675 cl::init(&amp;createDefaultMyPass),
1676 cl::desc("my pass option help"));
1677</pre></div>
1678
1679<p>Here the command option is "mypass", with createDefaultMyPass as the default
1680creator.</p>
1681
1682</div>
1683
1684<!-- *********************************************************************** -->
1685<div class="doc_section">
1686 <a name="debughints">Using GDB with dynamically loaded passes</a>
1687</div>
1688<!-- *********************************************************************** -->
1689
1690<div class="doc_text">
1691
1692<p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1693should be. First of all, you can't set a breakpoint in a shared object that has
1694not been loaded yet, and second of all there are problems with inlined functions
1695in shared objects. Here are some suggestions to debugging your pass with
1696GDB.</p>
1697
1698<p>For sake of discussion, I'm going to assume that you are debugging a
1699transformation invoked by <tt>opt</tt>, although nothing described here depends
1700on that.</p>
1701
1702</div>
1703
1704<!-- _______________________________________________________________________ -->
1705<div class="doc_subsubsection">
1706 <a name="breakpoint">Setting a breakpoint in your pass</a>
1707</div>
1708
1709<div class="doc_text">
1710
1711<p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1712
1713<div class="doc_code"><pre>
1714$ <b>gdb opt</b>
1715GNU gdb 5.0
1716Copyright 2000 Free Software Foundation, Inc.
1717GDB is free software, covered by the GNU General Public License, and you are
1718welcome to change it and/or distribute copies of it under certain conditions.
1719Type "show copying" to see the conditions.
1720There is absolutely no warranty for GDB. Type "show warranty" for details.
1721This GDB was configured as "sparc-sun-solaris2.6"...
1722(gdb)
1723</pre></div>
1724
1725<p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1726time to load. Be patient. Since we cannot set a breakpoint in our pass yet
1727(the shared object isn't loaded until runtime), we must execute the process, and
1728have it stop before it invokes our pass, but after it has loaded the shared
1729object. The most foolproof way of doing this is to set a breakpoint in
1730<tt>PassManager::run</tt> and then run the process with the arguments you
1731want:</p>
1732
1733<div class="doc_code"><pre>
1734(gdb) <b>break llvm::PassManager::run</b>
1735Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1736(gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]</b>
1737Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]
1738Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
173970 bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1740(gdb)
1741</pre></div>
1742
1743<p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1744now free to set breakpoints in your pass so that you can trace through execution
1745or do other standard debugging stuff.</p>
1746
1747</div>
1748
1749<!-- _______________________________________________________________________ -->
1750<div class="doc_subsubsection">
1751 <a name="debugmisc">Miscellaneous Problems</a>
1752</div>
1753
1754<div class="doc_text">
1755
1756<p>Once you have the basics down, there are a couple of problems that GDB has,
1757some with solutions, some without.</p>
1758
1759<ul>
1760<li>Inline functions have bogus stack information. In general, GDB does a
1761pretty good job getting stack traces and stepping through inline functions.
1762When a pass is dynamically loaded however, it somehow completely loses this
1763capability. The only solution I know of is to de-inline a function (move it
1764from the body of a class to a .cpp file).</li>
1765
1766<li>Restarting the program breaks breakpoints. After following the information
1767above, you have succeeded in getting some breakpoints planted in your pass. Nex
1768thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1769and you start getting errors about breakpoints being unsettable. The only way I
1770have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1771already set in your pass, run the program, and re-set the breakpoints once
1772execution stops in <tt>PassManager::run</tt>.</li>
1773
1774</ul>
1775
1776<p>Hopefully these tips will help with common case debugging situations. If
1777you'd like to contribute some tips of your own, just contact <a
1778href="mailto:sabre@nondot.org">Chris</a>.</p>
1779
1780</div>
1781
1782<!-- *********************************************************************** -->
1783<div class="doc_section">
1784 <a name="future">Future extensions planned</a>
1785</div>
1786<!-- *********************************************************************** -->
1787
1788<div class="doc_text">
1789
1790<p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1791some nifty stuff, there are things we'd like to add in the future. Here is
1792where we are going:</p>
1793
1794</div>
1795
1796<!-- _______________________________________________________________________ -->
1797<div class="doc_subsubsection">
1798 <a name="SMP">Multithreaded LLVM</a>
1799</div>
1800
1801<div class="doc_text">
1802
1803<p>Multiple CPU machines are becoming more common and compilation can never be
1804fast enough: obviously we should allow for a multithreaded compiler. Because of
1805the semantics defined for passes above (specifically they cannot maintain state
1806across invocations of their <tt>run*</tt> methods), a nice clean way to
1807implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1808to create multiple instances of each pass object, and allow the separate
1809instances to be hacking on different parts of the program at the same time.</p>
1810
1811<p>This implementation would prevent each of the passes from having to implement
1812multithreaded constructs, requiring only the LLVM core to have locking in a few
1813places (for global resources). Although this is a simple extension, we simply
1814haven't had time (or multiprocessor machines, thus a reason) to implement this.
1815Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1816
1817</div>
1818
1819<!-- *********************************************************************** -->
1820<hr>
1821<address>
1822 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00001823 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001824 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman5c1cc642008-12-11 18:23:24 +00001825 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001826
1827 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1828 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1829 Last modified: $Date$
1830</address>
1831
1832</body>
1833</html>