blob: c8ab2d762b6bc84ffeef3b434770e951ce289c51 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Support/MathExtras.h"
Zhou Shenga3832fd2007-02-07 06:14:53 +000018#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000019#include <cstdlib>
Reid Spencer385f7542007-02-21 03:55:44 +000020#ifndef NDEBUG
21#include <iostream>
22#include <iomanip>
23#endif
24
Zhou Shengfd43dcf2007-02-06 03:00:16 +000025using namespace llvm;
26
Reid Spenceraf0e9562007-02-18 18:38:44 +000027// A utility function for allocating memory, checking for allocation failures,
28// and ensuring the contents is zeroed.
29inline static uint64_t* getClearedMemory(uint32_t numWords) {
30 uint64_t * result = new uint64_t[numWords];
31 assert(result && "APInt memory allocation fails!");
32 memset(result, 0, numWords * sizeof(uint64_t));
33 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000034}
35
Reid Spenceraf0e9562007-02-18 18:38:44 +000036// A utility function for allocating memory and checking for allocation failure.
37inline static uint64_t* getMemory(uint32_t numWords) {
38 uint64_t * result = new uint64_t[numWords];
39 assert(result && "APInt memory allocation fails!");
40 return result;
41}
42
43APInt::APInt(uint32_t numBits, uint64_t val)
Reid Spencer385f7542007-02-21 03:55:44 +000044 : BitWidth(numBits), VAL(0) {
Reid Spencere81d2da2007-02-16 22:36:51 +000045 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
46 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000047 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +000048 VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
Zhou Shengfd43dcf2007-02-06 03:00:16 +000049 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +000050 pVal = getClearedMemory(getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +000051 pVal[0] = val;
52 }
53}
54
Reid Spenceraf0e9562007-02-18 18:38:44 +000055APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
Reid Spencer385f7542007-02-21 03:55:44 +000056 : BitWidth(numBits), VAL(0) {
Reid Spencere81d2da2007-02-16 22:36:51 +000057 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
58 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000059 assert(bigVal && "Null pointer detected!");
60 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +000061 VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
Zhou Shengfd43dcf2007-02-06 03:00:16 +000062 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +000063 pVal = getMemory(getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +000064 // Calculate the actual length of bigVal[].
Reid Spenceraf0e9562007-02-18 18:38:44 +000065 uint32_t maxN = std::max<uint32_t>(numWords, getNumWords());
66 uint32_t minN = std::min<uint32_t>(numWords, getNumWords());
Reid Spencera58f0582007-02-18 20:09:41 +000067 memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE);
Reid Spencer443b5702007-02-18 00:44:22 +000068 pVal[minN-1] = bigVal[minN-1] &
69 (~uint64_t(0ULL) >>
70 (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD));
Zhou Shenga3832fd2007-02-07 06:14:53 +000071 if (maxN == getNumWords())
Reid Spencera58f0582007-02-18 20:09:41 +000072 memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +000073 }
74}
75
Zhou Shenga3832fd2007-02-07 06:14:53 +000076/// @brief Create a new APInt by translating the char array represented
77/// integer value.
Reid Spenceraf0e9562007-02-18 18:38:44 +000078APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
Reid Spencer9c0696f2007-02-20 08:51:03 +000079 uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000080 : BitWidth(numbits), VAL(0) {
Reid Spencere81d2da2007-02-16 22:36:51 +000081 fromString(numbits, StrStart, slen, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000082}
83
84/// @brief Create a new APInt by translating the string represented
85/// integer value.
Reid Spencer9c0696f2007-02-20 08:51:03 +000086APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000087 : BitWidth(numbits), VAL(0) {
Zhou Shenga3832fd2007-02-07 06:14:53 +000088 assert(!Val.empty() && "String empty?");
Reid Spencere81d2da2007-02-16 22:36:51 +000089 fromString(numbits, Val.c_str(), Val.size(), radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000090}
91
Reid Spencera58f0582007-02-18 20:09:41 +000092/// @brief Copy constructor
Reid Spencer54362ca2007-02-20 23:40:25 +000093APInt::APInt(const APInt& that)
Reid Spencer385f7542007-02-21 03:55:44 +000094 : BitWidth(that.BitWidth), VAL(0) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000095 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +000096 VAL = that.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000097 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +000098 pVal = getMemory(getNumWords());
Reid Spencer54362ca2007-02-20 23:40:25 +000099 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000100 }
101}
102
103APInt::~APInt() {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000104 if (!isSingleWord() && pVal)
105 delete[] pVal;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000106}
107
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000108/// @brief Copy assignment operator. Create a new object from the given
109/// APInt one by initialization.
110APInt& APInt::operator=(const APInt& RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000111 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
112 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000113 VAL = RHS.VAL;
114 else
Reid Spencera58f0582007-02-18 20:09:41 +0000115 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000116 return *this;
117}
118
119/// @brief Assignment operator. Assigns a common case integer value to
120/// the APInt.
121APInt& APInt::operator=(uint64_t RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000122 if (isSingleWord())
123 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000124 else {
125 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000126 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000127 }
128 return *this;
129}
130
Reid Spenceraf0e9562007-02-18 18:38:44 +0000131/// add_1 - This function adds a single "digit" integer, y, to the multiple
132/// "digit" integer array, x[]. x[] is modified to reflect the addition and
133/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000134/// @returns the carry of the addition.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000135static uint64_t add_1(uint64_t dest[],
136 uint64_t x[], uint32_t len,
137 uint64_t y) {
138 for (uint32_t i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000139 dest[i] = y + x[i];
140 if (dest[i] < y)
141 y = 1;
142 else {
143 y = 0;
144 break;
145 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000146 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000147 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000148}
149
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000150/// @brief Prefix increment operator. Increments the APInt by one.
151APInt& APInt::operator++() {
Reid Spencere81d2da2007-02-16 22:36:51 +0000152 if (isSingleWord())
153 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000154 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000155 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000156 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000157 return *this;
158}
159
Reid Spenceraf0e9562007-02-18 18:38:44 +0000160/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
161/// the multi-digit integer array, x[], propagating the borrowed 1 value until
162/// no further borrowing is neeeded or it runs out of "digits" in x. The result
163/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
164/// In other words, if y > x then this function returns 1, otherwise 0.
165static uint64_t sub_1(uint64_t x[], uint32_t len,
166 uint64_t y) {
167 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000168 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000169 x[i] -= y;
170 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000171 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000172 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000173 y = 0; // No need to borrow
174 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000175 }
176 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000177 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000178}
179
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000180/// @brief Prefix decrement operator. Decrements the APInt by one.
181APInt& APInt::operator--() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000182 if (isSingleWord())
183 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000184 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000185 sub_1(pVal, getNumWords(), 1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000186 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000187 return *this;
188}
189
Reid Spencer5e0a8512007-02-17 03:16:00 +0000190/// add - This function adds the integer array x[] by integer array
191/// y[] and returns the carry.
Reid Spencer385f7542007-02-21 03:55:44 +0000192static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) {
Reid Spencer54362ca2007-02-20 23:40:25 +0000193 uint64_t carry = 0;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000194 for (uint32_t i = 0; i< len; ++i) {
Reid Spencer54362ca2007-02-20 23:40:25 +0000195 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000196 uint64_t limit = std::min(x[i],y[i]);
197 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000198 }
199 return carry;
200}
201
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000202/// @brief Addition assignment operator. Adds this APInt by the given APInt&
203/// RHS and assigns the result to this APInt.
204APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000205 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000206 if (isSingleWord())
207 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000208 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000209 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000210 }
Reid Spencere81d2da2007-02-16 22:36:51 +0000211 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000212 return *this;
213}
214
Reid Spencer5e0a8512007-02-17 03:16:00 +0000215/// sub - This function subtracts the integer array x[] by
216/// integer array y[], and returns the borrow-out carry.
Reid Spencer385f7542007-02-21 03:55:44 +0000217static uint64_t sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
218 uint32_t len) {
219 bool borrow = false;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000220 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000221 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
222 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
223 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000224 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000225 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000226}
227
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000228/// @brief Subtraction assignment operator. Subtracts this APInt by the given
229/// APInt &RHS and assigns the result to this APInt.
230APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000232 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000233 VAL -= RHS.VAL;
234 else
235 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencere81d2da2007-02-16 22:36:51 +0000236 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000237 return *this;
238}
239
Reid Spencer5e0a8512007-02-17 03:16:00 +0000240/// mul_1 - This function performs the multiplication operation on a
241/// large integer (represented as an integer array) and a uint64_t integer.
242/// @returns the carry of the multiplication.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000243static uint64_t mul_1(uint64_t dest[],
244 uint64_t x[], uint32_t len,
245 uint64_t y) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000246 // Split y into high 32-bit part and low 32-bit part.
247 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
248 uint64_t carry = 0, lx, hx;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000249 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000250 lx = x[i] & 0xffffffffULL;
251 hx = x[i] >> 32;
252 // hasCarry - A flag to indicate if has carry.
253 // hasCarry == 0, no carry
254 // hasCarry == 1, has carry
255 // hasCarry == 2, no carry and the calculation result == 0.
256 uint8_t hasCarry = 0;
257 dest[i] = carry + lx * ly;
258 // Determine if the add above introduces carry.
259 hasCarry = (dest[i] < carry) ? 1 : 0;
260 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
261 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
262 // (2^32 - 1) + 2^32 = 2^64.
263 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
264
265 carry += (lx * hy) & 0xffffffffULL;
266 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
267 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
268 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
269 }
270
271 return carry;
272}
273
274/// mul - This function multiplies integer array x[] by integer array y[] and
275/// stores the result into integer array dest[].
276/// Note the array dest[]'s size should no less than xlen + ylen.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000277static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen,
278 uint64_t y[], uint32_t ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000279 dest[xlen] = mul_1(dest, x, xlen, y[0]);
280
Reid Spenceraf0e9562007-02-18 18:38:44 +0000281 for (uint32_t i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000282 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000283 uint64_t carry = 0, lx = 0, hx = 0;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000284 for (uint32_t j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000285 lx = x[j] & 0xffffffffULL;
286 hx = x[j] >> 32;
287 // hasCarry - A flag to indicate if has carry.
288 // hasCarry == 0, no carry
289 // hasCarry == 1, has carry
290 // hasCarry == 2, no carry and the calculation result == 0.
291 uint8_t hasCarry = 0;
292 uint64_t resul = carry + lx * ly;
293 hasCarry = (resul < carry) ? 1 : 0;
294 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
295 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
296
297 carry += (lx * hy) & 0xffffffffULL;
298 resul = (carry << 32) | (resul & 0xffffffffULL);
299 dest[i+j] += resul;
300 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
301 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
302 ((lx * hy) >> 32) + hx * hy;
303 }
304 dest[i+xlen] = carry;
305 }
306}
307
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000308/// @brief Multiplication assignment operator. Multiplies this APInt by the
309/// given APInt& RHS and assigns the result to this APInt.
310APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000311 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000312 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000313 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000314 clearUnusedBits();
315 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000316 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000317
318 // Get some bit facts about LHS and check for zero
319 uint32_t lhsBits = getActiveBits();
320 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
321 if (!lhsWords)
322 // 0 * X ===> 0
323 return *this;
324
325 // Get some bit facts about RHS and check for zero
326 uint32_t rhsBits = RHS.getActiveBits();
327 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
328 if (!rhsWords) {
329 // X * 0 ===> 0
330 clear();
331 return *this;
332 }
333
334 // Allocate space for the result
335 uint32_t destWords = rhsWords + lhsWords;
336 uint64_t *dest = getMemory(destWords);
337
338 // Perform the long multiply
339 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
340
341 // Copy result back into *this
342 clear();
343 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
344 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
345
346 // delete dest array and return
347 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000348 return *this;
349}
350
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000351/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
352/// this APInt and the given APInt& RHS, assigns the result to this APInt.
353APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000354 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000355 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000356 VAL &= RHS.VAL;
357 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000358 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000359 uint32_t numWords = getNumWords();
360 for (uint32_t i = 0; i < numWords; ++i)
361 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000362 return *this;
363}
364
365/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
366/// this APInt and the given APInt& RHS, assigns the result to this APInt.
367APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000368 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000369 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000370 VAL |= RHS.VAL;
371 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000372 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000373 uint32_t numWords = getNumWords();
374 for (uint32_t i = 0; i < numWords; ++i)
375 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000376 return *this;
377}
378
379/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
380/// this APInt and the given APInt& RHS, assigns the result to this APInt.
381APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000382 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000383 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000384 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000385 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000386 return *this;
387 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000388 uint32_t numWords = getNumWords();
389 for (uint32_t i = 0; i < numWords; ++i)
390 pVal[i] ^= RHS.pVal[i];
Reid Spencer54362ca2007-02-20 23:40:25 +0000391 this->clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000392 return *this;
393}
394
395/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
396/// and the given APInt& RHS.
397APInt APInt::operator&(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spenceraf0e9562007-02-18 18:38:44 +0000399 if (isSingleWord())
400 return APInt(getBitWidth(), VAL & RHS.VAL);
401
402 APInt Result(*this);
403 uint32_t numWords = getNumWords();
404 for (uint32_t i = 0; i < numWords; ++i)
405 Result.pVal[i] &= RHS.pVal[i];
406 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000407}
408
409/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
410/// and the given APInt& RHS.
411APInt APInt::operator|(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000412 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spenceraf0e9562007-02-18 18:38:44 +0000413 if (isSingleWord())
414 return APInt(getBitWidth(), VAL | RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000415
Reid Spenceraf0e9562007-02-18 18:38:44 +0000416 APInt Result(*this);
417 uint32_t numWords = getNumWords();
418 for (uint32_t i = 0; i < numWords; ++i)
419 Result.pVal[i] |= RHS.pVal[i];
420 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000421}
422
423/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
424/// and the given APInt& RHS.
425APInt APInt::operator^(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000426 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000427 if (isSingleWord()) {
428 APInt Result(BitWidth, VAL ^ RHS.VAL);
429 Result.clearUnusedBits();
430 return Result;
431 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000432 APInt Result(*this);
433 uint32_t numWords = getNumWords();
434 for (uint32_t i = 0; i < numWords; ++i)
435 Result.pVal[i] ^= RHS.pVal[i];
436 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000437}
438
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000439/// @brief Logical negation operator. Performs logical negation operation on
440/// this APInt.
441bool APInt::operator !() const {
442 if (isSingleWord())
443 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000444
445 for (uint32_t i = 0; i < getNumWords(); ++i)
446 if (pVal[i])
447 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000448 return true;
449}
450
451/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
452/// RHS.
453APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000454 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000455 if (isSingleWord()) {
456 APInt Result(BitWidth, VAL * RHS.VAL);
457 Result.clearUnusedBits();
458 return Result;
459 }
Reid Spencer61eb1802007-02-20 20:42:10 +0000460 APInt Result(*this);
461 Result *= RHS;
462 Result.clearUnusedBits();
463 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000464}
465
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000466/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
467APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000469 if (isSingleWord()) {
470 APInt Result(BitWidth, VAL + RHS.VAL);
471 Result.clearUnusedBits();
472 return Result;
473 }
474 APInt Result(BitWidth, 0);
475 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
476 Result.clearUnusedBits();
477 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000478}
479
480/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
481APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000482 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000483 if (isSingleWord()) {
484 APInt Result(BitWidth, VAL - RHS.VAL);
485 Result.clearUnusedBits();
486 return Result;
487 }
488 APInt Result(BitWidth, 0);
489 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
490 Result.clearUnusedBits();
491 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000492}
493
494/// @brief Array-indexing support.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000495bool APInt::operator[](uint32_t bitPosition) const {
Zhou Shengff4304f2007-02-09 07:48:24 +0000496 return (maskBit(bitPosition) & (isSingleWord() ?
497 VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000498}
499
500/// @brief Equality operator. Compare this APInt with the given APInt& RHS
501/// for the validity of the equality relationship.
502bool APInt::operator==(const APInt& RHS) const {
Reid Spencer54362ca2007-02-20 23:40:25 +0000503 if (isSingleWord())
504 return VAL == RHS.VAL;
505
Reid Spenceraf0e9562007-02-18 18:38:44 +0000506 uint32_t n1 = getActiveBits();
507 uint32_t n2 = RHS.getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000508 if (n1 != n2)
509 return false;
510
511 if (n1 <= APINT_BITS_PER_WORD)
512 return pVal[0] == RHS.pVal[0];
513
514 for (int i = whichWord(n1 - 1); i >= 0; --i)
515 if (pVal[i] != RHS.pVal[i])
516 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000517 return true;
518}
519
Zhou Shenga3832fd2007-02-07 06:14:53 +0000520/// @brief Equality operator. Compare this APInt with the given uint64_t value
521/// for the validity of the equality relationship.
522bool APInt::operator==(uint64_t Val) const {
523 if (isSingleWord())
524 return VAL == Val;
Reid Spencer54362ca2007-02-20 23:40:25 +0000525
526 uint32_t n = getActiveBits();
527 if (n <= APINT_BITS_PER_WORD)
528 return pVal[0] == Val;
529 else
530 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000531}
532
Reid Spencere81d2da2007-02-16 22:36:51 +0000533/// @brief Unsigned less than comparison
534bool APInt::ult(const APInt& RHS) const {
535 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
536 if (isSingleWord())
537 return VAL < RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000538 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000539 uint32_t n1 = getActiveBits();
540 uint32_t n2 = RHS.getActiveBits();
Reid Spencere81d2da2007-02-16 22:36:51 +0000541 if (n1 < n2)
542 return true;
543 else if (n2 < n1)
544 return false;
Reid Spencer443b5702007-02-18 00:44:22 +0000545 else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
Reid Spencere81d2da2007-02-16 22:36:51 +0000546 return pVal[0] < RHS.pVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000547 for (int i = whichWord(n1 - 1); i >= 0; --i) {
548 if (pVal[i] > RHS.pVal[i]) return false;
549 else if (pVal[i] < RHS.pVal[i]) return true;
550 }
551 }
552 return false;
553}
554
Reid Spencere81d2da2007-02-16 22:36:51 +0000555/// @brief Signed less than comparison
556bool APInt::slt(const APInt& RHS) const {
557 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000558 if (isSingleWord()) {
559 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
560 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
561 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000562 }
Reid Spencera58f0582007-02-18 20:09:41 +0000563
564 APInt lhs(*this);
565 APInt rhs(*this);
566 bool lhsNegative = false;
567 bool rhsNegative = false;
568 if (lhs[BitWidth-1]) {
569 lhsNegative = true;
570 lhs.flip();
571 lhs++;
572 }
573 if (rhs[BitWidth-1]) {
574 rhsNegative = true;
575 rhs.flip();
576 rhs++;
577 }
578 if (lhsNegative)
579 if (rhsNegative)
580 return !lhs.ult(rhs);
581 else
582 return true;
583 else if (rhsNegative)
584 return false;
585 else
586 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000587}
588
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000589/// Set the given bit to 1 whose poition is given as "bitPosition".
590/// @brief Set a given bit to 1.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000591APInt& APInt::set(uint32_t bitPosition) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000592 if (isSingleWord()) VAL |= maskBit(bitPosition);
593 else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
594 return *this;
595}
596
597/// @brief Set every bit to 1.
598APInt& APInt::set() {
Reid Spencer443b5702007-02-18 00:44:22 +0000599 if (isSingleWord())
600 VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
Zhou Shengb04973e2007-02-15 06:36:31 +0000601 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000602 for (uint32_t i = 0; i < getNumWords() - 1; ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000603 pVal[i] = -1ULL;
Reid Spencer443b5702007-02-18 00:44:22 +0000604 pVal[getNumWords() - 1] = ~0ULL >>
605 (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
Zhou Shengb04973e2007-02-15 06:36:31 +0000606 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000607 return *this;
608}
609
610/// Set the given bit to 0 whose position is given as "bitPosition".
611/// @brief Set a given bit to 0.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000612APInt& APInt::clear(uint32_t bitPosition) {
613 if (isSingleWord())
614 VAL &= ~maskBit(bitPosition);
615 else
616 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000617 return *this;
618}
619
620/// @brief Set every bit to 0.
621APInt& APInt::clear() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000622 if (isSingleWord())
623 VAL = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000624 else
Reid Spencera58f0582007-02-18 20:09:41 +0000625 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000626 return *this;
627}
628
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000629/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
630/// this APInt.
631APInt APInt::operator~() const {
632 APInt API(*this);
633 API.flip();
634 return API;
635}
636
637/// @brief Toggle every bit to its opposite value.
638APInt& APInt::flip() {
Reid Spencer443b5702007-02-18 00:44:22 +0000639 if (isSingleWord()) VAL = (~(VAL <<
640 (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000641 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000642 uint32_t i = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000643 for (; i < getNumWords() - 1; ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000644 pVal[i] = ~pVal[i];
Reid Spenceraf0e9562007-02-18 18:38:44 +0000645 uint32_t offset =
Reid Spencer443b5702007-02-18 00:44:22 +0000646 APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000647 pVal[i] = (~(pVal[i] << offset)) >> offset;
648 }
649 return *this;
650}
651
652/// Toggle a given bit to its opposite value whose position is given
653/// as "bitPosition".
654/// @brief Toggles a given bit to its opposite value.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000655APInt& APInt::flip(uint32_t bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000656 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000657 if ((*this)[bitPosition]) clear(bitPosition);
658 else set(bitPosition);
659 return *this;
660}
661
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000662/// getMaxValue - This function returns the largest value
663/// for an APInt of the specified bit-width and if isSign == true,
664/// it should be largest signed value, otherwise unsigned value.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000665APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
Reid Spencerf99a0ac2007-02-18 22:29:05 +0000666 APInt Result(numBits, 0);
667 Result.set();
668 if (isSign)
669 Result.clear(numBits - 1);
670 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000671}
672
673/// getMinValue - This function returns the smallest value for
674/// an APInt of the given bit-width and if isSign == true,
675/// it should be smallest signed value, otherwise zero.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000676APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
Reid Spencerf99a0ac2007-02-18 22:29:05 +0000677 APInt Result(numBits, 0);
678 if (isSign)
679 Result.set(numBits - 1);
680 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000681}
682
683/// getAllOnesValue - This function returns an all-ones value for
684/// an APInt of the specified bit-width.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000685APInt APInt::getAllOnesValue(uint32_t numBits) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000686 return getMaxValue(numBits, false);
687}
688
689/// getNullValue - This function creates an '0' value for an
690/// APInt of the specified bit-width.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000691APInt APInt::getNullValue(uint32_t numBits) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000692 return getMinValue(numBits, false);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000693}
694
695/// HiBits - This function returns the high "numBits" bits of this APInt.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000696APInt APInt::getHiBits(uint32_t numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000697 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000698}
699
700/// LoBits - This function returns the low "numBits" bits of this APInt.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000701APInt APInt::getLoBits(uint32_t numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000702 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
703 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000704}
705
Reid Spencere81d2da2007-02-16 22:36:51 +0000706bool APInt::isPowerOf2() const {
707 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
708}
709
710/// countLeadingZeros - This function is a APInt version corresponding to
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000711/// llvm/include/llvm/Support/MathExtras.h's function
Reid Spencere81d2da2007-02-16 22:36:51 +0000712/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000713/// the number of zeros from the most significant bit to the first one bit.
714/// @returns numWord() * 64 if the value is zero.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000715uint32_t APInt::countLeadingZeros() const {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000716 uint32_t Count = 0;
Reid Spencere549c492007-02-21 00:29:48 +0000717 if (isSingleWord())
718 Count = CountLeadingZeros_64(VAL);
719 else {
720 for (uint32_t i = getNumWords(); i > 0u; --i) {
721 if (pVal[i-1] == 0)
722 Count += APINT_BITS_PER_WORD;
723 else {
724 Count += CountLeadingZeros_64(pVal[i-1]);
725 break;
726 }
727 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000728 }
Reid Spencerab2b2c82007-02-22 00:22:00 +0000729 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
730 if (remainder)
731 Count -= APINT_BITS_PER_WORD - remainder;
732 return Count;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000733}
734
Reid Spencere81d2da2007-02-16 22:36:51 +0000735/// countTrailingZeros - This function is a APInt version corresponding to
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000736/// llvm/include/llvm/Support/MathExtras.h's function
Reid Spencere81d2da2007-02-16 22:36:51 +0000737/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000738/// the number of zeros from the least significant bit to the first one bit.
739/// @returns numWord() * 64 if the value is zero.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000740uint32_t APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000741 if (isSingleWord())
Reid Spencer443b5702007-02-18 00:44:22 +0000742 return CountTrailingZeros_64(VAL);
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000743 APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
Reid Spencere81d2da2007-02-16 22:36:51 +0000744 return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000745}
746
Reid Spencere81d2da2007-02-16 22:36:51 +0000747/// countPopulation - This function is a APInt version corresponding to
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000748/// llvm/include/llvm/Support/MathExtras.h's function
Reid Spencere81d2da2007-02-16 22:36:51 +0000749/// countPopulation_{32, 64}. It counts the number of set bits in a value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000750/// @returns 0 if the value is zero.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000751uint32_t APInt::countPopulation() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000752 if (isSingleWord())
753 return CountPopulation_64(VAL);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000754 uint32_t Count = 0;
755 for (uint32_t i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000756 Count += CountPopulation_64(pVal[i]);
757 return Count;
758}
759
760
Reid Spencere81d2da2007-02-16 22:36:51 +0000761/// byteSwap - This function returns a byte-swapped representation of the
Zhou Shengff4304f2007-02-09 07:48:24 +0000762/// this APInt.
Reid Spencere81d2da2007-02-16 22:36:51 +0000763APInt APInt::byteSwap() const {
764 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
765 if (BitWidth == 16)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000766 return APInt(BitWidth, ByteSwap_16(VAL));
Reid Spencere81d2da2007-02-16 22:36:51 +0000767 else if (BitWidth == 32)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000768 return APInt(BitWidth, ByteSwap_32(VAL));
Reid Spencere81d2da2007-02-16 22:36:51 +0000769 else if (BitWidth == 48) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000770 uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
771 Tmp1 = ByteSwap_32(Tmp1);
772 uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
773 Tmp2 = ByteSwap_16(Tmp2);
774 return
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000775 APInt(BitWidth,
776 (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
Reid Spencere81d2da2007-02-16 22:36:51 +0000777 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000778 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000779 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000780 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000781 char *pByte = (char*)Result.pVal;
Reid Spencera58f0582007-02-18 20:09:41 +0000782 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000783 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000784 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
785 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000786 }
787 return Result;
788 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000789}
790
791/// GreatestCommonDivisor - This function returns the greatest common
792/// divisor of the two APInt values using Enclid's algorithm.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000793APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
794 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000795 APInt A = API1, B = API2;
796 while (!!B) {
797 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000798 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000799 A = T;
800 }
801 return A;
802}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000803
Zhou Shengd93f00c2007-02-12 20:02:55 +0000804/// DoubleRoundToAPInt - This function convert a double value to
805/// a APInt value.
Reid Spencere81d2da2007-02-16 22:36:51 +0000806APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000807 union {
808 double D;
809 uint64_t I;
810 } T;
811 T.D = Double;
812 bool isNeg = T.I >> 63;
813 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
814 if (exp < 0)
Reid Spencere81d2da2007-02-16 22:36:51 +0000815 return APInt(64ull, 0u);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000816 uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
817 if (exp < 52)
Reid Spencere81d2da2007-02-16 22:36:51 +0000818 return isNeg ? -APInt(64u, mantissa >> (52 - exp)) :
819 APInt(64u, mantissa >> (52 - exp));
820 APInt Tmp(exp + 1, mantissa);
821 Tmp = Tmp.shl(exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000822 return isNeg ? -Tmp : Tmp;
823}
824
Reid Spencerdb3faa62007-02-13 22:41:58 +0000825/// RoundToDouble - This function convert this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000826/// The layout for double is as following (IEEE Standard 754):
827/// --------------------------------------
828/// | Sign Exponent Fraction Bias |
829/// |-------------------------------------- |
830/// | 1[63] 11[62-52] 52[51-00] 1023 |
831/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000832double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000833
834 // Handle the simple case where the value is contained in one uint64_t.
Reid Spencera58f0582007-02-18 20:09:41 +0000835 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
836 if (isSigned) {
837 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
838 return double(sext);
839 } else
840 return double(VAL);
841 }
842
Reid Spencer9c0696f2007-02-20 08:51:03 +0000843 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000844 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000845
846 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000847 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000848
849 // Figure out how many bits we're using.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000850 uint32_t n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000851
Reid Spencer9c0696f2007-02-20 08:51:03 +0000852 // The exponent (without bias normalization) is just the number of bits
853 // we are using. Note that the sign bit is gone since we constructed the
854 // absolute value.
855 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000856
Reid Spencer9c0696f2007-02-20 08:51:03 +0000857 // Return infinity for exponent overflow
858 if (exp > 1023) {
859 if (!isSigned || !isNeg)
Reid Spencer61eb1802007-02-20 20:42:10 +0000860 return double(1.0E300 * 1.0E300); // positive infinity
Reid Spencer9c0696f2007-02-20 08:51:03 +0000861 else
Reid Spencer61eb1802007-02-20 20:42:10 +0000862 return double(-1.0E300 * 1.0E300); // negative infinity
Reid Spencer9c0696f2007-02-20 08:51:03 +0000863 }
864 exp += 1023; // Increment for 1023 bias
865
866 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
867 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000868 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000869 unsigned hiWord = whichWord(n-1);
870 if (hiWord == 0) {
871 mantissa = Tmp.pVal[0];
872 if (n > 52)
873 mantissa >>= n - 52; // shift down, we want the top 52 bits.
874 } else {
875 assert(hiWord > 0 && "huh?");
876 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
877 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
878 mantissa = hibits | lobits;
879 }
880
Zhou Shengd93f00c2007-02-12 20:02:55 +0000881 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000882 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000883 union {
884 double D;
885 uint64_t I;
886 } T;
887 T.I = sign | (exp << 52) | mantissa;
888 return T.D;
889}
890
Reid Spencere81d2da2007-02-16 22:36:51 +0000891// Truncate to new width.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000892void APInt::trunc(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000893 assert(width < BitWidth && "Invalid APInt Truncate request");
894}
895
896// Sign extend to a new width.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000897void APInt::sext(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000898 assert(width > BitWidth && "Invalid APInt SignExtend request");
899}
900
901// Zero extend to a new width.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000902void APInt::zext(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000903 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
904}
905
Zhou Shengff4304f2007-02-09 07:48:24 +0000906/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000907/// @brief Arithmetic right-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000908APInt APInt::ashr(uint32_t shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +0000909 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +0000910 if (API.isSingleWord())
Reid Spencer443b5702007-02-18 00:44:22 +0000911 API.VAL =
912 (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >>
913 (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) &
914 (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth));
Zhou Sheng0b706b12007-02-08 14:35:19 +0000915 else {
Reid Spencere81d2da2007-02-16 22:36:51 +0000916 if (shiftAmt >= API.BitWidth) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000917 memset(API.pVal, API[API.BitWidth-1] ? 1 : 0,
Reid Spencera58f0582007-02-18 20:09:41 +0000918 (API.getNumWords()-1) * APINT_WORD_SIZE);
Reid Spencer443b5702007-02-18 00:44:22 +0000919 API.pVal[API.getNumWords() - 1] =
920 ~uint64_t(0UL) >>
921 (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD);
Zhou Sheng0b706b12007-02-08 14:35:19 +0000922 } else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000923 uint32_t i = 0;
Reid Spencere81d2da2007-02-16 22:36:51 +0000924 for (; i < API.BitWidth - shiftAmt; ++i)
Zhou Sheng0b706b12007-02-08 14:35:19 +0000925 if (API[i+shiftAmt])
926 API.set(i);
927 else
928 API.clear(i);
Reid Spencere81d2da2007-02-16 22:36:51 +0000929 for (; i < API.BitWidth; ++i)
930 if (API[API.BitWidth-1])
Zhou Shengb04973e2007-02-15 06:36:31 +0000931 API.set(i);
932 else API.clear(i);
Zhou Sheng0b706b12007-02-08 14:35:19 +0000933 }
934 }
935 return API;
936}
937
Zhou Shengff4304f2007-02-09 07:48:24 +0000938/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000939/// @brief Logical right-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000940APInt APInt::lshr(uint32_t shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +0000941 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +0000942 if (API.isSingleWord())
943 API.VAL >>= shiftAmt;
944 else {
Reid Spencere81d2da2007-02-16 22:36:51 +0000945 if (shiftAmt >= API.BitWidth)
Reid Spencera58f0582007-02-18 20:09:41 +0000946 memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000947 uint32_t i = 0;
Reid Spencere81d2da2007-02-16 22:36:51 +0000948 for (i = 0; i < API.BitWidth - shiftAmt; ++i)
Zhou Sheng0b706b12007-02-08 14:35:19 +0000949 if (API[i+shiftAmt]) API.set(i);
950 else API.clear(i);
Reid Spencere81d2da2007-02-16 22:36:51 +0000951 for (; i < API.BitWidth; ++i)
Zhou Sheng0b706b12007-02-08 14:35:19 +0000952 API.clear(i);
953 }
954 return API;
955}
956
Zhou Shengff4304f2007-02-09 07:48:24 +0000957/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000958/// @brief Left-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000959APInt APInt::shl(uint32_t shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +0000960 APInt API(*this);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000961 if (API.isSingleWord())
962 API.VAL <<= shiftAmt;
Reid Spencere81d2da2007-02-16 22:36:51 +0000963 else if (shiftAmt >= API.BitWidth)
Reid Spencera58f0582007-02-18 20:09:41 +0000964 memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000965 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000966 if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) {
967 for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i)
Zhou Shengd93f00c2007-02-12 20:02:55 +0000968 API.pVal[i] = API.pVal[i-offset];
Reid Spencera58f0582007-02-18 20:09:41 +0000969 memset(API.pVal, 0, offset * APINT_WORD_SIZE);
Zhou Sheng0b706b12007-02-08 14:35:19 +0000970 }
Reid Spencer443b5702007-02-18 00:44:22 +0000971 shiftAmt %= APINT_BITS_PER_WORD;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000972 uint32_t i;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000973 for (i = API.getNumWords() - 1; i > 0; --i)
974 API.pVal[i] = (API.pVal[i] << shiftAmt) |
Reid Spencer443b5702007-02-18 00:44:22 +0000975 (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt));
Zhou Shengd93f00c2007-02-12 20:02:55 +0000976 API.pVal[i] <<= shiftAmt;
Zhou Sheng0b706b12007-02-08 14:35:19 +0000977 }
Reid Spencere81d2da2007-02-16 22:36:51 +0000978 API.clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +0000979 return API;
980}
981
Reid Spencer9c0696f2007-02-20 08:51:03 +0000982#if 0
Reid Spencer5e0a8512007-02-17 03:16:00 +0000983/// subMul - This function substracts x[len-1:0] * y from
984/// dest[offset+len-1:offset], and returns the most significant
985/// word of the product, minus the borrow-out from the subtraction.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000986static uint32_t subMul(uint32_t dest[], uint32_t offset,
987 uint32_t x[], uint32_t len, uint32_t y) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000988 uint64_t yl = (uint64_t) y & 0xffffffffL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000989 uint32_t carry = 0;
990 uint32_t j = 0;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000991 do {
Reid Spencerc72f2802007-02-17 22:38:07 +0000992 uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000993 uint32_t prod_low = (uint32_t) prod;
994 uint32_t prod_high = (uint32_t) (prod >> 32);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000995 prod_low += carry;
996 carry = (prod_low < carry ? 1 : 0) + prod_high;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000997 uint32_t x_j = dest[offset+j];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000998 prod_low = x_j - prod_low;
999 if (prod_low > x_j) ++carry;
1000 dest[offset+j] = prod_low;
1001 } while (++j < len);
1002 return carry;
1003}
1004
1005/// unitDiv - This function divides N by D,
1006/// and returns (remainder << 32) | quotient.
1007/// Assumes (N >> 32) < D.
Reid Spenceraf0e9562007-02-18 18:38:44 +00001008static uint64_t unitDiv(uint64_t N, uint32_t D) {
Reid Spencer5e0a8512007-02-17 03:16:00 +00001009 uint64_t q, r; // q: quotient, r: remainder.
1010 uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
1011 uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
1012 if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
1013 q = N / D;
1014 r = N % D;
1015 }
1016 else {
1017 // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
1018 uint64_t c = N - ((uint64_t) D << 31);
1019 // Divide (c1*2^32 + c0) by d
1020 q = c / D;
1021 r = c % D;
1022 // Add 2^31 to quotient
1023 q += 1 << 31;
1024 }
1025
1026 return (r << 32) | (q & 0xFFFFFFFFl);
1027}
1028
Reid Spencer9c0696f2007-02-20 08:51:03 +00001029#endif
1030
Reid Spencer5e0a8512007-02-17 03:16:00 +00001031/// div - This is basically Knuth's formulation of the classical algorithm.
1032/// Correspondance with Knuth's notation:
1033/// Knuth's u[0:m+n] == zds[nx:0].
1034/// Knuth's v[1:n] == y[ny-1:0]
1035/// Knuth's n == ny.
1036/// Knuth's m == nx-ny.
1037/// Our nx == Knuth's m+n.
1038/// Could be re-implemented using gmp's mpn_divrem:
1039/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
Reid Spencer9c0696f2007-02-20 08:51:03 +00001040
1041/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1042/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1043/// variables here have the same names as in the algorithm. Comments explain
1044/// the algorithm and any deviation from it.
1045static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1046 uint32_t m, uint32_t n) {
1047 assert(u && "Must provide dividend");
1048 assert(v && "Must provide divisor");
1049 assert(q && "Must provide quotient");
1050 assert(n>1 && "n must be > 1");
1051
1052 // Knuth uses the value b as the base of the number system. In our case b
1053 // is 2^31 so we just set it to -1u.
1054 uint64_t b = uint64_t(1) << 32;
1055
1056 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1057 // u and v by d. Note that we have taken Knuth's advice here to use a power
1058 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1059 // 2 allows us to shift instead of multiply and it is easy to determine the
1060 // shift amount from the leading zeros. We are basically normalizing the u
1061 // and v so that its high bits are shifted to the top of v's range without
1062 // overflow. Note that this can require an extra word in u so that u must
1063 // be of length m+n+1.
1064 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1065 uint32_t v_carry = 0;
1066 uint32_t u_carry = 0;
1067 if (shift) {
1068 for (uint32_t i = 0; i < m+n; ++i) {
1069 uint32_t u_tmp = u[i] >> (32 - shift);
1070 u[i] = (u[i] << shift) | u_carry;
1071 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001072 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001073 for (uint32_t i = 0; i < n; ++i) {
1074 uint32_t v_tmp = v[i] >> (32 - shift);
1075 v[i] = (v[i] << shift) | v_carry;
1076 v_carry = v_tmp;
1077 }
1078 }
1079 u[m+n] = u_carry;
1080
1081 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1082 int j = m;
1083 do {
1084 // D3. [Calculate q'.].
1085 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1086 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1087 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1088 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1089 // on v[n-2] determines at high speed most of the cases in which the trial
1090 // value qp is one too large, and it eliminates all cases where qp is two
1091 // too large.
1092 uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1];
1093 uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1];
1094 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1095 qp--;
1096 rp += v[n-1];
1097 }
1098 if (rp < b)
1099 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1100 qp--;
1101 rp += v[n-1];
1102 }
1103
1104 // D4. [Multiply and subtract.] Replace u with u - q*v (for each word).
1105 uint32_t borrow = 0;
1106 for (uint32_t i = 0; i < n; i++) {
1107 uint32_t save = u[j+i];
1108 u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow;
1109 if (u[j+i] > save) {
1110 borrow = 1;
1111 u[j+i+1] += b;
1112 } else {
1113 borrow = 0;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001114 }
1115 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001116 if (borrow)
1117 u[j+n] += 1;
1118
1119 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1120 // negative, go to step D6; otherwise go on to step D7.
1121 q[j] = qp;
1122 if (borrow) {
1123 // D6. [Add back]. The probability that this step is necessary is very
1124 // small, on the order of only 2/b. Make sure that test data accounts for
1125 // this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry
1126 // will occur to the left of u[j+n], and it should be ignored since it
1127 // cancels with the borrow that occurred in D4.
1128 uint32_t carry = 0;
1129 for (uint32_t i = 0; i < n; i++) {
1130 uint32_t save = u[j+i];
1131 u[j+i] += v[i] + carry;
1132 carry = u[j+i] < save;
1133 }
1134 }
1135
1136 // D7. [Loop on j.] Decreate j by one. Now if j >= 0, go back to D3.
1137 j--;
1138 } while (j >= 0);
1139
1140 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1141 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1142 // compute the remainder (urem uses this).
1143 if (r) {
1144 // The value d is expressed by the "shift" value above since we avoided
1145 // multiplication by d by using a shift left. So, all we have to do is
1146 // shift right here. In order to mak
1147 uint32_t mask = ~0u >> (32 - shift);
1148 uint32_t carry = 0;
1149 for (int i = n-1; i >= 0; i--) {
1150 uint32_t save = u[i] & mask;
1151 r[i] = (u[i] >> shift) | carry;
1152 carry = save;
1153 }
1154 }
1155}
1156
1157// This function makes calling KnuthDiv a little more convenient. It uses
1158// APInt parameters instead of uint32_t* parameters. It can also divide APInt
1159// values of different widths.
1160void APInt::divide(const APInt LHS, uint32_t lhsWords,
1161 const APInt &RHS, uint32_t rhsWords,
1162 APInt *Quotient, APInt *Remainder)
1163{
1164 assert(lhsWords >= rhsWords && "Fractional result");
1165
1166 // First, compose the values into an array of 32-bit words instead of
1167 // 64-bit words. This is a necessity of both the "short division" algorithm
1168 // and the the Knuth "classical algorithm" which requires there to be native
1169 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1170 // can't use 64-bit operands here because we don't have native results of
1171 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1172 // work on large-endian machines.
1173 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1174 uint32_t n = rhsWords * 2;
1175 uint32_t m = (lhsWords * 2) - n;
1176 // FIXME: allocate space on stack if m and n are sufficiently small.
1177 uint32_t *U = new uint32_t[m + n + 1];
1178 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1179 for (unsigned i = 0; i < lhsWords; ++i) {
1180 uint64_t tmp = (lhsWords == 1 ? LHS.VAL : LHS.pVal[i]);
1181 U[i * 2] = tmp & mask;
1182 U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1183 }
1184 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1185
1186 uint32_t *V = new uint32_t[n];
1187 memset(V, 0, (n)*sizeof(uint32_t));
1188 for (unsigned i = 0; i < rhsWords; ++i) {
1189 uint64_t tmp = (rhsWords == 1 ? RHS.VAL : RHS.pVal[i]);
1190 V[i * 2] = tmp & mask;
1191 V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1192 }
1193
1194 // Set up the quotient and remainder
1195 uint32_t *Q = new uint32_t[m+n];
1196 memset(Q, 0, (m+n) * sizeof(uint32_t));
1197 uint32_t *R = 0;
1198 if (Remainder) {
1199 R = new uint32_t[n];
1200 memset(R, 0, n * sizeof(uint32_t));
1201 }
1202
1203 // Now, adjust m and n for the Knuth division. n is the number of words in
1204 // the divisor. m is the number of words by which the dividend exceeds the
1205 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1206 // contain any zero words or the Knuth algorithm fails.
1207 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1208 n--;
1209 m++;
1210 }
1211 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1212 m--;
1213
1214 // If we're left with only a single word for the divisor, Knuth doesn't work
1215 // so we implement the short division algorithm here. This is much simpler
1216 // and faster because we are certain that we can divide a 64-bit quantity
1217 // by a 32-bit quantity at hardware speed and short division is simply a
1218 // series of such operations. This is just like doing short division but we
1219 // are using base 2^32 instead of base 10.
1220 assert(n != 0 && "Divide by zero?");
1221 if (n == 1) {
1222 uint32_t divisor = V[0];
1223 uint32_t remainder = 0;
1224 for (int i = m+n-1; i >= 0; i--) {
1225 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1226 if (partial_dividend == 0) {
1227 Q[i] = 0;
1228 remainder = 0;
1229 } else if (partial_dividend < divisor) {
1230 Q[i] = 0;
1231 remainder = partial_dividend;
1232 } else if (partial_dividend == divisor) {
1233 Q[i] = 1;
1234 remainder = 0;
1235 } else {
1236 Q[i] = partial_dividend / divisor;
1237 remainder = partial_dividend - (Q[i] * divisor);
1238 }
1239 }
1240 if (R)
1241 R[0] = remainder;
1242 } else {
1243 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1244 // case n > 1.
1245 KnuthDiv(U, V, Q, R, m, n);
1246 }
1247
1248 // If the caller wants the quotient
1249 if (Quotient) {
1250 // Set up the Quotient value's memory.
1251 if (Quotient->BitWidth != LHS.BitWidth) {
1252 if (Quotient->isSingleWord())
1253 Quotient->VAL = 0;
1254 else
1255 delete Quotient->pVal;
1256 Quotient->BitWidth = LHS.BitWidth;
1257 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001258 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001259 } else
1260 Quotient->clear();
1261
1262 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1263 // order words.
1264 if (lhsWords == 1) {
1265 uint64_t tmp =
1266 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1267 if (Quotient->isSingleWord())
1268 Quotient->VAL = tmp;
1269 else
1270 Quotient->pVal[0] = tmp;
1271 } else {
1272 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1273 for (unsigned i = 0; i < lhsWords; ++i)
1274 Quotient->pVal[i] =
1275 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1276 }
1277 }
1278
1279 // If the caller wants the remainder
1280 if (Remainder) {
1281 // Set up the Remainder value's memory.
1282 if (Remainder->BitWidth != RHS.BitWidth) {
1283 if (Remainder->isSingleWord())
1284 Remainder->VAL = 0;
1285 else
1286 delete Remainder->pVal;
1287 Remainder->BitWidth = RHS.BitWidth;
1288 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001289 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001290 } else
1291 Remainder->clear();
1292
1293 // The remainder is in R. Reconstitute the remainder into Remainder's low
1294 // order words.
1295 if (rhsWords == 1) {
1296 uint64_t tmp =
1297 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1298 if (Remainder->isSingleWord())
1299 Remainder->VAL = tmp;
1300 else
1301 Remainder->pVal[0] = tmp;
1302 } else {
1303 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1304 for (unsigned i = 0; i < rhsWords; ++i)
1305 Remainder->pVal[i] =
1306 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1307 }
1308 }
1309
1310 // Clean up the memory we allocated.
1311 delete [] U;
1312 delete [] V;
1313 delete [] Q;
1314 delete [] R;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001315}
1316
Zhou Shengff4304f2007-02-09 07:48:24 +00001317/// Unsigned divide this APInt by APInt RHS.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001318/// @brief Unsigned division function for APInt.
Reid Spencere81d2da2007-02-16 22:36:51 +00001319APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001320 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001321
1322 // First, deal with the easy case
1323 if (isSingleWord()) {
1324 assert(RHS.VAL != 0 && "Divide by zero?");
1325 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001326 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001327
Reid Spencer71bd08f2007-02-17 02:07:07 +00001328 // Get some facts about the LHS and RHS number of bits and words
Reid Spenceraf0e9562007-02-18 18:38:44 +00001329 uint32_t rhsBits = RHS.getActiveBits();
1330 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001331 assert(rhsWords && "Divided by zero???");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001332 uint32_t lhsBits = this->getActiveBits();
Reid Spenceraf0e9562007-02-18 18:38:44 +00001333 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001334
1335 // Deal with some degenerate cases
1336 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001337 // 0 / X ===> 0
1338 return APInt(BitWidth, 0);
1339 else if (lhsWords < rhsWords || this->ult(RHS)) {
1340 // X / Y ===> 0, iff X < Y
1341 return APInt(BitWidth, 0);
1342 } else if (*this == RHS) {
1343 // X / X ===> 1
1344 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001345 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001346 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001347 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001348 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001349
1350 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1351 APInt Quotient(1,0); // to hold result.
1352 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1353 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001354}
1355
1356/// Unsigned remainder operation on APInt.
1357/// @brief Function for unsigned remainder operation.
Reid Spencere81d2da2007-02-16 22:36:51 +00001358APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001360 if (isSingleWord()) {
1361 assert(RHS.VAL != 0 && "Remainder by zero?");
1362 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001363 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001364
Reid Spencere0cdd332007-02-21 08:21:52 +00001365 // Get some facts about the LHS
1366 uint32_t lhsBits = getActiveBits();
1367 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001368
1369 // Get some facts about the RHS
Reid Spenceraf0e9562007-02-18 18:38:44 +00001370 uint32_t rhsBits = RHS.getActiveBits();
1371 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001372 assert(rhsWords && "Performing remainder operation by zero ???");
1373
Reid Spencer71bd08f2007-02-17 02:07:07 +00001374 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001375 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001376 // 0 % Y ===> 0
1377 return APInt(BitWidth, 0);
1378 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1379 // X % Y ===> X, iff X < Y
1380 return *this;
1381 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001382 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001383 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001384 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001385 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00001386 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001387 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001388
1389 // We have to compute it the hard way. Invoke the Knute divide algorithm.
1390 APInt Remainder(1,0);
1391 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1392 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001393}
Reid Spencer5e0a8512007-02-17 03:16:00 +00001394
1395/// @brief Converts a char array into an integer.
Reid Spencer385f7542007-02-21 03:55:44 +00001396void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
Reid Spencer5e0a8512007-02-17 03:16:00 +00001397 uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00001398 // Check our assumptions here
Reid Spencer5e0a8512007-02-17 03:16:00 +00001399 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1400 "Radix should be 2, 8, 10, or 16!");
Reid Spencer385f7542007-02-21 03:55:44 +00001401 assert(str && "String is null?");
1402 assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1403 assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1404 assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1405 assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1406
1407 // Allocate memory
1408 if (!isSingleWord())
1409 pVal = getClearedMemory(getNumWords());
1410
1411 // Figure out if we can shift instead of multiply
1412 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1413
1414 // Set up an APInt for the digit to add outside the loop so we don't
1415 // constantly construct/destruct it.
1416 APInt apdigit(getBitWidth(), 0);
1417 APInt apradix(getBitWidth(), radix);
1418
1419 // Enter digit traversal loop
1420 for (unsigned i = 0; i < slen; i++) {
1421 // Get a digit
1422 uint32_t digit = 0;
1423 char cdigit = str[i];
1424 if (isdigit(cdigit))
1425 digit = cdigit - '0';
1426 else if (isxdigit(cdigit))
1427 if (cdigit >= 'a')
1428 digit = cdigit - 'a' + 10;
1429 else if (cdigit >= 'A')
1430 digit = cdigit - 'A' + 10;
1431 else
1432 assert(0 && "huh?");
1433 else
1434 assert(0 && "Invalid character in digit string");
1435
1436 // Shift or multiple the value by the radix
1437 if (shift)
1438 this->shl(shift);
1439 else
1440 *this *= apradix;
1441
1442 // Add in the digit we just interpreted
1443 apdigit.pVal[0] = digit;
1444 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001445 }
1446}
Reid Spencer9c0696f2007-02-20 08:51:03 +00001447
1448/// to_string - This function translates the APInt into a string.
1449std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1450 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1451 "Radix should be 2, 8, 10, or 16!");
1452 static const char *digits[] = {
1453 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1454 };
1455 std::string result;
1456 uint32_t bits_used = getActiveBits();
1457 if (isSingleWord()) {
1458 char buf[65];
1459 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1460 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1461 if (format) {
1462 if (wantSigned) {
1463 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1464 (APINT_BITS_PER_WORD-BitWidth);
1465 sprintf(buf, format, sextVal);
1466 } else
1467 sprintf(buf, format, VAL);
1468 } else {
1469 memset(buf, 0, 65);
1470 uint64_t v = VAL;
1471 while (bits_used) {
1472 uint32_t bit = v & 1;
1473 bits_used--;
1474 buf[bits_used] = digits[bit][0];
1475 v >>=1;
1476 }
1477 }
1478 result = buf;
1479 return result;
1480 }
1481
1482 if (radix != 10) {
1483 uint64_t mask = radix - 1;
1484 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1);
1485 uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1486 for (uint32_t i = 0; i < getNumWords(); ++i) {
1487 uint64_t value = pVal[i];
1488 for (uint32_t j = 0; j < nibbles; ++j) {
1489 result.insert(0, digits[ value & mask ]);
1490 value >>= shift;
1491 }
1492 }
1493 return result;
1494 }
1495
1496 APInt tmp(*this);
1497 APInt divisor(4, radix);
1498 APInt zero(tmp.getBitWidth(), 0);
1499 size_t insert_at = 0;
1500 if (wantSigned && tmp[BitWidth-1]) {
1501 // They want to print the signed version and it is a negative value
1502 // Flip the bits and add one to turn it into the equivalent positive
1503 // value and put a '-' in the result.
1504 tmp.flip();
1505 tmp++;
1506 result = "-";
1507 insert_at = 1;
1508 }
Reid Spencere549c492007-02-21 00:29:48 +00001509 if (tmp == APInt(tmp.getBitWidth(), 0))
Reid Spencer9c0696f2007-02-20 08:51:03 +00001510 result = "0";
1511 else while (tmp.ne(zero)) {
1512 APInt APdigit(1,0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001513 APInt tmp2(tmp.getBitWidth(), 0);
Reid Spencer385f7542007-02-21 03:55:44 +00001514 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1515 &APdigit);
1516 uint32_t digit = APdigit.getValue();
1517 assert(digit < radix && "divide failed");
1518 result.insert(insert_at,digits[digit]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001519 tmp = tmp2;
1520 }
1521
1522 return result;
1523}
1524
Reid Spencer385f7542007-02-21 03:55:44 +00001525#ifndef NDEBUG
1526void APInt::dump() const
1527{
1528 std::cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1529 if (isSingleWord())
1530 std::cerr << VAL;
1531 else for (unsigned i = getNumWords(); i > 0; i--) {
1532 std::cerr << pVal[i-1] << " ";
1533 }
1534 std::cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
1535}
1536#endif